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Introduction: Antimicrobial peptides (AMPs) represent a class of short peptides
that are widely distributed in organisms and are regarded as an effective
means to tackle bacterial resistance, potentially functioning as substitutes for
onventional antibiotics.

Methods: We employed metagenomics in combination with deep learning to mine
AMPs from the 120 fecal microbiota transplantation (FMT) donor metagenome.
Subsequently, a comprehensive analysis of the candidate AMPs was conducted
through metaproteomic cross-validation, solubility analysis, cross-validation with
other prediction tools, correlation analysis, and molecular dynamics simulations.
Finally, four candidate AMPs were selected for chemical synthesis, and
experimental validation identified two with broad-spectrum antimicrobial activity.
Furthermore, molecular docking was utilized to further analyze the antimicrobial
mechanisms of the candidate AMPs.

Results: Our approach successfully predicted 2,820,488 potential AMPs. After a
comprehensive analysis, four candidate AMPs were selected for synthesis, two
of which exhibited broad-spectrum antimicrobial activity. Molecular docking
provided further insight into the binding mechanisms of these peptides.
Discussion: This study demonstrates the feasibility of discovering functional
AMPs from the human fecal microbiome using computational and experimental
approaches, highlights the potential of mining novel AMPs from the fecal microbiome,
and provides new insights into the therapeutic mechanisms of FMT.

KEYWORDS

antimicrobial peptides, fecal microbiota transplantation, fecal metagenome, deep
learning, molecular dynamics simulations

1 Introduction

Antibiotics represent one of the most significant discoveries in human history, having
saved innumerable lives. Nevertheless, the overuse of antibiotics has led to a sharp rise in
antibiotic-resistant bacteria, resulting in a significant annual death toll due to drug-resistant
infections. Escherichia coli is accountable for the highest number of deaths, succeeded by
Klebsiella pneumoniae, Staphylococcus aureus, Acinetobacter baumannii, Streptococcus
pneumoniae, and Mycobacterium tuberculosis (1). This problem is intensifying progressively,
and it is projected that by 2050, the number of deaths attributed to antimicrobial resistance
could ascend to 1.51 million worldwide (2). To alleviate the issue of antibiotic resistance,
alternative approaches to conventional antibiotic treatments have emerged. The current major
alternative  therapeutic strategies encompass antimicrobial peptides (AMPs),

01 frontiersin.org


https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2025.1689589&domain=pdf&date_stamp=2025-10-14
https://www.frontiersin.org/articles/10.3389/fvets.2025.1689589/full
https://www.frontiersin.org/articles/10.3389/fvets.2025.1689589/full
https://www.frontiersin.org/articles/10.3389/fvets.2025.1689589/full
mailto:xwkhj@163.com
mailto:ylchi@qztc.edu.cn
https://doi.org/10.3389/fvets.2025.1689589
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2025.1689589

Wei et al.

antibody-antibiotic conjugates (AACs), phage therapy, and
microbiome-based therapies (3). Among these, AMPs have attracted
extensive attention due to their potent antibacterial activity and low
probability of developing resistance.

AMPs, also referred to as host defense peptides, are typically
constituted by 2 to 50 amino acids. These small molecule peptides have
the ability to inhibit bacteria, fungi, viruses, and other pathogens, and
constitute an essential part of the innate immune system. AMPs are
extensively distributed among animals, plants, and microorganisms (4).
The structures of AMPs are diverse, with the main recognized types being
(i) a-helical, (ii) p-sheet, (iii) of}, or (iv) non-af elements (5). AMPs
demonstrate bactericidal activity against the majority of major Gram-
positive and Gram-negative bacteria. Their mechanisms of action are
generally considered to encompass direct killing of bacteria by disrupting
the bacterial cell membrane, as well as targeting crucial intracellular
biological processes such as nucleic acid synthesis, cell wall biosynthesis,
and enzyme production (6). Due to their diverse mechanisms of action,
it is difficult for microorganisms to develop resistance to AMPs, making
them one of the most promising candidates for antimicrobial drugs.

