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A Bayesian analysis of variables
causally associated with hair
cortisol concentration in dogs
with obesity

Kaitlin Turnbull’, Georgiana R. T. Woods-Lee'?, John Flanagan?,
Xavier Langon?® and Alexander J. German'?*

!Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston,
United Kingdom, 2Institute of Life Course and Medical Sciences, University of Liverpool, Neston,
United Kingdom, *Royal Canin Research Centre, Aimargues, France

Objective: To identify clinical variables causally associated with hair cortisol
concentration (HCC) in dogs with obesity using a Bayesian analysis.

Study design: A retrospective analysis of clinical data and samples gathered
from a cohort of dogs with obesity undergoing therapeutic weight reduction.
Methods: Hair was clipped from two sites (jugular groove, antebrachium), from
dogs attending a specialist obesity care clinic, and combined before storage at
—20 °C. Hair cortisol concentration was measured by liquid chromatography
mass spectrometry. Causal associations between HCC and different clinical
variables were assessed, informed by a directed acyclic graph. Variables assessed
included age, sex, breed group, coat colour, body fat mass, weight reduction
and the presence of comorbidities. Statistical analyses involved Bayesian multi-
level modelling, with the magnitude of causal effects estimated using simulation
from the posterior probability distributions.

Results: In total, 73 hair samples were collected from 52 dogs, with 31 providing
single (before weight reduction) and 21 providing paired samples (before and
after weight reduction). Dogs were of different ages, sexes and breeds, with
most (44/52) having one or more comorbidities including orthopaedic, skin,
cardiorespiratory, dental and neoplastic diseases. Mean HCC was 10.4 (standard
deviation 19.52) pg/mg (logHCC 1.3, standard deviation 1.36). Bayesian multi-
level models provided strong evidence that greater body fat percentage (98%
probability) and presence of one or more comorbidities (>99% probability) were
causality associated with increased HCC. Causal associations with other variables
including, age, breed, sex, coat colour and season were less convincing.
Conclusion: Greater adiposity and having at least one comorbidity are causally
associated with hypothalamic—pituitary—adrenal axis upregulation in dogs with
obesity. Mechanisms warrant further investigation.
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overweight, adipose tissue, canine, chronic stress, causal inference, hypothalamic-
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Introduction

Cortisol, the product of hypothalamic-pituitary-adrenal (HPA)
axis activation, is a key hormone released in response to stress (1).
Whilst acute cortisol concentrations can be measured in blood, saliva,
or urine, such concentrations can be are influenced by circadian
rhythms and acute stress at sampling (2, 3). Since cortisol is gradually
incorporated into the keratinizing shaft during hair growth, hair
cortisol concentrations (HCC) reflect its cumulative secretion over a
period of weeks to months (1). Therefore, HCC has emerged as a
non-invasive biomarker of HPA upregulation in both human and
veterinary research (1, 2, 4). The method has been validated in dogs,
showing good correlation between HCC and salivary cortisol
concentration, and it has been applied to evaluate sustained cortisol
output in various conditions (2, 4). For example, HCC is increased in
dogs (5) and people (6) with spontaneous hyperadrenocorticism.
Measurement of HCC is also used as a marker of possible stress in
dogs experiencing different lifestyles or environments, such as
working dogs and in dogs subjected to prolonged stressors in
experimental settings (7). Therefore, HCC has the potential to capture
chronic HPA axis upregulation stemming from both external and
internal stressors. However, a standardised sampling protocol is
required to ensure representative HCC measurements, controlling for
possible confounding factors including coat colour, sampling season
and region of the body from which hair is taken (8).

Chronic illness can also induce HPA upregulation in various ways
including response to infection, chronic pain and due to altered
immune function (9, 10). Obesity is a prevalent chronic disease in pet
dogs, being associated with multiple comorbidities (11), a poorer
quality of life (12), a shortened average lifespan (13) and also both
functional and metabolic disturbances (14-17). Therefore, it is
plausible that there may be HPA upregulation in dogs as a consequence
of obesity. Indeed, in humans, there are positive associations between
HCC and obesity metrics, including body weight, body-mass index
and central fat distribution (18). In one weight maintenance trial,
baseline HCC was associated with body mass in some cohorts, whilst
increased HCC over 12 months predicted greater subsequent weight
variability (19). One previous study has measured HCC in dogs with
obesity, with little difference seen before and after a short weight
reduction intervention involving lead walking (20); however, HCC
tended to be greater in dogs undertaking the most exercise, possibly
suggesting HPA upregulation due to physiological stress.

The term ‘causal inference’ is used to describe a process of
analysing data to draw conclusions about causal relationships, and has
most applicability when controlled experiments, including
randomised control trials (RCT), are either impractical or unethical
(21). Whereas traditional epidemiological methods focus on
associations amongst variables, the aim of causal inference is to
disentangle true causal effects from spurious correlation, including
from confounding or bias. Although not yet fully exploited in canine
research, causal inference has been used to assess risk factors for small
intestinal dehiscence after surgery (22), unsuccessful dog ownership
(23), early-onset incontinence (24) and patterns of physical
activity (25).

Bayesian statistical analysis is an inferential framework based on
Bayes’ theorem, in which prior knowledge or beliefs are updated
after considering newly-observed data, enabling the probability of
parameters or hypotheses of interest to be estimated (26). A crucial
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distinction from the frequentist approach is to consider the entire
(posterior) probability distribution of an unknown quantity of
interest, thereby better accommodating uncertainty in scientific
research. Bayesian methods are particularly useful when sample
sizes are small, when complex modelling is required (for example,
hierarchical models) and when the degree of uncertainty needs to
be quantified (27). Challenges with the computational complexity
of Bayesian methods have recently been overcome by the
development of Markov Chain Monte Carlo (MCMC) methods and
availability of freely available online statistical software such as R
(28); therefore, the use of Bayesian approaches is now feasible in
biomedical research (29), including applications to veterinary
species (30-34). Although most veterinary researchers are not
familiar with Bayes theorem, it should arguably be intuitive to
practising veterinarians because the method of Bayesian updating
(sequentially updating initial beliefs as new evidence becomes
available) is analogous to the process by which veterinarians
investigate and make diagnoses in their patients (35). With this
background in mind, the aim of the current study was to apply
causal inference within a Bayesian workflow to investigate
associations between body fat mass and other variables on HCC in
dogs with obesity.

Methods
Animals

All participating animals were referred to a specialist obesity care
clinic for dogs and cats (Royal Canin Weight Management Clinic,
University of Liverpool, Neston, UK) for investigation and
management of obesity or obesity-related disorders between May
2018 and February 2023, with all successful weight reduction
interventions completed by September 2023. To be eligible, animals
had to have had at least one adequate sample of hair available for
cortisol analysis, and had to have reached an end point for their
therapeutic weight reduction protocol, as described for similar studies
in dogs (36); in this respect, some dogs completed their protocol and
reached target weight, whilst others stopped prematurely, with the
reasons recorded. Dogs diagnosed with either hypothyroidism or
hyperadrenocorticism were not eligible given potential effects of these
diseases on hair growth and HCC (2). However, having other
comorbidities was not a reason for exclusion, and dogs were also not
excluded because of the treatment they had received.

Collection of hair samples and
measurement of hair cortisol

Hair samples from each dog were obtained by clipping two sites
(jugular groove, antebrachium), whilst preparing for jugular
venepuncture and venous catheterisation, respectively. Samples were
collected before undertaking any clinical procedures including
sedation for dual-energy X-ray absorptiometry (DXA). The quantity
of hair collected depended on coat density, although this was always
sufficient for HCC measurement. Hair from each site was combined,
placed in an individual sealable plastic bag (Ziploc; S. C. Johnson,
Wisconsin, USA) and then stored at —20 °C under dark conditions.
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All samples were subsequently shipped to a commercial laboratory
(Dresden Lab Service, Dresden, Germany), with HCC measured in
powdered samples by liquid chromatography mass spectrometry. This
method has previously been used to measure HCC in dogs (37); the
reported quantification limit was 0.09 pg/mg, whilst reported inter-
and intra-day coefficients of variation were <10% (38).

Measurement of body weight and body fat
percentage

Body weight was measured by electronic weigh scales, which were
regularly calibrated using test weights (2-50 kg; guaranteed to
be accurate to within <0.5%; Blake and Boughton Ltd., Thetford, UK).
In most dogs (26/31 dogs providing single samples; 17/21 [before
weight reduction] and 12/21 [after weight reduction] dogs providing
paired samples), body fat percentage was analysed using fan-beam
DXA (Lunar Prodigy Advance; GE Lunar; Madison, USA), calibrated
on a weekly basis using a phantom supplied by the company, in
conjunction with a bespoke computer software package (Encore 2004,
8.70.005; GE Lunar) (39). Dogs were either sedated (if DXA alone was
performed) or anaesthetised if required for additional procedures, and
scanned in dorsal recumbency, as described in a previous study (39).

