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Introduction: Antimicrobial peptides (AMPs) represent a class of short peptides 
that are widely distributed in organisms and are regarded as an effective 
means to tackle bacterial resistance, potentially functioning as substitutes for 
onventional antibiotics.
Methods: We employed metagenomics in combination with deep learning to mine 
AMPs from the 120 fecal microbiota transplantation (FMT) donor metagenome. 
Subsequently, a comprehensive analysis of the candidate AMPs was conducted 
through metaproteomic cross-validation, solubility analysis, cross-validation with 
other prediction tools, correlation analysis, and molecular dynamics simulations. 
Finally, four candidate AMPs were selected for chemical synthesis, and 
experimental validation identified two with broad-spectrum antimicrobial activity. 
Furthermore, molecular docking was utilized to further analyze the antimicrobial 
mechanisms of the candidate AMPs.
Results: Our approach successfully predicted 2,820,488 potential AMPs. After a 
comprehensive analysis, four candidate AMPs were selected for synthesis, two 
of which exhibited broad-spectrum antimicrobial activity. Molecular docking 
provided further insight into the binding mechanisms of these peptides.
Discussion: This study demonstrates the feasibility of discovering functional 
AMPs from the human fecal microbiome using computational and experimental 
approaches, highlights the potential of mining novel AMPs from the fecal microbiome, 
and provides new insights into the therapeutic mechanisms of FMT.
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1 Introduction

Antibiotics represent one of the most significant discoveries in human history, having 
saved innumerable lives. Nevertheless, the overuse of antibiotics has led to a sharp rise in 
antibiotic-resistant bacteria, resulting in a significant annual death toll due to drug-resistant 
infections. Escherichia coli is accountable for the highest number of deaths, succeeded by 
Klebsiella pneumoniae, Staphylococcus aureus, Acinetobacter baumannii, Streptococcus 
pneumoniae, and Mycobacterium tuberculosis (1). This problem is intensifying progressively, 
and it is projected that by 2050, the number of deaths attributed to antimicrobial resistance 
could ascend to 1.51 million worldwide (2). To alleviate the issue of antibiotic resistance, 
alternative approaches to conventional antibiotic treatments have emerged. The current major 
alternative therapeutic strategies encompass antimicrobial peptides (AMPs), 
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antibody-antibiotic conjugates (AACs), phage therapy, and 
microbiome-based therapies (3). Among these, AMPs have attracted 
extensive attention due to their potent antibacterial activity and low 
probability of developing resistance.

AMPs, also referred to as host defense peptides, are typically 
constituted by 2 to 50 amino acids. These small molecule peptides have 
the ability to inhibit bacteria, fungi, viruses, and other pathogens, and 
constitute an essential part of the innate immune system. AMPs are 
extensively distributed among animals, plants, and microorganisms (4). 
The structures of AMPs are diverse, with the main recognized types being 
(i) α-helical, (ii) β-sheet, (iii) αβ, or (iv) non-αβ elements (5). AMPs 
demonstrate bactericidal activity against the majority of major Gram-
positive and Gram-negative bacteria. Their mechanisms of action are 
generally considered to encompass direct killing of bacteria by disrupting 
the bacterial cell membrane, as well as targeting crucial intracellular 
biological processes such as nucleic acid synthesis, cell wall biosynthesis, 
and enzyme production (6). Due to their diverse mechanisms of action, 
it is difficult for microorganisms to develop resistance to AMPs, making 
them one of the most promising candidates for antimicrobial drugs.

Early research on antimicrobial peptides (AMPs) primarily relied on 
laborious methods for extraction, isolation, purification, and functional 
validation from specific organisms or their metabolic products (7). For 
instance, the discovery of cecropin (8) and magainin (9) laid the 
foundation for understanding AMPs as key effector molecules in innate 
immunity. With advances in genomics and proteomics, high-throughput 
identification of AMP families has been achieved through homology 
cloning and sequence mining (10, 11). In recent years, the integration of 
high-throughput sequencing technologies, artificial intelligence, and 
molecular dynamics simulations has significantly enhanced the efficiency 
of AMP development. The Ma team combined LSTM, Attention, and 
BERT models to identify 2,349 candidate AMPs from human gut 
microbiome data, synthesized 216 of them, and discovered that 181 
displayed antimicrobial activity (83% positivity rate) (12). The Huws 
group employed a classifier model to identify two AMPs effective against 
multidrug-resistant (MDR) bacteria from a rumen microbial 
metagenomic dataset (13). The Liang team established a structure–activity 
relationship-based virtual screening platform to screen 3.44 million 
peptides from the UniProt database and verified the top three scoring 
peptides (14). The Fuente-Nunez team employed the deep learning 
framework APEX 1.1 to conduct a systematic, large-scale screening for 
antibiotics within archaeal proteomes. This effort successfully predicted 
and identified a novel family of antimicrobial peptides named 
“archaeasins” (15).

The human gastrointestinal tract constitutes a vast microbial 
ecosystem, hosting trillions of microorganisms. Its gut microbiome 
encodes an extremely diverse set of genes. Research suggests that a 
considerable number of AMP families within the human gut microbiome 
have yet to be comprehensively investigated (12, 16). Hence, in this study, 
we employed fecal metagenomic samples from donors who conformed 
to the consensus criteria for Fecal Microbiota Transplantation (FMT) to 
search for candidate AMPs (17). FMT, involving the utilization of 
microorganisms derived from human feces to reestablish the gut 
microbiota, has a rigorous donor selection process. As a therapeutic 
approach for human diseases, FMT is utilized to treat Clostridium difficile 
infection, multidrug-resistant organism infections, and other disorders 
(18). We  extended the existing methods for AMP development by 
searching for candidate AMPs based on fecal metagenomic samples. 
We explored an efficient workflow for AMP development (Figure 1), and 

identified AMPs with broad-spectrum antimicrobial activity. Additionally, 
we  conducted in-depth analyses of the identified candidate 
AMP sequences.

2 Materials and methods

2.1 Sample collection and metagenomic 
sequencing

The recruitment of FMT donors undergoes a rigorous process, which 
is divided into four stages: initial questionnaire screening, on-site 
interview, comprehensive physical examination, and medical verification. 
The primary characteristics of the donors are as follows: good health, 
absence of infectious diseases or pathogens that could be transmitted to 
recipients. They are also required to maintain regular dietary and sleep 
habits and avoid unhealthy lifestyles. Furthermore, the intestinal 
microbiota should demonstrate high diversity and stability, with no recent 
use of antibiotics. Finally, a total of 120 fecal samples fulfilling the FMT 
donor criteria were gathered from Jiangxi Province, China. The sample 
collection process was designed to guarantee the freshness and 
non-contamination of the samples. During the collection, a sterile 
disposable plastic spatula was employed to collect substances from the 
surface, interior, and middle sections of the stool, which were subsequently 
placed in sterile and sealed containers to prevent contamination with 
urine or disinfectants. Each sample weighed approximately 0.25–0.5 g and 
was promptly cooled to −20 °C or −80 °C after aliquoting to avoid 
repeated freezing and thawing. Alternatively, samples were stored at 4 °C 
and transported to the laboratory within 2 weeks. The entire collection 
procedure was carried out under rigorous sterile conditions to ensure 
sample quality, rendering them suitable for subsequent metagenomic 
sequencing analysis. Bacterial genomic DNA was extracted from the fecal 
samples using a fecal bacterial DNA extraction kit. Shotgun sequencing 
was conducted on the Illumina platform with an insert size of 150 bp.