Early research on antimicrobial peptides (AMPs) primarily relied on
laborious methods for extraction, isolation, purification, and functional
validation from specific organisms or their metabolic products (7). For
instance, the discovery of cecropin (8) and magainin (9) laid the
foundation for understanding AMPs as key effector molecules in innate
immunity. With advances in genomics and proteomics, high-throughput
identification of AMP families has been achieved through homology
cloning and sequence mining (10, 11). In recent years, the integration of
high-throughput sequencing technologies, artificial intelligence, and
molecular dynamics simulations has significantly enhanced the efficiency
of AMP development. The Ma team combined LSTM, Attention, and
BERT models to identify 2,349 candidate AMPs from human gut
microbiome data, synthesized 216 of them, and discovered that 181
displayed antimicrobial activity (83% positivity rate) (12). The Huws
group employed a classifier model to identify two AMPs effective against
multidrug-resistant (MDR) bacteria from a rumen microbial
metagenomic dataset (13). The Liang team established a structure-activity
relationship-based virtual screening platform to screen 3.44 million
peptides from the UniProt database and verified the top three scoring
peptides (14). The Fuente-Nunez team employed the deep learning
framework APEX 1.1 to conduct a systematic, large-scale screening for
antibiotics within archaeal proteomes. This effort successfully predicted
and identified a novel family of antimicrobial peptides named
“archaeasins” (15).

The human gastrointestinal tract constitutes a vast microbial
ecosystem, hosting trillions of microorganisms. Its gut microbiome
encodes an extremely diverse set of genes. Research suggests that a
considerable number of AMP families within the human gut microbiome
have yet to be comprehensively investigated (12, 16). Hence, in this study,
we employed fecal metagenomic samples from donors who conformed
to the consensus criteria for Fecal Microbiota Transplantation (FMT) to
search for candidate AMPs (17). FMT, involving the utilization of
microorganisms derived from human feces to reestablish the gut
microbiota, has a rigorous donor selection process. As a therapeutic
approach for human diseases, FMT is utilized to treat Clostridium difficile
infection, multidrug-resistant organism infections, and other disorders
(18). We extended the existing methods for AMP development by
searching for candidate AMPs based on fecal metagenomic samples.
We explored an efficient workflow for AMP development (Figure 1), and
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identified AMPs with broad-spectrum antimicrobial activity. Additionally,
we conducted in-depth analyses of the identified candidate
AMP sequences.

2 Materials and methods

2.1 Sample collection and metagenomic
sequencing

The recruitment of FMT donors undergoes a rigorous process, which
is divided into four stages: initial questionnaire screening, on-site
interview, comprehensive physical examination, and medical verification.
The primary characteristics of the donors are as follows: good health,
absence of infectious diseases or pathogens that could be transmitted to
recipients. They are also required to maintain regular dietary and sleep
habits and avoid unhealthy lifestyles. Furthermore, the intestinal
microbiota should demonstrate high diversity and stability, with no recent
use of antibiotics. Finally, a total of 120 fecal samples fulfilling the FMT
donor criteria were gathered from Jiangxi Province, China. The sample
collection process was designed to guarantee the freshness and
non-contamination of the samples. During the collection, a sterile
disposable plastic spatula was employed to collect substances from the
surface, interior, and middle sections of the stool, which were subsequently
placed in sterile and sealed containers to prevent contamination with
urine or disinfectants. Each sample weighed approximately 0.25-0.5 g and
was promptly cooled to —20 °C or —80 °C after aliquoting to avoid
repeated freezing and thawing. Alternatively, samples were stored at 4 °C
and transported to the laboratory within 2 weeks. The entire collection
procedure was carried out under rigorous sterile conditions to ensure
sample quality, rendering them suitable for subsequent metagenomic
sequencing analysis. Bacterial genomic DNA was extracted from the fecal
samples using a fecal bacterial DNA extraction kit. Shotgun sequencing
was conducted on the Illumina platform with an insert size of 150 bp.

