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Introduction: Development of vaccines to preserve and improve human and 
animal health requires effective protective antigens, delivery platforms, and 
adjuvants. The immunostimulant based on heat-inactivated Mycobacterium 
bovis (IV) was developed to boost protective immune response in different 
animal species against pathogen infection and tick infestations.
Methods: In this study, a serum proteomics approach was used with functional 
annotations and enrichment network analysis for the characterization of immune 
pathways and biomarkers associated with parenteral administration of one, two, 
or three IV doses in the wild boar (Sus scrofa) animal model. An independent 
False Discovery Rate (FDR) analysis with the target-decoy approach provided 
by ProteinPilot™ was used, and positive identifications were considered when 
identified proteins reached a 1% FDR. Furthermore, pathogen surveillance was 
also performed to evaluate the IV treatment effect.
Results: The proteomics analysis identified a total of 205 proteins, of which 97 
displayed significant differential representation with 64 and 33 over (e.g., C4a, 
C5, C6, C7, and C9) and underrepresented (e.g., C3), respectively, in response 
to treatment. Results showed that IV administration activated both innate and 
adaptive immune responses through humoral immunity, regulation of the 
actin cytoskeleton pathway, coagulation cascade, and complement system. A 
single or two doses of IV significantly increased the activities of the classical, 
alternative, and lectin complement pathways. Moreover, a tendency was 
observed towards reducing seroprevalence in IV-treated wild boar over time 
for the causative agents of tuberculosis (Mycobacterium tuberculosis complex), 
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pneumonia (Mycoplasma hyopneumoniae), and Aujeszky’s disease (porcine 
herpesvirus type 1).
Discussion: These results support a role for IV in stimulating immune and 
anti-inflammatory responses with possible application in different vaccine 
formulations for the control of infectious diseases.
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1 Introduction

From a One Health and sustainability perspective, vaccines are 
key interventions to preserve and improve human and animal health 
worldwide (1). For the development of effective, efficacious, and safe 
vaccines, protective antigens, delivery platforms and adjuvants are 
essential components (1–3). To advance understanding in vaccinology 
by addressing the development, formulation, production and 
evaluation of vaccines, an immunostimulant based on heat-inactivated 
Mycobacterium bovis (IV) was developed and demonstrated in 
different animal species such as cattle (Bos taurus), red deer (Cervus 
elaphus), badger (Meles meles), wild boar (Sus scrofa), pig (Sus scrofa 
domesticus), and zebrafish (Danio rerio) to boost specific protective 
immune responses against mycobacteria and non-specific cross-
protective responses against other pathogens such as Leishmania and 
Salmonella species and ectoparasite tick vectors (4–9). For example, 
an oral vaccine formulation combining IV adjuvant with tick 
protective antigen Subolesin resulted in vaccine efficacy higher than 
95% against Rhipicephalus decoloratus and Rhipicephalus 
appendiculatus infestations with negative tuberculin test, and thus not 
affecting tuberculosis diagnosis in cattle (8). These results support the 
possibility of using IV to advance in vaccinology (7, 10).

The levels of selected immune biomarkers in response to oral and/
or parenteral IV formulations have been evaluated in different animal 
species (4, 6, 8, 9, 11–17) (Supplementary Table  1). In these 
experiments, the complement system is involved in innate immunity 
and linked with adaptive immunity (18, 19) and particularly 
complement component C3 upregulation was associated with 
protective effects in response to Mycobacterium tuberculosis complex 
(MTC) infection (12, 15) and against tick infestations (4).

The wild boar animal model has been validated in several 
proteomic studies focused on response to tuberculosis disease and/or 
IV protective response at the mandibular lymph node and 
oropharyngeal tonsil (20, 21), blood cells (14), secretome (22), 
microbiome [metaproteomics; (23)], and from genomics to 
proteomics comparative (24) levels.

Based on these results supporting the role of IV in immune 
response regulation, in this study, a serum proteomics approach was 
used for the first time to advance the characterization of immune 
pathways and biomarkers associated with prolonged parenteral IV 
treatment in the wild boar animal model. The study was focused on 
wild boar naturally exposed to pathogens affecting animal health with 
environmental implications under field conditions for the evaluation 
of immune mechanisms with possible protective capacity against 
multiple pathogens. The results support a role for IV in activating the 
complement system and other protective immune and anti-
inflammatory responses with application in vaccine formulations. 
Furthermore, our findings sustain the activation of the innate immune 

system through different mechanisms, with differences between short-
term (after one or two doses) and long-term (after three doses) 
responses to IV.

2 Materials and methods

2.1 Study site

The research was carried out in a private reserve with 3,000 ha, 
located in the Maamora Forest, Northwest Morocco (34°02′54.19′′ N, 
6°27′19.24′′ W). This region presents low-elevation sandy soil 
(72–185 m above sea level) and has a Mediterranean bioclimate with 
hot and arid summers, an annual rainfall range of 300–500 mm with 
average annual temperature of 22 °C (25, 26). The dominant 
vegetation includes cork oak (Quercus suber) and a variety of endemic 
and Mediterranean species, such as wild pear (Pyrus mamorensis), 
wild olive (Olea europaea), and green olive (Phylirea latifolia). The 
reserve shows well-presented undergrowth species diversity and cover 
when compared to other regions in the forest that were overgrazed by 
livestock (27).

2.2 Experimental design

2.2.1 Ethics statement
In the field trial, wild boars are maintained and treated with IV 

yearly, and sampling and analysis were approved by local ethical 
wildlife capture and management protocols (references B20/238-
45/350-57 and B21/504-11/824-27/837-40). For the control pen trial 
(6), experimental design was in accordance with European (86/609) 
and Spanish laws (R.D. 223/1988, R.D. 1,021/2005), and the protocol 
was approved by the Committee on the Ethics of Animal Experiments 
of the Regional Agriculture Authority (Diputación Foral de Vizcaya, 
Permit Number: 27312009).

