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1 Introduction

Porcine rotavirus (PoRV) was a major pathogen causing severe diarrhea and high
mortality in young piglets globally, leading to significant economic losses (1). The disease
had a short incubation period (16-24 h) and was widespread in China with a high incidence
and mortality (2). Infected piglets often exhibited vomiting, diarrhea, dehydration, acid-
base imbalance, and death from secondary infections (3), frequently involving mixed viral
serotypes (4). Older pigs typically show subclinical infections (5). Developing accurate
PoRV diagnostics was considered crucial.

Clinical symptoms and epidemiology (seasonality, high piglet susceptibility)
overlapped significantly with other enteric coronaviruses, including Transmissible
Gastroenteritis Virus (TGEV), Porcine Epidemic Diarrhea Virus (PEDV), and Porcine
Deltacoronavirus (PDCoV), which complicated diagnosis (6). Misdiagnosis delayed
treatment, potentially causing mortality exceeding 80%. Co-infections or secondary
pathogens occurred in 34%—67% of cases, further hindering diagnosis based solely on
symptoms or pathology (7). The current reliance on PCR and virus isolation faced
challenges such as technical complexity, long turnaround times, and false-negative risks
(8), which impeded real-time monitoring and control.

PoRV was a non-enveloped, double-stranded RNA virus (Reoviridae family, Rotavirus
genus) with 11 genes encoding 6 structural and 6 non-structural proteins (9). Its wheel-like
structure (60-80 nm diameter) consisted of an outer capsid made of VP7 and VP4; VP6
determined the serotype. Of the 10 rotavirus groups (A-J), groups A, B, C, E, and H were
known to infect pigs. Group A PoRV (RVA) was the most prevalent globally (61%—74% of
cases) and a primary cause of severe diarrhea in piglets and infants, posing cross-species
transmission risks (10-12). In pigs, RVA mainly affected suckling to weaned piglets (13, 14).

PoRV genotyping, based on VP7 (G-type) and VP4 (P-type), showed diverse genomic
combinations (15, 16). G9 was a predominant global strain, reported in China and
elsewhere (17). While G5 PoRV had been detected in Jiangxi Province, China, no other
serotypes had been isolated there prior to this study.

To address diagnostic challenges, this study analyzed anal swabs from diarrheic piglets
on a farm in Fuzhou, Jiangxi. PCR-confirmed PoRV-positive samples were used for virus
isolation in MA104 cells. This process successfully isolated Group A G5 and G9 RVA
strains. The VP4 and VP7 genes were amplified and sequenced.
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Subsequently, high-purity recombinant VP6 protein was
produced using a prokaryotic expression system. Monoclonal
antibodies (mAbs) against VP6 were generated via hybridoma
technology. Leveraging the high conservation of VP6 across
Group A, B, and C PoRV (18), an indirect ELISA-based rapid
detection method was established. This method detected multiple
PoRV serotypes simultaneously, overcoming the limitations of
traditional genotyping that required multiple PCRs or sequencing
(19). Moreover, the ELISA method itself offered advantages such
as shorter detection time, simple procedure, and a low false-
positive rate.

This research enriched PoRV genotypic data for Jiangxi
Province and provided a vital scientific foundation for improved
PoRVD prevention, diagnosis, and the future development of
multigenotypic vaccines.

2 Materials and methods

2.1 Diarrheic samples and related viruses

Four anal swab samples (designated R1, R2, R3, R4) from
diarrheic piglets were collected from a large-scale pig farm in
Fuzhou City, Jiangxi Province, China. Positive controls for porcine
diarrhea-associated viruses—porcine rotavirus (PoRV), porcine
epidemic diarrhea virus (PEDV), transmissible gastroenteritis
virus (TGEV), and porcine deltacoronavirus (PDCoV)—were
stored at —80 °C in the Preventive Veterinary Laboratory of
Jiangxi Agricultural University. Negative controls consisted of PCR
reactions without complementary DNA (cDNA) templates (cDNA
components replaced with ddH20).

2.2 Main cells, strains, and antibodies

Rhesus monkey fetal kidney cells (MA104 cells), mouse
myeloma cells (Sp2/0 cells), the prokaryotic expression vector
pET-30a, DH5a, E. coli BL21(DE3)Plyss host strains, rabbit
polyclonal antibodies (PAb) against rotavirus VP6 protein, Porcine
rotavirus type G5 (PQ34381.1) and G11 (PQ800265.1) strains
were preserved by the Preventive Veterinary Laboratory of Jiangxi
Agricultural University.