2.2 Metagenomic analysis

The raw sequencing data were initially subjected to quality
assessment via FastQC.' Subsequently, low-quality bases and
sequencing adapters were eliminated using Fastp (19). KneadData
was employed to eliminate host genome contamination. The
metagenomic sequences were rapidly assembled by using Megahit
(v1.2.9) (with parameter setting: --k-min 29 --min-contig-len
1,000) (20), and the assembly quality was evaluated using QUAST
(v5.0.2) (21). Subsequently, the MetaWRAP (22) was utilized for
the binning step, and the CheckM (23) tool was employed to
assess the completeness and contamination of the bins. To
improve the efficiency of downstream analyses, the dRep (24) was
applied to eliminate bin redundancy. For obtaining non-redundant
bin taxonomic information, the CAT_pack (25) tool was utilized
for bin classification and annotation, making use of GTDB data
for rapid annotation. Functional annotation of the bins was also
conducted using the MetaWRAP.

1 https://github.com/s-andrews/FastQC
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FIGURE 1
Schematic workflow of the integrated computational and experimental approach for AMPs discovery from FMT donor samples.

2.3 Antimicrobial peptides prediction

A deep learning model developed by Ma et al. (12) was employed
for the prediction of AMPs. The method employs a combination of
natural language processing (NLP) models, including LSTM,
Attention and BERT, to create a unified computational pipeline that
effectively identifies AMPs from human gut microbiome data by
learning deep sequence features rather than relying on sequence
similarity. A key strength of this approach is its high precision
(91.31%) and low false-positive rate, enabling the discovery of novel
AMPs with low homology to known sequences (<40% identity), of
which 181 out of 216 synthesized peptides exhibited antimicrobial
activity (>83% positive rate). Despite its success, the method depends
heavily on the quality of existing training data, requires substantial
computational resources, and leaves the mechanism of some effective
peptides unclear; nevertheless, it demonstrates significant potential
for accelerating the discovery of AMP candidate molecules using
machine learning and large-scale metagenomic datasets.

Small open reading frames (sORFs) were derived from the bin
genomes by applying the ‘getorf (—find 2 -table 11 -minsize 15 -maxsize
150)’ command in EMBOSS (version 6.6.0.0) (26). A Perl script was
employed to eliminate redundancy and known AMP sequences, followed
by the prediction of candidate AMPs through the established pipeline.
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2.4 Metaproteomic cross-validation

To guarantee the expressibility of the predicted sORFs, we further
conducted cross-validation by employing metaproteomic data. The
data obtained from Herold et al. underwent additional filtering to
acquire a non-redundant protein dataset with sequences shorter than
50 amino acids. Subsequently, we computed the k-mers of the sORFs
and compared them with the metaproteomic dataset. If a k-mer was
consistent with a peptide sequence in the metaproteomic data, it
signified that more than half of the sSORF existed as a peptide,
indicating that the sORF had a higher probability of being expressed.

2.5 Correlation analysis

To establish a correlation network between candidate AMPs and
bacteria, we initially computed the relative abundance of both the
candidate AMPs and bacterial species in the metagenomic samples.
We retrieved metagenomic samples from 100 healthy individuals from
public databases, and subsequently conducted quality control using
FastQC and Fastp. The relative abundance of bacterial species was
acquired through Metaphlan 4 (27), an efficient species annotation
tool based on marker genes.
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To acquire the abundant information of AMPs, we aligned the
candidate AMP sequences to the metagenomic reads by employing the
PALADIN tool (28). Subsequently, the alignment results were
processed using SAMtools (29) to compute the abundance. Only those
AMPs with a prevalence of at least 5% and corresponding species
abundance information were retained. The Spearman correlation
between AMPs and bacterial species was calculated using the R package
WGCNA (30), and the p-values were adjusted with the R
package multtest.

2.6 Peptide selection

The R package Peptides was employed for the physicochemical
property analysis of the predicted AMPs. The predicted AMP
sequences were further cross-validated by means of two third-party
tools, namely iIAMPCN and Macrel, which adopt distinct techniques
and strategies to identify and predict the functional activity of AMPs.
iAMPCN is a deep learning model based on convolutional neural
networks (31), while Macrel introduces a novel set of 22 peptide
features designed to capture the physicochemical properties, structural
characteristics, and sequence order information of AMPs (32).