Therapeutic weight reduction protocol

Full details of the weight reduction protocol used have been
published in previous research (36, 40), although all dogs followed
a partial weight reduction plan, meaning that the target weight set
was deliberately greater than their ideal weight range, as described
in a previous study (41). Briefly, at the first visit, patients were
weighed, their body condition score (BCS) recorded and, in most
dogs, body composition was also measured by DXA (see above).
Health status was determined by routine haematology, serum
biochemistry, free thyroxine measurement and urinalysis. If
necessary, additional diagnostic investigations (e.g., diagnostic
imaging, additional laboratory investigations) were performed to
determine the status of any comorbidities. A tailored therapeutic
weight reduction protocol was then formulated for each animal,
again as described in a previous study (36, 40, 41). Briefly, animals

TABLE 1 Average composition of the therapeutic diets used for weight
reduction in 298 dogs with obesity.

Criterion ~ HPHFdry!  HPHF wet?
ME content 2,900 keal per 1,000 g 602 kcal per 1,000 g
As fed? Per 1,000 kcal As fed? Per 1,000 kcal

Moisture 10 33 83 1,379
Crude protein 30 105 8.5 141
Crude fat 10 33 2.0 33
Crude fibre 17 58 2.0 53
Total dietary fibre 28 97 3.2 33

Ash 6 20 1.5 25

'Satiety Weight Management Dry (Royal Canin;) 2 Satiety Weight Management Wet (Royal
Canin); 3 expressed as grams per 100 g; DM: dry matter; ME: metabolisable energy content,
calculated using a predictive equation based on total dietary fibre (TDF).
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were fed high protein, high fibre dry or moist therapeutic diets
(Table 1; Royal Canin, Aimargues, France), with some dogs
consuming the dry diet exclusively, and the remainder being fed a
combination of wet and dry food, the choice of which depended
on owner and animal preferences. The methods used to calculate
initial food allocation have again been described in a previous
study (41). In addition to advice about feeding the therapeutic
diet, owners also received tailored advice on lifestyle alterations to
assist the weight reduction process. This included a physical
activity plan, tailored to owner circumstances, individual animal
factors and the presence of comorbidities. Advice could include
recommendations about play activity, walking, running, agility
training and hydrotherapy.

After the initial visit (VO, before therapeutic weight reduction),
animals were reassessed every 7 to 21 days to have their body weight
measurements taken, and changes were made to the dietary and
exercise plan if necessary. In dogs that reached their target weight, a
final evaluation was conducted (V1) after therapeutic weight reduction
(median follow-up 313 days; range 116 to 1,609 days). Health status
was determined based on physical examination, haematology, serum
biochemical analysis and urinalysis. Body weight and body condition
were recorded, and body composition was reassessed by DXA.

Determining sample size

We included as many dogs as possible from those seen during the
collection period, with final numbers being equivalent to, or exceeding
those used in many previous veterinary studies where HCC was
measured (42-45). Arguably, a formal sample size calculation is less
critical when using Bayesian methods (46); such analyses automatically
account for any uncertainty arising from the sample size because the
entire posterior density distribution is reported, with wider intervals
reflecting greater uncertainty.

Causal model development

A variety of factors may induce HPA upregulation and, therefore,
increased HCC, in pet dogs with obesity. These relationships were
illustrated by constructing a directed acyclic graph (DAG), a graphical
tool that provides a bridge between substantive theory (in the form of
a scientific model) and statistical analysis (47). Such graphs can
identify potential sources of bias enabling statisticians to decide which
additional variables should be selected for adjustment in a particular
statistical analysis (48, 49). The DAG developed in this study was
created using online software [DAGitty software, version 3.1 (50)],
and its design was informed by relevant canine and comparative
literature. With this software, causal pathways (that directly or
indirectly connect the causal variable to the outcome variable),
confounding variables and confounding (a.k.a. ‘backdoor’) pathways
within a DAG (51) can readily be identified. To obtain an accurate
estimate of a causal association, all backdoor pathways must be closed,
whilst not closing causal pathways; this is done by ‘conditioning on’
(i.e, including in the model) a set of a variables that are not
descendants of the causal variable of interest; doing this should block
all backdoor paths, thereby fulfilling the so-called ‘back door
criterion’ (51).
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Directed-acyclic graph (DAG), created using the online resource: https://www.dagitty.net, and based on the scientific model which was used to inform
the statistical analyses. The outcome variable (marked “I") is hair cortisol, whilst other variables in the model are either observed (blue circles) or
unobserved variables (grey), whilst arrows indicate a causal association between one variable and another. This DAG was used to determine adjustment
sets for each of the final models, as shown in the Supplementary File 1. Possible unmeasured variables influencing the ‘weight loss success’, 'visit" and
‘body fat variables could include owner factors (e.g., owner attitudes and behaviours in implementing a therapeutic weight reduction protocol),
environmental factors (e.g., the living environment of the dog) and possible impacts from the COVID-19 pandemic.
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The final DAG is shown in Figure 1, whilst graphical
representations of all adjustment sets are provided in the
Supplementary File 1. As can be seen, this approach enabled
appropriate sets of adjustment variables to be identified for modelling
causal associations for most predictor variables, e.g., age, sex, breed,
coat colour, body fat, season of sampling and comorbidity. However,
appropriate adjustment sets could not be identified for both the
‘successful weight loss’ (i.e., comparing dogs completing a period of
therapeutic reduction with those not completing) and ‘visit’ (before
vs. after therapeutic weight reduction) variables. This was because, in
the causal model, there were backdoor pathways that could not
be closed on account of unmeasured confounding (‘backdoor
criterion’” not fulfilled). These unmeasured variables included owner
or environmental factors affecting feeding and lifestyle behaviours that
might plausibly affect body fat mass, weight loss success and
attendance at follow-up visits (Figure 1; Supplementary File 1).

Data handling and statistical analysis

Statistical modelling strategy

A Bayesian workflow was chosen for statistical analysis which, as
far as possible, has been conducted and reported in compliance with
the Bayesian analysis reporting guidelines (52). There were several
reasons for selecting such an approach. First, Bayesian methods are
particularly well suited to the type of model used (multi-level linear
models), and the flexibility they allow in specifying models that are
appropriate for the data (52). Second, they perform well when causal
associations are being estimated, involving statistical analyses
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informed by a pre-specified scientific model based on a DAG (49).
Third, Bayesian analyses are computationally robust and are better
able to handle uncertainty when making predictions in the face of
small sample sizes (49).

A fourth advantage of a Bayesian approach is the requirement that
all assumptions, both scientific and statistical, be clearly and openly
stated in advance, ensuring that a scientist ‘shows their working’
Scientific assumptions include the components of the scientific model,
as detailed in a DAG, outlining a scientist’s understanding of the data-
generating process (see causal model development section). Statistical
assumptions are those made when selecting the type of statistical model,
deciding on an appropriate likelihood function and in choosing
appropriate priors (see the Variables, likelihood function and model
parameters and Selection of prior distributions sections below). Not only
must such assumptions be stated and justified in advance, but they
should also be considered when interpreting results, thereby reinforcing
the notion that “posterior inferences are only as good as the model and
experiment that produced the data” (26). A fifth advantage is the use of
hypothesis testing in Bayesian inference; rather than being limited to
null hypothesis significance testing (e.g., determining evidence against
a null hypothesis) as with frequentist statistical methods, probability
estimates directly in support of a particular hypothesis can be made.
Such hypotheses are more flexible and more intuitive to readers. Finally,
as emphasised in the results section, for a Bayesian analysis, it is the
entire probability distribution that matters, not simply a point estimate
(e.g., mean or median) or whether an arbitrary threshold for statistical
significance (e.g., p < 0.05) was reached. Therefore, interpretations can
be more nuanced, better reflecting the uncertainties of the scientific
process and any study findings.
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Dataset, variables assessed and missing data

The dataset on which all statistical analyses were conducted is
provided in the online Supplementary File 2. Continuous baseline
data are summarised as either mean [standard deviation (SD)] or
median and range, whilst categorical data are reported as a number
(percentage). Baseline variables recorded were age (in years), breed
group [mixed breed (reference category), cavalier king Charles
spaniel (CKCS), pug, retriever, other], coat colour [light (reference
category), mixed, dark], sex [female (reference interval), male],
comorbidities [no (reference category), yes], body fat percentage and
season of sampling [spring (reference category), summer autumn,
winter]. As discussed above, body fat percentage data were
unavailable from 18 visits, including 9 initial visits (before weight
reduction; 5 from dogs providing single samples; 4 from dogs
providing paired samples) and 9 visits (after weight reduction; all
from dogs providing paired samples). These data were considered
‘missing completely at random’ because the reason they were missing
had nothing to do with observed and unobserved data (53).
Otherwise, there were no missing data for any other variable assessed
(Supplementary File 2).