2.2.2 Field trial experiment
The study site is dedicated to recreational wild boar hunting, which 

has a breeding facility for restocking the hunting area. Due to natural 
exposure, the prevalence of tuberculosis in the wild boar population 
(15% in 2023, n = 123) and reduction after the beginning of treatment 
with IV in 2013 (35% in 2018, n = 184), the administration of IV is 
maintained yearly. For the field trial experimental design, 31 animals 
over 1.5-years-old from the breeding facility were selected for the study 
(Figure 1A). Five male wild boar piglets were treated with two IV doses 
at 3 and 4 months of age. Fifteen animals (seven females and eight 
males) were treated with three doses of IV at 3 months of age (first 
dose), 1 month later (4-months-old, second dose), and close to 1 year 
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after the first dose (15-months-old, third dose). The IV was 
administered intramuscularly (IM) in piglets by inoculation of 1 mL 
IV (5 × 107 cfu). Sixteen control animals of the same age and sex (eight 
females and eight males) were not treated. Blood samples were 
collected for analysis 11 months after the last dose and before the next 
dose administration of IV using sterile plastic tubes (Vacutainer®, 
Becton-Dickinson, NJ, USA) from the endocranial venous sinus (28). 
Blood was centrifuged at 4,000 × g for 15 min, and the obtained sera 
were stored at −20 °C until analysis. All serum samples collected in this 
experiment were used for the analysis of IgG antibodies against IV, 
complement activity, and biomarker protein levels via enzyme-linked 
immunosorbent assay (ELISA). Serum samples from immunized 
animals with three doses of IV and untreated controls were randomly 
selected for proteomics analysis (n = 5 males per group).

2.2.3 Pathogen serosurvaillance in harvested 
game wild boars

For serosurveillance of pathogen prevalence, antibodies against 
M. tuberculosis complex (MTC), Mycoplasma hyopneumoniae, porcine 
herpesvirus type 1, and influenza A virus were measured. Sera were 
collected from hunted animals IV treated (most with two doses, 
n = 382) or not treated (n = 805) between 2018 and 2023 (Figure 1B). 

Additionally, IgG antibodies against the Crimean Congo Hemorrhagic 
Fever virus (CCHFV) were measured in all IV-treated animals 
(n = 20) and randomly selected untreated controls (n = 10). Ten ml 
blood were collected into a sterile plastic tube without additives 
(Vacutainer®, Becton-Dickinson, NJ, USA) via intracavernous 
venipuncture through bleeding from the cavernous sinus of the dura 
mater encephali (28) and centrifuged at 4,000 × g for 15 min. The 
extracted sera were stored at −20 °C until analysis.

2.2.4 Controlled pen trial with IV administration 
and Mycobacterium bovis challenge

For analysis of complement pathways activity, additional serum 
samples were collected from wild boar (n = 5 per group) in a previous 
controlled experiment conducted by Garrido et al. (6) were included 
(Figure 1C). Briefly, 3–4-month-old piglets were randomly assigned 
to one of two groups: a treatment group that received 1 dose of 1 mL 
IV (6 × 106 cfu) via Intramuscular (IM) at day 0 and an untreated 
control group. All animals were challenged with 5 mL containing 
106 cfu of an M. bovis field strain, administered by the oropharyngeal 
route at day 60, as described in previous experiments (6). Serum 
samples were collected from untreated controls before IV treatment 
(day 0), after treatment and before infection (day 49), and 

FIGURE 1

Experimental designs. (A) Field experiment presented three groups with randomly assigned wild boar piglets to a group that received via intramuscular 
(IM) two doses of 1 mL heat-inactivated Mycobacterium bovis (IV, 5 × 107 cfu) at 3 and 4 months of age (n = 5 males), a group that was inoculated with 
three doses of IV at 3-, 4- and 15-months-old (n = 15, seven females and eight males) and an untreated control group (n = 16, eight females and eight 
males). Serum samples analysis included serum proteomics in animals treated with three doses of IV and controls (n = 5 per group). Analysis of serum 
IgG antibody against IV, biomarker protein levels, and complement activity with ELISAs was conducted in all animals. (B) Serosurveillance for pathogens 
was conducted in harvested game animals treated with mostly two doses of IV (n = 382) and untreated controls (n = 805) from 2018 to 2023. This 
analysis included the measurement of antibody titers against Mycobacterium tuberculosis complex (MTC), Mycoplasma hyopneumoniae, porcine 
herpesvirus type 1, and influenza A virus. (C) Controlled pen trial: retrieved from Garrido et al. (6) for analysis of classical, alternative, and lectin 
complement pathways activity in response to Mycobacterium bovis infection (5 mL with 106 cfu via oropharyngeal) in control and IV-treated wild boar 
(n = 5 per group).
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post-treatment plus challenge (day 133). Blood was collected via 
intracavernous venipuncture (28) into sterile plastic tubes 
(Vacutainer®, Becton-Dickinson, NJ, USA) and centrifuged at 4,000 
× g for 15 min. The extracted sera were stored at −20 °C until analysis.

2.3 Production and formulation of IV

The M. bovis IV was produced as previously described (6, 12). 
Briefly, the M. bovis field isolate (strain Neiker 1,403; spoligotype 
SB0339) was cultured in Middlebrook 7H9 medium with OADC (10% 
v/v) supplement (Sigma-Aldrich, St. Louis, MO, USA), collected by 
centrifugation, washed, and resuspended in PBS and passed through 
an insulin syringe for declumping. The optical density of the 
suspension was adjusted with PBS to 5 McFarland units. Mycobacteria 
were inactivated in a shaking water bath at 81–83 °C for 40 min with 
a final IV preparation containing approximately the equivalent of 
107 cfu in 0.2 mL of sterile PBS.

