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A Bayesian analysis of variables 
causally associated with hair 
cortisol concentration in dogs 
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Objective: To identify clinical variables causally associated with hair cortisol 
concentration (HCC) in dogs with obesity using a Bayesian analysis.
Study design: A retrospective analysis of clinical data and samples gathered 
from a cohort of dogs with obesity undergoing therapeutic weight reduction.
Methods: Hair was clipped from two sites (jugular groove, antebrachium), from 
dogs attending a specialist obesity care clinic, and combined before storage at 
−20 °C. Hair cortisol concentration was measured by liquid chromatography 
mass spectrometry. Causal associations between HCC and different clinical 
variables were assessed, informed by a directed acyclic graph. Variables assessed 
included age, sex, breed group, coat colour, body fat mass, weight reduction 
and the presence of comorbidities. Statistical analyses involved Bayesian multi-
level modelling, with the magnitude of causal effects estimated using simulation 
from the posterior probability distributions.
Results: In total, 73 hair samples were collected from 52 dogs, with 31 providing 
single (before weight reduction) and 21 providing paired samples (before and 
after weight reduction). Dogs were of different ages, sexes and breeds, with 
most (44/52) having one or more comorbidities including orthopaedic, skin, 
cardiorespiratory, dental and neoplastic diseases. Mean HCC was 10.4 (standard 
deviation 19.52) pg/mg (logHCC 1.3, standard deviation 1.36). Bayesian multi-
level models provided strong evidence that greater body fat percentage (98% 
probability) and presence of one or more comorbidities (>99% probability) were 
causality associated with increased HCC. Causal associations with other variables 
including, age, breed, sex, coat colour and season were less convincing.
Conclusion: Greater adiposity and having at least one comorbidity are causally 
associated with hypothalamic–pituitary–adrenal axis upregulation in dogs with 
obesity. Mechanisms warrant further investigation.
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Introduction

Cortisol, the product of hypothalamic–pituitary–adrenal (HPA) 
axis activation, is a key hormone released in response to stress (1). 
Whilst acute cortisol concentrations can be measured in blood, saliva, 
or urine, such concentrations can be  are influenced by circadian 
rhythms and acute stress at sampling (2, 3). Since cortisol is gradually 
incorporated into the keratinizing shaft during hair growth, hair 
cortisol concentrations (HCC) reflect its cumulative secretion over a 
period of weeks to months (1). Therefore, HCC has emerged as a 
non-invasive biomarker of HPA upregulation in both human and 
veterinary research (1, 2, 4). The method has been validated in dogs, 
showing good correlation between HCC and salivary cortisol 
concentration, and it has been applied to evaluate sustained cortisol 
output in various conditions (2, 4). For example, HCC is increased in 
dogs (5) and people (6) with spontaneous hyperadrenocorticism. 
Measurement of HCC is also used as a marker of possible stress in 
dogs experiencing different lifestyles or environments, such as 
working dogs and in dogs subjected to prolonged stressors in 
experimental settings (7). Therefore, HCC has the potential to capture 
chronic HPA axis upregulation stemming from both external and 
internal stressors. However, a standardised sampling protocol is 
required to ensure representative HCC measurements, controlling for 
possible confounding factors including coat colour, sampling season 
and region of the body from which hair is taken (8).

Chronic illness can also induce HPA upregulation in various ways 
including response to infection, chronic pain and due to altered 
immune function (9, 10). Obesity is a prevalent chronic disease in pet 
dogs, being associated with multiple comorbidities (11), a poorer 
quality of life (12), a shortened average lifespan (13) and also both 
functional and metabolic disturbances (14–17). Therefore, it is 
plausible that there may be HPA upregulation in dogs as a consequence 
of obesity. Indeed, in humans, there are positive associations between 
HCC and obesity metrics, including body weight, body-mass index 
and central fat distribution (18). In one weight maintenance trial, 
baseline HCC was associated with body mass in some cohorts, whilst 
increased HCC over 12 months predicted greater subsequent weight 
variability (19). One previous study has measured HCC in dogs with 
obesity, with little difference seen before and after a short weight 
reduction intervention involving lead walking (20); however, HCC 
tended to be greater in dogs undertaking the most exercise, possibly 
suggesting HPA upregulation due to physiological stress.

The term ‘causal inference’ is used to describe a process of 
analysing data to draw conclusions about causal relationships, and has 
most applicability when controlled experiments, including 
randomised control trials (RCT), are either impractical or unethical 
(21). Whereas traditional epidemiological methods focus on 
associations amongst variables, the aim of causal inference is to 
disentangle true causal effects from spurious correlation, including 
from confounding or bias. Although not yet fully exploited in canine 
research, causal inference has been used to assess risk factors for small 
intestinal dehiscence after surgery (22), unsuccessful dog ownership 
(23), early-onset incontinence (24) and patterns of physical 
activity (25).

Bayesian statistical analysis is an inferential framework based on 
Bayes’ theorem, in which prior knowledge or beliefs are updated 
after considering newly-observed data, enabling the probability of 
parameters or hypotheses of interest to be estimated (26). A crucial 

distinction from the frequentist approach is to consider the entire 
(posterior) probability distribution of an unknown quantity of 
interest, thereby better accommodating uncertainty in scientific 
research. Bayesian methods are particularly useful when sample 
sizes are small, when complex modelling is required (for example, 
hierarchical models) and when the degree of uncertainty needs to 
be quantified (27). Challenges with the computational complexity 
of Bayesian methods have recently been overcome by the 
development of Markov Chain Monte Carlo (MCMC) methods and 
availability of freely available online statistical software such as R 
(28); therefore, the use of Bayesian approaches is now feasible in 
biomedical research (29), including applications to veterinary 
species (30–34). Although most veterinary researchers are not 
familiar with Bayes theorem, it should arguably be  intuitive to 
practising veterinarians because the method of Bayesian updating 
(sequentially updating initial beliefs as new evidence becomes 
available) is analogous to the process by which veterinarians 
investigate and make diagnoses in their patients (35). With this 
background in mind, the aim of the current study was to apply 
causal inference within a Bayesian workflow to investigate 
associations between body fat mass and other variables on HCC in 
dogs with obesity.

Methods

Animals

All participating animals were referred to a specialist obesity care 
clinic for dogs and cats (Royal Canin Weight Management Clinic, 
University of Liverpool, Neston, UK) for investigation and 
management of obesity or obesity-related disorders between May 
2018 and February 2023, with all successful weight reduction 
interventions completed by September 2023. To be eligible, animals 
had to have had at least one adequate sample of hair available for 
cortisol analysis, and had to have reached an end point for their 
therapeutic weight reduction protocol, as described for similar studies 
in dogs (36); in this respect, some dogs completed their protocol and 
reached target weight, whilst others stopped prematurely, with the 
reasons recorded. Dogs diagnosed with either hypothyroidism or 
hyperadrenocorticism were not eligible given potential effects of these 
diseases on hair growth and HCC (2). However, having other 
comorbidities was not a reason for exclusion, and dogs were also not 
excluded because of the treatment they had received.

Collection of hair samples and 
measurement of hair cortisol

Hair samples from each dog were obtained by clipping two sites 
(jugular groove, antebrachium), whilst preparing for jugular 
venepuncture and venous catheterisation, respectively. Samples were 
collected before undertaking any clinical procedures including 
sedation for dual-energy X-ray absorptiometry (DXA). The quantity 
of hair collected depended on coat density, although this was always 
sufficient for HCC measurement. Hair from each site was combined, 
placed in an individual sealable plastic bag (Ziploc; S. C. Johnson, 
Wisconsin, USA) and then stored at −20 °C under dark conditions. 
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All samples were subsequently shipped to a commercial laboratory 
(Dresden Lab Service, Dresden, Germany), with HCC measured in 
powdered samples by liquid chromatography mass spectrometry. This 
method has previously been used to measure HCC in dogs (37); the 
reported quantification limit was 0.09 pg/mg, whilst reported inter- 
and intra-day coefficients of variation were <10% (38).

Measurement of body weight and body fat 
percentage

Body weight was measured by electronic weigh scales, which were 
regularly calibrated using test weights (2–50 kg; guaranteed to 
be accurate to within ≤0.5%; Blake and Boughton Ltd., Thetford, UK). 
In most dogs (26/31 dogs providing single samples; 17/21 [before 
weight reduction] and 12/21 [after weight reduction] dogs providing 
paired samples), body fat percentage was analysed using fan-beam 
DXA (Lunar Prodigy Advance; GE Lunar; Madison, USA), calibrated 
on a weekly basis using a phantom supplied by the company, in 
conjunction with a bespoke computer software package (Encore 2004, 
8.70.005; GE Lunar) (39). Dogs were either sedated (if DXA alone was 
performed) or anaesthetised if required for additional procedures, and 
scanned in dorsal recumbency, as described in a previous study (39).