2.2 Metagenomic analysis

The raw sequencing data were initially subjected to quality 
assessment via FastQC.1 Subsequently, low-quality bases and 
sequencing adapters were eliminated using Fastp (19). KneadData 
was employed to eliminate host genome contamination. The 
metagenomic sequences were rapidly assembled by using Megahit 
(v1.2.9) (with parameter setting: --k-min 29 --min-contig-len 
1,000) (20), and the assembly quality was evaluated using QUAST 
(v5.0.2) (21). Subsequently, the MetaWRAP (22) was utilized for 
the binning step, and the CheckM (23) tool was employed to 
assess the completeness and contamination of the bins. To 
improve the efficiency of downstream analyses, the dRep (24) was 
applied to eliminate bin redundancy. For obtaining non-redundant 
bin taxonomic information, the CAT_pack (25) tool was utilized 
for bin classification and annotation, making use of GTDB data 
for rapid annotation. Functional annotation of the bins was also 
conducted using the MetaWRAP.

1  https://github.com/s-andrews/FastQC
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2.3 Antimicrobial peptides prediction

A deep learning model developed by Ma et al. (12) was employed 
for the prediction of AMPs. The method employs a combination of 
natural language processing (NLP) models, including LSTM, 
Attention and BERT, to create a unified computational pipeline that 
effectively identifies AMPs from human gut microbiome data by 
learning deep sequence features rather than relying on sequence 
similarity. A key strength of this approach is its high precision 
(91.31%) and low false-positive rate, enabling the discovery of novel 
AMPs with low homology to known sequences (<40% identity), of 
which 181 out of 216 synthesized peptides exhibited antimicrobial 
activity (>83% positive rate). Despite its success, the method depends 
heavily on the quality of existing training data, requires substantial 
computational resources, and leaves the mechanism of some effective 
peptides unclear; nevertheless, it demonstrates significant potential 
for accelerating the discovery of AMP candidate molecules using 
machine learning and large-scale metagenomic datasets.

Small open reading frames (sORFs) were derived from the bin 
genomes by applying the ‘getorf (−find 2 -table 11 -minsize 15 -maxsize 
150)’ command in EMBOSS (version 6.6.0.0) (26). A Perl script was 
employed to eliminate redundancy and known AMP sequences, followed 
by the prediction of candidate AMPs through the established pipeline.

2.4 Metaproteomic cross-validation

To guarantee the expressibility of the predicted sORFs, we further 
conducted cross-validation by employing metaproteomic data. The 
data obtained from Herold et al. underwent additional filtering to 
acquire a non-redundant protein dataset with sequences shorter than 
50 amino acids. Subsequently, we computed the k-mers of the sORFs 
and compared them with the metaproteomic dataset. If a k-mer was 
consistent with a peptide sequence in the metaproteomic data, it 
signified that more than half of the sORF existed as a peptide, 
indicating that the sORF had a higher probability of being expressed.

2.5 Correlation analysis

To establish a correlation network between candidate AMPs and 
bacteria, we initially computed the relative abundance of both the 
candidate AMPs and bacterial species in the metagenomic samples. 
We retrieved metagenomic samples from 100 healthy individuals from 
public databases, and subsequently conducted quality control using 
FastQC and Fastp. The relative abundance of bacterial species was 
acquired through Metaphlan 4 (27), an efficient species annotation 
tool based on marker genes.

FIGURE 1

Schematic workflow of the integrated computational and experimental approach for AMPs discovery from FMT donor samples.
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To acquire the abundant information of AMPs, we aligned the 
candidate AMP sequences to the metagenomic reads by employing the 
PALADIN tool (28). Subsequently, the alignment results were 
processed using SAMtools (29) to compute the abundance. Only those 
AMPs with a prevalence of at least 5% and corresponding species 
abundance information were retained. The Spearman correlation 
between AMPs and bacterial species was calculated using the R package 
WGCNA (30), and the p-values were adjusted with the R 
package multtest.

2.6 Peptide selection

The R package Peptides was employed for the physicochemical 
property analysis of the predicted AMPs. The predicted AMP 
sequences were further cross-validated by means of two third-party 
tools, namely iAMPCN and Macrel, which adopt distinct techniques 
and strategies to identify and predict the functional activity of AMPs. 
iAMPCN is a deep learning model based on convolutional neural 
networks (31), while Macrel introduces a novel set of 22 peptide 
features designed to capture the physicochemical properties, structural 
characteristics, and sequence order information of AMPs (32).

To guarantee the excellent solubility of the synthesized AMPs, 
we  further filtered the AMP sequences in accordance with six 
solubility evaluation criteria (33), retaining merely those sequences 
that met at least three of the criteria. The relevant analyses were 
conducted using a local R script. T-coffee was employed for the 
multiple sequence alignment of the candidate AMPs, and the resultant 
alignment file was utilized to construct a Neighbor-Joining 
phylogenetic tree with MEGA11 (34). Subsequently, the phylogenetic 
tree was visualized by means of iTOL (35).

We conducted molecular dynamics (MD) simulations on the 
candidate AMPs to evaluate their stability. Firstly, the three-
dimensional structures of the candidate AMPs were predicted using 
AlphaFold3 (36), and the protein CIF files were obtained. Subsequently, 
the MD simulations were executed using GROMACS (37), with the 
AMBER99SB force field and the TIP3P water model. The simulation 
was carried out for 100 ns, and at the conclusion of the simulation, the 
stability of the AMPs was analyzed based on the root-mean-square 
deviation (RMSD). Finally, the candidate AMP for chemical synthesis 
is determined.

2.7 Peptide synthesis

The peptides investigated in this study were synthesized by GL 
Biochem Ltd. (Shanghai, China) via a solid-phase peptide synthesis 
strategy (SPPS). The accurate molecular weights were characterized 
by mass spectrometry. The purity of all peptides was determined using 
high-performance liquid chromatography, and all peptides exhibited 
a purity greater than 95%.

2.8 Bacteria strains and growth conditions

E. coli CICC 10667, Pseudomonas aeruginosa JCM5962 and 
S. aureus ATCC6538 were aerobically cultured at 37 °C in 

Luria-Bertani (LB) medium. Staphylococcus epidermidis CMCC26069, 
Streptococcus mutans ATCC 25175, Propionibacterium acnes ATCC 
6919, and Enterococcus faecalis ATCC19433 were anaerobically 
cultured at 37 °C in Brain Heart Infusion Broth (BHI) medium.