2.4 Serum proteomics

Sera from the field experiment included five randomly selected 
males per group (three doses of IV and untreated controls) for 
proteomics analysis (Supplementary Data 1). Five male animals per 
group were selected for proteomics analysis, considering previous 
studies [e.g., (20, 24)], breeding conditions of the animals, which 
support low genetic diversity, and easier access to males due to higher 
investment of females in reproduction. Protein concentration in 
serum samples from immunized and control individuals was 
determined using the BCA Protein Assay (Bio-Rad, Hercules, CA, 
USA) with bovine serum albumin (BSA) dilutions as the standard. 
Protein serum samples (150 μg per sample) were trypsin digested 
using the FASP Protein Digestion Kit (Expedeon Ltd., UK) and 
sequencing grade trypsin (Promega, Madison, WI, USA) following 
the manufacturer’s recommendations. The resulting tryptic peptides 
were desalted onto OMIX Pipette tips C18 (Agilent Technologies, 
Santa Clara, CA, USA), dried down, and stored at −20 °C until mass 
spectrometry analysis. The desalted protein digests were resuspended 
(final concentration of 2 μg/μL) in 2% acetonitrile and 5% acetic acid 
in water and analyzed by reverse-phase liquid chromatography 
coupled online to mass spectrometry (RP-LC–MS/MS) using an 
Ekspert™ nLC 415 system coupled with a 6,600 TripleTOF mass 
spectrometer (AB Sciex, Framingham, MA, USA) through 
Information-Dependent Acquisition (IDA) followed by Sequential 
Windowed data-independent Acquisition of the Total High-
Resolution Mass Spectra (SWATH-MS). The peptides were 
concentrated in a 0.1 × 20 mm C18 RP precolumn (Thermo Scientific, 
Waltham, MA, USA) with a flow rate of 5 μL/min for 10 min in 
solvent A. Then, peptides were separated in a 0.075 × 250 mm C18 
RP column (New Objective, Woburn, MA, USA) with a flow rate of 
300 nL/min. Peptide elution was done in a 60-min gradient from 5% 
to 30% solvent B, followed by a 15-min gradient from 30% to 60% 
solvent B (solvent A: 0.1% formic acid in water, solvent B: 0.1% 
formic acid in acetonitrile) and directly injected into the mass 
spectrometer for analysis. For IDA experiments, an equal number of 
the 10 samples for each vaccinated and non-vaccinated group were 
joined together as a representative mixed sample, which was used for 

the generation of the reference spectral ion library as part of 
SWATH-MS analysis. A total amount of 4 μg was injected in 
duplicate. The mass spectrometer was set to scan full spectra from 
350 m/z to 1,400 m/z (250 ms accumulation time) followed by up to 
50 MS/MS scans (100–1,500 m/z). Candidate ions with a charge state 
between +2 and +5 and counts per second above a minimum 
threshold of 100 were isolated for fragmentation. One MS/MS 
spectrum was collected for 100 ms, before adding those precursor 
ions to the exclusion list during 15 s (mass spectrometer operated by 
Analyst® TF 1.7, ABSciex®). Dynamic background subtraction was 
turned off. Data were acquired in high sensitivity mode with rolling 
collision energy on and a collision energy spread of 5. For SWATH 
quantitative analysis, 20 independent samples (two technical 
replicated from each of the five biological replicates for vaccinated 
and non-vaccinated groups) (4 μg each) were subjected to the cyclic 
Data Independent Acquisition (DIA) of mass spectra using the 
SWATH variable windows calculator (V 1.0, AB Sciex) and the 
SWATH acquisition method editor (AB Sciex) like previously 
established methods (29). A set of 50 overlapping windows was 
constructed (1 m/z for window overlap), covering the precursor mass 
range of 400–1,250 m/z, based on data from the IDA runs previously 
acquired. For these experiments, a 50-ms survey scan (350–
1,400 m/z) was acquired at the beginning of each cycle, and 
SWATH-MS/MS spectra were collected from 100 to 1,500 m/z during 
70 ms at high sensitivity mode, resulting in a cycle time of 3.6 s. 
Collision energy for each window was determined according to the 
calculation for a charge +2 ion-centered upon the window with a 
collision energy spread of 15. To create a spectral library of all 
detectable peptides in the samples, the IDA MS raw files were 
combined and subjected to database search in unison using 
ProteinPilot software v. 5.0.1 (AB Sciex) with the Paragon algorithm. 
Spectra identification was performed by searching against the Uniprot 
Sus scrofa proteome database (46,906 entries in September 2023) with 
the following parameters: iodoacetamide cysteine alkylation, trypsin 
digestion, identification focus on biological modification, and 
thorough ID as search effort. The detected protein threshold was set 
at 0.05. An independent False Discovery Rate (FDR) analysis with the 
target-decoy approach provided by ProteinPilot™ was used to assess 
the quality of identifications. Positive identifications were considered 
when identified proteins reached a 1% global FDR. The mass 
spectrometry proteomics data have been deposited to the 
ProteomeXchange Consortium via the PRIDE (30) partner repository 
with the dataset identifier PXD050002 and 10.6019/PXD050002.

2.5 Proteomics data analysis

For SWATH processing, the spectral alignment and targeted data 
extraction of DIA samples were performed using the SWATH 
Acquisition MicroApp 2.0 in the PeakView v. 2.2 software (ABSciex) 
with the reference spectral library. The parameters included up to 10 
peptides per protein, seven transitions per peptide, 15 ppm ion library 
tolerance, 5 min XIC extraction window, 0.01 Da XIC width, and 
considering only peptides with at least 99% confidence and excluding 
those that were shared or contained modifications. However, to ensure 
reliable quantitation, only proteins with three or more peptides 
available for quantitation were selected for XIC peak area extraction 
and exported for analysis in the MarkerView v. 1.3 software (ABSciex). 
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Global normalization was performed according to the Total Area 
Sums of all detected proteins in the samples.