Therapeutic weight reduction protocol

Full details of the weight reduction protocol used have been 
published in previous research (36, 40), although all dogs followed 
a partial weight reduction plan, meaning that the target weight set 
was deliberately greater than their ideal weight range, as described 
in a previous study (41). Briefly, at the first visit, patients were 
weighed, their body condition score (BCS) recorded and, in most 
dogs, body composition was also measured by DXA (see above). 
Health status was determined by routine haematology, serum 
biochemistry, free thyroxine measurement and urinalysis. If 
necessary, additional diagnostic investigations (e.g., diagnostic 
imaging, additional laboratory investigations) were performed to 
determine the status of any comorbidities. A tailored therapeutic 
weight reduction protocol was then formulated for each animal, 
again as described in a previous study (36, 40, 41). Briefly, animals 

were fed high protein, high fibre dry or moist therapeutic diets 
(Table  1; Royal Canin, Aimargues, France), with some dogs 
consuming the dry diet exclusively, and the remainder being fed a 
combination of wet and dry food, the choice of which depended 
on owner and animal preferences. The methods used to calculate 
initial food allocation have again been described in a previous 
study (41). In addition to advice about feeding the therapeutic 
diet, owners also received tailored advice on lifestyle alterations to 
assist the weight reduction process. This included a physical 
activity plan, tailored to owner circumstances, individual animal 
factors and the presence of comorbidities. Advice could include 
recommendations about play activity, walking, running, agility 
training and hydrotherapy.

After the initial visit (V0, before therapeutic weight reduction), 
animals were reassessed every 7 to 21 days to have their body weight 
measurements taken, and changes were made to the dietary and 
exercise plan if necessary. In dogs that reached their target weight, a 
final evaluation was conducted (V1) after therapeutic weight reduction 
(median follow-up 313 days; range 116 to 1,609 days). Health status 
was determined based on physical examination, haematology, serum 
biochemical analysis and urinalysis. Body weight and body condition 
were recorded, and body composition was reassessed by DXA.

Determining sample size

We included as many dogs as possible from those seen during the 
collection period, with final numbers being equivalent to, or exceeding 
those used in many previous veterinary studies where HCC was 
measured (42–45). Arguably, a formal sample size calculation is less 
critical when using Bayesian methods (46); such analyses automatically 
account for any uncertainty arising from the sample size because the 
entire posterior density distribution is reported, with wider intervals 
reflecting greater uncertainty.

Causal model development

A variety of factors may induce HPA upregulation and, therefore, 
increased HCC, in pet dogs with obesity. These relationships were 
illustrated by constructing a directed acyclic graph (DAG), a graphical 
tool that provides a bridge between substantive theory (in the form of 
a scientific model) and statistical analysis (47). Such graphs can 
identify potential sources of bias enabling statisticians to decide which 
additional variables should be selected for adjustment in a particular 
statistical analysis (48, 49). The DAG developed in this study was 
created using online software [DAGitty software, version 3.1 (50)], 
and its design was informed by relevant canine and comparative 
literature. With this software, causal pathways (that directly or 
indirectly connect the causal variable to the outcome variable), 
confounding variables and confounding (a.k.a. ‘backdoor’) pathways 
within a DAG (51) can readily be identified. To obtain an accurate 
estimate of a causal association, all backdoor pathways must be closed, 
whilst not closing causal pathways; this is done by ‘conditioning on’ 
(i.e., including in the model) a set of a variables that are not 
descendants of the causal variable of interest; doing this should block 
all backdoor paths, thereby fulfilling the so-called ‘back door 
criterion’ (51).

TABLE 1  Average composition of the therapeutic diets used for weight 
reduction in 298 dogs with obesity.

Criterion HPHF dry 1 HPHF wet 2

ME content 2,900 kcal per 1,000 g 602 kcal per 1,000 g

As fed 3 Per 1,000 kcal As fed 3 Per 1,000 kcal

Moisture 10 33 83 1,379

Crude protein 30 105 8.5 141

Crude fat 10 33 2.0 33

Crude fibre 17 58 2.0 53

Total dietary fibre 28 97 3.2 33

Ash 6 20 1.5 25

1Satiety Weight Management Dry (Royal Canin;) 2 Satiety Weight Management Wet (Royal 
Canin); 3 expressed as grams per 100 g; DM: dry matter; ME: metabolisable energy content, 
calculated using a predictive equation based on total dietary fibre (TDF).
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The final DAG is shown in Figure  1, whilst graphical 
representations of all adjustment sets are provided in the 
Supplementary File 1. As can be  seen, this approach enabled 
appropriate sets of adjustment variables to be identified for modelling 
causal associations for most predictor variables, e.g., age, sex, breed, 
coat colour, body fat, season of sampling and comorbidity. However, 
appropriate adjustment sets could not be  identified for both the 
‘successful weight loss’ (i.e., comparing dogs completing a period of 
therapeutic reduction with those not completing) and ‘visit’ (before 
vs. after therapeutic weight reduction) variables. This was because, in 
the causal model, there were backdoor pathways that could not 
be  closed on account of unmeasured confounding (‘backdoor 
criterion’ not fulfilled). These unmeasured variables included owner 
or environmental factors affecting feeding and lifestyle behaviours that 
might plausibly affect body fat mass, weight loss success and 
attendance at follow-up visits (Figure 1; Supplementary File 1).

Data handling and statistical analysis

Statistical modelling strategy
A Bayesian workflow was chosen for statistical analysis which, as 

far as possible, has been conducted and reported in compliance with 
the Bayesian analysis reporting guidelines (52). There were several 
reasons for selecting such an approach. First, Bayesian methods are 
particularly well suited to the type of model used (multi-level linear 
models), and the flexibility they allow in specifying models that are 
appropriate for the data (52). Second, they perform well when causal 
associations are being estimated, involving statistical analyses 

informed by a pre-specified scientific model based on a DAG (49). 
Third, Bayesian analyses are computationally robust and are better 
able to handle uncertainty when making predictions in the face of 
small sample sizes (49).

A fourth advantage of a Bayesian approach is the requirement that 
all assumptions, both scientific and statistical, be clearly and openly 
stated in advance, ensuring that a scientist ‘shows their working’. 
Scientific assumptions include the components of the scientific model, 
as detailed in a DAG, outlining a scientist’s understanding of the data-
generating process (see causal model development section). Statistical 
assumptions are those made when selecting the type of statistical model, 
deciding on an appropriate likelihood function and in choosing 
appropriate priors (see the Variables, likelihood function and model 
parameters and Selection of prior distributions sections below). Not only 
must such assumptions be  stated and justified in advance, but they 
should also be considered when interpreting results, thereby reinforcing 
the notion that “posterior inferences are only as good as the model and 
experiment that produced the data” (26). A fifth advantage is the use of 
hypothesis testing in Bayesian inference; rather than being limited to 
null hypothesis significance testing (e.g., determining evidence against 
a null hypothesis) as with frequentist statistical methods, probability 
estimates directly in support of a particular hypothesis can be made. 
Such hypotheses are more flexible and more intuitive to readers. Finally, 
as emphasised in the results section, for a Bayesian analysis, it is the 
entire probability distribution that matters, not simply a point estimate 
(e.g., mean or median) or whether an arbitrary threshold for statistical 
significance (e.g., p < 0.05) was reached. Therefore, interpretations can 
be more nuanced, better reflecting the uncertainties of the scientific 
process and any study findings.

FIGURE 1

Directed-acyclic graph (DAG), created using the online resource: https://www.dagitty.net, and based on the scientific model which was used to inform 
the statistical analyses. The outcome variable (marked “I”) is hair cortisol, whilst other variables in the model are either observed (blue circles) or 
unobserved variables (grey), whilst arrows indicate a causal association between one variable and another. This DAG was used to determine adjustment 
sets for each of the final models, as shown in the Supplementary File 1. Possible unmeasured variables influencing the ‘weight loss success’, ‘visit’ and 
‘body fat variables could include owner factors (e.g., owner attitudes and behaviours in implementing a therapeutic weight reduction protocol), 
environmental factors (e.g., the living environment of the dog) and possible impacts from the COVID-19 pandemic.
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Dataset, variables assessed and missing data
The dataset on which all statistical analyses were conducted is 

provided in the online Supplementary File 2. Continuous baseline 
data are summarised as either mean [standard deviation (SD)] or 
median and range, whilst categorical data are reported as a number 
(percentage). Baseline variables recorded were age (in years), breed 
group [mixed breed (reference category), cavalier king Charles 
spaniel (CKCS), pug, retriever, other], coat colour [light (reference 
category), mixed, dark], sex [female (reference interval), male], 
comorbidities [no (reference category), yes], body fat percentage and 
season of sampling [spring (reference category), summer autumn, 
winter]. As discussed above, body fat percentage data were 
unavailable from 18 visits, including 9 initial visits (before weight 
reduction; 5 from dogs providing single samples; 4 from dogs 
providing paired samples) and 9 visits (after weight reduction; all 
from dogs providing paired samples). These data were considered 
‘missing completely at random’ because the reason they were missing 
had nothing to do with observed and unobserved data (53). 
Otherwise, there were no missing data for any other variable assessed 
(Supplementary File 2).