2.9 Minimum inhibitory concentration 
determination

The minimum inhibitory concentrations (MICs) of the peptides 
were assessed following the method described by Chou et al. (38). 
Indicator bacteria cells were cultured at 37 °C in LB or BHI medium 
to log-phase growth and diluted to OD600 = 0.4, and then diluted 
1,000-fold with fresh LB or BHI medium. In sterile 96-well plates, 
50 μL of two-fold serial dilutions of AMPs in water, with predefined 
concentrations, were added to 50 μL of the diluted bacterial 
suspension. Subsequently, the plates were analyzed by means of a 
Microplate Reader at an optical density (OD) of 600 nm. The MIC was 
defined as the lowest concentration of the peptide that completely 
suppressed the visible growth of bacteria following 20 h of incubation 
at 37 °C. An AMP solution mixed with water served as the negative 
control, while a bacterial suspension combined with bacteria was 
utilized as the positive control.

2.10 Analysis of antibacterial mechanism

To explore the potential antibacterial mechanisms of the 
antimicrobial peptide, we initially retrieved the three-dimensional 
structural files of BamA, 1KZN, and 2XCT proteins from the Protein 
Data Bank (PDB) database. Subsequently, protein–protein interaction 
studies were conducted using GRAMM (Global RAnge Molecular 
Matching) with a free docking approach (39). The simulated docking 
results were assessed using the PDBePISA tool and visualized with 
PyMOL for structural representation.

2.11 Characteristic analysis of candidate 
AMP

To assess the distribution of cAMP573 within the G. qucibialis 
bacterial species, 69 genome files of this bacterial species were 
downloaded from NCBI database. Subsequently, sORFs were 
predicted using the ‘getorf ’ command in EMBOSS. The parameter 
settings were configured as ‘-find 2 -table  11 -minisize 150’. The 
predicted sORFs were subjected to alignment with the sORFs of 
cAMP573 using the blastn tool. The parameter settings were 
configured as ‘-evalue 1e-10 -qcov_hsp_perc 90’. Subsequently, based 
on the alignment outcomes, the corresponding gene fragments were 
retrieved from the bacterial genome, with an extension of 10,000 base 
pairs on each side. Finally, the extracted gene fragments were 
annotated by means of the Prokka tool.

To conduct a comprehensive analysis of the candidate AMP 
cAMP314, 1,172 bacterial genome files were retrieved from the 
NCBI database. These files predominantly originated from species 
including Phocaeicola vulgatus (accounting for 48% of the total), 
Phocaeicola dorei (19%), and Phocaeicola massiliensis (4%). 
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Subsequently, the analyses were carried out using the methods 
described above.

3 Result

3.1 Metagenomic binning and classification

Following quality control, sequence assembly, binning, and 
redundancy elimination of 120 metagenomic sequencing datasets, a 
total of 373 non-redundant high-quality bins were successfully 
retrieved. To obtain the taxonomic information of the bins, 
classification annotation was carried out using the CAT_pack tool. 
The annotation findings indicated that, at the phylum level, 12 
bacterial phyla were detected. Among them, Bacillota was the most 
prevalent, accounting for 187 bins, followed by Bacteroidota and 
Pseudomonadota, with 63 and 33 bins, respectively, (Figure 2A). At the 
genus level, 177 bacterial genera were identified. Among them, 
Collinsella and Prevotella had the highest number of bins, with 22 bins 
each, followed by Haemophilus and Bacteroides. At the species level, 
187 bins were successfully annotated.

Following the processing of 373 bins via the ‘getorf ’ command 
within EMBOSS, a cumulative total of 43,621,829 non-redundant 
sORFs were successfully retrieved. Subsequently, an integrated deep 
learning model was employed to predict AMPs from these sORFs, 
yielding 2,820,488 predicted AMPs. To enhance the probability that 
the predicted AMP sequences are expressible, cross-validation was 
conducted using metaproteomic data. After a series of filtering and 
other processing procedures, a final set of 1,056 candidate AMPs 
was meticulously identified. Among these AMPs, 5.3% exhibited a 
length of less than 20 amino acids, whereas 36.5% had a length 
exceeding 40 amino acids (Figure 2B). The isoelectric points of 
these peptides were predominantly concentrated within the range 
of 10 to 12 (Figure 2C).

Moreover, our findings indicated that the top  10 candidate 
AMPs with the highest relative abundances in the metagenomic 
samples from healthy individuals were predominantly derived from 
the following seven bacterial genera: Copromonas (cAMP520), 
Gemmiger (cAMP584 and cAMP102), Ventrimonas (cAMP525), 
Eubacterium_I (cAMP823), Blautia_A (cAMP188 and cAMP418), 
Anaerobutyricum (cAMP1026), and Eubacterium_G (cAMP1001) 
(Figure 2D).

FIGURE 2

Metagenomic binning and species classification annotation results. (A)Phylum-level taxonomic distribution of the non-redundant, high-quality 
metagenome-assembled genomes (MAGs); (B) Bar chart depicting the length distribution of candidate AMPs through deep learning; (C) Distribution of 
isoelectric points of candidate AMPs; (D) The top 10 candidate AMPs by relative abundance in metagenomic samples from healthy individuals.
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3.2 Feature analysis of antimicrobial 
peptides

Given the known effects of some AMPs in regulating and 
stabilizing community structure (40, 41), Ma et al. (12) hypothesized 
that cAMPs with strong negative correlations with members of a 
microbiome thus potentially inhibit bacterial growth and are more 
likely to be  functional, and this network could help further 
eliminate false positives in their discovery. Consequently, 
we endeavored to identify AMPs that display substantial negative 
interactions with bacteria via correlation analysis. The species 
annotation outcomes from Metaphlan4 revealed that the ten most 
abundant bacterial genera were Blautia, Bifidobacterium, 
Lachnospiraceae_unclassified, Faecalibacterium, Ruminococcus, 
Segatella, Bacteroides, Phocaeicola, Roseburia, and Anaerostipes 
(Figure 3A). Subsequently, through Spearman correlation analysis, 
we pinpointed 355 candidate AMPs that showed significant negative 
correlations with bacterial species (FDR < 0.05) (Figure 3B). At the 
genus level, 314 candidate AMPs were detected to have significant 
negative correlations with bacterial genera (FDR < 0.05) 
(Figure 3C).

To enhance the reliability of the predictions, cross-validation was 
conducted using two third-party tools, Macrel and iAMPCN. The 
analysis outcomes revealed that 1,021 candidate AMPs were predicted 

as AMPs by iAMPCN, while 621 candidate AMPs were predicted as 
AMPs by Macrel. Among them, 599 candidate AMPs were validated 
by both tools (Figure  3D). Moreover, the prediction results of 
iAMPCN demonstrated that 511 candidate AMPs might possess 
antibacterial activity, 660 could have antifungal activity, and 206 may 
exhibit antiviral activity. Additionally, 44 candidate AMPs were 
predicted to possess all three activities simultaneously (Figure 3E).