The Student’s t-test (p < 0.001) was used to perform two-sample 
comparisons between the averaged area sums of all the transitions 
derived for each protein across the replicates for each group under 
comparison, to identify proteins that were significantly differentially 
represented between vaccinated and non-vaccinated individuals.

2.6 Functional annotations and enrichment 
analysis of proteomics data

The volcano plot highlighting significantly represented proteins of 
interest was created using the EnhancedVolcano package (31). To 
obtain the functional prolife of significant proteins, the gene ontology 
(GO) biological process (BP), molecular function (MF), and cellular 
component (CC) database was used at GO distribution level 3 with 
the groupGO function from the R package clusterProfiler (32–34). A 
further in-depth analysis of significant proteins was performed using 
over-representation analysis (ORA) based on Fisher’s exact test and 
applying the weight01 method on the GO BP database (35). The gene 
set enrichment analysis (GSEA) was conducted using the GO database 
with the gseGO function from the clusterProfiler package (33, 34, 36), 
using 10,000 permutations and a Benjamini–Hochberg (BH) adjusted 
p-value cutoff of 0.05, in order to pinpoint significant pathways. 
Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
GSEA analysis was carried out with the gseKEGG function from the 
package clusterProfiler (33, 34, 36), employing 10,000 permutations 
and a BH-adjusted p-value lower than 0.05, to identify significant 
biochemical pathways. Genome-wide annotation for pig (Sus scrofa) 
was obtained from the mapping library of the R package org.Ss.eg.db 
(37). The R package enrichplot (38) was used for the visual 
representation of the functional enrichment results. The Pathview 
package was used for pathway-based data integration and visualization 
(39). A complementary network analysis was conducted using 
Metascape gene annotation and analysis resource1 for enriched 
ontology clusters (GO/KEGG), and a network of terms with a similar 
score >0.3 linked by an edge (40–42). The network on enriched 
ontology clusters was visualized with Cytoscape2 with “force-directed” 
layout. All complement components identified in wild boar by serum 
proteomics were analyzed in simplified pathways with protein 
representation differences in response to IV treatment.

2.7 Complement C3 analysis: Pearson 
correlation and multiple linear regression 
studies

Using data previously published about gene/protein differential 
biomarkers in response to IV and pathogen infection in different hosts 
(Supplementary Table 1), a Pearson correlation coefficient calculator 
(43) was used for C3 correlation analysis (n = 16, degrees of 
freedom = n − 2) (Supplementary Table 2). Multiple linear regression 

1  https://metascape.org/gp/index.html#/main/step1

2  https://cytoscape.org

was also conducted using an online regression calculator (44) in order 
to identify C3 patterns of biological response to IV treatment and 
different pathogenic agents in several challenged species 
(Supplementary Table 2).

2.8 Humoral response to treatment with IV

Sera from all field trial experiment animals were used for analysis 
of IgG antibody levels to IV. Wild boar serum samples were tested 
through an in-house ELISA using IV as antigen, produced as 
abovementioned. ELISA plates were coated with 0.1 μg IV per well in 
carbonate–bicarbonate buffer (Sigma-Aldrich Inc., St. Louis, USA) 
and incubated overnight at 4 °C with gentle shaking. Then, plates 
were washed once with PBS containing 0.05% Tween-20 (PBST; 
Sigma-Aldrich, Munich, Germany), and subsequently blocked for 1 h 
with 2.5% skim milk powder (Condalab, Madrid, Spain) solution in 
PBS (block solution) at room temperature (RT). Serum samples were 
added in duplicate at a dilution of 1:100  in block solution and 
incubated for 1 h at 37 °C. Then, plates were washed three times with 
PBST, and goat anti-pig IgG HRP-conjugated (Bethyl Laboratories, 
Montgomery, USA) at a concentration of 1:10,000 in block solution 
was added and incubated for 1 h at RT with gentle agitation. 
Following three washes with PBST, 3,3′,5,5′ tetramethylbenzidine 
One Solution (TMB; Promega, Madison, USA) was added, and plates 
were incubated for 10 min in darkness at RT. The reaction was 
stopped with H2SO4, and the optical density (O.D.) was measured at 
450 nm (O.D.450 nm). The results were determined by averaging each 
set of duplicate serum samples after subtraction from the averaged 
negative control uncoated wells. Antibody titers were expressed as the 
O.D.450  nm value and compared between IV-treated and control 
animals using a one-way ANOVA with the post-hoc Tukey’s Honestly 
Significant Difference (HSD) test (p < 0.05) with the R software, 
version 4.2.3 (32).

2.9 Analysis of serum biomarker protein 
levels and complement pathways activity

Sera from all field experiment animals were used for analysis of 
different biomarker levels and complement pathways activity by 
commercial pig ELISA tests, following the manufacturer’s instructions 
(Supplementary Data 2). Furthermore, serum samples from the 
controlled pen trial retrieved from Garrido et al. (6) were also included 
for the analysis of complement pathways activity. Results were 
compared between different groups by a one-way ANOVA with the 
post-hoc Tukey’s HSD test (p < 0.05) using the R software, version 
4.2.3 (32).

	(a)	 Protegrin-1 (NPG1) (MyBioSource, San Diego, USA) and 
complement component C7 (Abbexa Ltd., Cambridge, UK) 
assays. Serum samples were diluted in PBS at a concentration 
of 1:100 for NPG1 and 1:1000 for C7. Sera and kit standards 
were added in duplicate to the microtiter plate and incubated 
for 2 h at 37 °C. Following the incubation period, the liquid 
was discarded, and plates were incubated for 1 h at 37 °C with 
Detection Reagent A. Plates were then washed three times with 
kit washing buffer (WB), and Detection Reagent B was added 
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and incubated for 1 h at 37 °C. Then, plates were washed five 
times with WB, and TMB substrate solution was added and 
incubated for 15 min at 37 °C in the dark. The stop solution 
was added, and absorbance at O.D.450 nm was determined. A 
standard curve was constructed with the absorbance of 
reference standard solutions and used to calculate serum 
protein concentrations.