Statistical software
Statistical analysis was performed using an online open-access 

statistical language and environment (R, version 4.4.3) (28). The 
additional packages used for data wrangling and visualisation were: 
‘dlookr’ [version 0.6.3; (54)], ‘dplyr’ [version 1.1.4 (55)], ‘ggplot2’ 
[version 3.5.2; (56)], ‘psych’ [version 2.5.3; (57)], ‘reshape’ [version 
0.8.9; (58)], ‘readxl’ [version 1.4.5; (59)], ‘tidyverse’ [version 2.0.0; 
(60)], ‘vioplot’ [version 0.5.1; (61)] and ‘vtable’ [version 1.4.8; (62)]. 
The additional packages used specifically for Bayesian modelling were: 
‘brms’ [version 2.22.0; (62, 63)], ‘bayesplot’ [version 1.12.0; (63, 64)], 
‘bayestestR’ [version 0.16.0; (65)], ‘loo’ [version 2.8.0; (66)], ‘priorsense’ 
[version 2.8.0; (67)], ‘rethinking’ [version 2.42; (68)] and ‘rstantools’ 
[version 2.4.0; (69)].

Variables, likelihood function and model 
parameters

The primary outcome variable was HCC, which was 
logarithmically transformed (logHCC) and standardised prior to 
analysis. Standardisation involves first centering the data (subtracting 
the mean) and then dividing by the SD, a process which was also 
applied to all continuous predictor variables. Such standardisation has 
several advantages; it ensures that the intercept corresponds to the 
mean value (set to 0), and also makes estimates of beta coefficients (a 
coefficient that quantifies how much the outcome variable changes for 
single-unit change in the predictor variable) easier to understand; by 
standardising, each beta coefficient then reflects the change in 
outcome variable for a 1-SD change in the predictor variable. As well 
as improving efficiency of the MCMC algorithm used in computation, 
it makes prior probabilities easier to set since positive and negative 
values represent positive and negative effects, respectively.

Separate models were constructed with logHCC as the outcome 
variable and the following causal predictor variables: age, sex, breed 
group, coat colour, season of sampling, presence of a comorbidity and 
body fat. The possibility of reverse causality, in the association between 
body fat and log HCC, was tested in a separate model; for this model, 
body fat as the outcome variable and log HCC as the causal predictor 

variable. For each model, adjustment variables were included as 
determined from the DAG (Figure 1; Table 2; Supplementary File 1).

The statistical analyses used were multi-level Bayesian models, 
which included dog as a grouping variable (to account for multiple 
samples from some dogs). Such Bayesian models have the advantage 
of allowing greater flexibility in the desired model structure. Exact 
details of the variables and parameters used for each multi-level model 
are shown in Table 2, whilst full details of the statistical workflow 
(including code used, statistical outputs and graphs) are available 
online: https://github.com/AliG71/hair_cortisol.

Even after logarithmic transformation, data for the outcome 
variable (logHCC) remained modestly right-skewed. To determine 
the most appropriate likelihood function, preliminary models with 
different likelihood distributions (e.g., normal, Student’s t and skew-
normal) were compared by leave-one-out (LOO) cross-validation 
using the ‘loo’ package (66). For each model, the leave-one-out 
information criterion (LOOIC) was calculated, which estimates how 
well a model can predict future data from the same distribution as the 
observed data, with smaller values indicating better predictive 
performance (66). A skew-normal distribution was ultimately chosen 
given its superior performance, as well as better ability to replicate the 
distribution of the logHCC data (Figure 2). This distribution is a 
generalisation of the normal distribution (with mu [mean] and sigma 
[standard deviation] parameters) but includes an additional ‘shape’ 
parameter (alpha) to allow for asymmetry, whereby positive and 
negative values indicate positive and negative skewness, respectively 
(70). Like the Student’s t distribution, it can be  more robust to 
outliers, not least where there is asymmetry around the mean. All 
final models fitted the data distribution well, as shown by the 
posterior prediction checks outlined below (Supplementary File 3).

Selection of prior distributions
Prior distributions were selected for all parameters of each model, 

with the overall aim being to ensure they were weakly regularising, 
adjusted to ensure that that pre-data predictions would span the range 
of scientifically plausible outcomes. This was confirmed by graphical 
visualisations and prior predictive simulations from models that 
sampled from the prior probability distributions only (see below). 
Justification for the choice of each prior is provided in the 
Supplementary File 4, whilst details of the final prior distribution 
choices for each model are shown in Table 2. In most cases, neutral 
priors were chosen (including for body fat percentage), except for 
comorbidity and coat colour because previous scientific evidence 
suggested ‘informed priors’ to be  more appropriate 
(Supplementary File 4). Further, a difference in the variance of HCC 
between dogs with and without comorbidities was evident (Figure 3) 
and, therefore, a prior for sigma (standard deviation for the likelihood 
function) was not included in models that included comorbidity, 
either as the predictor or an adjustment variable. Instead, sigma was 
estimated as a parameter within the model, using comorbidity as a 
single predictor variable (Table  2). Simulated prior probability 
distributions for the body fat and comorbidity beta coefficients are 
shown in Figure 4.

Model computations and diagnostic checks
Bayesian analyses were computed using the ‘brms’ package [version 

2.22.0; (63)], which fits multilevel Bayesian models using the probabilistic 
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programming language, ‘Stan’ (71), accessed via the ‘rstan’ package 
(version 2.32.7 (68, 69)). All models employed 4 chains with 8,000 
iterations (including 2,000 and 6,000 warm-up and sampling iterations, 
respectively). Diagnostic checks included checks of MCMC performance 
and also several prior and posterior validation checks 
(Supplementary File 3), with full details of all statistical analyses (including 
the code used and all statistical output) available online: https://github.
com/AliG71/hair_cortisol. To verify MCMC performance, models were 
checked for convergence, by assessing R-hat values and inspecting both 
trace and trace-rank plots (Supplementary File 3), whilst resolution was 
assessed by calculating effective sample sizes (Table 4). In all final models, 

effective sample sizes were always acceptable (typically 10,000–20,000 
depending upon the model).

Verifications of the suitability of prior probabilities included initial 
graphical modelling, to simulate the expected shape of the distribution, 
prior predictive simulations and power scaling sensitivity analysis 
[powerscale_sensitivity function of the ‘priorsense’ package (67)]. 
Verification checks on the posterior distributions included a visual 
inspection of a pairs plot, a graphical posterior predictive check, graphical 
comparisons of individual draws against the observed data for each 
predictor variable and several other graphical checks 
(Supplementary File 3).

TABLE 2  Prior and likelihood specifications of all causal models used in analysis, along with the sets of adjustment variables included, as determined 
from the directional acyclic graph.

Model Outcome 
variable

General parameters Likelihood 
function 3

Causal predictor Adjustment set

Parameter 1 Prior 2 Variable 4 Prior 2 Variable 4 Prior 2

Age LogHCC

Intercept

Sigma

Alpha

Group

Normal (𝜇 0, 𝜎 0.5)

Exponential (𝜆 1)

Normal (𝜇 4, 𝜎 2)

Normal (𝜇 0, 𝜎 1)

Skew-normal Standardised age Normal (𝜇 0, 𝜎 0.5) Breed Normal (𝜇 0, 𝜎 1)

Sex LogHCC

Intercept

Sigma

Alpha

Group

Normal (𝜇 0, 𝜎 0.5)

Exponential (𝜆 1)

Normal (𝜇 4, 𝜎 2)

Normal (𝜇 0, 𝜎 1)

Skew-normal
Female (ref)

Male
Normal (𝜇 0, 𝜎 1) --- ---

Breed  

group
LogHCC

Intercept

Sigma

Alpha

Group

Normal (𝜇 0, 𝜎 0.5)

Exponential (𝜆 1)

Normal (𝜇 4, 𝜎 2)

Normal (𝜇 0, 𝜎 1)

Skew-normal

Mixed breed (ref)

CKCS

Pug

Retriever

Other

---

Normal (𝜇 -0.070, 𝜎 1.5)

Normal (𝜇 -0.075, 𝜎 1.5)

Normal (𝜇 -0.070, 𝜎 1.5)

Normal (𝜇 -0.075, 𝜎 1.5)

--- ---

Coat  

colour
LogHCC

Intercept

Sigma

Alpha

Group

Normal (0, 𝜎 0.5)

Exponential (𝜆 1)

Normal (𝜇 4, 𝜎 2)

Normal (𝜇 0, 𝜎 1)

Skew-normal

Light (ref)

Mixed

Dark

---

Normal (𝜇 -0.070, 𝜎 1)

Normal (𝜇 -0.075, 𝜎 1)

Breed Normal (𝜇 0, 𝜎 1)

Season of 

sampling
LogHCC

Intercept

Sigma

Alpha

Group

Normal (𝜇 0, 𝜎 0.5)

Exponential (𝜆 1)

Normal (𝜇 4, 𝜎 2)

Normal (𝜇 0, 𝜎 1)

Skew-normal

Spring (ref)

Summer

Autumn

Winter

Normal (𝜇 0, 𝜎 1) --- ---

Comorbidity LogHCC

Intercept

Sigma 5

Alpha

Group

Normal (𝜇 0, 𝜎 0.5)

---

Normal (𝜇 4, 𝜎 2)

Normal (𝜇 0, 𝜎 1)

Skew-normal
No (ref)

Yes
Normal (𝜇 0.25, 𝜎 1)

Standardised age

Breed

Sex

Normal (𝜇 0, 𝜎 0.5)

Normal (𝜇 0, 𝜎 1)

Normal (𝜇 0, 𝜎 1)

Body fat LogHCC

Intercept

Sigma 5

Alpha

Group

Normal (𝜇 0, 𝜎 0.5)

---

Normal (𝜇 4, 𝜎 2)

Normal (𝜇 0, 𝜎 1)