To evaluate the similarity between the predicted candidate AMP 
and AMP sequences in public databases, we downloaded all AMP 
sequences from the AMPSphere database as reference sequences. The 
candidate AMP sequences were then aligned to the database using the 
‘needleall’ command in the EMBOSS software package. As a result, 
630 candidate AMPs obtained valid alignment results. The analysis 
indicated that the candidate AMPs exhibited good novelty, with over 
55% of the candidate AMP sequences showing less than 50% similarity 
to the reference sequences. The candidate AMP with the highest 
similarity was cAMP675 (82.6%) (Figure 3F).

In order to increase the probability of solubility of chemically 
synthesized cAMP, we further evaluated candidate AMP based on 6 
protein solubility evaluation criteria. The analysis results showed that 
all candidate AMPs could not meet  all 6 rules at the same time. 
Among them, 11 candidate AMPs met 5 rules, 142 met 4 rules, and 
420 met 3 rules. That is, more than 54.26% of the candidate AMPs 
passed the solubility test (Figure 3G).

FIGURE 3

Correlation analysis results for enhancing the reliability of candidate antibacterial peptides. (A) Bar plot of the top 10 most abundant bacterial genera in 
the healthy cohort; (B) Negative interaction network between antibacterial peptides and bacteria at the species level in the healthy cohort; (C) Negative 
interaction network between antibacterial peptides and bacteria at the genus level in the healthy cohort; (D) The number of 1,056 candidate AMPs by 
Cross-validation results between two third-party tools, iAMPCN and Macrel; (E) Distribution of antibacterial peptides predicted by iAMPCN to have 
antibacterial, antifungal, and antiviral activities; (F) Similarity of candidate AMPs to antibacterial peptide sequences in the AMPSphere database; 
(G) Statistics of AMPs meeting different solubility evaluation criteria.
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3.3 Select candidate AMP for chemical 
synthesis

To increase the probability that the synthesized AMPs would 
exhibit antimicrobial activity, we re-screened candidate AMPs based 
on the above analysis results. First, cross-validation of the 1,056 deep 
learning-predicted AMPs using a third-party tool retained 599 
candidates. Second, selection of candidates showing negative 
correlations with bacterial species/genera retained 136 AMPs. 
Subsequently, application of solubility rules (≥3 criteria met) further 
refined the pool to 82 candidates. In addition, we performed molecular 
dynamics simulations on candidate AMPs using GROMACS and 
evaluated the stability of its structure using the RMSD value. Finally, 
we selected four candidate AMP sequences with lower RMSD values 
from the 82 candidate AMPs for chemical synthesis (Figure 4 and 
Table 1).

3.4 Antibacterial activity evaluation of 
AMPs

We successfully synthesized 4 screened peptides by solid-phase 
peptide synthesis and tested the antibacterial activity of AMPs against 
E. coli CICC 10667, P. aeruginosa JCM5962 and S. aureus ATCC6538, 
S. epidermidis CMCC26069, S. mutans ATCC 25175, P. acnes ATCC 
6919 and E. faecalis ATCC19433. Among them, two peptides 

(cAMP314 and cAMP573) exhibited broad-spectrum antimicrobial 
activity, inhibiting all seven selected indicator bacterial strains with 
MIC ranging from 32 to 256 μg/mL. However, the other two peptides 
were unable to completely inhibit the activity of the indicator bacteria 
(Table 2).

3.5 Analysis of antibacterial mechanism

Protein docking simulation is an efficient method for studying 
molecular mechanisms of action. AMPs can inhibit bacteria by acting 
on cell membranes or intracellular enzymes. Therefore, we collected 
bacterial proteins from different sources during the protein docking 
simulation. DNA gyrase is essential for DNA synthesis, so 
we  evaluated the interaction between cAMP573 and E. coli DNA 
gyrase 1KZN and S. aureus DNA gyrase 2XCT through protein 
docking simulation. At the same time, we  also evaluated the 
interaction between cAMP573 and BamA protein, which is a 
membrane protein related to the virulence and antibiotic resistance of 
Gram-negative bacteria. Some AMPs can inhibit bacterial activity by 
binding to this protein (42). The simulation results show that the 
binding between cAMP573 and 2XCT protein is the most stable (ΔiG: 
−57.1 kcal/mol) (Figure  5C), followed by 1KZN protein (ΔiG: 
−5.6 kcal/mol) (Figure  5A). Although the binding free energy 
between cAMP573 and BamA protein (ΔiG: −3.6 kcal/mol) is greater 
than the −5 kcal/mol in the reference standard (43), the results still 

FIGURE 4

Molecular dynamics simulation results of AMPs. (A), (B), (C), and (D) present the molecular dynamics simulation results of candidate AMPs cAMP573, 
cAMP767, cAMP314, and cAMP497, respectively. The left graphs show the molecular dynamics simulation results from GROMACS over a simulation 
time of 100 ns; the right side displays the predicted three-dimensional structures of the antibacterial peptides by AlphaFold 3.
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indicate that there may be  a significant binding between the two 
(Figure 5B). cAMP314 exhibited a stable binding interaction with 
2XCT (ΔiG: −18.5 kcal/mol), while displaying a relatively lower 
binding free energy with the BamA protein (ΔiG: −7.7 kcal/mol).

3.6 Characteristic analysis of cAMP573 and 
cAMP314

The genomic bin containing cAMP573 was taxonomically 
annotated as G. qucibialis. Subsequent analysis revealed that the sORF 
of cAMP573 is widely distributed within fructose-1,6-bisphosphatase 
class III (FBP-III) genes across 55 genomes of this species. Moreover, 
the FBP gene is located within a specific genomic region of 
G. qucibialis, typically flanked upstream by mgsA, minD, and sigE 
genes, while downstream regions predominantly contain trmB and 
malQ genes (Figure 6A). By comparing the average nucleotide identity 
(ANI) of the FBP-III gene in different G. qucibialis genomes, we found 
that the genome was highly conserved among G. qucibialis bacterial 
species (Figure 6B). To evaluate the distribution of the sORF encoding 
cAMP573  in other bacterial species, we  downloaded and aligned 
19,391 FBP-III gene sequences from 81 bacterial species in the Global 
Microbial Gene Catalog (GMCC) database, but the presence of this 
sORF was not detected. Furthermore, analysis revealed that the FBP 
gene from G. qucibialis exhibited high similarity only with a limited 
number of sequences from F. prausnitzii (Figure 6C).

The sORF of cAMP314 is predominantly distributed within the 
TonB gene of Phocaeicola massiliensis in the Phocaeicola genus and 
genomes of multiple uncultured species. Further analysis revealed that 
the genomic region harboring this sORF exhibits high conservation 
across different genomes. The upstream region of the sORF was 
primarily flanked by a gene encoding a hypothetical protein and the 
sigW gene, while the downstream region contained conserved genes 
including glaB and mggB gene.