2.3 Viral detection and isolation

Fecal swabs from diarrheic piglets were homogenized in PBS,
processed by triple freeze-thaw cycles and centrifugation. RNA
was extracted for cDNA synthesis and multiplex PCR screening.
PoRV-positive filtrates were trypsin-activated and inoculated onto
MA104 monolayers. Cells were maintained in serum-free DMEM
with trypsin. Viruses were harvested after CPE appeared, passaged
until stable CPE (P8), and confirmed by IFA/RT-PCR. The full
length of viral genome of VP4 and VP7 were amplified by RT-PCR
using the following primers (20), PoRV-VP4F:ATGGCTTCTC
TAATTTACAG,  PoRV-VP4R:TTATAATCTACATTGTAGTAT
AAGTTGTT; PoRV-VP7F:CGACTGGCTATCGGATAGCTCCTT
and PoRV-VP7R:GGTCACATCATACAATTCTAAC. The VP4
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and VP7 gene PCR products were inserted into pMD18-T vectors
for sequencing.

2.4 Genetic characterization

Sequencing and BLAST analysis identified homology with
GenBank strains. Using Mega 11.0 software, a phylogenetic tree of
the VP4 and VP7 amino acid sequences from the rotavirus isolates
is constructed using the Maximum Likelihood method (with three
independent bootstrap replicates) to determine the serotypes.

2.5 Construction and purification of the
prokaryotic expression vector for PoRV VP6
protein

The PoRV VP6 gene was cloned into pET-30a and transformed
into E. coli BL21(DE3) Plyss. Transformed cells were grown in
kanamycin-LB to OD600 0.6-0.8, then induced with 1 mmol/L
IPTG for 5h. Cells were harvested, lysed ultrasonically, and
fractionated by centrifugation. His-tagged VP6 was purified
from soluble fractions using nickel affinity chromatography, with
expression and specificity confirmed by SDS-PAGE and anti-His
Western blot.

2.6 Animal immunization, antibody
detection and hybridoma generation

Three 8-week-old female BALB/c mice were immunized
subcutaneously with VP6 emulsified in Freunds adjuvants
(200 pg/dose). After assessing high serum antibody titers via
ELISA, mice received a final adjuvant-free intraperitoneal booster.
Splenocytes were fused with SP2/0 cells (5:1) using PEG.
Hybridomas were selected in HAT medium, screened by ELISA,
and subcloned to monoclonality via limiting dilution (21). Stable
lines were expanded and cryopreserved.

2.7 mAbs validation by IFA

MA104 cells infected with trypsin-activated PoRV strains G5
(isolated in this study), G9, and G11 (both maintained by Jiangxi
Agricultural University’s Laboratory of Preventive Veterinary
Medicine), showed 80% CPE, were fixed (4% paraformaldehyde),
permeabilized (1% Triton X-100), and blocked (5% skim
milk). Cells were incubated with mAbs, followed by FITC-
labeled secondary antibody and DAPI. Fluorescence microscopy
confirmed PoRV antigen localization (FITC-green) and nuclear
staining (DAPI-blue). mAbs isotypes (IgG1, 1gG2a, IgG2b, IgG3,
IgA, IgM) and light chains (k/)\) were determined using Suzhou
Boao Long Technology Co., Ltd. commercial ELISA kit (BF16001).
The criteria are defined as follows: Positives require OD4s59 > 0.8;
negatives < 0.15. Positive ODy4s0 must exceed negative by >0.15.
Negative ODys0 <0.05 is considered 0.05.

frontiersin.org


https://doi.org/10.3389/fvets.2025.1689520
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Hu et al.

2.8 Indirect ELISA development

The optimal reaction conditions for the indirect ELISA were
developed using a matrix method, optimizing multiple parameters
according to the standard protocol (22): coating concentration of
purified VP6 protein (1.0, 2.0, 4.0, 8.0, 16.0 jLg/ml), dilution factors
for monoclonal antibody and negative mouse serum (1:5,000,
1:10,000, 1:20,000, 1:40,000), blocking solution (1% BSA, 2% BSA,
5% skim milk, 5% fetal bovine serum), blocking time (30, 45,
60, 75min), dilution of HRP-conjugated goat anti-mouse IgG
(1:1,000, 1:5,000, 1:7,500, 1:10,000), and incubation time (30, 45,
60, 75). Using these optimized conditions, the method’s sensitivity
was evaluated by testing 10-fold serial dilutions of PoRV-positive
porcine serum (from 1:100 to 1:6,400), with each dilution tested in
duplicate, to determine the highest positive dilution. Furthermore,
the established ELISA method was used to detect antibodies in 190
clinical porcine serum samples, and the results were compared with
those obtained using Shenzhen Zhenrui Biotech’s Porcine Rotavirus
Antibody Detection Kit (100714) to calculate the concordance rate
between the two methods.