Skew-normal
Standardised body 

fat
Normal (𝜇 0, 𝜎 0.5)

Standardised age

Breed

Sex

Comorbidity

Normal (𝜇 0, 𝜎 0.5)

Normal (𝜇 0, 𝜎 1)

Normal (𝜇 0, 𝜎 1)

Normal (𝜇 0.25, 𝜎 1)

Reverse 

causality

Standardised 

body fat

Intercept

Sigma 5

Group

Normal (𝜇 0, 𝜎 1)

Exponential (𝜆 1)

Normal (𝜇 0, 𝜎 1)

Normal LogHCC Normal (𝜇 0, 𝜎 0.5)

Standardised age

Breed

Sex

Comorbidity

Normal (𝜇 0, 𝜎 1)

Normal (𝜇 0, 𝜎 2)

Normal (𝜇 0, 𝜎 1)

Normal (𝜇 0, 𝜎 1)

Analyses involving standardised log hair cortisol (LogHCC) as the outcome variable used a skew-normal likelihood function. In the reverse causality model, standardised body fat was the 
outcome variable, and a normal likelihood function was used. All models included visit as a grouping variable, along with the causal predictor and its respective adjustment sets, as indicated in 
the table. All continuous variables (log hair cortisol, body fat and age) were standardised prior to analyses, by subtracting the mean and dividing by the standard deviation. This approach 
improves computational efficiency of MCMC, whilst making it easier to set prior probabilities because positive and negative values represent positive and negative effects, respectively. 1The 
parameters estimated in the model, including intercept, sigma (the standard deviation of the intercept), alpha (skew-normal models; a shape parameter, with positive and negative values 
indicating right or left skews, respectively) and group (accounting for differences in the intercept and standard deviation amongst individual dogs with repeat measurements). 2The priors set 
for each of the parameters in the model; for each, prior, the selected probability distribution is indicated along with values chosen for the distribution parameters; for normal distributions, two 
parameters were required: mean (𝜇) and standard deviation (𝜎); for exponential distributions, a single parameter, 𝜆, was required (representing the rate of decline of the exponential curve, 
with larger values indicating more rapid decline). 3The likelihood function selected for the models. 4The variables included in the model in question, comprising the predictor variable (the 
variable for which the causal effect was being calculated) and adjustment set variables included in the model to adjust for confounding, based on the directed acyclic graph (Figure 1; 
Supplementary File 1). 5Note that, for both the body fat model and the comorbidity model, a prior for sigma was not included, because it was separately modelled with a single predictor 
variable (comorbidity); this enabled the variance of the model to differ across levels of comorbidity.
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Finally, before testing on the actual study data, models were checked 
using simulated data to ensure that model fitting had worked correctly. 
For this, different simulated datasets of 200 visits [100 each for the first 
(V0) and second (V1) visits from 100 dogs] were created, each specifying 
different effect sizes for the causal predictors of each model (e.g., in the 
body fat model, it was assumed that the beta coefficient for the causal 
effect could be  of 0.0, 0.2 or 0.5). All model estimates for the beta 
coefficient reliably reproduced what was expected in the simulated dataset 
(https://github.com/AliG71/hair_cortisol).

Analyses of the posterior distribution
Posterior density distributions for all parameters in the final 

models were calculated as described above and summarised using 
means (for central tendency) and 97% highest posterior density 
intervals (97% HPDI, for limits of the credible interval), unless 
otherwise indicated. Graphical visualisation of posterior probability 
distributions included plots of posterior densities (displaying highest 
density intervals), plots of conditional effects and plots comparing the 
prior and posterior probability distributions (to illustrate the relative 
contribution of the prior and sample data). Hypothesis tests were 
conducted to determine the probability that the effects of each causal 

predictor were positive (or negative), and posterior predictions were 
used (from new simulated data) to estimate causal associations. 
Finally, the Bayes R2 metric was calculated using the bayes_R2 
function of the ‘rstantools’ package (69), which is similar to a 
conventional R2 statistic from least-squares linear regression, with the 
results “quantifying the fit of the model to the data at hand” (69).

Sensitivity analyses
Sensitivity analyses included testing the sensitivity of the 

posterior distribution to the choice of prior distribution, as 
described above. Other analyses were conducted, on the body fat 
and comorbidity models, to determine the sensitivity of posterior 
distribution estimates to measurement error (given known 
variability in the hair cortisol assay), season of sampling, missing 
data (body fat model only) and setting a neutral regularising prior 
for comorbidity (comorbidity model only). Measurement error in 
the response variable (logHCC) was accommodated using the mi() 
syntax in the ‘brms’ package (63), and assuming that the coefficient 
of variability of hair cortisol measurement was 11.8% (37). 
Although not on the causal pathway for either model (Figure 1; 
Supplementary File 1), a sensitivity analysis was conducted to 

FIGURE 2

(a) Comparison of observed data [log hair cortisol concentration (log HCC)] versus simulations of normal [blue dotted line; mean 0, standard deviation 
(SD) 1], and skew-normal (red line, mean 0, SD 1, alpha 4) distributions. Note that the observed data have been standardised by subtracting the mean 
and dividing by the SD. The simulation of the skew-normal distribution better reflects the shape of the observed data. (b,c) Comparison of the 
empirical distribution of the observed outcome variable (logHCCC; thick dark blue curve) with the distributions of many replicated data sets (thin light 
blue curves) drawn from the posterior predictive distributions of body fat models that use either a normal (b) or skew-normal (c) likelihood function. 
Although the model with the normal likelihood function does a reasonable job of predicting the shape of the observed data, the fit is better when a 
skew-normal likelihood function is used. Specifically, the predictions of the left tail are better aligned (closer to parallel), with means of the predictions 
clustering around the mean of observed data, and the right-skew is better captured.
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determine the effect of sample season on causal estimates in the 
body fat and comorbidity models. This was undertaken by 
recomputing posterior probability distribution after adding the 
sampling season variable to each model. To assess a possible effect 
of missing data in the body fat variable, the mi() syntax from the 
‘brms’ package (63) was again used; this involved fitting a 
multivariate Bayesian multilevel model, whereby the missing data 
for body fat and log hair cortisol are simultaneously predicted (see 
the sensitivity analyses report in the online material at: https://
github.com/AliG71/hair_cortisol). Using this approach, missing 
data are handled as additional parameters for estimation from a 
single joint posterior distribution. Knowledge of variables causally-
associated with the missing variable can also be used to inform the 
imputation process. Together, this leads to more accurate and 
honest credible intervals than other imputation approaches such as 
single imputation. For the body fat model, a Student’s t likelihood 
function was chosen, and incorporated appropriate predictor 
variables as indicated by the DAG (Figure 1; Supplementary File 1; 
e.g., sex, age, breed group and comorbidity). Finally, to determine 
whether the final choice of prior for comorbidity 

(marginally-positive, weakly-regularising; mean 0.25, sigma 1) had 
unduly influenced the posterior probability density, the comorbidity 
model was rerun with a different prior that was neutral and weakly 
regularising (mean 0, sigma 1).

Ethics and welfare considerations

The study has been reported in accordance with the Animal 
Research: Reporting of In Vivo Experiments (ARRIVE) guidelines.1 
The study received approval from both the University of Liverpool 
Veterinary Research Ethics Committee (RETH000353 and VREC793) 
and the Royal Canin Ethical Review Committee (150720–55). All 
owners gave informed, written consent allowing their dog to 
participate. Clinical procedures complied with relevant guidelines 
(e.g., standard operating procedures) and regulations. Foods used 

1  https://arriveguidelines.org/arrive-guidelines

FIGURE 3

Combined box-and-whisker and dot plot of the observed log hair cortisol concentration (logHCC) data, stratified by the comorbidity variable. The 
logHCC data have been standardised by subtracting the mean and dividing by the standard deviation. The thick horizontal line represents the median, 
whilst the upper and lower limits of the box represent the inter-quartile range (IQR). The upper and lower whiskers extend as far as the largest or 
smallest, respectively, values that are no further than 1.5 × IQR from the IQR, whilst outlying points are shown as small black dots. Given the difference 
in variance between groups, it was necessary to build some models that accounted for unequal variance amongst dogs that differed by comorbidity 
status. Affected models included those testing causal associations between comorbidity and HCC and also body fat and HCC (since comorbidity was 
included in the adjustment set).
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TABLE 3  Baseline variables in dogs in the study.