	(b)	 Pig complement pathways: classical, alternative, and lectin 
(Hycult Biotech, Uden, Netherlands). Serum samples were 
diluted in PBS at a concentration of 1:100 and incubated for 1 h 
at 37 °C. Plates were washed four times with WB, followed by 
the addition of diluted tracer solution and incubated for 1 h at 
37 °C. Following four washes with WB, diluted streptavidin-
peroxidase was added, and plates were incubated for another 
hour at 37 °C. Plates were washed four times with WB, TMB 
solution added, and plates were incubated for 30 min at RT in 
the dark. Then, the stop solution was added, and the absorbance 
at O.D.450 nm was determined. The percentage of complement 

pathway activity (CPA) was calculated with the mean 
absorbance of each set of duplicate serum samples (SS), positive 
(PC), and negative (NC) controls using the formula CPA 
(%) = [(SS-NC)/(PC-NC)] × 100.

2.10 Serosurveillance of pathogen 
prevalence

Analyses were conducted in wild boar serum samples collected 
between 2018 and 2023 for serosurveillance and animals from the 
field trial experiment (n = 20 for IV-treated and n = 10 for controls) 
(Supplementary Data 3). An in-house indirect P22 ELISA was 
carried out for IgG antibodies against M. tuberculosis complex 
(MTC) (tuberculosis, TB). Commercial ELISAs were performed to 
measure antibody titers against Mycoplasma hyopneumoniae 
(pneumonia), porcine herpesvirus type 1 (Aujeszky’s disease), and 
influenza A virus (swine flu). Additionally, serum IgG antibodies 

FIGURE 2

Proteomics: analysis of highly represented proteins in the wild boar serum proteome in response to IV. (A) Percent of total proteins for highly over and 
underrepresented proteins identified by serum proteomics analysis in response to IV treatment in the wild boar (Sus scrofa) animal model. (B) Graphic 
illustration of protein representation by means of a Volcano plot, highlighting significant proteins related to the activation of humoral immune 
response. Created with the EnhancedVolcano package using an adjusted p-value cutoff of 0.05 and a log2 fold change ≥ 0.5. The negative log10 FC 
p-value (−Log10P) is plotted in the y-axis. C4BPA, apolipoprotein R; C, complement component; INHCA, carbonic anhydrase inhibitor; IV, heat-
inactivated Mycobacterium bovis; LTF, lactotransferrin; NPG1, pig protegrin-1; NS, not significant.
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against the Crimean Congo Hemorrhagic Fever virus (CCHFV) 
were analyzed only in animals from the field experiment. The 
results were then used to evaluate IV treatment effect on pathogen 
infection (Supplementary Tables 3, 4).

For MTC, microplates were coated with 10 μg/mL Mycobacterium 
P22 protein complex antigen (45) in carbonate/bicarbonate buffer and 
incubated overnight at 4 °C. Wells were washed with 200 μL 
PBST. Plates were blocked for 1 h at RT with 100 μL/well of blocking 
buffer (PBS, 2.5% non-fat milk, pH 7.2) and washed thrice with 
200 μL washing buffer. Then, 100 μL of wild boar serum diluted 
1:100 in blocking buffer was added to the wells, and the plates were 
incubated at 37 °C for 1 h. Plates were washed as before, and 100 μL 
goat anti-pig IgG-Fc fragment-HRP conjugates diluted 1:10,000 in 
blocking buffer were added to the wells and incubated at RT for 1 h. 
Plates were washed as before, and 100 μL TMB was added to the wells 
and then incubated in the dark for 15 min at RT. Reactions were 
stopped by the addition of 50 μL of H2SO4 3 N to measure O.D.450 nm. 
Monoclonal specific antibodies against M. hyopneumoniae (INgezim 
M. hyo Compac, Ref. #11.MHYO.K3), pseudorabies virus (INgezim 
ADV gE PLUS, Ref. #11.GEP.K3), and influenza A virus (INgezim 
INFLUENZA PORCINA, Ref. #11.FLU.K1) were determined with 
commercial blocking or indirect ELISA kits (Ingenasa Gold Standard 
Diagnostics Companies, Budapest, Hungary), following the 
manufacturer’s instructions. CCHFV-specific IgG antibodies were 

detected using the IDScreen CCHF Double Antigen Multi-species 
commercial ELISA kit (IDVet, Grabels, France) and following the 
manufacturer’s instructions. Cut-off values for CCHFV sero-positive 
and sero-negative samples were determined according to the 
kit’s criteria.

3 Results

3.1 Proteome differential representation, 
functional annotation, and enrichment 
analysis

The SWATH-MS proteomics analysis enabled the identification 
of a total of 205 proteins, of which 97 displayed a significant 
differential representation (Figures  2A,B; 
Supplementary Data 1, sheets 1, 2). Highly represented proteins in 
response to IV were grouped into immunoglobulins, complement 
complex, apolipoproteins, inter-alpha-trypsin inhibitor heavy 
chain, and serpin family (Figure 2A). Among these differentially 
represented proteins, 64 were overrepresented while 33 were 
underrepresented in response to treatment. Of these, significantly 
represented proteins included complement components (C5, C6, 
C7, and C9) and apolipoprotein R (C4BPA) (Figure  2B). 

TABLE 1  Proteome functional annotation and enrichment analysis of immunologically relevant proteins in response to IV treatment.