3 Descriptive results

RT-PCR analysis of diarrheal piglet feces amplified a specific
503-bp band for PoRV. While positive controls for PEDYV,
TGEV, and PDCoV showed their expected bands, both the

10.3389/fvets.2025.1689520

fecal sample and the ddH,O negative control tested negative
for these viruses (Figure 1A), where M is marker, R1-R4 are
diarrheal samples, lanes 5/11/17/23 are negative controls, and
lanes 6/12/18/24 are positive controls for PoRV, PEDV, TGEYV, and
PDCoV respectively. This confirms the sample was positive for
PoRV. Sequencing of PoRV-positive diarrheal samples revealed
identical nucleotide sequences for R1-R3 (indicating a single
strain), while R4 exhibited a distinct genetic profile. Following
trypsin treatment and inoculation of R1 and R4 filtrates into
MA104 cells, significant CPE emerged at the third blind passage,
characterized by cell rounding, cytoplasmic granularity, and
large vacuole formation. IFA of passage 3 virus demonstrated
specific green fluorescence within the cytoplasm of inoculated
MA104 cells (Figure 1B), whereas uninfected controls exhibited
no fluorescence and maintained normal morphology. RT-PCR
analysis of P3 and P8 viral passages demonstrated amplification
of specific bands corresponding to the VP7 (1,035 bp) and VP4
(2,331 bp) genes, confirming stable viral propagation across
serial passages (Figure 1C). Based on these findings, isolates R1
and R4 were designated as HYuR01 and HYuR02, respectively.
VP7/VP4 genes of isolates HYuRO1/HYuR02 were sequenced
and uploading to NCBI (NCBI: PQ343808.1-PQ343811.1).
Phylogenetics showed HYuR01 VP7 had 96% aa identity with
Chinese G9 (MT784823.1), confirming G9 genotype. HYuR02 VP7
shared 92% identity with Chinese G5 (PQ133253.1), designating
it G5 (Figure 1D). Both shared 91% VP4 identity with Japanese
P23 (LC777929.1), grouping as P23 (Figure 1E). High divergence
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FIGURE 1
respectively. The experimental strains are marked in red.

Virus isolation, phylogenetic tree construction and sequence analysis. This figure provides an overview of the virus isolation, phylogenetic tree
construction, and sequence analysis, with all experiments performed in three independent replicates to ensure statistical robustness. (A) RT-PCR
detection results of diarrhea-associated viruses in fecal samples. M: DL2000 DNA Marker; R1~R4: Diarrheal Samples; 5/11/17/23: NegatOive control;
6/12/18/24: Positive control of PoRV, PEDV, TGEV and PDCoV. (B) CPE and IFA Analysis of MA104 Cells Inoculated with Filtrate from Sample R1 and
R4 at the Third Passage(40x). (C) RT-PCR successfully amplified the VP4 and VP7 genes from both the P3 and P8 passages of HYuR01 and HYuR02
isolates, demonstrating that these viral strains are well-adapted to cell culture and capable of stable propagation through serial passages. (D, E)
Phylogenetic analyses based on the VP7 and VP4 genes were performed to determine the G and P genotypes of the HYuRO1 and HYuRO2 isolates,
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FIGURE 2

Preparation of Monoclonal Antibodies Against Rotavirus VP6 Protein. This figure illustrates the construction of the pET30a-VP6 prokaryotic
expression vector, protein purification, animal immunization, serum antibody detection, and the application of mAbs 1C7/1D3 in indirect
immunofluorescence assays, with all experiments conducted in three independent replicates to ensure statistical robustness. (A) Colony PCR
Verification of the pET-30a-VP6 Recombinant Plasmid. (B) Induced Expression and Protein Purification of the Recombinant Strain
pET-30a-VP6-BL21(DE3)Plyss. (C) Recombinant VP6 protein was identified using an anti-His monoclonal antibody. (D) Recombinant VP6 protein was
verified with PORV-positive serum. (E) Serum antibody titers were determined via indirect enzyme-linked immunosorbent antibody assay(ELISA). (F)
Isotype and Subclass Characterization of mAbs 1C7/1D3. (G) Fluorescent Reactions of mAbs 1C7/1D3 to Three Genotypes of PORV (100 um).
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suggests intercontinental reassortment, necessitating updated
diagnostics and multigenotypic vaccines.