Variable All dogs Single hair sample (V0 only) Paired hair samples (V0 and V1)

Number 52 31 21

Age (months)

  Visit 0 90 (34.0) 90 (33.9) 91 (36.1)

  Visit 1 --- --- 109 (35.5)

Sex

  Female (neutered) 30 (58%) 17 (55%) 13 (62%)

  Male (neutered) 22 (42%) 14 (45%) 8 (38%)

Breed

  Mixed breed 11 (21%) 6 (19%) 5 (24%)

  Cavalier King Charles Spaniel 6 (12%) 5 (16%) 1 (5%)

  Pug 5 (10%) 3 (10%) 2 (10%)

  Retriever 12 (23%) 7 (23%) 5 (24%)

Labrador retriever 11

Golden retriever 1

Labrador retriever 7

Golden retriever 0

Labrador retriever 4

Golden retriever 1

  Other 18 (35%) 10 (32%) 8 (38%)

Beagle, Bichon Frise 2, Bulldog

Cocker Spaniel 2, Corgi,

French Bulldog, Lhasa Apso,

Miniature Dachshund,

Miniature Schnauzer 2,

Norfolk Terrier,

Polish Lowland Sheepdog,

Rhodesian Ridgeback

Staffordshire Bull Terrier 3

Beagle, Bichon Frise 2, Bulldog

French Bulldog, Mini Schnauzer,

Norfolk Terrier,

Staffordshire Bull Terrier 3

Cocker Spaniel 2, Corgi,

Lhasa Apso, Polish Lowland Sheepdog,

Miniature Dachshund,

Miniature Schnauzer,

Rhodesian Ridgeback

Coat colour

  Light 18 (35%) 8 (26%) 10 (48%)

  Mixed 13 (25%) 10 (32%) 3 (14%)

  Dark 21 (40%) 13 (42%) 8 (38%)

Season

  Spring 10 (29%) 9 (29%) 1 (5%) / 4 (19%)

  Summer 14 (16%) 5 (16%) 9 (43%) / 8 (38%)

  Autumn 18 (32%) 10 (32%) 8 (38%) / 3 (14%)

  Winter 10 (23%) 7 (23%) 3 (14%) / 6 (29%)

Comorbidities

  No 8 (15%) 1 (3%) 7 (33%)

  Yes 44 (85%) 30 (97%) 14 (67%)

Total 59 35 24

Number per dog 1 (0 to 3) 1 (0 to 3) 1 (0 to 3)

Dental-oral 8

Orthopaedic 17

Cardio-respiratory 12

Dermatological 16

Neoplastic 6

Dental-oral 6

Orthopaedic 10

Cardio-respiratory 7

Dermatological 9

Neoplastic 3

Dental-oral 2

Orthopaedic 7

Cardio-respiratory 5

Dermatological 7

Neoplastic 3

Body fat percentage 1

  Before 43 (6.0) 41 (5.5) 45 (6.4)

  After --- --- 33 (8.8)

(Continued)
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were commercially available therapeutic diets commonly used by 
veterinarians to manage obesity, and given for the clinical benefit of 
the study dogs. Neither the clinical procedures used nor the clinical 
use of the therapeutic diets were deemed to involve animal 
experimentation, falling outside the remit of national legislation (e.g., 
the revised Animals [Scientific Procedures] Act 1986).

Results

Characteristics of dogs, hair samples and 
HCC results

In total, 73 hair samples were obtained, comprising paired samples 
from 21 dogs (before [V0] and after [V1] weight reduction), and single 
samples (before weight reduction only [V0]) from a further 31 dogs. Full 
details of all baseline characteristics are shown in Table 3. Forty-four of 
the 52 dogs (85%) had one or more comorbidities (median 1, range 0–3). 
Twenty-five dogs ate the dry therapeutic food during their period of 
weight reduction (16 dogs with paired samples; 9 dogs with single 
samples), whilst the remaining 27 consumed a combination of wet and 
dry therapeutic food (12 dogs with paired samples; 15 dogs with single 
samples). In the dogs with paired samples, mean weight loss was 26% (SD 
6.8%) of starting weight, at a rate of 0.7% (SD 0.33) per week, with median 
body fat mass being 42% (range 31–61%) and 33% (range 18–50%) before 
and after weight reduction, respectively.

There were various reasons why 31 of the dogs only contributed a 
single hair sample. Just over half (16 dogs) had reasons related to the 
COVID-19 pandemic: of these, 3 dogs reached target weight during the 
pandemic, but a face-to-face follow-up visit was not possible; the 
remaining 13 pandemic-affected dogs were lost to follow-up, mostly 
because owners had found it difficult to implement a therapeutic weight 
reduction protocol. Of the 15 dogs not affected by the COVID-19 
pandemic, 3 dogs completed therapeutic reduction but their owners 
decided not to return for the follow up; 2 dogs were euthanased for other 
reasons (e.g., metastatic pulmonary adenocarcinoma, old age) before 
reaching target weight; and the remaining 10 dogs were lost to follow-up 
(4 due to poor compliance; 4 stopped responding to communications; 1 
moved away from the area; 1 had transport issues).

Hair cortisol concentrations

Details of HCC results are shown in Table 3. The mean HCC 
for all samples was 10.4 (SD 19.52) pg/mg (logHCC 1.3, SD 1.36). 

In the dogs providing single samples (before therapeutic weight 
reduction, V0), mean HCC was 11.5 (SD 21.91) pg/mg (log HCC 
1.4, SD 1.33) whereas, in those providing paired samples, HCC 
was 7.6 (SD 14.29) pg/mg (log HCC 1.1, SD 1.23) before (V0) and 
3.6 (SD 3.74) pg/mg (log HCC 0.9 SD 0.94) after (V1) 
weight reduction.

Causal associations between hair cortisol 
and different explanatory variables

The results of estimates of the causal effects from each model are 
summarised in Table 4 and Supplementary File 5, with full details of 
each statistical model and validation available online: https://github.
com/AliG71/hair_cortisol.

Age model
Based on the DAG (Figure 1; Supplementary File 1), the only 

adjustment variable required for the age model was breed group. 
Although the probability distribution for the effect of age (beta 
coefficient) spanned zero (Supplementary File 5), and the 
majority was negative (mean −0.12 per SD; 97% HPDI -0.33, 
0.10). A weakly-negative trend was seen across the age range 
(Supplementary File 5), equating to an average decrease in HCC 
of ~1.6 pg/mg (~0.1 logHCC) for each 1-unit (~36 months) 
increase in standardised age. Therefore, we  estimated an 88% 
probability of there being a negative effect of age on logHCC.

Sex model
Based on the DAG (Figure  1; Supplementary File 1), no 

adjustment variables were required for the sex model. The 
probability distribution for the effect of sex again spanned zero 
(Supplementary File 5), but did not clearly favour either a positive 
or negative predictions (mean 0.14, 97% HPDI -0.29, 0.60). 
Therefore, we  estimated a 75% probability of there being a 
positive causal association between sex and logHCC.

Breed group model
Based on the DAG (Figure  1; Supplementary File 1), no 

adjustment variables were again required for the breed group 
model. Compared with mixed breed as the reference category, 
probability distributions for all other categories spanned zero 
(Supplementary File 5), and did not suggest any clear positive or 
negative associations with logHCC (CKCS mean 0.14, 97% HPDI 
-0.72, 0.92; pug mean 0.19, 97% HPDI -0.59, 0.62; retriever mean 

TABLE 3  (Continued)

Variable All dogs Single hair sample (V0 only) Paired hair samples (V0 and V1)

Hair cortisol (pg/mg)

  Before 10.4 (19.52) 11.5 (21.91) 7.6 (14.29)

  After --- --- 3.6 (3.74)

Log hair cortisol

  Before 1.3 (1.36) 1.4 (1.33) 1.1 (1.23)

  After --- --- 0.9 (0.94)

Except for number of comorbidities (presented as median and range), results are presented either as number (percentage) for count data or mean (standard deviation) for 
continuous data. 1Body fat percentage determined by dual-energy X-ray absorptiometry. V0: the visit before therapeutic weight reduction; V1: the visit after therapeutic 
weight reduction.
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0.09, 97% HPDI -0.52, 0.70; other breed mean 0.10, 97% HPDI 
-0.46, 0.65). Therefore, the probability of positive causal 
associations with logHCC were estimated to be 66%, 71%, 63% 
and 65% for the CKCS, pug, retriever and other breed groups, 
respectively.

Coat colour model
Based on the DAG (Figure 1; Supplementary File 1), the only 

adjustment variable required for the coat colour model was breed 
group. Compared with light coat colour as the reference category, 
the probability distributions for mixed and dark coat colour spanned 
zero (Supplementary File 5) but were predominantly negative in 
both instances (mixed: mean −0.50, 97% HPDI -1.13, 0.13; dark: 
mean −0.33, 97% HPDI -0.83, 0.17). Therefore, we estimated 93% 
probability and 96% probability that logHCC is less in dogs with 
dark or mixed coat colour, respectively than in dogs with light 
coat colour.

Season of sampling model
Based on the DAG (Figure  1; Supplementary File 1), no 

adjustment variables were again required for the sampling season 
model. Compared with spring as the reference category, all probability 
distributions spanned zero (Supplementary File 5), although those for 
summer (mean −0.18; 97% HPDI -0.73, 0.37) and autumn (mean 
−0.32; 97% HPDI -0.89, 0.29) were majority negative, whilst that for 
winter was majority positive (mean 0.26; 97% HPDI -0.34, 0.88). 
Therefore, the probability of negative causal associations between 
summer and autumn and logHCC were 77% and 88%, respectively, 
whilst the probability of a positive causal association between winter 
and log HCC was 83%.

Comorbidity model
Based on the DAG (Figure 1; Supplementary File 1), the adjustment 

set required for the comorbidity model included age, sex and breed group. 
The entire posterior probability distribution was positive (mean 0.65; 97% 

TABLE 4  Summary of causal associations for the final models where log hair cortisol concentration was the outcome variable.