4 Discussion

The gut microbiome encodes highly diverse genes, being one of 
the largest reservoirs for antibiotic-resistant genes (44). At the same 
time, as a result of long-term competition and co-evolution, it is 
expected to produce a large number of antimicrobials against even 
multi-drug-resistant (MDR) bacteria (45). Research has shown that 
the human gut microbiome harbors a vast array of potential AMPs 
(12, 46, 47), which are anticipated to exhibit low toxicity, high stability, 
and mild antimicrobial activity. These gut-derived AMPs not only 
inhibit the growth of harmful microorganisms but also simultaneously 
promote the proliferation of beneficial microbes, modulate microbial 
composition, and maintain the balance of the gut microbiota, thereby 
contributing to intestinal health (48–50). This is crucial for preventing 
the occurrence of intestinal diseases.

In recent years, many important scientific research results 
have been achieved in the study of AMPs, especially the 
integrated computational method for mining AMPs. In this study, 
we  mined multiple AMP sequences from FMT donor’s fecal 
samples through an improved integrated computational method, 
and verified through in vitro experiments that the mined AMPs 
have potent antibacterial activity and good safety. We explored 
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the antibacterial mechanism of AMPs through molecular 
simulation, and the simulation results showed that cAMP573 may 
play an antibacterial role by binding to DNA gyrase 1KZN. At the 
same time, we found through further analysis that cAMP573 may 
be unique to the G. qucibialis species, and the sORF is located 
inside the FBP-III gene.

Traditional AMP mining research methods are costly, but 
efficient active AMP mining can be  achieved through the 
integrated computational method of AI and multi-omics data. Ma 
et al. constructed an integrated computational method based on 
deep learning and multi-omics data for AMP mining, and 83% of 
the mined AMPs have effective antibacterial activity (12). A 
recent study systematically mined and analyzed 63,410 
metagenomic data and 87,920 prokaryotic bacterial genomes 
from different regions of the world by integrating multiple 
computational methods, and constructed a large-scale AMP 
database AMPsphere (51). These works have greatly promoted 
the development of AMPs, but there are still many areas for 
improvement in the downstream analysis of AMPs. Therefore, in 
this study, we  expanded and optimized the computational 

method of Yue Ma et al. First, in order to improve the positive 
rate of predicted AMPs, we cross-validated with Macrel through 
the third-party prediction tool iAMPCN and performed solubility 
analysis on the predicted AMP sequences. Secondly, we evaluated 
the structural stability of AMPs through molecular dynamics 
simulation. Finally, the antibacterial mechanism of AMPs was 
explored through molecular simulation docking technology (14).

The experimental results showed that the candidate AMP 
cAMP573 has good antibacterial activity against S. aureus and E. coli. 
We then explored the possible antibacterial mechanism of cAMP573 
through protein simulation docking technology. DNA gyrase is an 
important topoisomerase in the DNA replication process of 
prokaryotes. Through docking simulation, we found that cAMP573 
can produce stable binding with DNA gyrase 1KZN from E. coli and 
DNA gyrase 2XCT from S. aureus, and the binding between cAMP573 
and E. coli 1KZN is stronger than that of S. aureus. It is worth 
mentioning that the AMP identified in a recent study also showed 
stronger binding ability to E. coli 1KZN (52). BamA is a protein related 
to membrane protein synthesis in Gram-negative bacteria (53), and 
studies have shown that this protein is associated with bacterial 

FIGURE 5

Simulated Docking Results between candidate AMP cAMP573 and Bacterial Proteins. (A) Simulated docking result between cAMP573 and protein 1KZN; 
(B) Simulated docking result between cAMP573 and protein 7NRE; (C) Simulated docking result between cAMP573 and protein 2XCT.

TABLE 2  Antimicrobial test results of synthetic peptides (MIC, μg/mL).

Peptide 
name

E.coli P.aeruginosa S.aureus S.epidermidis S.mutans P.acnes E.faecalis

cAMP314 32 256 64 64 32 32 256

cAMP497 >512 >512 >512 >512 >512 >512 >512

cAMP573 64 256 32 32 32 64 256

cAMP767 >512 >512 >512 >512 >512 >512 >512
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resistance (42). Recently, Li Yang et  al. screened AMP sequences 
targeting BamA through molecular dynamics simulation and verified 
the activity of these AMPs through in vitro experiments (42). Our 
docking simulation results also showed that there is a meaningful 
binding between cAMP573 and BamA.

The active AMP cAMP573 we  discovered in this study may 
be unique to the species G. qucibialis. G. qucibialis belongs to the 
genus Blast bacterium, and there are few studies on this species. A 
recent study on gastrointestinal symptoms in patients with RYGB 
surgery found that G. qucibialis may have a protective effect on 
gastrointestinal dysfunction in patients (54). In addition, our analysis 
results showed that the sORF encoding cAMP573 is located inside the 
fbp gene. Fructose-1,6-bisphosphatase (FBPase) in bacteria mainly 

includes class I FBPase, class II FBPase and class III FBPase, among 
which class III is mainly found in Firmicutes and has low similarity 
with the first two classes of enzymes (55). Concurrently, we  also 
observed that the candidate AMP cAMP314 is predominantly 
distributed within specific regions of the genome of P. massiliensis. 
Notably, research conducted by Ren et al. (56) has found a positive 
correlation between P. massiliensis and the efficacy of FMT in treating 
ulcerative colitis. There are a large number of sORFs in bacterial 
genomes, and more and more studies have shown that the proteins 
encoded by sORFs (SEPs) have important biological functions (57). 
However, due to the particularity of SEPs themselves and the 
limitations of existing research methods, the functions of a large 
number of sORFs and their encoded proteins are still unknown (58). 

FIGURE 6

Genomic background information analysis results of sORFs encoding antibacterial peptides. (A) Genomic background information of the sORF 
encoding cAMP573; (B) Similarity analysis of the fbp gene across different G. qucibialis genomes; (C) Similarity analysis of the fbp gene between G. 
qucibialis and F. prausnitzii genomes.
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Our results show that integrated computational methods based on 
deep learning will be a powerful tool for studying these sORFs.

Data availability statement

Publicly available datasets were analyzed in this study. This data can be 
found at: the deep learning model used to predict antimicrobial peptides 
was obtained from https://github.com/mayuefine/c_AMPs-prediction. The 
Metaproteomic data were collected from https://www.ebi.ac.uk/pride 
PRIDE project IDs: PXD005780, PXD008870, PXD003907 and 
PXD000114. The metagenomic data used for correlation analysis were 
collected from https://www.ncbi.nlm.nih.gov/sra, project ID: 
PRJNA319574. The raw sequencing datasets presented in this article are 
not readily available because it contains human sensitive genetic 
information that may disclose the privacy and confidentiality of the 
participants. Requests to access these raw datasets should be directed to the 
corresponding author. The processed metagenomic data have been 
deposited in GitHub and are accessible via the permanent link: https://
github.com/pointwei/FMT-MetagenomicData.