Statistical software

Statistical analysis was performed using an online open-access
statistical language and environment (R, version 4.4.3) (28). The
additional packages used for data wrangling and visualisation were:
‘dlookr’ [version 0.6.3; (54)], dplyr’ [version 1.1.4 (55)], ‘ggplot2’
[version 3.5.2; (56)], ‘psych’ [version 2.5.3; (57)], ‘reshape’ [version
0.8.9; (58)], ‘readxl’ [version 1.4.5; (59)], ‘tidyverse’ [version 2.0.0;
(60)], ‘vioplot’ [version 0.5.1; (61)] and ‘vtable’ [version 1.4.8; (62)].
The additional packages used specifically for Bayesian modelling were:
‘brms’ [version 2.22.0; (62, 63)], ‘bayesplot’ [version 1.12.0; (63, 64)],
‘bayestestR’ [version 0.16.0; (65)], loo’ [version 2.8.0; (66)], ‘priorsense’
[version 2.8.0; (67)], ‘rethinking’ [version 2.42; (68)] and ‘rstantools’
[version 2.4.0; (69)].

Variables, likelihood function and model
parameters

The primary outcome variable was HCC, which was
logarithmically transformed (logHCC) and standardised prior to
analysis. Standardisation involves first centering the data (subtracting
the mean) and then dividing by the SD, a process which was also
applied to all continuous predictor variables. Such standardisation has
several advantages; it ensures that the intercept corresponds to the
mean value (set to 0), and also makes estimates of beta coeflicients (a
coefficient that quantifies how much the outcome variable changes for
single-unit change in the predictor variable) easier to understand; by
standardising, each beta coefficient then reflects the change in
outcome variable for a 1-SD change in the predictor variable. As well
as improving efficiency of the MCMC algorithm used in computation,
it makes prior probabilities easier to set since positive and negative
values represent positive and negative effects, respectively.

Separate models were constructed with logHCC as the outcome
variable and the following causal predictor variables: age, sex, breed
group, coat colour, season of sampling, presence of a comorbidity and
body fat. The possibility of reverse causality, in the association between
body fat and log HCC, was tested in a separate model; for this model,
body fat as the outcome variable and log HCC as the causal predictor
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variable. For each model, adjustment variables were included as
determined from the DAG (Figure 1; Table 2; Supplementary File 1).

The statistical analyses used were multi-level Bayesian models,
which included dog as a grouping variable (to account for multiple
samples from some dogs). Such Bayesian models have the advantage
of allowing greater flexibility in the desired model structure. Exact
details of the variables and parameters used for each multi-level model
are shown in Table 2, whilst full details of the statistical workflow
(including code used, statistical outputs and graphs) are available
online: https://github.com/AliG71/hair_cortisol.

Even after logarithmic transformation, data for the outcome
variable (logHCC) remained modestly right-skewed. To determine
the most appropriate likelihood function, preliminary models with
different likelihood distributions (e.g., normal, Student’s t and skew-
normal) were compared by leave-one-out (LOO) cross-validation
using the ‘loo” package (66). For each model, the leave-one-out
information criterion (LOOIC) was calculated, which estimates how
well a model can predict future data from the same distribution as the
observed data, with smaller values indicating better predictive
performance (66). A skew-normal distribution was ultimately chosen
given its superior performance, as well as better ability to replicate the
distribution of the logHCC data (Figure 2). This distribution is a
generalisation of the normal distribution (with mu [mean] and sigma
[standard deviation] parameters) but includes an additional ‘shape’
parameter (alpha) to allow for asymmetry, whereby positive and
negative values indicate positive and negative skewness, respectively
(70). Like the Students t distribution, it can be more robust to
outliers, not least where there is asymmetry around the mean. All
final models fitted the data distribution well, as shown by the
posterior prediction checks outlined below (Supplementary File 3).

Selection of prior distributions

Prior distributions were selected for all parameters of each model,
with the overall aim being to ensure they were weakly regularising,
adjusted to ensure that that pre-data predictions would span the range
of scientifically plausible outcomes. This was confirmed by graphical
visualisations and prior predictive simulations from models that
sampled from the prior probability distributions only (see below).
Justification for the choice of each prior is provided in the
Supplementary File 4, whilst details of the final prior distribution
choices for each model are shown in Table 2. In most cases, neutral
priors were chosen (including for body fat percentage), except for
comorbidity and coat colour because previous scientific evidence
suggested ‘informed priors to be more appropriate
(Supplementary File 4). Further, a difference in the variance of HCC
between dogs with and without comorbidities was evident (Figure 3)
and, therefore, a prior for sigma (standard deviation for the likelihood
function) was not included in models that included comorbidity,
either as the predictor or an adjustment variable. Instead, sigma was
estimated as a parameter within the model, using comorbidity as a
single predictor variable (Table 2). Simulated prior probability
distributions for the body fat and comorbidity beta coeflicients are
shown in Figure 4.

Model computations and diagnostic checks

Bayesian analyses were computed using the ‘brms’ package [version
2.22.0; (63)], which fits multilevel Bayesian models using the probabilistic
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TABLE 2 Prior and likelihood specifications of all causal models used in analysis, along with the sets of adjustment variables included, as determined

from the directional acyclic graph.

Likelihood
function 3

Outcome
variable

General parameters

Parameter® Prior 2

Causal predictor

Adjustment set

Variable # Prior 2 Variable * Prior 2

Intercept Normal (u 0, 6 0.5)
Sigma Exponential (4 1)
Age LogHCC Skew-normal | Standardised age Normal (u 0, 6 0.5) Breed Normal (x4 0, o 1)
Alpha Normal (¢ 4, 6 2)
Group Normal (4 0,0 1)
Intercept Normal (¢ 0, ¢ 0.5)
Sigma Exponential (4 1) Female (ref)
Sex LogHCC Skew-normal Normal (40,0 1)
Alpha Normal (¢ 4, 6 2) Male
Group Normal (40,0 1)
Mixed breed (ref) | ---
Intercept Normal (u 0, 6 0.5)
CKCS Normal (u -0.070, ¢ 1.5)
Breed Sigma Exponential (4 1)
LogHCC Skew-normal | Pug Normal (¢ -0.075,61.5) | ---
group Alpha Normal (1 4, 6 2)
Retriever Normal (u -0.070, ¢ 1.5)
Group Normal (4 0,0 1)
Other Normal (u -0.075, ¢ 1.5)
Intercept Normal (0, 6 0.5) Light (ref)
1 rel -
Coat Sigma Exponential (4 1) &
LogHCC Skew-normal | Mixed Normal (u -0.070, ¢ 1) Breed Normal (¢ 0, 6 1)
colour Alpha Normal (4 4, 62)
Dark Normal (u -0.075, 6 1)
Group Normal (40,0 1)
Intercept Normal (4 0, 6 0.5) Spring (ref)
Season of Sigma Exponential (4 1) Summer
LogHCC Skew-normal Normal (x4 0,06 1)
sampling Alpha Normal (¢ 4, 6 2) Autumn
Group Normal (¢ 0, ¢ 1) Winter
Intercept Normal (u 0, 5 0.5)
Standardised age = Normal (¢ 0, ¢ 0.5)
Sigma ° No (ref)
Comorbidity = LogHCC Skew-normal Normal (4 0.25,06 1) Breed Normal (¢ 0, 0 1)
Alpha Normal (¢ 4, 6 2) Yes
Sex Normal (4 0,0 1)
Group Normal (4 0, 0 1)
Intercept Normal (¢ 0, ¢ 0.5) Standardised age = Normal (1 0, ¢ 0.5)
Sigma ° --- Standardised body Breed Normal (1 0, 0 1)
Body fat LogHCC Skew-normal Normal (1 0, ¢ 0.5)
Alpha Normal (¢ 4, 6 2) fat Sex Normal (0,0 1)
Group Normal (¢ 0, 6 1) Comorbidity Normal (¢ 0.25,0 1)
Standardised age | Normal (1 0, 0 1)
Intercept Normal (4 0,0 1)
Reverse Standardised Breed Normal (¢ 0, 6 2)
Sigma ° Exponential (4 1) Normal LogHCC Normal (¢ 0, 6 0.5)
causality body fat Sex Normal (¢ 0,6 1)
Group Normal (40,0 1)
Comorbidity Normal (¢ 0, 6 1)

Analyses involving standardised log hair cortisol (LogHCC) as the outcome variable used a skew-normal likelihood function. In the reverse causality model, standardised body fat was the
outcome variable, and a normal likelihood function was used. All models included visit as a grouping variable, along with the causal predictor and its respective adjustment sets, as indicated in
the table. All continuous variables (log hair cortisol, body fat and age) were standardised prior to analyses, by subtracting the mean and dividing by the standard deviation. This approach
improves computational efficiency of MCMC, whilst making it easier to set prior probabilities because positive and negative values represent positive and negative effects, respectively. 'The
parameters estimated in the model, including intercept, sigma (the standard deviation of the intercept), alpha (skew-normal models; a shape parameter, with positive and negative values
indicating right or left skews, respectively) and group (accounting for differences in the intercept and standard deviation amongst individual dogs with repeat measurements). “The priors set
for each of the parameters in the model; for each, prior, the selected probability distribution is indicated along with values chosen for the distribution parameters; for normal distributions, two
parameters were required: mean (x) and standard deviation (o); for exponential distributions, a single parameter, A, was required (representing the rate of decline of the exponential curve,
with larger values indicating more rapid decline). *The likelihood function selected for the models. “The variables included in the model in question, comprising the predictor variable (the
variable for which the causal effect was being calculated) and adjustment set variables included in the model to adjust for confounding, based on the directed acyclic graph (Figure 1;
Supplementary File 1). *Note that, for both the body fat model and the comorbidity model, a prior for sigma was not included, because it was separately modelled with a single predictor
variable (comorbidity); this enabled the variance of the model to differ across levels of comorbidity.