To guarantee the excellent solubility of the synthesized AMPs,
we further filtered the AMP sequences in accordance with six
solubility evaluation criteria (33), retaining merely those sequences
that met at least three of the criteria. The relevant analyses were
conducted using a local R script. T-coffee was employed for the
multiple sequence alignment of the candidate AMPs, and the resultant
alignment file was utilized to construct a Neighbor-Joining
phylogenetic tree with MEGA11 (34). Subsequently, the phylogenetic
tree was visualized by means of iTOL (35).

We conducted molecular dynamics (MD) simulations on the
candidate AMPs to evaluate their stability. Firstly, the three-
dimensional structures of the candidate AMPs were predicted using
AlphaFold3 (36), and the protein CIF files were obtained. Subsequently,
the MD simulations were executed using GROMACS (37), with the
AMBER99SB force field and the TIP3P water model. The simulation
was carried out for 100 ns, and at the conclusion of the simulation, the
stability of the AMPs was analyzed based on the root-mean-square
deviation (RMSD). Finally, the candidate AMP for chemical synthesis
is determined.

2.7 Peptide synthesis

The peptides investigated in this study were synthesized by GL
Biochem Ltd. (Shanghai, China) via a solid-phase peptide synthesis
strategy (SPPS). The accurate molecular weights were characterized
by mass spectrometry. The purity of all peptides was determined using
high-performance liquid chromatography, and all peptides exhibited
a purity greater than 95%.

2.8 Bacteria strains and growth conditions

E. coli CICC 10667, Pseudomonas aeruginosa JCM5962 and
S. aureus ATCC6538 were aerobically cultured at 37 °C in
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Luria-Bertani (LB) medium. Staphylococcus epidermidis CMCC26069,
Streptococcus mutans ATCC 25175, Propionibacterium acnes ATCC
6919, and Enterococcus faecalis ATCC19433 were anaerobically
cultured at 37 °C in Brain Heart Infusion Broth (BHI) medium.

2.9 Minimum inhibitory concentration
determination

The minimum inhibitory concentrations (MICs) of the peptides
were assessed following the method described by Chou et al. (38).
Indicator bacteria cells were cultured at 37 °C in LB or BHI medium
to log-phase growth and diluted to ODgy, = 0.4, and then diluted
1,000-fold with fresh LB or BHI medium. In sterile 96-well plates,
50 pL of two-fold serial dilutions of AMPs in water, with predefined
concentrations, were added to 50 pL of the diluted bacterial
suspension. Subsequently, the plates were analyzed by means of a
Microplate Reader at an optical density (OD) of 600 nm. The MIC was
defined as the lowest concentration of the peptide that completely
suppressed the visible growth of bacteria following 20 h of incubation
at 37 °C. An AMP solution mixed with water served as the negative
control, while a bacterial suspension combined with bacteria was
utilized as the positive control.

2.10 Analysis of antibacterial mechanism

To explore the potential antibacterial mechanisms of the
antimicrobial peptide, we initially retrieved the three-dimensional
structural files of BamA, 1KZN, and 2XCT proteins from the Protein
Data Bank (PDB) database. Subsequently, protein—protein interaction
studies were conducted using GRAMM (Global RAnge Molecular
Matching) with a free docking approach (39). The simulated docking
results were assessed using the PDBePISA tool and visualized with
PyMOL for structural representation.

2.11 Characteristic analysis of candidate
AMP

To assess the distribution of cAMP573 within the G. qucibialis
bacterial species, 69 genome files of this bacterial species were
downloaded from NCBI database. Subsequently, sORFs were
predicted using the ‘getorf” command in EMBOSS. The parameter
settings were configured as “-find 2 -table 11 -minisize 150’ The
predicted sORFs were subjected to alignment with the sORFs of
cAMP573 using the blastn tool. The parameter settings were
configured as “-evalue le-10 -qcov_hsp_perc 90’ Subsequently, based
on the alignment outcomes, the corresponding gene fragments were
retrieved from the bacterial genome, with an extension of 10,000 base
pairs on each side. Finally, the extracted gene fragments were
annotated by means of the Prokka tool.