Protein Symbol UniProt ID Log2 FC GO terms Enrichment analysis (GO and 
KEGG; p < 0.05)

Protegrin-1 NPG1 A0A5G2QNY2 1.77 Defense response (GO:006952)
Humoral immune response and carbohydrate 

derivative binding

Lactotransferrin LTF Q6YT39 0.82
Regulation of cytokine production 

(GO:0001817)

Humoral immune response and cellular 

response to stimulus

Apolipoprotein R 

(Apo-R)

APOR or 

C4BPA
Q03472 0.77

T-cell mediated immunity (GO:0002456); 

negative regulation of complement 

activation, classical pathway (GO:0045959)

Humoral immune response, positive 

regulation of response to stimulus, and 

complement and coagulation cascades (NS)

Complement C6 C6 F1SMI8 0.63

Complement activation (GO:0006956)—

classical pathway; innate immune response 

(GO:0045087)

Humoral immune response, positive 

regulation of response to stimulus, 

complement and coagulation cascades (NS), 

and regulation of actin cytoskeleton

Complement C5 C5 A0A287AIM8 0.40

Complement activation (GO:0006956)—

classical and alternative pathways; 

chemokine production (GO:0032722)

Humoral immune response, positive 

regulation of response to stimulus, 

complement and coagulation cascades (NS), 

and regulation of actin cytoskeleton

Inhibitor of carbonic 

anhydrase
INHCA I3LBF1 0.36 Extracellular region (GO:0005576) Humoral immune response

Complement C7 C7 F1SMJ1 0.34

Complement activation (GO:0006956)—

classical pathway; innate immune response 

(GO:0045087)

Humoral immune response, positive 

regulation of response to stimulus, 

complement and coagulation cascades (NS), 

and regulation of actin cytoskeleton

Complement C9 C9 A0A8W4F8A6 0.32

Complement activation (GO:0006956)—

classical and alternative pathways; innate 

immune response (GO:0045087)

Humoral immune response, positive 

regulation of response to stimulus, 

complement and coagulation cascades (NS), 

and regulation of actin cytoskeleton

Immunologically relevant proteins are differentially overrepresented in the proteomics dataset. C, component; FC, fold change; GO: gene ontology; IV, heat-inactivated Mycobacterium bovis; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; NS, not statistically significant.
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Additionally, keratin type II cytoskeletal 1, and keratin 75 were 
significantly overrepresented in response to IV. Functional analysis 
of GO pathways uncovered 66 BP, 21 MF, and 23 CC pathways 
associated with the overrepresented proteins. Underrepresented 
proteins were related to 27 BP, 7 MF, and 7 CC pathways 
(Supplementary Data 1, sheets 3, 4).

In-depth enrichment analysis of significantly represented proteins 
revealed the activation of humoral immune response, which was 
linked to proteins lactotransferrin (LTF), inhibitor of carbonic 
anhydrase (INHCA), apolipoprotein R (APOR), protegrin 1, and 

complement components C5, C6, C7, and C9 (Figure 2B and Table 1). 
Activated pathways were also related to a positive regulation of 
response to stimulus and changes in the cellular component 
organization. Underrepresented proteins were associated with the 
suppression of the hydrolase activity regulation (Supplementary Data 1,  
sheets 5, 6). For all protein datasets, the GSEA method for GO BP, MF, 
and CC yielded a total of 35 significantly enriched pathways (12 
overrepresented and 23 underrepresented) (Figure  3; 
Supplementary Data 1, sheet 7). Enriched ontology clusters and 
networks identified 20 and 9 clusters for over and underrepresented 

FIGURE 3

Serum proteome enrichment analysis of wild boar treated with the immunostimulant adjuvant based on IV. Proteome enrichment analysis was 
conducted using biological process (BP), molecular function (MF), and cellular component (CC) gene ontology (GO) database and executed with the 
gseGO function from clusterProfiler package using 10,000 permutations and a Benjamini–Hochberg (BH) adjusted p-value lower than 0.05. Significant 
pathways related to IV treatment are highlighted with a wild boar illustration. IV, heat-inactivated Mycobacterium bovis.
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proteins, respectively (Figure 4). The ORA analysis showed humoral 
immune response, positive regulation of response to stimulus, and 
cellular component organization as significantly upregulated BP 
(Supplementary Data 1, sheet 5). Only the regulation of hydrolase 
activity was downregulated in response to IV (Supplementary  
Data 1, sheet 6). The enrichment analyses showed cellular response to 
stimulus and regulation of actin cytoskeleton as the most significantly 
overrepresented BP using GSEA (Supplementary Data 1, sheet 7) and 
GSEA KEGG (Supplementary Data 1, sheet 8) algorithms, respectively. 
Significant pathways related to IV treatment included carbohydrate 
derivative binding and cellular response to stimulus (Figure 3).

The network on enriched ontology clusters highlighted 
complement and coagulation cascades and regulation of innate 
immune response associated with IV treatment (Figure 4). Similarly, 
the enrichment KEGG analysis revealed the significant activation of 
the regulation of actin cytoskeleton pathway and complement and 
coagulation cascades, with several proteins involved in these processes 
(Table 1; Supplementary Figure 1).

Other proteins of the complement system pathway such as C1r 
(A0A480RJC3, Log2FC = 0.13), C1q (C1q domain-containing 

proteins A0A287BRF1 and A0A286ZQJ9, Log2FC = −0.36 and 
−0.37; adiponectin Q6PP07, Log2FC = −0.86), C3 (F1S3H9, 
Log2FC = −0.57), and C4 (C4a Q03472, Log2FC = 0.77) involved 
in complement activation (GO:0006956) and innate immune 
response (GO:0045087) were differentially represented (p < 0.05) 
although without significant enriched pathways (Supplementary  
Data 1, sheets 1, 2). Complement components such as C2 
(K7GPT9) and C8 alpha, beta, gamma chains (F6PYG1, F1S790, 
A0A287AFQ4, F1S788) were identified but without significant 
differences in response to IV treatment (p > 0.05) (Supplementary  
Data 1, sheets 1, 2).