programming language, ‘Stan’ (71), accessed via the ‘rstan’ package
(version 2.32.7 (68, 69)). All models employed 4 chains with 8,000
iterations (including 2,000 and 6,000 warm-up and sampling iterations,
respectively). Diagnostic checks included checks of MCMC performance
and also several prior and posterior validation checks
(Supplementary File 3), with full details of all statistical analyses (including
the code used and all statistical output) available online: https://github.
com/AliG71/hair_cortisol. To verify MCMC performance, models were
checked for convergence, by assessing R-hat values and inspecting both
trace and trace-rank plots (Supplementary File 3), whilst resolution was
assessed by calculating effective sample sizes (Table 4). In all final models,
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effective sample sizes were always acceptable (typically 10,000-20,000
depending upon the model).

Verifications of the suitability of prior probabilities included initial
graphical modelling, to simulate the expected shape of the distribution,
prior predictive simulations and power scaling sensitivity analysis
[powerscale_sensitivity function of the ‘priorsense’ package (67)].
Verification checks on the posterior distributions included a visual
inspection of a pairs plot, a graphical posterior predictive check, graphical
comparisons of individual draws against the observed data for each
variable and  several other checks

predictor graphical

(Supplementary File 3).
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(a) Comparison of observed data [log hair cortisol concentration (log HCC)] versus simulations of normal [blue dotted line; mean 0, standard deviation
(SD) 11, and skew-normal (red line, mean O, SD 1, alpha 4) distributions. Note that the observed data have been standardised by subtracting the mean
and dividing by the SD. The simulation of the skew-normal distribution better reflects the shape of the observed data. (b,c) Comparison of the
empirical distribution of the observed outcome variable (logHCCC; thick dark blue curve) with the distributions of many replicated data sets (thin light
blue curves) drawn from the posterior predictive distributions of body fat models that use either a normal (b) or skew-normal (c) likelihood function.
Although the model with the normal likelihood function does a reasonable job of predicting the shape of the observed data, the fit is better when a
skew-normal likelihood function is used. Specifically, the predictions of the left tail are better aligned (closer to parallel), with means of the predictions
clustering around the mean of observed data, and the right-skew is better captured.

Finally, before testing on the actual study data, models were checked
using simulated data to ensure that model fitting had worked correctly.
For this, different simulated datasets of 200 visits [100 each for the first
(V0) and second (V1) visits from 100 dogs] were created, each specifying
different effect sizes for the causal predictors of each model (e.g., in the
body fat model, it was assumed that the beta coeflicient for the causal
effect could be of 0.0, 0.2 or 0.5). All model estimates for the beta
coeflicient reliably reproduced what was expected in the simulated dataset
(https://github.com/AliG71/hair_cortisol).

Analyses of the posterior distribution

Posterior density distributions for all parameters in the final
models were calculated as described above and summarised using
means (for central tendency) and 97% highest posterior density
intervals (97% HPDI, for limits of the credible interval), unless
otherwise indicated. Graphical visualisation of posterior probability
distributions included plots of posterior densities (displaying highest
density intervals), plots of conditional effects and plots comparing the
prior and posterior probability distributions (to illustrate the relative
contribution of the prior and sample data). Hypothesis tests were
conducted to determine the probability that the effects of each causal
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predictor were positive (or negative), and posterior predictions were
used (from new simulated data) to estimate causal associations.
Finally, the Bayes R* metric was calculated using the bayes_R2
function of the ‘rstantools’ package (69), which is similar to a
conventional R* statistic from least-squares linear regression, with the
results “quantifying the fit of the model to the data at hand” (69).

Sensitivity analyses

Sensitivity analyses included testing the sensitivity of the
posterior distribution to the choice of prior distribution, as
described above. Other analyses were conducted, on the body fat
and comorbidity models, to determine the sensitivity of posterior
distribution estimates to measurement error (given known
variability in the hair cortisol assay), season of sampling, missing
data (body fat model only) and setting a neutral regularising prior
for comorbidity (comorbidity model only). Measurement error in
the response variable (logHCC) was accommodated using the mi()
syntax in the ‘brms’ package (63), and assuming that the coefficient
of variability of hair cortisol measurement was 11.8% (37).
Although not on the causal pathway for either model (Figure 1;
Supplementary File 1), a sensitivity analysis was conducted to
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FIGURE 3
Combined box-and-whisker and dot plot of the observed log hair cortisol concentration (logHCC) data, stratified by the comorbidity variable. The
logHCC data have been standardised by subtracting the mean and dividing by the standard deviation. The thick horizontal line represents the median,
whilst the upper and lower limits of the box represent the inter-quartile range (IQR). The upper and lower whiskers extend as far as the largest or
smallest, respectively, values that are no further than 1.5 x IQR from the IQR, whilst outlying points are shown as small black dots. Given the difference
in variance between groups, it was necessary to build some models that accounted for unequal variance amongst dogs that differed by comorbidity
status. Affected models included those testing causal associations between comorbidity and HCC and also body fat and HCC (since comorbidity was
included in the adjustment set).

determine the effect of sample season on causal estimates in the
body fat and comorbidity models. This was undertaken by
recomputing posterior probability distribution after adding the
sampling season variable to each model. To assess a possible effect
of missing data in the body fat variable, the mi() syntax from the
‘brms’ package (63) was again used; this involved fitting a
multivariate Bayesian multilevel model, whereby the missing data
for body fat and log hair cortisol are simultaneously predicted (see
the sensitivity analyses report in the online material at: https://
github.com/AliG71/hair_cortisol). Using this approach, missing
data are handled as additional parameters for estimation from a
single joint posterior distribution. Knowledge of variables causally-
associated with the missing variable can also be used to inform the
imputation process. Together, this leads to more accurate and
honest credible intervals than other imputation approaches such as
single imputation. For the body fat model, a Student’s ¢ likelihood
function was chosen, and incorporated appropriate predictor
variables as indicated by the DAG (Figure 1; Supplementary File 1;
e.g., sex, age, breed group and comorbidity). Finally, to determine
whether the final choice

of prior for comorbidity
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(marginally-positive, weakly-regularising; mean 0.25, sigma 1) had
unduly influenced the posterior probability density, the comorbidity
model was rerun with a different prior that was neutral and weakly
regularising (mean 0, sigma 1).

Ethics and welfare considerations

The study has been reported in accordance with the Animal
Research: Reporting of In Vivo Experiments (ARRIVE) guidelines.'
The study received approval from both the University of Liverpool
Veterinary Research Ethics Committee (RETH000353 and VREC793)
and the Royal Canin Ethical Review Committee (150720-55). All
owners gave informed, written consent allowing their dog to
participate. Clinical procedures complied with relevant guidelines
(e.g., standard operating procedures) and regulations. Foods used

1 https://arriveguidelines.org/arrive-guidelines
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TABLE 3 Baseline variables in dogs in the study.

10.3389/fvets.2025.1695345

Variable All dogs Single hair sample (VO only) Paired hair samples (VO and V1)
Number 52 31 21
Age (months)
Visit 0 90 (34.0) 90 (33.9) 91 (36.1)
Visit 1 109 (35.5)
Sex
Female (neutered) 30 (58%) 17 (55%) 13 (62%)
Male (neutered) 22 (42%) 14 (45%) 8 (38%)
Breed
Mixed breed 11 (21%) 6 (19%) 5(24%)
Cavalier King Charles Spaniel 6 (12%) 5(16%) 1 (5%)
Pug 5(10%) 3 (10%) 2 (10%)
Retriever 12 (23%) 7 (23%) 5 (24%)
Labrador retriever 11 Labrador retriever 7 Labrador retriever 4
Golden retriever 1 Golden retriever 0 Golden retriever 1
Other 18 (35%) 10 (32%) 8 (38%)
Beagle, Bichon Frise 2, Bulldog
Cocker Spaniel 2, Corgi,
French Bulldog, Lhasa Apso, Cocker Spaniel 2, Corgi,

Miniature Dachshund,
Miniature Schnauzer 2,

Norfolk Terrier,

Beagle, Bichon Frise 2, Bulldog
French Bulldog, Mini Schnauzer,
Norfolk Terrier,
Staffordshire Bull Terrier 3