To conduct a comprehensive analysis of the candidate AMP
cAMP314, 1,172 bacterial genome files were retrieved from the
NCBI database. These files predominantly originated from species
including Phocaeicola vulgatus (accounting for 48% of the total),
Phocaceicola dorei (19%), and Phocaeicola massiliensis (4%).
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Subsequently, the analyses were carried out using the methods
described above.

3 Result
3.1 Metagenomic binning and classification

Following quality control, sequence assembly, binning, and
redundancy elimination of 120 metagenomic sequencing datasets, a
total of 373 non-redundant high-quality bins were successfully
retrieved. To obtain the taxonomic information of the bins,
classification annotation was carried out using the CAT_pack tool.
The annotation findings indicated that, at the phylum level, 12
bacterial phyla were detected. Among them, Bacillota was the most
prevalent, accounting for 187 bins, followed by Bacteroidota and
Pseudomonadota, with 63 and 33 bins, respectively, (Figure 2A). At the
genus level, 177 bacterial genera were identified. Among them,
Collinsella and Prevotella had the highest number of bins, with 22 bins
each, followed by Haemophilus and Bacteroides. At the species level,
187 bins were successfully annotated.

10.3389/fvets.2025.1689589

Following the processing of 373 bins via the ‘getorf’ command
within EMBOSS, a cumulative total of 43,621,829 non-redundant
sORFs were successfully retrieved. Subsequently, an integrated deep
learning model was employed to predict AMPs from these sORFs,
yielding 2,820,488 predicted AMPs. To enhance the probability that
the predicted AMP sequences are expressible, cross-validation was
conducted using metaproteomic data. After a series of filtering and
other processing procedures, a final set of 1,056 candidate AMPs
was meticulously identified. Among these AMPs, 5.3% exhibited a
length of less than 20 amino acids, whereas 36.5% had a length
exceeding 40 amino acids (Figure 2B). The isoelectric points of
these peptides were predominantly concentrated within the range
of 10 to 12 (Figure 2C).

Moreover, our findings indicated that the top 10 candidate
AMPs with the highest relative abundances in the metagenomic
samples from healthy individuals were predominantly derived from
the following seven bacterial genera: Copromonas (cAMP520),
Gemmiger (CAMP584 and cAMP102), Ventrimonas (cAMP525),
Eubacterium_I (cAMP823), Blautia_A (cAMP188 and cAMP418),
Anaerobutyricum (cAMP1026), and Eubacterium_G (cAMP1001)
(Figure 2D).
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3.2 Feature analysis of antimicrobial
peptides

Given the known effects of some AMPs in regulating and
stabilizing community structure (40, 41), Ma et al. (12) hypothesized
that cAMPs with strong negative correlations with members of a
microbiome thus potentially inhibit bacterial growth and are more
likely to be functional, and this network could help further
eliminate false positives in their discovery. Consequently,
we endeavored to identify AMPs that display substantial negative
interactions with bacteria via correlation analysis. The species
annotation outcomes from Metaphlan4 revealed that the ten most
abundant bacterial genera were Blautia, Bifidobacterium,
Lachnospiraceae_unclassified, Faecalibacterium, Ruminococcus,
Segatella, Bacteroides, Phocaeicola, Roseburia, and Anaerostipes
(Figure 3A). Subsequently, through Spearman correlation analysis,
we pinpointed 355 candidate AMPs that showed significant negative
correlations with bacterial species (FDR < 0.05) (Figure 3B). At the
genus level, 314 candidate AMPs were detected to have significant
negative correlations with bacterial genera (FDR <0.05)
(Figure 3C).