3.2 Humoral response to IV

Antibody response to IV was characterized in animals with 0, 2, 
and 3 IV treatments. The results showed significant differences 
(p < 0.05) in IV-treated animals when compared to untreated controls, 
without significant differences in IgG titers between IV treatments 
(Figure 5A).

FIGURE 4

Proteomics: analysis of enriched ontology clusters and network. The analysis was conducted using Metascape (https://metascape.org) for enriched 
ontology clusters (GO/KEGG) for over and underrepresented proteins in response to heat-inactivated Mycobacterium bovis (IV) and a network of 
terms with a similar score >0.3 linked by an edge for overrepresented proteins (the thickness of the edge represents the similarity score). The network 
on enriched ontology clusters illustrates the functional relevance of biological pathways associated with overrepresented proteins, with the highest 
score for complement and coagulation cascades associated with IV treatment. The network was visualized with Cytoscape with a “force-directed” 
layout. Each significant cluster related to IV treatment is highlighted with a wild boar illustration.
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FIGURE 5

Serum biomarkers and antibody levels in response to heat-inactivated Mycobacterium bovis (IV). (A) Anti-IV IgG antibody levels. (B) NPG1 levels. 
(C) Complement C7 levels. (D) Classical complement pathway activity. (E) Alternative complement pathway activity. (F) Lectin complement pathway 
activity. ELISA O.D.450 nm values were compared between untreated (control) and treated with two and three doses of IV groups by a one-way ANOVA 
with the post-hoc Tukey’s Honestly Significant Difference (HSD) test using the R software, version 4.2.3 (32) (*p < 0.05, **p < 0.005, ***p < 0.0005, 
****p < 0.00005; n = 5–15 animals per group).

3.3 Serum levels for selected biomarkers 
and complement pathway activity

For validation, serum levels of biomarkers NPG1 and C7 were 
analyzed by ELISA and compared to proteomics data 
(Supplementary Data 2). The results showed higher NPG1 levels 
in IV-treated animals with similar values after 2 and 3 IV doses 
(p < 0.05; Figure 5B). Notably, C7 serum levels were significantly 
elevated in animals treated with 2 IV doses (p < 0.005; Figure 5C), 
whereas a tendency toward higher levels was observed with 3 IV 
doses. Therefore, these results are consistent with the proteomics 
findings, which revealed higher serum concentrations for both 
NPG1 and C7 protein biomarkers in IV-treated animals 
(Supplementary Data 2).

Classical, alternative, and lectin complement pathways were 
significantly activated in animals treated in this trial with 2 
(p < 0.0005) but not 3 doses of IV and with high animal-to-animal 
variations (Figures  5D–F; Supplementary Data 2). To provide 
additional information on complement pathways in response to 
IV treatment and M. bovis infection, samples collected from a 
previous controlled pen trial (6) showed significant activation of 

classical, alternative, and lectin complement pathways in response 
to infection and IV treatment (p = 0.001; Figure 6). Furthermore, 
classical and alternative but not lectin complement pathways 
showed higher activity in IV-treated and infected wild boar when 
compared to infected controls at day 133 (p = 0.001; Figure 6). 
These results support activation of the complement system as part 
of the innate immune response to M. bovis infection and IV 
treatment, with differences between short- and long-term 
responses to IV (Figure 7).

3.4 Complement C3 correlation analysis in 
response to IV in different host species

Pearson correlation and multiple regression analyses with data 
from previous studies of IV treatment in different hosts 
(Supplementary Table 1) showed no significant differences in C3 
regulation in response to oral IV administration in cattle (Bos taurus) 
and zebrafish (Danio rerio) or in response to Mycobacterium infection 
(Supplementary Table  2). These results agree with the C3 
underrepresentation identified by serum proteomics analysis in wild 

https://doi.org/10.3389/fvets.2025.1702063
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Villar et al.� 10.3389/fvets.2025.1702063

Frontiers in Veterinary Science 11 frontiersin.org

boar treated with parenteral IV and sampled after the third treatment, 
1 year after the first dose.

3.5 Pathogen seroprevalence in wild boar

Based on data of pathogen seroprevalence, wild boars were not 
highly exposed to M. tuberculosis complex (MTC), Mycoplasma 
hyopneumoniae, porcine herpesvirus type 1 (pseudorabies virus), and 
CCHFV (Supplementary Table 3). Only the seroprevalence of influenza 
A virus was higher than 20% in treated and control animals 
(Supplementary Table 3). However, the percentage of seroprevalence 
varied over time and between pathogens, which translated into 
differences in IV treatment with negative (−18.9% to −∞%) and positive 
(85.7–100%) values (Supplementary Table 4). Nevertheless, except for 
the influenza A virus, a tendency was observed towards decreasing 
seroprevalence for different pathogens over time in IV-treated wild boar 
(R2 ranging from 0.26 to 0.42; Supplementary Table 4). Most of the 
animals from the field trial experiment were negative for the detection 
of pathogen infection (Supplementary Data 3), thus providing little 
impact on this analysis.