Specific amplification of the VP6 gene (1206 bp) of the G9
genotype HYuRO01 strain was performed, and the gene was cloned
into the pET30a vector (
bands corresponding to the target insert. Subsequent Sanger

). colony PCR confirmed positive

sequencing verified that the inserted sequence in the recombinant
plasmid exhibited complete identity with the target VP6 gene,
with no frameshift or missense mutations. A new recombinant
plasmid was obtained, named pET30-VP6. Coomassie Brilliant
Blue R-250 staining revealed that the recombinant strain pET30a-
VP6-BL21(DE3)Plyss expressed a protein of approximately 40 kDa
post-induction, consistent with the predicted molecular weight of
VP6. The recombinant protein was predominantly expressed in
inclusion bodies. Following purification via His-tag nickel affinity
chromatography, SDS-PAGE analysis demonstrated a single band

corresponding to VP6, indicating high purity ( ). Western
blot confirmed specific recognition of the recombinant VP6 protein
by both anti-His monoclonal antibodies ( ) and post-

immunization mouse serum ( ), confirming successful
expression and robust immunogenicity of the recombinant protein.
Following the third immunization, serum was collected via tail
vein bleeding and anti-VP6-specific antibody titers were measured

by indirect ELISA. All immunized mice exhibited antibody

Frontiersin

titers >1:64,000 ( ). The mouse with the highest titer
(1:128,000) was selected for splenocyte isolation and subsequent
PEG-mediated fusion with SP2/0 myeloma cells to generate
hybridoma cell lines. Positive hybridoma clones secreting anti-
PoRV VP6 antibodies were selected via indirect ELISA screening.
Three rounds of limiting dilution subcloning were performed
to ensure monoclonality, yielding two stable hybridoma cell
lines designated as mAbs 1C7/1D3. Immunoglobulin subclass
analysis revealed that both mAbs possess kappa light chains
and belong to the immunoglobulin (Ig) G1 isotype ( ).
The MA104 cells infected with PoRV were subjected to indirect
immunofluorescence assay (IFA) following standardized protocols.
Both monoclonal antibodies 1C7/1D3 exhibited intense and
specific fluorescence signals localized within the cytoplasm of
infected cells, confirming their capability to detect PoRV antigens
across three G-genotypes ( ). No fluorescent signals
were observed in uninfected control groups, demonstrating the
specificity of this detection method. These results substantiate
the value of these monoclonal antibodies as reliable diagnostic
tools for detecting multiple genotypes of porcine rotavirus
through IFA.

Matrix titration experiments established optimal conditions for
an indirect ELISA using mAb 1C7. PoRV VP6 antigen was coated
at 4pug/mL for 12-16h at 4 °C. Blocking used 5% skimmed milk
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TABLE 1 Clinical sample test results (Total Samples Tested: 190 porcine
serum).

Parameter The Commercially Concordance
developed available kit rate
ELISA
method
Positives 169 175 96.5%
Negatives 21 15

Detection rate 88.9% 92.1%

for 60 min at 37 °C. The mAb 1C7 primary antibody was diluted
1:20,000 and incubated for 60 min at 37 °C. The goat anti-mouse
IgG HRP conjugate secondary antibody was applied at 1:5,000
dilution for 45 min at 37 °C. This established method demonstrated
good repeatability. Testing eight PoRV-positive porcine sera in
duplicate on plates from the same batch yielded an intra-assay
coefficient of variation CV below 10 percent. Testing the same sera
on plates from different batches yielded an inter-assay CV also
below 10 percent. Furthermore, the method’s clinical reliability was
confirmed. When testing 190 porcine serum samples alongside the
Shenzhen Zhenrui Biotech Porcine Rotavirus Antibody Detection
Kit lot 100714, the developed ELISA detected 169 positives and
21 negatives, an 88.9 percent positive rate. The commercial
kit detected 175 positives and 15 negatives, a 92.1 percent
positive rate. The 96.5 percent concordance rate between methods
confirmed the established ELISA’s suitability for clinical detection
(Table 1).

Overall, this study reports the isolation of a G9-type PoRV
strain in Jiangxi Province, alongside the development of a
high-sensitivity recombinant VP6 protein and broadly reactive
monoclonal antibodies. Furthermore, a reliable ELISA detection
method is established as an effective alternative to commercial
kits. These advancements provide critical technical support
for enhanced epidemiological surveillance and targeted control
of PoRV.
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