To enhance the reliability of the predictions, cross-validation was
conducted using two third-party tools, Macrel and iAMPCN. The
analysis outcomes revealed that 1,021 candidate AMPs were predicted

10.3389/fvets.2025.1689589

as AMPs by iAMPCN, while 621 candidate AMPs were predicted as
AMPs by Macrel. Among them, 599 candidate AMPs were validated
by both tools (Figure 3D). Moreover, the prediction results of
iAMPCN demonstrated that 511 candidate AMPs might possess
antibacterial activity, 660 could have antifungal activity, and 206 may
exhibit antiviral activity. Additionally, 44 candidate AMPs were
predicted to possess all three activities simultaneously (Figure 3E).

To evaluate the similarity between the predicted candidate AMP
and AMP sequences in public databases, we downloaded all AMP
sequences from the AMPSphere database as reference sequences. The
candidate AMP sequences were then aligned to the database using the
‘needleall’ command in the EMBOSS software package. As a result,
630 candidate AMPs obtained valid alignment results. The analysis
indicated that the candidate AMPs exhibited good novelty, with over
55% of the candidate AMP sequences showing less than 50% similarity
to the reference sequences. The candidate AMP with the highest
similarity was cAMP675 (82.6%) (Figure 3F).

In order to increase the probability of solubility of chemically
synthesized cAMP, we further evaluated candidate AMP based on 6
protein solubility evaluation criteria. The analysis results showed that
all candidate AMPs could not meet all 6 rules at the same time.
Among them, 11 candidate AMPs met 5 rules, 142 met 4 rules, and
420 met 3 rules. That is, more than 54.26% of the candidate AMPs
passed the solubility test (Figure 3G).
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3.3 Select candidate AMP for chemical
synthesis

To increase the probability that the synthesized AMPs would
exhibit antimicrobial activity, we re-screened candidate AMPs based
on the above analysis results. First, cross-validation of the 1,056 deep
learning-predicted AMPs using a third-party tool retained 599
candidates. Second, selection of candidates showing negative
correlations with bacterial species/genera retained 136 AMPs.
Subsequently, application of solubility rules (>3 criteria met) further
refined the pool to 82 candidates. In addition, we performed molecular
dynamics simulations on candidate AMPs using GROMACS and
evaluated the stability of its structure using the RMSD value. Finally,
we selected four candidate AMP sequences with lower RMSD values
from the 82 candidate AMPs for chemical synthesis (Figure 4 and
Table 1).

3.4 Antibacterial activity evaluation of
AMPs

We successfully synthesized 4 screened peptides by solid-phase
peptide synthesis and tested the antibacterial activity of AMPs against
E. coli CICC 10667, P. aeruginosa JCM5962 and S. aureus ATCC6538,
S. epidermidis CMCC26069, S. mutans ATCC 25175, P. acnes ATCC
6919 and E. faecalis ATCC19433. Among them, two peptides

10.3389/fvets.2025.1689589

(cAMP314 and cAMP573) exhibited broad-spectrum antimicrobial
activity, inhibiting all seven selected indicator bacterial strains with
MIC ranging from 32 to 256 pg/mL. However, the other two peptides
were unable to completely inhibit the activity of the indicator bacteria
(Table 2).

3.5 Analysis of antibacterial mechanism

Protein docking simulation is an efficient method for studying
molecular mechanisms of action. AMPs can inhibit bacteria by acting
on cell membranes or intracellular enzymes. Therefore, we collected
bacterial proteins from different sources during the protein docking
simulation. DNA gyrase is essential for DNA synthesis, so
we evaluated the interaction between cAMP573 and E. coli DNA
gyrase 1KZN and S. aureus DNA gyrase 2XCT through protein
docking simulation. At the same time, we also evaluated the
interaction between cAMP573 and BamA protein, which is a
membrane protein related to the virulence and antibiotic resistance of
Gram-negative bacteria. Some AMPs can inhibit bacterial activity by
binding to this protein (42). The simulation results show that the
binding between cAMP573 and 2XCT protein is the most stable (AiG:
—57.1 kcal/mol) (Figure 5C), followed by 1KZN protein (AiG:
—5.6 kcal/mol) (Figure 5A). Although the binding free energy
between cAMP573 and BamA protein (AiG: —3.6 kcal/mol) is greater
than the —5 kcal/mol in the reference standard (43), the results still
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TABLE 1 The physicochemical characteristics and sequence of peptides.
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indicate that there may be a significant binding between the two
(Figure 5B). cAMP314 exhibited a stable binding interaction with
2XCT (AiG: —18.5 kcal/mol), while displaying a relatively lower
binding free energy with the BamA protein (AiG: —7.7 kcal/mol).