4 Discussion

The results of serum proteomics analysis support the 
activation of innate and adaptive immune responses through the 
humoral immune response, complement system, and innate 
immunity in response to parenteral IV treatment. The complement 
system plays a role in both innate and adaptive immunity for 
modulating host-pathogen interactions and contains proteins with 
the capacity for therapeutics and biomarkers in response to 
vaccination (18, 46–49). Complement C1q is the first component 
of the classical pathway, which binds to antibody–antigen 
complexes and also directly to some pathogens and apoptotic 
cells, with an influence on macrophage inflammatory responses 
(18, 50). Although C1q was downregulated in response to IV 
(Figure 7), the classical complement pathway was activated with 
a balance between protective immune and anti-inflammatory 
responses (18, 50). A balance between different complement 
system pathways (e.g., activation of C5-mediated classical pathway 
and downregulation of C3-mediated alternative pathway; 
Figure 7) results in activation of antimicrobial responses while 
reducing risks for inflammatory diseases and pathogen-associated 

FIGURE 6

Complement pathways in response to IV treatment and Mycobacterium bovis infection in a controlled pen trial. Classical, alternative, and lectin 
complement pathways activity in response to M. bovis infection in control and 1 dose IV-treated wild boars. Serum samples were collected at days 0 
(before treatment), 49 (before infection), and 133 (after infection) for analysis. ELISA O.D.450 nm values were compared between groups by a one-way 
ANOVA with the post-hoc Tukey’s Honestly Significant Difference (HSD) test using the R software, version 4.2.3 (32) (p = 0.001 highlighted in red for 
pair comparisons; n = 5 animals per group). IV, heat-inactivated Mycobacterium bovis.
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FIGURE 7

Overview of complement system pathways activity in response to IV. All complement components in classical, lectin, and alternative immune 
pathways were identified in wild boar serum proteomics analysis and shown in simplified pathways with representation differences in response to IV 
treatment (Log2 fold-change FC). Positive effects are shown with arrows, and negative effects by arrows with a cross. The final result by integrating all 
pathways is summarized as the immune response, cell lysis, and complementing antibody-mediated protection.

immunothrombosis (18). For example, vaccination with the 
Bacille Calmette-Guérin (BCG) vaccine against tuberculosis has 
been associated with a higher risk of the pandemic of coronavirus 
disease 19 (COVID-19) likely associated with inflammatory 
reactions in response to BCG activation of certain innate immune 
mechanisms (51, 52). Accordingly, most complement therapeutics 
under clinical development target C3 and C5 components (18).

Trained immunity is associated with innate immune response 
memory driven by epigenetic reprogramming of innate immune 
cells to enhance their defense capabilities against secondary 
infections (53) but can also provoke inflammatory reactions and 
autoimmunity (7, 54, 55). Treatment with IV or exposure to 
alpha-Gal-containing biomolecules present in IV (56) have been 
shown to induce anti-inflammatory and trained immunity 
protective responses against pathogen infection, in which 
complement system pathways may be involved (7, 56–59). These 
results agree with activation of complement pathways in response 
to M. bovis infection and treatment with IV, with an effect on 
infection control, and with lectin pathway regulation, probably 
associated with reduced inflammatory reactions linked to C3 
activation (57). The inflammatory response BP was evaluated with 
proteomics data and identified without significant differences 

(p = 0.352, Supplementary Data 1). Although inflammasome 
activation has a positive effect on triggering the innate immune 
response, it is also associated with negative effects contributing to 
cardiovascular and neurodegenerative disorders, among others 
(58), thus suggesting a positive effect of IV treatment in wild boar.

The differences in IV treatment for different pathogens may be related 
to temporal and pathogen/host genetic factors affecting pathogen 
transmission and host immunity. For example, it has been shown that 
pseudorabies virus affects host innate immunity through different 
mechanisms, including binding of virus glycoprotein III to C3 derived 
from the porcine natural host but not other species, to reduce complement 
activation and protective immune response to virus infection (60, 61). 
Additionally, it has also been shown that the keratinization pathway is 
significantly enriched in cattle with multifocal lesions in response to 
paratuberculosis (62). Nevertheless, the results showed pathogen 
seroprevalence without clinical signs and mortality, thus supporting an 
increased protective response to IV after annually repeated treatments.

Another consideration is the possible establishment of latent/chronic 
infections with risks associated with pathogen prevalence and transmission 
from reservoir hosts. This effect has been associated with tuberculosis and 
BCG vaccination (63, 64). Regarding IV, it has been shown that protective 
immune responses not only against mycobacteria but also non-specific 
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cross-protective responses against other pathogens and ectoparasite vectors 
(4–9). Therefore, although supported by proteomics results shown here, 
which are still to be proven, the activation of multiple immune mechanisms 
in response to IV may reduce the risks for establishing latent/chronic 
infections. The cross-pathogen protective mechanisms associated with IV 
treatment may be regulated by trained immunity (TRAIM), defined as 
immune memory in which innate immune cells, such as monocytes, 
macrophages, dendritic, and natural killer (NK) cells, undergo an epigenetic 
reprogramming with enhanced primary protective capacity mediated by 
complement pathways, among other mechanisms (7).

5 Conclusion

In conclusion, the results showed differences between short- and long-
term responses to IV through activation of different components of the 
innate immune system in classical, lectin, and alternative complement 
pathways, resulting in the formation of the complement membrane attack 
complex (MAC). As an effector of the immune system, the MAC is the final 
stage of the complement system terminal pathway that induces immune 
response cell lysis, complementing antibody-mediated adaptive immunity 
(65) (Figure  7). The MAC-associated mechanisms have a protective 
capacity against multiple pathogens with putative capacity to reduce risks 
associated with latent/chronic infections. A possible tolerization after three 
IV doses mediated, for example, by a decrease in C7 levels suggested the 
possibility of using a combination of these biomarkers (maximum 
non-specific/minimum specific responses) as a TRAIM test. However, 
further validation is required for the long-term tolerization hypothesis in 
response to IV.

The results of the study have potential implications in vaccine 
development for disease prevention and control. The role of IV in 
stimulating protective immune and anti-inflammatory responses has 
possible applications in different vaccine formulations for the control 
of infectious diseases. The IV can be used as an immunostimulant in 
vaccine formulations to boost non-pathogen-specific protective 
immune response [e.g., (8)]. Future directions should consider the 
use of IV alone and in combination with protective antigens and 
probiotic bacteria in oral and injected vaccine formulations.
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