Lhasa Apso, Polish Lowland Sheepdog,
Miniature Dachshund,

Miniature Schnauzer,

Polish Lowland Sheepdog, Rhodesian Ridgeback
Rhodesian Ridgeback
Staffordshire Bull Terrier 3
Coat colour
Light 18 (35%) 8(26%) 10 (48%)
Mixed 13 (25%) 10 (32%) 3 (14%)
Dark 21 (40%) 13 (42%) 8 (38%)
Season
Spring 10 (29%) 9 (29%) 1(5%) / 4 (19%)
Summer 14 (16%) 5(16%) 9 (43%) / 8 (38%)
Autumn 18 (32%) 10 (32%) 8(38%) / 3 (14%)
Winter 10 (23%) 7 (23%) 3 (14%) / 6 (29%)
Comorbidities
No 8 (15%) 1(3%) 7 (33%)
Yes 44 (85%) 30 (97%) 14 (67%)
Total 59 35 24
Number per dog 1(0to3) 1(0to3) 1(0to3)

Dental-oral 8
Orthopaedic 17
Cardio-respiratory 12

Dental-oral 6
Orthopaedic 10

Cardio-respiratory 7

Dental-oral 2
Orthopaedic 7

Cardio-respiratory 5

Dermatological 16 Dermatological 9 Dermatological 7
Neoplastic 6 Neoplastic 3 Neoplastic 3
Body fat percentage !
Before 43 (6.0) 41 (5.5) 45 (6.4)
After - - 33(8.8)
(Continued)
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TABLE 3 (Continued)

Variable All dogs Single hair sample (VO only) Paired hair samples (VO and V1)
Hair cortisol (pg/mg)

Before 10.4 (19.52) 11.5 (21.91) 7.6 (14.29)

After 3.6 (3.74)

Log hair cortisol

Before 1.3 (1.36) 1.4 (1.33) 1.1(1.23)

After - - 0.9 (0.94)

Except for number of comorbidities (presented as median and range), results are presented either as number (percentage) for count data or mean (standard deviation) for
continuous data. 'Body fat percentage determined by dual-energy X-ray absorptiometry. VO: the visit before therapeutic weight reduction; V1: the visit after therapeutic
weight reduction.

were commercially available therapeutic diets commonly used by  In the dogs providing single samples (before therapeutic weight
veterinarians to manage obesity, and given for the clinical benefit of =~ reduction, V0), mean HCC was 11.5 (SD 21.91) pg/mg (log HCC
the study dogs. Neither the clinical procedures used nor the clinical 1.4, SD 1.33) whereas, in those providing paired samples, HCC
use of the therapeutic diets were deemed to involve animal  was 7.6 (SD 14.29) pg/mg (log HCC 1.1, SD 1.23) before (V0) and
experimentation, falling outside the remit of national legislation (e.g., 3.6 (SD 3.74) pg/mg (log HCC 0.9 SD 0.94) after (V1)
the revised Animals [Scientific Procedures] Act 1986). weight reduction.

Results Causal associations between hair cortisol
and different explanatory variables
Characteristics of dogs, hair samples and
HCC results The results of estimates of the causal effects from each model are
summarised in Table 4 and Supplementary File 5, with full details of
In total, 73 hair samples were obtained, comprising paired samples  each statistical model and validation available online: https://github.
from 21 dogs (before [VO0] and after [V1] weight reduction), and single ~ com/AliG71/hair_cortisol.
samples (before weight reduction only [V0]) from a further 31 dogs. Full
details of all baseline characteristics are shown in Table 3. Forty-fourof ~ Age model
the 52 dogs (85%) had one or more comorbidities (median 1, range 0-3). Based on the DAG (Figure 15 Supplementary File 1), the only
Twenty-five dogs ate the dry therapeutic food during their period of  adjustment variable required for the age model was breed group.
weight reduction (16 dogs with paired samples; 9 dogs with single  Although the probability distribution for the effect of age (beta
samples), whilst the remaining 27 consumed a combination of wetand ~ coefficient) spanned zero (Supplementary File 5), and the
dry therapeutic food (12 dogs with paired samples; 15 dogs with single ~ majority was negative (mean —0.12 per SD; 97% HPDI -0.33,
samples). In the dogs with paired samples, mean weight loss was 26% (SD ~ 0.10). A weakly-negative trend was seen across the age range
6.8%) of starting weight, at a rate of 0.7% (SD 0.33) per week, with median ~ (Supplementary File 5), equating to an average decrease in HCC
body fat mass being 42% (range 31-61%) and 33% (range 18-50%) before ~ of ~1.6 pg/mg (~0.1 logHCC) for each 1-unit (~36 months)
and after weight reduction, respectively. increase in standardised age. Therefore, we estimated an 88%
There were various reasons why 31 of the dogs only contributed a ~ probability of there being a negative effect of age on logHCC.
single hair sample. Just over half (16 dogs) had reasons related to the
COVID-19 pandemic: of these, 3 dogs reached target weight duringthe ~ Sex model
pandemic, but a face-to-face follow-up visit was not possible; the Based on the DAG (Figure 1; Supplementary File 1), no
remaining 13 pandemic-affected dogs were lost to follow-up, mostly ~ adjustment variables were required for the sex model. The
because owners had found it difficult to implement a therapeutic weight ~ probability distribution for the effect of sex again spanned zero
reduction protocol. Of the 15 dogs not affected by the COVID-19  (Supplementary File 5), but did not clearly favour either a positive
pandemic, 3 dogs completed therapeutic reduction but their owners  or negative predictions (mean 0.14, 97% HPDI -0.29, 0.60).
decided not to return for the follow up; 2 dogs were euthanased for other =~ Therefore, we estimated a 75% probability of there being a
reasons (e.g., metastatic pulmonary adenocarcinoma, old age) before  positive causal association between sex and logHCC.
reaching target weight; and the remaining 10 dogs were lost to follow-up
(4 due to poor compliance; 4 stopped responding to communications; 1~ Breed group model
moved away from the area; 1 had transport issues). Based on the DAG (Figure 1; Supplementary File 1), no
adjustment variables were again required for the breed group
model. Compared with mixed breed as the reference category,
Hair cortisol concentrations probability distributions for all other categories spanned zero
(Supplementary File 5), and did not suggest any clear positive or
Details of HCC results are shown in Table 3. The mean HCC  negative associations with logHCC (CKCS mean 0.14, 97% HPDI
for all samples was 10.4 (SD 19.52) pg/mg (logHCC 1.3, SD 1.36).  -0.72, 0.92; pug mean 0.19, 97% HPDI -0.59, 0.62; retriever mean
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TABLE 4 Summary of causal associations for the final models where log hair cortisol concentration was the outcome variable.

Estimate!  Estimated 97% R-hat 3 ESS 4 Bayes R?°
1 2
S HES! Bulk Tail Median  97%Cl
Age (per SD change) —0.12 0.10 —0.33,0.10 1.00 14,786 15,585 0.05 0.01,0.14
Sex 0.02 0.00,0.11
Female Ref. - --- - --- ---
Male 0.14 0.20 —0.29, 0.60 1.00 16,874 14,950
Breed group
Mixed breed Ref. --- --- --- --- --- 0.04 0.01,0.13
CKCS 0.14 0.38 —0.72,0.92 1.00 13,139 14,313
Pug 0.19 0.36 —0.59, 0.96 1.00 14,815 14,562
Retriever 0.09 0.28 —0.52,0.70 1.00 12,104 15,143
Other 0.10 0.26 —0.46, 0.65 1.00 14,704 14,362
Coat colour 0.08 0.02,0.19
Light Ref. - --- - - -
Mix —0.50 0.29 -1.13,0.13 1.00 14,208 15,167
Dark -0.33 0.23 —0.83,0.17 1.00 15,303 16,240
Season of sampling 0.07 0.01,0.18
Spring Ref. - --- - --- -
Summer —0.18 0.26 —0.73,0.37 1.00 12,907 12,966
Autumn —0.32 0.27 —0.89,0.29 1.00 12,768 13,794
Winter 0.26 0.28 —0.34,0.88 1.00 12,885 13,103
Comorbidity 0.13 0.04,0.25
No Ref. - --- - --- -
Yes 0.65 0.24 0.11,1.16 1.00 16,588 15,963
Body fat (per SD change) 0.33 0.13 0.03,0.59 1.00 15,056 13,776 0.18 0.08,0.29

All analyses used Bayesian multi-level modelling, using the variables and parameters specified in Table 2. All models employed 4 chains, parallelised on separate computer cores, and each
using 8,000 iterations (including 2,000 and 6,000 warm-up and sampling iterations, respectively; total available iterations 24,000). 'Estimate and estimated error of the beta coefficient for the
causal effect of each model. *Highest posterior density interval (a.k,a. highest density interval), the narrowest interval containing the specified probability mass (here 97%), and representing the
most probable region of the value of the parameter, given the model, the priors and the observed data. *R-hat is a convergence diagnostic, which compares between- and within-chain estimates
for model parameter; values larger than 1 suggest that the Markov chains in the model have not mixed well, with a commonly-accepted cut-off for acceptability being 1.05. ‘Estimated sample
sizes from the Markov Chain Monte Carlo simulation; these are estimates of the number of samples that were used and provide a useful measure of sampling efficiency. As the names suggest,
the bulk ESS and tail ESS provide estimates for the sampling efficiency in the bulk and tails of the distribution, respectively; values >100 per Markov chain (here >400) indicate that estimates of
respective posterior quantiles are reliable. "Median and 97% compatibility interval of the posterior distribution of the Bayesian R* estimate; with this approach, the “variance of the predicted
values is divided by the variance of predicted values plus the expected variance of the errors,” with the results “quantifying the fit of the model to the data at hand” (69).