Ethics statement

The studies involving humans were approved by Shanghai ethics 
committee for clinical research (ethics approval number SECCR/2023-
34-01a). The studies were conducted in accordance with the local 
legislation and institutional requirements. The participants provided their 
written informed consent to participate in this study.

Author contributions

SW: Conceptualization, Formal analysis, Software, Writing  – 
original draft. HY: Investigation, Validation, Writing – original draft. 
XH: Data curation, Methodology, Software, Writing – original draft. 
YC: Writing – review & editing. LZ: Writing – review & editing. BZ: 
Writing – review & editing. KQ: Writing – review & editing. WX: 
Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This work was supported 
by the Natural Science Foundation of Xiamen, China (Grant No. 
3502Z202374070) and the Scientific Research Foundation for 
Advanced Talents of Xiamen Ocean Vocational College (Grant No. 
KYG202206).

Conflict of interest

HY, XH, LZ, BZ, and WX were employed by Xiamen Treatgut 
Biotechnology Co., Ltd.

The remaining authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

The reviewer YQ declared a past co-authorship with the author 
WX to the handing editor.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 
intelligence and reasonable efforts have been made to ensure accuracy, 
including review by the authors wherever possible. If you identify any 
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
	1.	Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. 

Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 
(2022) 399:629–55. doi: 10.1016/s0140-6736(21)02724-0

	2.	Collaborators GBDAR. Global burden of bacterial antimicrobial resistance 
1990-2021: a systematic analysis with forecasts to 2050. Lancet. (2024) 404:1199–226 
20240916. doi: 10.1016/S0140-6736(24)01867-1

	3.	MacNair CR, Rutherford ST, Tan M-W. Alternative therapeutic strategies to treat 
antibiotic-resistant pathogens. Nat Rev Microbiol. (2023) 22:262–75. doi: 
10.1038/s41579-023-00993-0

	4.	Bucataru C, Ciobanasu C. Antimicrobial peptides: opportunities and challenges in 
overcoming resistance. Microbiol Res. (2024) 286:286. doi: 10.1016/j.micres.2024.127822

	5.	Koehbach J, Craik DJ. The vast structural diversity of antimicrobial peptides. Trends 
Pharmacol Sci. (2019) 40:517–28. doi: 10.1016/j.tips.2019.04.012

	6.	Xuan J, Feng W, Wang J, Wang R, Zhang B, Bo L, et al. Antimicrobial peptides for 
combating drug-resistant bacterial infections. Drug Resist Updat. (2023) 68:100954. doi: 
10.1016/j.drup.2023.100954

	7.	Mor A, Nguyen Van H, Delfour A, Migliore-Samour D, Nicolas P. Isolation, amino 
acid sequence and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian 
skin. Biochemistry. (2002) 30:8824–30. doi: 10.1021/bi00100a014

	8.	Steiner H, Hultmark D, Engström Å, Bennich H, Boman HG. Sequence and 
specificity of two antibacterial proteins involved in insect immunity. Nature. (1981) 
292:246–8. doi: 10.1038/292246a0

	9.	Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: 
isolation, characterization of two active forms, and partial Cdna sequence of a precursor. 
Proc Natl Acad Sci. (1987) 84:5449–53. doi: 10.1073/pnas.84.15.5449

	10.	Pazgier M, Lubkowski J. Expression and purification of recombinant human 
Α-Defensins in Escherichia Coli. Protein Expr Purif. (2006) 49:1–8. doi: 
10.1016/j.pep.2006.05.004

	11.	Richard C, Drider D, Elmorjani K, Marion D, Prévost H. Heterologous expression 
and purification of active Divercin V41, a class IIa bacteriocin encoded by a synthetic 
gene Echerichia coli. J Bacteriol. (2004) 186:4276–84. doi: 
10.1128/jb.186.13.4276-4284.2004

	12.	Ma Y, Guo Z, Xia B, Zhang Y, Liu X, Yu Y, et al. Identification of antimicrobial 
peptides from the human gut microbiome using deep learning. Nat Biotechnol. (2022) 
40:921–31. doi: 10.1038/s41587-022-01226-0

	13.	Oyama LB, Olleik H, Teixeira ACN, Guidini MM, Pickup JA, Hui BYP, et al. In 
silico identification of two peptides with antibacterial activity against multidrug-
resistant Staphylococcus Aureus. NPJ Biofilms Microbiomes. (2022) 8:58. doi: 
10.1038/s41522-022-00320-0

https://doi.org/10.3389/fvets.2025.1689589
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://github.com/mayuefine/c_AMPs-prediction
https://www.ebi.ac.uk/pride
https://www.ncbi.nlm.nih.gov/sra
https://github.com/pointwei/FMT-MetagenomicData
https://github.com/pointwei/FMT-MetagenomicData
https://doi.org/10.1016/s0140-6736(21)02724-0
https://doi.org/10.1016/S0140-6736(24)01867-1
https://doi.org/10.1038/s41579-023-00993-0
https://doi.org/10.1016/j.micres.2024.127822
https://doi.org/10.1016/j.tips.2019.04.012
https://doi.org/10.1016/j.drup.2023.100954
https://doi.org/10.1021/bi00100a014
https://doi.org/10.1038/292246a0
https://doi.org/10.1073/pnas.84.15.5449
https://doi.org/10.1016/j.pep.2006.05.004
https://doi.org/10.1128/jb.186.13.4276-4284.2004
https://doi.org/10.1038/s41587-022-01226-0
https://doi.org/10.1038/s41522-022-00320-0


Wei et al.� 10.3389/fvets.2025.1689589

Frontiers in Veterinary Science 12 frontiersin.org

	14.	Zhang J, Yang L, Tian Z, Zhao W, Sun C, Zhu L, et al. Large-scale screening of 
antifungal peptides based on quantitative structure–activity relationship. ACS Med 
Chem Lett. (2021) 13:99–104. doi: 10.1021/acsmedchemlett.1c00556

	15.	Torres MDT, Wan F, de la Fuente-Nunez C. Deep learning reveals antibiotics in the 
archaeal proteome. Nat Microbiol. (2025) 10:2153–67. doi: 10.1038/s41564-025-02061-0

	16.	Torres MDT, Brooks EF, Cesaro A, Sberro H, Gill MO, Nicolaou C, et al. Mining 
human microbiomes reveals an untapped source of peptide antibiotics. Cell. (2024) 
187:5453–67.e15. doi: 10.1016/j.cell.2024.07.027

	17.	National Institute of Hospital Administration NHC. Expert consensus on clinical 
application management of fecal microbiota transplantation (2022 edition). Zhonghua 
Wei Chang Wai Ke Za Zhi. (2022) 25:747–56. doi: 
10.3760/cma.j.cn441530-20220725-00324