3.6 Characteristic analysis of cAMP573 and
cAMP314

The genomic bin containing cAMP573 was taxonomically
annotated as G. qucibialis. Subsequent analysis revealed that the SORF
of cAMP573 is widely distributed within fructose-1,6-bisphosphatase
class III (FBP-III) genes across 55 genomes of this species. Moreover,
the FBP gene is located within a specific genomic region of
G. qucibialis, typically flanked upstream by mgsA, minD, and sigE
genes, while downstream regions predominantly contain trmB and
malQ genes (Figure 6A). By comparing the average nucleotide identity
(ANI) of the FBP-III gene in different G. qucibialis genomes, we found
that the genome was highly conserved among G. qucibialis bacterial
species (Figure 6B). To evaluate the distribution of the SORF encoding
cAMP573 in other bacterial species, we downloaded and aligned
19,391 FBP-III gene sequences from 81 bacterial species in the Global
Microbial Gene Catalog (GMCC) database, but the presence of this
sORF was not detected. Furthermore, analysis revealed that the FBP
gene from G. qucibialis exhibited high similarity only with a limited
number of sequences from E prausnitzii (Figure 6C).

The sORF of cAMP314 is predominantly distributed within the
TonB gene of Phocaeicola massiliensis in the Phocaeicola genus and
genomes of multiple uncultured species. Further analysis revealed that
the genomic region harboring this SORF exhibits high conservation
across different genomes. The upstream region of the sORF was
primarily flanked by a gene encoding a hypothetical protein and the
sigW gene, while the downstream region contained conserved genes
including glaB and mggB gene.

4 Discussion

The gut microbiome encodes highly diverse genes, being one of
the largest reservoirs for antibiotic-resistant genes (44). At the same
time, as a result of long-term competition and co-evolution, it is
expected to produce a large number of antimicrobials against even
multi-drug-resistant (MDR) bacteria (45). Research has shown that
the human gut microbiome harbors a vast array of potential AMPs
(12, 46, 47), which are anticipated to exhibit low toxicity, high stability,
and mild antimicrobial activity. These gut-derived AMPs not only
inhibit the growth of harmful microorganisms but also simultaneously
promote the proliferation of beneficial microbes, modulate microbial
composition, and maintain the balance of the gut microbiota, thereby
contributing to intestinal health (48-50). This is crucial for preventing
the occurrence of intestinal diseases.

In recent years, many important scientific research results
have been achieved in the study of AMPs, especially the
integrated computational method for mining AMPs. In this study,
we mined multiple AMP sequences from FMT donor’s fecal
samples through an improved integrated computational method,
and verified through in vitro experiments that the mined AMPs
have potent antibacterial activity and good safety. We explored
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TABLE 2 Antimicrobial test results of synthetic peptides (MIC, pg/mL).

10.3389/fvets.2025.1689589

Peptide E.coli Paeruginosa S.aureus S.epidermidis S.mutans Pacnes E.faecalis
name

cAMP314 32 256 64 64 32 32 256
cAMP497 >512 >512 >512 >512 >512 >512 >512
cAMP573 64 256 32 32 32 64 256
cAMP767 >512 >512 >512 >512 >512 >512 >512

vaLiao ]

FIGURE 5

Simulated Docking Results between candidate AMP cAMP573 and Bacterial Proteins. (A) Simulated docking result between cAMP573 and protein 1KZN;
(B) Simulated docking result between cAMP573 and protein 7NRE; (C) Simulated docking result between cAMP573 and protein 2XCT.
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ARG-488

TYR-477 .. 4

the antibacterial mechanism of AMPs through molecular
simulation, and the simulation results showed that cAMP573 may
play an antibacterial role by binding to DNA gyrase 1KZN. At the
same time, we found through further analysis that cAMP573 may
be unique to the G. qucibialis species, and the sORF is located
inside the FBP-III gene.