0.09, 97% HPDI -0.52, 0.70; other breed mean 0.10, 97% HPDI ~ Season of sampling model

-0.46, 0.65). Therefore, the probability of positive causal Based on the DAG (Figure 1; Supplementary File 1), no
associations with logHCC were estimated to be 66%, 71%, 63%  adjustment variables were again required for the sampling season
and 65% for the CKCS, pug, retriever and other breed groups, = model. Compared with spring as the reference category, all probability

respectively. distributions spanned zero (Supplementary File 5), although those for
summer (mean —0.18; 97% HPDI -0.73, 0.37) and autumn (mean
Coat colour model —0.32; 97% HPDI -0.89, 0.29) were majority negative, whilst that for

Based on the DAG (Figure 1; Supplementary File 1), the only ~ winter was majority positive (mean 0.26; 97% HPDI -0.34, 0.88).
adjustment variable required for the coat colour model was breed ~ Therefore, the probability of negative causal associations between
group. Compared with light coat colour as the reference category,  summer and autumn and logHCC were 77% and 88%, respectively,
the probability distributions for mixed and dark coat colour spanned ~ whilst the probability of a positive causal association between winter
zero (Supplementary File 5) but were predominantly negative in  and log HCC was 83%.
both instances (mixed: mean —0.50, 97% HPDI -1.13, 0.13; dark:
mean —0.33, 97% HPDI -0.83, 0.17). Therefore, we estimated 93% Comorbidity model
probability and 96% probability that logHCC is less in dogs with Based on the DAG (Figure 1; Supplementary File 1), the adjustment
dark or mixed coat colour, respectively than in dogs with light  setrequired for the comorbidity model included age, sex and breed group.
coat colour. The entire posterior probability distribution was positive (mean 0.65; 97%
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HPDL 0.11, 1.16; Bayes R?* 0.13; Figure 5a), meaning that having a
comorbidity was associated with an average increase in HCC of 10.4 pg/
mg, compared with no comorbidity (Figure 5b). The relative contributions
of the prior expectations and the observed data were determined in two
ways; first, the prior and posterior density distributions of the beta
coefficient for comorbidity were visually compared (Figure 6a); second, a
visual comparison was made of 50 random draws taken from the prior
(Figure 6b) and posterior (Figure 6¢) probability distributions. Prior to
observing the data, the model expected the causal association between
comorbidity and logHCC to be slightly positive, on average, but with wide
degree of uncertainty as indicated by the mean effect of the prior being >0
but with wide variability (Figure 6a) and the fact that individual posterior
predictions of logHCC were slightly more likely to be positive than
negative, albeit to varying degrees (Figure 6b). After seeing the data, the
model was both confident that the causal association would be positive,
and relatively confident about its magnitude, as indicated by the narrow
range of the posterior distribution (Figure 6a) and the close clustering of
the posterior predictions of logHCC (Figure 6¢). Therefore, we estimated
a>99% probability of a positive causal association between comorbidity
and logHCC.
Sensitivity
demonstrated that these results were robust to the effects of measurement
error (mean 0.65, 97% HPDI 0.11, 1.17; probability >99%; 10.4 pg/mg
mean increase in HCC when one or more comorbidity present), sampling
season (mean 0.60, 97% HPDI 0.03, 1.16; probability >99; 9.6 pg/mg
mean increase in HCC when one or more comorbidity present) and using

analyses  (https://github.com/AliG71/hair_cortisol)

a neutral, weakly-regularising prior for comorbidity (mean 0.63, 97%
HPDI 0.10, 1.14; probability >99%; 10.1 pg/mg mean increase in HCC
when one or more comorbidity present).

Body fat model

Based on the DAG (Figure 1; Supplementary File 1), the adjustment
set required to estimate the causal association between body fat and
logHCC, included age, sex, breed group and comorbidity. The vast
majority of the probability distribution for the beta coefficient was positive
(mean 0.33 per SD; 97% HPDI 0.03, 0.59; Bayes R* 0.18; Figure 7a), and
a positive trend was seen across the body fat range (Figure 7b), equating
to an average increase in HCC of 5.3 pg/mg for each increase of 1 unit in
standardised fat (~10% body fat mass). The relative contributions of our
prior expectations and the observed data were assessed in two ways; first,
the prior and posterior density distributions of the beta coeflicient for
body fat from the final model were visually compared (Figure 8a); second,
a visual comparison was made of the individual regression lines predicted
from 50 random draws taken from the prior (Figure 8b) and posterior
(Figure 8c) probability distributions. Prior to observing the data, the
model was both neutral and uncertain about the possible effect of body
fat on logHCC, as indicated by the mean effect of the prior being 0
(Figure 82) and the fact that individual regression lines could be either
positive or negative to varying degrees (Figure 8b). After seeing the data,
the model was both confident of a positive causal association, and
relatively confident about its magnitude, as indicated by the narrow range
of the posterior distribution (Figure 8a) and the close clustering of the
regression line slopes (Figure 8c). Therefore, we estimated a 99%
probability of a positive causal association between body fat and
logHCC. The conditional effect of body fat on logHCC, stratified by
comorbidity and compared with the observed data is shown in Figure 9.

Sensitivity analyses (Supplementary File 5) demonstrated that
these results were relatively robust to the effects of measurement
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error (mean 0.32, 97% HPDI 0.03, 0.60; probability 98%; 5.1 pg/mg
mean increase in HCC per 10% body fat mass increase), season of
sampling (mean 0.28, 97% HPDI -0.11, 0.62; probability 94%;
4.5 pg/mg mean increase in HCC per 10% body fat mass increase)
and missing data (mean 0.27, 97% HPDI 0.01, 0.55; probability
98%; 4.3 pg/mg mean increase in HCC per 10% body fat
mass increase.

Reverse causality model

Although we had assumed that changes in body fat mass
would cause changes in HPA function, the possibility of reverse
causality, namely that an upregulated HPA would cause increased
body fat mass, could not be discounted. To explore this possibility,
the DAG was redrawn with HCC and body fat as exposure and
outcome, respectively (Supplementary File 1). The same
adjustment set as with the body fat model (e.g., age, sex, breed
group and comorbidity) was required for this causal analysis,
which was tested twice, first using all study data (model 1, Table 5;
Figures 10a,c) and also using data from visit 0 only (model 2,
Table 5; Figures 10b,d). In both models, posterior probability
densities were wide, spanning zero (Figures 10a,b), albeit with
slightly more of the probability mass being positive (all data 70%;
visit 0 data only 87%). Further, the linear trend was relatively flat
across the logHCC range (Figures 10c¢,d), with the credible
interval being broad and including both positive and negative
slopes. Such results suggest uncertainty in the estimate of this
effect, and would not be consistent with a there being a convincing
reverse causality effect.

Discussion

The objective of the present study was to use a Bayesian workflow
to estimate possible causal associations between HCC and several
different variables in dogs with obesity. The variables for which causal
associations were most plausible were body fat and having at least one
comorbidity, given the overwhelmingly positive posterior probability
densities obtained in the final models. The reasons for a possible
positive causal association between body fat and HCC are not clear
but a similar association is seen in humans (72). Of course, the causal
association between obesity and HPA upregulation might flow in the
opposite direction, so-called reverse causation, where upregulated
HPA causes an increased body fat mass. Evidence for this includes the
fact that cortisol promotes adipose tissue redistribution (to the
abdominal region), increases appetite and, in humans at least,
promotes a preference for foods of greater palatability (73), all of
which could lead to adipose tissue gain. Increased cortisol
concentration is also observed in people who gain weight because of
stress (74). To address this, we created a final causal model with body
fat and logHCC as outcome and causal predictors, respectively, and
utilising the same adjustment variables as required for the body fat
model (Supplementary File 1). We chose to assess this association
both using all study data and only data from visit 0. We included the
second analysis because we were concerned that therapeutic weight
reduction might affect HCC, as reported in a previous study in dogs
(20), thereby obscuring any causal effect of HPA upregulation on body
fat mass. In contrast to the result of the body fat model, where the
probability distribution for a causal effect was overwhelmingly
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Prior probability distribution

(a) Simulated prior probability density distributions (blue lines) for the beta coefficients for causal associations between body fat (a) or comorbidity (b)
and log hair cortisol concentration (logHCC). The thick, red dotted line represents the mean of the density distribution, whilst the solid, thin grey line is
intersects the x-axis at zero, indicating a value where the beta coefficient would be neither positive of negative. The body fat prior was assumed to be a
normal distribution with a mean of 0 and a standard deviation (SD) of 0.5; the comorbidity prior was also assumed to be a normal distribution, but with
a mean of 0.25 and a SD of 1. The impact that such prior probability distributions can have in regularising models is illustrated in Figure 8.