	18.	Woodworth MH, Conrad RE, Haldopoulos M, Pouch SM, Babiker A, Mehta AK, 
et al. Fecal microbiota transplantation promotes reduction of antimicrobial resistance 
by strain replacement. Sci Transl Med. (2023) 15:eabo2750. doi: 
10.1126/scitranslmed.abo2750

	19.	Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one Fastq Preprocessor. 
Bioinformatics. (2018) 34:i884–90. doi: 10.1093/bioinformatics/bty560

	20.	Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. Megahit: an ultra-fast single-node 
solution for large and complex metagenomics assembly via succinct De Bruijn graph. 
Bioinformatics. (2015) 31:1674–6. doi: 10.1093/bioinformatics/btv033

	21.	Gurevich A, Saveliev V, Vyahhi N, Tesler G. Quast: quality assessment tool for 
genome assemblies. Bioinformatics. (2013) 29:1072–5. doi: 10.1093/bioinformatics/btt086

	22.	Uritskiy GV, DiRuggiero J, Taylor J. Metawrap—a flexible pipeline for genome-
resolved metagenomic data analysis. Microbiome. (2018) 6:158. doi: 
10.1186/s40168-018-0541-1

	23.	Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. Checkm: 
assessing the quality of microbial genomes recovered from isolates, single cells, and 
metagenomes. Genome Res. (2015) 25:1043–55. doi: 10.1101/gr.186072.114

	24.	Olm MR, Brown CT, Brooks B, Banfield JF. Drep: a tool for fast and accurate 
genomic comparisons that enables improved genome recovery from metagenomes 
through De-replication. ISME J. (2017) 11:2864–8. doi: 10.1038/ismej.2017.126

	25.	von Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. Robust 
taxonomic classification of uncharted microbial sequences and bins with cat and bat. 
Genome Biol. (2019) 20:217. doi: 10.1186/s13059-019-1817-x

	26.	Rice P, Longden I, Bleasby A. Emboss: the European molecular biology open 
software suite. Trends Genet. (2000) 16:276–7. doi: 10.1016/s0168-9525(00)02024-2

	27.	Blanco-Míguez A, Beghini F, Cumbo F, McIver LJ, Thompson KN, Zolfo M, et al. 
Extending and improving metagenomic taxonomic profiling with uncharacterized 
species using Metaphlan 4. Nat Biotechnol. (2023) 41:1633–44. doi: 
10.1038/s41587-023-01688-w

	28.	Westbrook A, Ramsdell J, Schuelke T, Normington L, Bergeron RD, Thomas WK, 
et al. Paladin: protein alignment for functional profiling whole metagenome shotgun 
data. Bioinformatics. (2017) 33:1473–8. doi: 10.1093/bioinformatics/btx021

	29.	Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence 
alignment/map format and Samtools. Bioinformatics. (2009) 25:2078–9. doi: 
10.1093/bioinformatics/btp352

	30.	Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network 
analysis. BMC Bioinformatics. (2008) 9. doi: 10.1186/1471-2105-9-559

	31.	Xu J, Li F, Li C, Guo X, Landersdorfer C, Shen H-H, et al. Iampcn: a deep-learning 
approach for identifying antimicrobial peptides and their functional activities. Brief 
Bioinform. (2023) 24. doi: 10.1093/bib/bbad240

	32.	Santos-Júnior CD, Pan S, Zhao X-M, Coelho LP. Macrel: antimicrobial peptide 
screening in genomes and metagenomes. PeerJ. (2020) 8:e10555. doi: 10.7717/peerj.10555

	33.	SolyPep server SolyPep: a fast generator of soluble peptides. Available online at: 
https://bioserv.rpbs.univ-paris-diderot.fr/services/SolyPep/

	34.	Tamura K, Stecher G, Kumar S, Battistuzzi FU. Mega11: molecular evolutionary 
genetics analysis version 11. Mol Biol Evol. (2021) 38:3022–7. doi: 
10.1093/molbev/msab120

	35.	Letunic I, Bork P. Interactive tree of life (Itol) V5: an online tool for phylogenetic 
tree display and annotation. Nucleic Acids Res. (2021) 49:W293–6. doi: 
10.1093/nar/gkab301

	36.	Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al. Accurate structure 
prediction of biomolecular interactions with Alphafold 3. Nature. (2024) 630:493–500. 
doi: 10.1038/s41586-024-07487-w

	37.	Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. 
Gromacs: fast, flexible, and free. J Comput Chem. (2005) 26:1701–18. doi: 
10.1002/jcc.20291

	38.	Chou S, Guo H, Zingl FG, Zhang S, Toska J, Xu B, et al. Synthetic peptides that 
form nanostructured micelles have potent antibiotic and antibiofilm activity against 
polymicrobial infections. Proc Natl Acad Sci USA. (2023) 120. doi: 
10.1073/pnas.2219679120

	39.	Singh A, Copeland MM, Kundrotas PJ, Vakser IA. Gramm web server for protein 
docking. Methods Mol Biol. (2024) 2714:101–12. doi: 10.1007/978-1-0716-3441-7_5

	40.	Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of 
intestinal homeostasis. Nat Rev Microbiol. (2011) 9:356–68. doi: 10.1038/nrmicro2546

	41.	Login FH, Balmand S, Vallier A, Vincent-Monegat C, Vigneron A, Weiss-Gayet 
M, et al. Antimicrobial peptides keep insect endosymbionts under control. Science. 
(2011) 334:362–5. doi: 10.1126/science.1209728

	42.	Yang L, Luo M, Liu Z, Li Y, Lin Z, Geng S, et al. Bama-targeted antimicrobial 
peptide design for enhanced efficacy and reduced toxicity. Amino Acids. (2023) 
55:1317–31. doi: 10.1007/s00726-023-03307-z

	43.	Zou Z, Purnawan MA, Wang Y, Ismail BB, Zhang X, Yang Z, et al. A novel 
antimicrobial peptide Wbp-1 from wheat bran: purification, characterization and 
antibacterial potential against Listeria Monocytogenes. Food Chem. (2025) 463:463. doi: 
10.1016/j.foodchem.2024.141261

	44.	Kent AG, Vill AC, Shi Q, Satlin MJ, Brito IL. Widespread transfer of mobile 
antibiotic resistance genes within individual gut microbiomes revealed through bacterial 
hi-C. Nat Commun. (2020) 11:4379. doi: 10.1038/s41467-020-18164-7

	45.	Sberro H, Fremin BJ, Zlitni S, Edfors F, Greenfield N, Snyder MP, et al. Large-scale 
analyses of human microbiomes reveal thousands of small, novel genes. Cell. (2019) 
178:1245–1259.e14. doi: 10.1016/j.cell.2019.07.016

	46.	Li W, Huang B, Guo M, Zeng Z, Cai T, Feng L, et al. Unveiling the evolution of 
antimicrobial peptides in gut microbes via foundation-model-powered framework. Cell 
Rep. (2025) 44. doi: 10.1016/j.celrep.2025.115773