Model Estimate 1 Estimated 
error 1

97% 
HPDI 2

R-hat 3 ESS 4 Bayes R2,5

Bulk Tail Median 97% CI

Age (per SD change) −0.12 0.10 −0.33, 0.10 1.00 14,786 15,585 0.05 0.01, 0.14

Sex 0.02 0.00, 0.11

  Female Ref. --- --- --- --- ---

  Male 0.14 0.20 −0.29, 0.60 1.00 16,874 14,950

Breed group

  Mixed breed Ref. --- --- --- --- --- 0.04 0.01, 0.13

  CKCS 0.14 0.38 −0.72, 0.92 1.00 13,139 14,313

  Pug 0.19 0.36 −0.59, 0.96 1.00 14,815 14,562

  Retriever 0.09 0.28 −0.52, 0.70 1.00 12,104 15,143

  Other 0.10 0.26 −0.46, 0.65 1.00 14,704 14,362

Coat colour 0.08 0.02, 0.19

Light Ref. --- --- --- --- ---

Mix −0.50 0.29 −1.13, 0.13 1.00 14,208 15,167

Dark −0.33 0.23 −0.83, 0.17 1.00 15,303 16,240

Season of sampling 0.07 0.01, 0.18

  Spring Ref. --- --- --- --- ---

  Summer −0.18 0.26 −0.73, 0.37 1.00 12,907 12,966

  Autumn −0.32 0.27 −0.89, 0.29 1.00 12,768 13,794

  Winter 0.26 0.28 −0.34, 0.88 1.00 12,885 13,103

Comorbidity 0.13 0.04, 0.25

  No Ref. --- --- --- --- ---

  Yes 0.65 0.24 0.11, 1.16 1.00 16,588 15,963

Body fat (per SD change) 0.33 0.13 0.03, 0.59 1.00 15,056 13,776 0.18 0.08, 0.29

All analyses used Bayesian multi-level modelling, using the variables and parameters specified in Table 2. All models employed 4 chains, parallelised on separate computer cores, and each 
using 8,000 iterations (including 2,000 and 6,000 warm-up and sampling iterations, respectively; total available iterations 24,000). 1Estimate and estimated error of the beta coefficient for the 
causal effect of each model. 2Highest posterior density interval (a.k,a. highest density interval), the narrowest interval containing the specified probability mass (here 97%), and representing the 
most probable region of the value of the parameter, given the model, the priors and the observed data. 3R-hat is a convergence diagnostic, which compares between- and within-chain estimates 
for model parameter; values larger than 1 suggest that the Markov chains in the model have not mixed well, with a commonly-accepted cut-off for acceptability being 1.05. 4Estimated sample 
sizes from the Markov Chain Monte Carlo simulation; these are estimates of the number of samples that were used and provide a useful measure of sampling efficiency. As the names suggest, 
the bulk ESS and tail ESS provide estimates for the sampling efficiency in the bulk and tails of the distribution, respectively; values >100 per Markov chain (here >400) indicate that estimates of 
respective posterior quantiles are reliable. 5Median and 97% compatibility interval of the posterior distribution of the Bayesian R2 estimate; with this approach, the “variance of the predicted 
values is divided by the variance of predicted values plus the expected variance of the errors,” with the results “quantifying the fit of the model to the data at hand” (69).

https://doi.org/10.3389/fvets.2025.1695345
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Turnbull et al.� 10.3389/fvets.2025.1695345

Frontiers in Veterinary Science 12 frontiersin.org

HPDI: 0.11, 1.16; Bayes R2 0.13; Figure  5a), meaning that having a 
comorbidity was associated with an average increase in HCC of 10.4 pg/
mg, compared with no comorbidity (Figure 5b). The relative contributions 
of the prior expectations and the observed data were determined in two 
ways; first, the prior and posterior density distributions of the beta 
coefficient for comorbidity were visually compared (Figure 6a); second, a 
visual comparison was made of 50 random draws taken from the prior 
(Figure 6b) and posterior (Figure 6c) probability distributions. Prior to 
observing the data, the model expected the causal association between 
comorbidity and logHCC to be slightly positive, on average, but with wide 
degree of uncertainty as indicated by the mean effect of the prior being >0 
but with wide variability (Figure 6a) and the fact that individual posterior 
predictions of logHCC were slightly more likely to be  positive than 
negative, albeit to varying degrees (Figure 6b). After seeing the data, the 
model was both confident that the causal association would be positive, 
and relatively confident about its magnitude, as indicated by the narrow 
range of the posterior distribution (Figure 6a) and the close clustering of 
the posterior predictions of logHCC (Figure 6c). Therefore, we estimated 
a > 99% probability of a positive causal association between comorbidity 
and logHCC.

Sensitivity analyses (https://github.com/AliG71/hair_cortisol) 
demonstrated that these results were robust to the effects of measurement 
error (mean 0.65, 97% HPDI 0.11, 1.17; probability >99%; 10.4 pg/mg 
mean increase in HCC when one or more comorbidity present), sampling 
season (mean 0.60, 97% HPDI 0.03, 1.16; probability >99; 9.6 pg/mg 
mean increase in HCC when one or more comorbidity present) and using 
a neutral, weakly-regularising prior for comorbidity (mean 0.63, 97% 
HPDI 0.10, 1.14; probability >99%; 10.1 pg/mg mean increase in HCC 
when one or more comorbidity present).

Body fat model
Based on the DAG (Figure 1; Supplementary File 1), the adjustment 

set required to estimate the causal association between body fat and 
logHCC, included age, sex, breed group and comorbidity. The vast 
majority of the probability distribution for the beta coefficient was positive 
(mean 0.33 per SD; 97% HPDI 0.03, 0.59; Bayes R2 0.18; Figure 7a), and 
a positive trend was seen across the body fat range (Figure 7b), equating 
to an average increase in HCC of 5.3 pg/mg for each increase of 1 unit in 
standardised fat (~10% body fat mass). The relative contributions of our 
prior expectations and the observed data were assessed in two ways; first, 
the prior and posterior density distributions of the beta coefficient for 
body fat from the final model were visually compared (Figure 8a); second, 
a visual comparison was made of the individual regression lines predicted 
from 50 random draws taken from the prior (Figure 8b) and posterior 
(Figure 8c) probability distributions. Prior to observing the data, the 
model was both neutral and uncertain about the possible effect of body 
fat on logHCC, as indicated by the mean effect of the prior being 0 
(Figure 8a) and the fact that individual regression lines could be either 
positive or negative to varying degrees (Figure 8b). After seeing the data, 
the model was both confident of a positive causal association, and 
relatively confident about its magnitude, as indicated by the narrow range 
of the posterior distribution (Figure 8a) and the close clustering of the 
regression line slopes (Figure  8c). Therefore, we  estimated a 99% 
probability of a positive causal association between body fat and 
logHCC. The conditional effect of body fat on logHCC, stratified by 
comorbidity and compared with the observed data is shown in Figure 9.

Sensitivity analyses (Supplementary File 5) demonstrated that 
these results were relatively robust to the effects of measurement 

error (mean 0.32, 97% HPDI 0.03, 0.60; probability 98%; 5.1 pg/mg 
mean increase in HCC per 10% body fat mass increase), season of 
sampling (mean 0.28, 97% HPDI -0.11, 0.62; probability 94%; 
4.5 pg/mg mean increase in HCC per 10% body fat mass increase) 
and missing data (mean 0.27, 97% HPDI 0.01, 0.55; probability 
98%; 4.3 pg/mg mean increase in HCC per 10% body fat 
mass increase.

Reverse causality model
Although we  had assumed that changes in body fat mass 

would cause changes in HPA function, the possibility of reverse 
causality, namely that an upregulated HPA would cause increased 
body fat mass, could not be discounted. To explore this possibility, 
the DAG was redrawn with HCC and body fat as exposure and 
outcome, respectively (Supplementary File 1). The same 
adjustment set as with the body fat model (e.g., age, sex, breed 
group and comorbidity) was required for this causal analysis, 
which was tested twice, first using all study data (model 1, Table 5; 
Figures  10a,c) and also using data from visit 0 only (model 2, 
Table  5; Figures  10b,d). In both models, posterior probability 
densities were wide, spanning zero (Figures 10a,b), albeit with 
slightly more of the probability mass being positive (all data 70%; 
visit 0 data only 87%). Further, the linear trend was relatively flat 
across the logHCC range (Figures  10c,d), with the credible 
interval being broad and including both positive and negative 
slopes. Such results suggest uncertainty in the estimate of this 
effect, and would not be consistent with a there being a convincing 
reverse causality effect.

Discussion

The objective of the present study was to use a Bayesian workflow 
to estimate possible causal associations between HCC and several 
different variables in dogs with obesity. The variables for which causal 
associations were most plausible were body fat and having at least one 
comorbidity, given the overwhelmingly positive posterior probability 
densities obtained in the final models. The reasons for a possible 
positive causal association between body fat and HCC are not clear 
but a similar association is seen in humans (72). Of course, the causal 
association between obesity and HPA upregulation might flow in the 
opposite direction, so-called reverse causation, where upregulated 
HPA causes an increased body fat mass. Evidence for this includes the 
fact that cortisol promotes adipose tissue redistribution (to the 
abdominal region), increases appetite and, in humans at least, 
promotes a preference for foods of greater palatability (73), all of 
which could lead to adipose tissue gain. Increased cortisol 
concentration is also observed in people who gain weight because of 
stress (74). To address this, we created a final causal model with body 
fat and logHCC as outcome and causal predictors, respectively, and 
utilising the same adjustment variables as required for the body fat 
model (Supplementary File 1). We chose to assess this association 
both using all study data and only data from visit 0. We included the 
second analysis because we were concerned that therapeutic weight 
reduction might affect HCC, as reported in a previous study in dogs 
(20), thereby obscuring any causal effect of HPA upregulation on body 
fat mass. In contrast to the result of the body fat model, where the 
probability distribution for a causal effect was overwhelmingly 
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positive (99%), the probability density spanned zero in both the 
reverse causality models, i.e., not consistent with a causal effect in this 
direction. Taken together, these results suggest that, if a causal effect 
exists, it is most likely to be  in the direction of body fat causing 
HPA upregulation.