0 1 2 3

positive (99%), the probability density spanned zero in both the
reverse causality models, i.e., not consistent with a causal effect in this
direction. Taken together, these results suggest that, if a causal effect
exists, it is most likely to be in the direction of body fat causing
HPA upregulation.

For dogs where paired samples were available, mean HCC was 7.6 pg/
mg and 3.6 pg/mg in samples taken before and after therapeutic weight
reduction, respectively. A major study limitation was the fact that it was
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not possible to create an unbiased statistical model for the effect of
therapeutic weight reduction because, based on our DAG, we could not
correct for possible confounding from unmeasured variables. Such
unmeasured variables could include owner factors (e.g., owner attitudes
and behaviours in implementing a therapeutic weight reduction protocol),
environmental factors (e.g., the living environment of the dog) and, of
course, the impact of the COVID-19 pandemic; all such variables could
plausibly affect both the body fat percentage of dogs and the confounding
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(a) Highest probability density interval (a.k.a. highest density interval) plot for the causal association between comorbidity and log hair cortisol
concentration (logHCC). The y-axis depicts the density distribution, whilst the x-axis depicts possible values for the beta parameter of the causal
association. Different probability intervals are depicted by colour (red 65%; purple 70%; orange 80%; yellow 89%; green 97%; blue 100%). The feint
vertical dotted line intersects the x-axis at zero, indicating the point where the beta coefficient would be neither positive of negative. Most of the
posterior probability density is greater than zero, indicating a > 99% probability for a positive causal association. (b) Conditional effect for the
association between comorbidity and logHCC, generated using the posterior_predict function of the ‘brms’ package [version 2.22.0; (62)]. The points
represent estimates, whilst the lines represent the 97% compatibility interval (97%-Cl). This method estimates uncertainty in predictions from both the
statistical model and residual error, which better reflects the complete range of plausible outcomes of the scientific model. Mean predicted logHCC is
greater in dogs with comorbidities, with a wider uncertainty range, than in dogs without comorbidities.

variables (e.g., affecting attendance of owners at visits and whether an
individual dog would successfully reach its target). Considering the
findings of the current study, a prospective study should now
be considered where the effect of therapeutic weight reduction on HCC
could be assessed prospectively.
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As well as a possible direct effect of excessive adipose tissue mass
on HPA upregulation, obesity might have an indirect effect either by
predisposing to or exacerbating other diseases; indeed, many possible
disease associations have been identified in previous research (11). In
the current study, most dogs had at least one comorbidity, with some
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FIGURE 6

A comparison of prior and posterior distributions for the causal association between comorbidity and log hair cortisol concentrations (logHCC). (a)
Comparison of prior and posterior probability densities (thin blue lines). Thick vertical lines within these densities represent the mean and the shaded
blue regions represent the central (50%) compatibility interval. Differences in in the shape and position of the posterior distributions, relative to the prior
distribution, indicate the effect of the observed data on the predictions. (b,c) Visual comparison of predicted differences in logHCC between dogs with
and without comorbidities, based on individual predictions created using 50 random draws taken from the prior (b) or posterior (c) probability
distribution. Data are displayed as combined box-and-whisker and point plots, with thick horizontal lines representing the median, and upper and
lower limits of the boxes represent the inter-quartile range (IQR). The upper and lower whiskers extend as far as the largest or smallest, respectively,
values that are no further than 1.5 X IQR from the IQR, whilst outlying points are shown as small black dots. Prior to observing the data, the model
predicts a slightly positive average causal association, but with wide degree of uncertainty, as indicated by the wide density distribution spanning zero
(a), and only a marginal average difference between the box and whisker plots for each group (b). After seeing the data, the model is confident that the
causal association between comorbidity and logHCC is positive, as indicated by the narrower density distribution almost-completely >0, and greater

having multiple comorbidities. The estimated causal association
between comorbidity and HCC was highly variable; not only was
HCC greater by an average of 10.4 pg/mg in dogs with comorbidities,
but concentrations within the group were much more variable than in
the dogs without comorbidities. These findings are, perhaps, not
surprising given the many different comorbidities present, with
differing severity, and the fact that the pathogenetic mechanisms are
likely to be different amongst different diseases. For example,
orthopaedic diseases were particularly common in the current study;
such diseases might activate stress pathways because of chronic pain,
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trauma to local tissues caused by the injury or subsequent surgery,
inflammation, and by locally triggering endogenous corticosteroid
production, as seen in human studies (75-77). Further studies would
be required to confirm the mechanisms by which excess adipose tissue
leads to increased HCC in dogs.

Possible causal associations were also suggested for some of the
other variables, including age and hair coat although posterior
probability distributions indicated that such associations were less
certain. In this respect, the probability of there being a negative
association between age and HCC was estimated to be 88%, whilst the
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FIGURE 7

(a) Highest probability density interval (a.k.a. highest density interval) plot for the causal association between body fat and log hair cortisol
concentration (logHCC). The y-axis depicts the density distribution, whilst the x-axis depicts possible values for the beta parameter of the causal effect.
Different probability intervals are depicted by colour (red 65%; purple 70%; orange 80%; yellow 89%; green 97%; blue 100%). The feint vertical dotted
line intersects the x-axis at zero, indicating the point where the beta coefficient would be neither positive of negative. Most of the posterior probability
density is greater than zero, indicating a 98% probability that the causal association is positive. (b) Conditional effect for the causal association between
body fat and logHCC. The blue line represents the mean estimate for logHCC, across the body fat range, whilst the shaded region represents the 95%
credible interval. Estimates were generated using the posterior_predict function of the ‘brms’ package [version 2.22.0 (62)], which returns the posterior
mean and 95% credible interval for each data point, thereby incorporating uncertainty in predictions from the posterior distribution (model predictions)
and uncertainty due to residual error (from individual data points). Credible intervals generated in this way reflect the complete range of plausible
outcomes from the scientific model. Overall, there is a positive linear relationship between body fat and logHCC.

probability of there being negative associations between mixed or dark  is not fully understood but is likely due to hair-related rather than
coat colour and HCC were estimated to be 96 and 93%, respectively. A systemic factors because differences in salivary cortisol are not seen in
possible association with coat colour was suggested in previous  dogs with different coat colour (8). This has resulted in suggestions that
research (8), and this was the justification for setting a marginally-  hair of different colour might sequester cortisol to differing degrees,
negative regularising prior in this model. The reason for this association ~ perhaps associated with differences in the size of melanin granules (78).
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A comparison of prior and posterior distributions for the causal association between body fat and log hair cortisol concentrations (logHCC). (a)
Comparison of prior and posterior probability densities (thin blue lines). Thick vertical lines within these densities represent the mean and the shaded blue
regions represent the central (50%) compatibility interval. Differences in the shape and position of the posterior distributions, relative to the prior
distribution, indicate the effect of the observed data on the predictions. (b,c) Visual comparison of predicted differences in regression lines. Each line is an
individual prediction of the regression slope, calculated from the intercept and beta coefficient for body fat, using one of 50 random draws from the prior
(b) or posterior (c) probability distributions. Prior to observing the data, the model is both neutral and uncertain about the possible causal association
between body fat and logHCC, as indicated by the wide density distribution spanning zero (a) and wide range of possible regression slopes (b), albeit
limited to a physiologically plausible range by the regularising nature of the prior. After seeing the data, the model is more that the association is positive,
as indicated by a narrower density distribution that is predominantly above zero, and a more limited range of regression slopes, all of which are positive.

In contrast to the association with hair colour, age has not previously
been identified as being associated with HCC in dogs (8), whilst the
effect of age in humans is non-linear, being greater in children and
elderly, and lowest in middle age (79). Only adult dogs were assessed
in the current study (with an age range at the initial visit of 2 to almost
14 years). Therefore, further research would be required, including
sampling from growing dogs, to explore more fully a possible causal
association between age and HCC in dogs.
There are several limitations that should be considered:

1 The study population was relatively small, with considerable
variability in baseline attributes amongst dogs including
the presence of comorbidities, and we did not control for
the therapy that dogs received. This will have created noise
within the dataset, which might have masked the actual
causal associations with the variables studied.

2 Having missing data in the body fat percentage variable created
challenges for data analysis, although our sensitivity analyses
suggested that the impact of this was minimal.

3 It was not possible to examine the causal association between
weight loss success and HCC, for example, by creating a binary
variable classifying dogs into those that completed and those that
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ended their therapeutic weight reduction prematurely. Based on
our scientific model (Figure 15 Supplementary File 1), it was not
possible to identify a set of adjustment variables that allowed this
causal association to be estimated. Rather than reporting an
erroneous result, with potentially misleading conclusions,
we preferred not to attempt such an analysis.