Traditional AMP mining research methods are costly, but
efficient active AMP mining can be achieved through the
integrated computational method of Al and multi-omics data. Ma
et al. constructed an integrated computational method based on
deep learning and multi-omics data for AMP mining, and 83% of
the mined AMPs have effective antibacterial activity (12). A
recent study systematically mined and analyzed 63,410
metagenomic data and 87,920 prokaryotic bacterial genomes
from different regions of the world by integrating multiple
computational methods, and constructed a large-scale AMP
database AMPsphere (51). These works have greatly promoted
the development of AMPs, but there are still many areas for
improvement in the downstream analysis of AMPs. Therefore, in
this study, we expanded and optimized the computational

Frontiers in Veterinary Science

method of Yue Ma et al. First, in order to improve the positive
rate of predicted AMPs, we cross-validated with Macrel through
the third-party prediction tool iAMPCN and performed solubility
analysis on the predicted AMP sequences. Secondly, we evaluated
the structural stability of AMPs through molecular dynamics
simulation. Finally, the antibacterial mechanism of AMPs was
explored through molecular simulation docking technology (14).

The experimental results showed that the candidate AMP
cAMP573 has good antibacterial activity against S. aureus and E. coli.
We then explored the possible antibacterial mechanism of cAMP573
through protein simulation docking technology. DNA gyrase is an
important topoisomerase in the DNA replication process of
prokaryotes. Through docking simulation, we found that cAMP573
can produce stable binding with DNA gyrase 1KZN from E. coli and
DNA gyrase 2XCT from S. aureus, and the binding between cAMP573
and E. coli 1KZN is stronger than that of S. aureus. It is worth
mentioning that the AMP identified in a recent study also showed
stronger binding ability to E. coli IKZN (52). BamA is a protein related
to membrane protein synthesis in Gram-negative bacteria (53), and
studies have shown that this protein is associated with bacterial
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qucibialis and F. prausnitzii genomes.

Genomic background information analysis results of SORFs encoding antibacterial peptides. (A) Genomic background information of the sORF
encoding cAMP573; (B) Similarity analysis of the fop gene across different G. qucibialis genomes; (C) Similarity analysis of the fbp gene between G.

resistance (42). Recently, Li Yang et al. screened AMP sequences
targeting BamA through molecular dynamics simulation and verified
the activity of these AMPs through in vitro experiments (42). Our
docking simulation results also showed that there is a meaningful
binding between cAMP573 and BamA.

The active AMP cAMP573 we discovered in this study may
be unique to the species G. qucibialis. G. qucibialis belongs to the
genus Blast bacterium, and there are few studies on this species. A
recent study on gastrointestinal symptoms in patients with RYGB
surgery found that G. qucibialis may have a protective effect on
gastrointestinal dysfunction in patients (54). In addition, our analysis
results showed that the SORF encoding cAMP573 is located inside the
tbp gene. Fructose-1,6-bisphosphatase (FBPase) in bacteria mainly

Frontiers in Veterinary Science

includes class I FBPase, class IT FBPase and class III FBPase, among
which class III is mainly found in Firmicutes and has low similarity
with the first two classes of enzymes (55). Concurrently, we also
observed that the candidate AMP cAMP314 is predominantly
distributed within specific regions of the genome of P. massiliensis.
Notably, research conducted by Ren et al. (56) has found a positive
correlation between P. massiliensis and the efficacy of FMT in treating
ulcerative colitis. There are a large number of SORFs in bacterial
genomes, and more and more studies have shown that the proteins
encoded by sORFs (SEPs) have important biological functions (57).
However, due to the particularity of SEPs themselves and the
limitations of existing research methods, the functions of a large
number of SORFs and their encoded proteins are still unknown (58).
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Our results show that integrated computational methods based on
deep learning will be a powerful tool for studying these SORFs.
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