For dogs where paired samples were available, mean HCC was 7.6 pg/
mg and 3.6 pg/mg in samples taken before and after therapeutic weight 
reduction, respectively. A major study limitation was the fact that it was 

not possible to create an unbiased statistical model for the effect of 
therapeutic weight reduction because, based on our DAG, we could not 
correct for possible confounding from unmeasured variables. Such 
unmeasured variables could include owner factors (e.g., owner attitudes 
and behaviours in implementing a therapeutic weight reduction protocol), 
environmental factors (e.g., the living environment of the dog) and, of 
course, the impact of the COVID-19 pandemic; all such variables could 
plausibly affect both the body fat percentage of dogs and the confounding 

FIGURE 4

(a) Simulated prior probability density distributions (blue lines) for the beta coefficients for causal associations between body fat (a) or comorbidity (b) 
and log hair cortisol concentration (logHCC). The thick, red dotted line represents the mean of the density distribution, whilst the solid, thin grey line is 
intersects the x-axis at zero, indicating a value where the beta coefficient would be neither positive of negative. The body fat prior was assumed to be a 
normal distribution with a mean of 0 and a standard deviation (SD) of 0.5; the comorbidity prior was also assumed to be a normal distribution, but with 
a mean of 0.25 and a SD of 1. The impact that such prior probability distributions can have in regularising models is illustrated in Figure 8.
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variables (e.g., affecting attendance of owners at visits and whether an 
individual dog would successfully reach its target). Considering the 
findings of the current study, a prospective study should now 
be considered where the effect of therapeutic weight reduction on HCC 
could be assessed prospectively.

As well as a possible direct effect of excessive adipose tissue mass 
on HPA upregulation, obesity might have an indirect effect either by 
predisposing to or exacerbating other diseases; indeed, many possible 
disease associations have been identified in previous research (11). In 
the current study, most dogs had at least one comorbidity, with some 

FIGURE 5

(a) Highest probability density interval (a.k.a. highest density interval) plot for the causal association between comorbidity and log hair cortisol 
concentration (logHCC). The y-axis depicts the density distribution, whilst the x-axis depicts possible values for the beta parameter of the causal 
association. Different probability intervals are depicted by colour (red 65%; purple 70%; orange 80%; yellow 89%; green 97%; blue 100%). The feint 
vertical dotted line intersects the x-axis at zero, indicating the point where the beta coefficient would be neither positive of negative. Most of the 
posterior probability density is greater than zero, indicating a > 99% probability for a positive causal association. (b) Conditional effect for the 
association between comorbidity and logHCC, generated using the posterior_predict function of the ‘brms’ package [version 2.22.0; (62)]. The points 
represent estimates, whilst the lines represent the 97% compatibility interval (97%-CI). This method estimates uncertainty in predictions from both the 
statistical model and residual error, which better reflects the complete range of plausible outcomes of the scientific model. Mean predicted logHCC is 
greater in dogs with comorbidities, with a wider uncertainty range, than in dogs without comorbidities.
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having multiple comorbidities. The estimated causal association 
between comorbidity and HCC was highly variable; not only was 
HCC greater by an average of 10.4 pg/mg in dogs with comorbidities, 
but concentrations within the group were much more variable than in 
the dogs without comorbidities. These findings are, perhaps, not 
surprising given the many different comorbidities present, with 
differing severity, and the fact that the pathogenetic mechanisms are 
likely to be  different amongst different diseases. For example, 
orthopaedic diseases were particularly common in the current study; 
such diseases might activate stress pathways because of chronic pain, 

trauma to local tissues caused by the injury or subsequent surgery, 
inflammation, and by locally triggering endogenous corticosteroid 
production, as seen in human studies (75–77). Further studies would 
be required to confirm the mechanisms by which excess adipose tissue 
leads to increased HCC in dogs.

Possible causal associations were also suggested for some of the 
other variables, including age and hair coat although posterior 
probability distributions indicated that such associations were less 
certain. In this respect, the probability of there being a negative 
association between age and HCC was estimated to be 88%, whilst the 

FIGURE 6

A comparison of prior and posterior distributions for the causal association between comorbidity and log hair cortisol concentrations (logHCC). (a) 
Comparison of prior and posterior probability densities (thin blue lines). Thick vertical lines within these densities represent the mean and the shaded 
blue regions represent the central (50%) compatibility interval. Differences in in the shape and position of the posterior distributions, relative to the prior 
distribution, indicate the effect of the observed data on the predictions. (b,c) Visual comparison of predicted differences in logHCC between dogs with 
and without comorbidities, based on individual predictions created using 50 random draws taken from the prior (b) or posterior (c) probability 
distribution. Data are displayed as combined box-and-whisker and point plots, with thick horizontal lines representing the median, and upper and 
lower limits of the boxes represent the inter-quartile range (IQR). The upper and lower whiskers extend as far as the largest or smallest, respectively, 
values that are no further than 1.5 × IQR from the IQR, whilst outlying points are shown as small black dots. Prior to observing the data, the model 
predicts a slightly positive average causal association, but with wide degree of uncertainty, as indicated by the wide density distribution spanning zero 
(a), and only a marginal average difference between the box and whisker plots for each group (b). After seeing the data, the model is confident that the 
causal association between comorbidity and logHCC is positive, as indicated by the narrower density distribution almost-completely >0, and greater 
difference between box-and-whisker plots (C).

https://doi.org/10.3389/fvets.2025.1695345
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Turnbull et al.� 10.3389/fvets.2025.1695345

Frontiers in Veterinary Science 16 frontiersin.org

probability of there being negative associations between mixed or dark 
coat colour and HCC were estimated to be 96 and 93%, respectively. A 
possible association with coat colour was suggested in previous 
research (8), and this was the justification for setting a marginally-
negative regularising prior in this model. The reason for this association 

is not fully understood but is likely due to hair-related rather than 
systemic factors because differences in salivary cortisol are not seen in 
dogs with different coat colour (8). This has resulted in suggestions that 
hair of different colour might sequester cortisol to differing degrees, 
perhaps associated with differences in the size of melanin granules (78). 

FIGURE 7

(a) Highest probability density interval (a.k.a. highest density interval) plot for the causal association between body fat and log hair cortisol 
concentration (logHCC). The y-axis depicts the density distribution, whilst the x-axis depicts possible values for the beta parameter of the causal effect. 
Different probability intervals are depicted by colour (red 65%; purple 70%; orange 80%; yellow 89%; green 97%; blue 100%). The feint vertical dotted 
line intersects the x-axis at zero, indicating the point where the beta coefficient would be neither positive of negative. Most of the posterior probability 
density is greater than zero, indicating a 98% probability that the causal association is positive. (b) Conditional effect for the causal association between 
body fat and logHCC. The blue line represents the mean estimate for logHCC, across the body fat range, whilst the shaded region represents the 95% 
credible interval. Estimates were generated using the posterior_predict function of the ‘brms’ package [version 2.22.0 (62)], which returns the posterior 
mean and 95% credible interval for each data point, thereby incorporating uncertainty in predictions from the posterior distribution (model predictions) 
and uncertainty due to residual error (from individual data points). Credible intervals generated in this way reflect the complete range of plausible 
outcomes from the scientific model. Overall, there is a positive linear relationship between body fat and logHCC.
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In contrast to the association with hair colour, age has not previously 
been identified as being associated with HCC in dogs (8), whilst the 
effect of age in humans is non-linear, being greater in children and 
elderly, and lowest in middle age (79). Only adult dogs were assessed 
in the current study (with an age range at the initial visit of 2 to almost 
14 years). Therefore, further research would be required, including 
sampling from growing dogs, to explore more fully a possible causal 
association between age and HCC in dogs.

There are several limitations that should be considered:

	 1	 The study population was relatively small, with considerable 
variability in baseline attributes amongst dogs including 
the presence of comorbidities, and we did not control for 
the therapy that dogs received. This will have created noise 
within the dataset, which might have masked the actual 
causal associations with the variables studied.

	 2	 Having missing data in the body fat percentage variable created 
challenges for data analysis, although our sensitivity analyses 
suggested that the impact of this was minimal.

	 3	 It was not possible to examine the causal association between 
weight loss success and HCC, for example, by creating a binary 
variable classifying dogs into those that completed and those that 

ended their therapeutic weight reduction prematurely. Based on 
our scientific model (Figure 1; Supplementary File 1), it was not 
possible to identify a set of adjustment variables that allowed this 
causal association to be  estimated. Rather than reporting an 
erroneous result, with potentially misleading conclusions, 
we preferred not to attempt such an analysis.