It was also not possible to develop a causal model for an effect
of visit (before vs. after weight reduction; Figure I;
Supplementary File 1). Therefore, questions of the effect of visit
and non-compliance with weight reduction are arguably best
answered using a prospective study with an appropriate design.
All statistical analyses were based on a scientific model, codified
asa DAG, and there might have been errors and omissions, which
adversely impact the accuracy of any causal effects.

A limitation of the DAG method is that causal pathways typically
need to be one-way and cyclical paths are not allowed (i.e., one
variable cannot influence other variables which, in turn, influence
the first variable). Possible inverse causality in the relationship
between changes in body fat and HPA function was considered, as
discussed above. However, the direction of association between
body fat and having comorbidities is a similar consideration. In our
scientific model, we assumed that comorbidities would have an

frontiersin.org


https://doi.org/10.3389/fvets.2025.1695345
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Turnbull et al.

10.3389/fvets.2025.1695345

Predicted effect of body fat on log hair cortisol

Log hair cortisol (standardised)

comorbidity
® no

® yes

-3 2 -1

FIGURE 9
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Conditional effect of body fat on log hair cortisol concentration (logHCC), stratified by comorbidity (red: no comorbidity, blue: comorbidity) and
compared with the observed data. Solid lines represent mean predictions in logHCC across the body fat range, with shaded areas representing 95%
compatibility intervals, and points representing observed results from individual dogs. Estimates were generated using the posterior_epred function of
the ‘brms’ package [version 2.22.0 (62)], which only incorporates uncertainty from the posterior distribution (model predictions) and, therefore,
uncertainty bands are narrower than those seen in Figure 7C. An equivalent plot using posterior_predict is included in the Supplementary File 5. Again,
a positive causal association between body fat and logHCC is evident, with values being greater and more variable in dogs with comorbidities.

impact on body fat percentage, but the association might
be reversed, at least for some diseases. We chose the former rather
than the latter on the basis that data on comorbidities were cross-
sectional, in that all comorbidities were present at the time of the
initial visit. Therefore, the effects of any such comorbidity on body
fat mass, for example by affecting food intake or physical activity,
would already be evident. In contrast, to test the causal effect of
body fat mass on comorbidities, a longer-term cohort study would
be needed whereby the effect of initial body fat mass on the future
development of a comorbidity could be assessed, as with a recent
study examining the association between obesity and future
diabetes mellitus (80). Since we did not have body fat data prior to
the development of the comorbidities, it would be difficult to study
such a causal effect. Further, any monitoring period in such a study
period would need to be of sufficient duration to maximise the
chances of fully capturing the effect; indeed, a monitoring period
of at least 4 years was assessed in the previous study of obesity and
DM (80).

Besides these limitations, the findings of the current study should also
be interpreted considering possible methodological limitations inherent
to hair cortisol analysis. First, HCC can vary with body region and cortisol
deposition may not be uniform; in a study involving both humans and
other animals, HCC could differ by >20% in hair samples taken from
different locations (e.g., head vs. limbs) (81). We controlled for this by
always sampling from the same two regions and pooling the harvested
hair. These sites were chosen for reasons of convenience since they
happened to be regions where clipping was already required for medical
procedures (e.g., blood sampling and intravenous catheterisation).
Although this approach was favoured for ethical and welfare reasons, our
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results might not be directly comparable to other studies where different
body regions were sampled.

We also did not account for possible variability caused by
differences in hair growth rates or the stage of the hair growth cycle,
not least since dog hair growth is often cyclical and can be influenced
by season (5). Compared with spring, the probability of negative causal
associations between summer or autumn and HCC were 77 and 88%,
respectively, whilst the probability of a positive causal association
between winter and HCC was 83%. Given such probabilities, seasonal
effects are certainly possible, but by no means probable. In our scientific
model (Figure 1), back door pathways between season of sampling and
either body fat percentage or comorbidly were thought to
be implausible and, therefore, sampling season was not likely to be a
confounder for either variable. These assumptions were confirmed in
sensitivity analyses whereby the effects of both body fat percentage and
comorbidity were largely unchanged when sampling season was
included in modelling.

Finally, there is some evidence for local cortisol production in the
skin and hair; for example, in guinea pigs, systemically-administered,
radiolabelled cortisol accounted for only a small fraction of the cortisol
found in hair, with the remainder probably arising from local follicular
synthesis (82). Such local production of cortisol or cortisol-like
compounds might also contribute to HCC in dogs, as suggested for dogs
with HAC (5). Therefore, factors affecting the skin (e.g. skin
inflammation, hyperpigmentation, or topical steroid exposure) might
feasibly affect HCC independently of systemic cortisol status.

In conclusion, increased body fat and the presence of one or more
comorbidities are causally associated with increased HCC in dogs;
prospective studies should assess the impact of therapeutic
weight reduction.

frontiersin.org


https://doi.org/10.3389/fvets.2025.1695345
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Turnbull et al. 10.3389/fvets.2025.1695345

a Posterior distribution for hair cortisol effect b Posterior distribution for hair cortisol effect

Density distribution
Density distribution

§383338

oo : o6 04 0. oo
Possible parameter values Possible parameter values

[V Conditional effect of hair cortisol on body fat d Conditional effect of hair cortisol on body fat

Body fat (standardised)
o
Body fat (standardised)

-1 0 : 8 b 3 -1 0 1 2 3
Log hair cortisol (standardised) Log hair cortisol (standardised)

FIGURE 10
(a,b) Highest probability density intervals (a.k.a. highest density interval) plot for the causal association between log hair cortisol concentration
(logHCC) and body fat, taken from the reverse causality models and either using all study data (a) or only data from visit O (b). The y-axis depicts the
density distribution, whilst the x-axis depicts possible values for the beta parameter of the causal effect. Different probability intervals are depicted by
colour (red 65%; purple 70%; orange 80%; yellow 89%; green 97%; blue 100%). The feint vertical dotted line intersects the x-axis at zero, indicating the
point where the beta coefficient would be neither positive of negative. In both models, the posterior probability density spans zero, indicating that the
effect could credibly be either positive or negative, albeit with positive effects being more likely given that 70% (a: all data) or 87% (b: visit O data) of the
probability density is positive. (c,d) Conditional effects for the causal association between logHCC and body fat taken from the reverse causality
models and either using all study data (c) or only data from visit O (d). The blue line represents the mean estimate for logHCC, across the body fat
range, whilst the shaded region represents the 95% credible interval. Estimates were generated using the posterior_predict function of the ‘brms’
package [version 2.22.0; (62)], which returns the posterior mean and 95% credible interval for each data point, thereby incorporating uncertainty in
predictions from the posterior distribution (model predictions) and uncertainty due to residual error (from individual data points). Credible intervals
generated in this way reflect the complete range of plausible outcomes from the scientific model. Overall, the linear relationship between logHCC and
body fat is relatively flat, with a broad credible interval that includes horizontal).

TABLE 5 Summary of causal associations for the final models where log hair cortisol concentration was the outcome variable.

Reverse Estimate * Estimated 97% R-hat ® ESS * Bayes R?°
causalit error! HPDI 2 . .

] y Bulk Tail Median 97% ClI
Model 1 0.06 0.11 —0.16,0.28 1.00 20,216 17,587 0.43 0.25,0.56 ‘
Model 2 013 0.11 ~0.10,0.35 1.00 18,556 16,111 0.25 0.09, 0.40 ‘

All analyses used Bayesian multi-level modelling, using the variables and parameters specified in Table 2. All models employed 4 chains, parallelised on separate computer cores, and each
using 8,000 iterations (including 2,000 and 6,000 warm-up and sampling iterations, respectively; total available iterations 24,000). 'Estimate and estimated error of the beta coefficient for the
causal effect of each model. *Highest posterior density interval (a.k,a. highest density interval), the narrowest interval containing the specified probability mass (here 97%), and representing the
most probable region of the value of the parameter, given the model, the priors and the observed data. *R-hat is a convergence diagnostic, which compares between- and within-chain estimates
for model parameter; values larger than 1 suggest that the Markov chains in the model have not mixed well, with a commonly-accepted cut-off for acceptability being 1.05. ‘Estimated sample
sizes from the Markov Chain Monte Carlo simulation; these are estimates of the number of samples that were used and provide a useful measure of sampling efficiency. As the names suggest,
the bulk ESS and tail ESS provide estimates for the sampling efficiency in the bulk and tails of the distribution, respectively; values >100 per Markov chain (here >400) indicate that estimates of
respective posterior quantiles are reliable. "Median and 97% compatibility interval of the posterior distribution of the Bayesian R? estimate; with this approach, the “variance of the predicted
values is divided by the variance of predicted values plus the expected variance of the errors,” with the results “quantifying the fit of the model to the data at hand” (69).
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