	47.	Wan F, Torres MDT, Guan C, de la Fuente-Nunez C. Tutorial: guidelines for the 
use of machine learning methods to mine genomes and proteomes for antibiotic 
discovery. Nat Protoc. (2025). doi: 10.1038/s41596-025-01144-w

	48.	Alexander PJ, Oyama LB, Olleik H, Godoy Santos F, O’Brien S, Cookson A, et al. 
Microbiome-derived antimicrobial peptides show therapeutic activity against the 
critically important priority pathogen, Acinetobacter Baumannii. NPJ Biofilms 
Microbiomes. (2024) 10:92. doi: 10.1038/s41522-024-00560-2

	49.	Ostaff MJ, Stange EF, Wehkamp J. Antimicrobial peptides and gut microbiota in 
homeostasis and pathology. EMBO Mol Med. (2013) 5:1465–83. doi: 
10.1002/emmm.201201773

	50.	Lyu Z, Yang P, Lei J, Zhao J. Biological function of antimicrobial peptides on 
suppressing pathogens and improving host immunity. Antibiotics. (2023) 12. doi: 
10.3390/antibiotics12061037

	51.	Santos-Júnior CD, Torres MDT, Duan Y, Rodríguez del Río Á, Schmidt TSB, 
Chong H, et al. Discovery of antimicrobial peptides in the global microbiome with 
machine learning. Cell. (2024) 187:3761–78.e16. doi: 10.1016/j.cell.2024.05.013

	52.	Cui M, Wang M, Liu X, Sun H, Su Z, Zheng Y, et al. Mining and characterization 
of novel antimicrobial peptides from the large-scale microbiome of Shanxi aged vinegar 
based on metagenomics, molecular dynamics simulations and mechanism validation. 
Food Chem. (2024) 460:140646. doi: 10.1016/j.foodchem.2024.140646

	53.	Kaur H, Jakob RP, Marzinek JK, Green R, Imai Y, Bolla JR, et al. The antibiotic 
Darobactin mimics a Β-Strand to inhibit outer membrane Insertase. Nature. (2021) 
593:125–9. doi: 10.1038/s41586-021-03455-w

	54.	Wijdeveld M, van Olst N, van der Vossen EWJ, de Brauw M, Acherman YIZ, de Goffau 
MC, et al. Identifying gut microbiota associated with gastrointestinal symptoms upon roux-
En-Y gastric bypass. Obes Surg. (2023) 33:1635–45. doi: 10.1007/s11695-023-06610-6

	55.	Jules M, Le Chat L, Aymerich S, Le Coq D. The Bacillus subtilis ywji (glpX) gene 
encodes a class II fructose-1,6-bisphosphatase, functionally equivalent to the class III 
Fbp enzyme. J Bacteriol. (2009) 191:3168–71. doi: 10.1128/jb.01783-08

	56.	Ren R, Gao X, Shi Y, Li J, Peng L, Sun G, et al. Long-term efficacy of Low-intensity single 
donor Fecal microbiota transplantation in ulcerative colitis and outcome-specific gut bacteria. 
Front Microbiol. (2021) 12:12. doi: 10.3389/fmicb.2021.742255

	57.	Gray T, Storz G, Papenfort K, Henkin TM. Small proteins; big questions. J 
Bacteriol. (2022) 204. doi: 10.1128/jb.00341-21

	58.	Simoens L, Fijalkowski I, Van Damme P. Exposing the small protein load of 
bacterial life. FEMS Microbiol Rev. (2023) 47. doi: 10.1093/femsre/fuad063

https://doi.org/10.3389/fvets.2025.1689589
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://doi.org/10.1021/acsmedchemlett.1c00556
https://doi.org/10.1038/s41564-025-02061-0
https://doi.org/10.1016/j.cell.2024.07.027
https://doi.org/10.3760/cma.j.cn441530-20220725-00324
https://doi.org/10.1126/scitranslmed.abo2750
https://doi.org/10.1093/bioinformatics/bty560
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1186/s40168-018-0541-1
https://doi.org/10.1101/gr.186072.114
https://doi.org/10.1038/ismej.2017.126
https://doi.org/10.1186/s13059-019-1817-x
https://doi.org/10.1016/s0168-9525(00)02024-2
https://doi.org/10.1038/s41587-023-01688-w
https://doi.org/10.1093/bioinformatics/btx021
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1093/bib/bbad240
https://doi.org/10.7717/peerj.10555
https://bioserv.rpbs.univ-paris-diderot.fr/services/SolyPep/
https://doi.org/10.1093/molbev/msab120
https://doi.org/10.1093/nar/gkab301
https://doi.org/10.1038/s41586-024-07487-w
https://doi.org/10.1002/jcc.20291
https://doi.org/10.1073/pnas.2219679120
https://doi.org/10.1007/978-1-0716-3441-7_5
https://doi.org/10.1038/nrmicro2546
https://doi.org/10.1126/science.1209728
https://doi.org/10.1007/s00726-023-03307-z
https://doi.org/10.1016/j.foodchem.2024.141261
https://doi.org/10.1038/s41467-020-18164-7
https://doi.org/10.1016/j.cell.2019.07.016
https://doi.org/10.1016/j.celrep.2025.115773
https://doi.org/10.1038/s41596-025-01144-w
https://doi.org/10.1038/s41522-024-00560-2
https://doi.org/10.1002/emmm.201201773
https://doi.org/10.3390/antibiotics12061037
https://doi.org/10.1016/j.cell.2024.05.013
https://doi.org/10.1016/j.foodchem.2024.140646
https://doi.org/10.1038/s41586-021-03455-w
https://doi.org/10.1007/s11695-023-06610-6
https://doi.org/10.1128/jb.01783-08
https://doi.org/10.3389/fmicb.2021.742255
https://doi.org/10.1128/jb.00341-21
https://doi.org/10.1093/femsre/fuad063

	Detection of antimicrobial peptides from fecal samples of FMT donors using deep learning
	1 Introduction
	2 Materials and methods
	2.1 Sample collection and metagenomic sequencing
	2.2 Metagenomic analysis
	2.3 Antimicrobial peptides prediction
	2.4 Metaproteomic cross-validation
	2.5 Correlation analysis
	2.6 Peptide selection
	2.7 Peptide synthesis
	2.8 Bacteria strains and growth conditions
	2.9 Minimum inhibitory concentration determination
	2.10 Analysis of antibacterial mechanism
	2.11 Characteristic analysis of candidate AMP

	3 Result
	3.1 Metagenomic binning and classification
	3.2 Feature analysis of antimicrobial peptides
	3.3 Select candidate AMP for chemical synthesis
	3.4 Antibacterial activity evaluation of AMPs
	3.5 Analysis of antibacterial mechanism
	3.6 Characteristic analysis of cAMP573 and cAMP314

	4 Discussion

	References