	 4	 It was also not possible to develop a causal model for an effect 
of visit (before vs. after weight reduction; Figure  1; 
Supplementary File 1). Therefore, questions of the effect of visit 
and non-compliance with weight reduction are arguably best 
answered using a prospective study with an appropriate design.

	 5	 All statistical analyses were based on a scientific model, codified 
as a DAG, and there might have been errors and omissions, which 
adversely impact the accuracy of any causal effects.

	 6	 A limitation of the DAG method is that causal pathways typically 
need to be one-way and cyclical paths are not allowed (i.e., one 
variable cannot influence other variables which, in turn, influence 
the first variable). Possible inverse causality in the relationship 
between changes in body fat and HPA function was considered, as 
discussed above. However, the direction of association between 
body fat and having comorbidities is a similar consideration. In our 
scientific model, we assumed that comorbidities would have an 

FIGURE 8

A comparison of prior and posterior distributions for the causal association between body fat and log hair cortisol concentrations (logHCC). (a) 
Comparison of prior and posterior probability densities (thin blue lines). Thick vertical lines within these densities represent the mean and the shaded blue 
regions represent the central (50%) compatibility interval. Differences in the shape and position of the posterior distributions, relative to the prior 
distribution, indicate the effect of the observed data on the predictions. (b,c) Visual comparison of predicted differences in regression lines. Each line is an 
individual prediction of the regression slope, calculated from the intercept and beta coefficient for body fat, using one of 50 random draws from the prior 
(b) or posterior (c) probability distributions. Prior to observing the data, the model is both neutral and uncertain about the possible causal association 
between body fat and logHCC, as indicated by the wide density distribution spanning zero (a) and wide range of possible regression slopes (b), albeit 
limited to a physiologically plausible range by the regularising nature of the prior. After seeing the data, the model is more that the association is positive, 
as indicated by a narrower density distribution that is predominantly above zero, and a more limited range of regression slopes, all of which are positive.
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impact on body fat percentage, but the association might 
be reversed, at least for some diseases. We chose the former rather 
than the latter on the basis that data on comorbidities were cross-
sectional, in that all comorbidities were present at the time of the 
initial visit. Therefore, the effects of any such comorbidity on body 
fat mass, for example by affecting food intake or physical activity, 
would already be evident. In contrast, to test the causal effect of 
body fat mass on comorbidities, a longer-term cohort study would 
be needed whereby the effect of initial body fat mass on the future 
development of a comorbidity could be assessed, as with a recent 
study examining the association between obesity and future 
diabetes mellitus (80). Since we did not have body fat data prior to 
the development of the comorbidities, it would be difficult to study 
such a causal effect. Further, any monitoring period in such a study 
period would need to be of sufficient duration to maximise the 
chances of fully capturing the effect; indeed, a monitoring period 
of at least 4 years was assessed in the previous study of obesity and 
DM (80).

Besides these limitations, the findings of the current study should also 
be interpreted considering possible methodological limitations inherent 
to hair cortisol analysis. First, HCC can vary with body region and cortisol 
deposition may not be uniform; in a study involving both humans and 
other animals, HCC could differ by >20% in hair samples taken from 
different locations (e.g., head vs. limbs) (81). We controlled for this by 
always sampling from the same two regions and pooling the harvested 
hair. These sites were chosen for reasons of convenience since they 
happened to be regions where clipping was already required for medical 
procedures (e.g., blood sampling and intravenous catheterisation). 
Although this approach was favoured for ethical and welfare reasons, our 

results might not be directly comparable to other studies where different 
body regions were sampled.

We also did not account for possible variability caused by 
differences in hair growth rates or the stage of the hair growth cycle, 
not least since dog hair growth is often cyclical and can be influenced 
by season (5). Compared with spring, the probability of negative causal 
associations between summer or autumn and HCC were 77 and 88%, 
respectively, whilst the probability of a positive causal association 
between winter and HCC was 83%. Given such probabilities, seasonal 
effects are certainly possible, but by no means probable. In our scientific 
model (Figure 1), back door pathways between season of sampling and 
either body fat percentage or comorbidly were thought to 
be implausible and, therefore, sampling season was not likely to be a 
confounder for either variable. These assumptions were confirmed in 
sensitivity analyses whereby the effects of both body fat percentage and 
comorbidity were largely unchanged when sampling season was 
included in modelling.

Finally, there is some evidence for local cortisol production in the 
skin and hair; for example, in guinea pigs, systemically-administered, 
radiolabelled cortisol accounted for only a small fraction of the cortisol 
found in hair, with the remainder probably arising from local follicular 
synthesis (82). Such local production of cortisol or cortisol-like 
compounds might also contribute to HCC in dogs, as suggested for dogs 
with HAC (5). Therefore, factors affecting the skin (e.g., skin 
inflammation, hyperpigmentation, or topical steroid exposure) might 
feasibly affect HCC independently of systemic cortisol status.

In conclusion, increased body fat and the presence of one or more 
comorbidities are causally associated with increased HCC in dogs; 
prospective studies should assess the impact of therapeutic 
weight reduction.

FIGURE 9

Conditional effect of body fat on log hair cortisol concentration (logHCC), stratified by comorbidity (red: no comorbidity, blue: comorbidity) and 
compared with the observed data. Solid lines represent mean predictions in logHCC across the body fat range, with shaded areas representing 95% 
compatibility intervals, and points representing observed results from individual dogs. Estimates were generated using the posterior_epred function of 
the ‘brms’ package [version 2.22.0 (62)], which only incorporates uncertainty from the posterior distribution (model predictions) and, therefore, 
uncertainty bands are narrower than those seen in Figure 7C. An equivalent plot using posterior_predict is included in the Supplementary File 5. Again, 
a positive causal association between body fat and logHCC is evident, with values being greater and more variable in dogs with comorbidities.
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FIGURE 10

(a,b) Highest probability density intervals (a.k.a. highest density interval) plot for the causal association between log hair cortisol concentration 
(logHCC) and body fat, taken from the reverse causality models and either using all study data (a) or only data from visit 0 (b). The y-axis depicts the 
density distribution, whilst the x-axis depicts possible values for the beta parameter of the causal effect. Different probability intervals are depicted by 
colour (red 65%; purple 70%; orange 80%; yellow 89%; green 97%; blue 100%). The feint vertical dotted line intersects the x-axis at zero, indicating the 
point where the beta coefficient would be neither positive of negative. In both models, the posterior probability density spans zero, indicating that the 
effect could credibly be either positive or negative, albeit with positive effects being more likely given that 70% (a: all data) or 87% (b: visit 0 data) of the 
probability density is positive. (c,d) Conditional effects for the causal association between logHCC and body fat taken from the reverse causality 
models and either using all study data (c) or only data from visit 0 (d). The blue line represents the mean estimate for logHCC, across the body fat 
range, whilst the shaded region represents the 95% credible interval. Estimates were generated using the posterior_predict function of the ‘brms’ 
package [version 2.22.0; (62)], which returns the posterior mean and 95% credible interval for each data point, thereby incorporating uncertainty in 
predictions from the posterior distribution (model predictions) and uncertainty due to residual error (from individual data points). Credible intervals 
generated in this way reflect the complete range of plausible outcomes from the scientific model. Overall, the linear relationship between logHCC and 
body fat is relatively flat, with a broad credible interval that includes horizontal).

TABLE 5  Summary of causal associations for the final models where log hair cortisol concentration was the outcome variable.

Reverse 
causality 
model

Estimate 1 Estimated 
error 1

97% 
HPDI 2

R-hat 3 ESS 4 Bayes R2 5

Bulk Tail Median 97% CI

Model 1 0.06 0.11 −0.16, 0.28 1.00 20,216 17,587 0.43 0.25, 0.56

Model 2 0.13 0.11 −0.10, 0.35 1.00 18,556 16,111 0.25 0.09, 0.40

All analyses used Bayesian multi-level modelling, using the variables and parameters specified in Table 2. All models employed 4 chains, parallelised on separate computer cores, and each 
using 8,000 iterations (including 2,000 and 6,000 warm-up and sampling iterations, respectively; total available iterations 24,000). 1Estimate and estimated error of the beta coefficient for the 
causal effect of each model. 2Highest posterior density interval (a.k,a. highest density interval), the narrowest interval containing the specified probability mass (here 97%), and representing the 
most probable region of the value of the parameter, given the model, the priors and the observed data. 3R-hat is a convergence diagnostic, which compares between- and within-chain estimates 
for model parameter; values larger than 1 suggest that the Markov chains in the model have not mixed well, with a commonly-accepted cut-off for acceptability being 1.05. 4Estimated sample 
sizes from the Markov Chain Monte Carlo simulation; these are estimates of the number of samples that were used and provide a useful measure of sampling efficiency. As the names suggest, 
the bulk ESS and tail ESS provide estimates for the sampling efficiency in the bulk and tails of the distribution, respectively; values >100 per Markov chain (here >400) indicate that estimates of 
respective posterior quantiles are reliable. 5Median and 97% compatibility interval of the posterior distribution of the Bayesian R2 estimate; with this approach, the “variance of the predicted 
values is divided by the variance of predicted values plus the expected variance of the errors,” with the results “quantifying the fit of the model to the data at hand” (69).
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