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The hypothalamic–pituitary-ovarian (HPO) axis serves as the pivotal regulatory system 
governing reproduction in chickens. This study performed whole transcriptome 
sequencing on hypothalamus, pituitary, and ovarian tissues of Bian chickens to 
identify differentially expressed (DE) lncRNAs, miRNAs, and mRNAs (p < 0.05, FC > 2) 
between low- and high-laying groups. The hypothalamus exhibited 57 DE lncRNAs, 
86 DE miRNAs, and 36 DE mRNAs; the pituitary showed the highest numbers with 
206 DE lncRNAs, 234 DE miRNAs, and 528 DE mRNAs; while the ovary contained 
111 lncRNAs, 230 miRNAs, and 62 mRNAs. GO functional enrichment analysis 
indicated that trans-target genes of hypothalamic and pituitary DE lncRNAs were 
enriched in cell proliferation Biological process (BP) terms (e.g., cell cycle, mitotic 
cell cycle). Hypothalamic miRNA targets clustered in metabolic regulation (cellular 
metabolic process), whereas pituitary miRNAs governed transport processes 
(nitrogen compound transport, intracellular transport). DE mRNAs showed BP terms 
enrichment in serotonin biosynthesis process, pituitary gland development, and DNA 
integration. KEGG pathway enrichment analysis revealed that lncRNA targets were 
significantly enriched in Progesterone-mediated oocyte maturation and Oocyte 
meiosis pathways in both hypothalamus and pituitary, with additional enrichment 
in Cell cycle and DNA replication. Notably, miRNA target genes showed conserved 
enrichment in metabolic regulation-related pathways (Metabolic pathways, Cysteine 
and methionine metabolism) across all three tissues. Key enriched pathways for 
DE mRNAs included Steroid biosynthesis, Cortisol synthesis and secretion, and 
Hippo signaling pathway. Finally, we constructed lncRNA-mRNA and miRNA-mRNA 
pairwise interaction networks, as well as ceRNA regulatory networks, through 
which we identified key regulatory networks targeting critical DE mRNAs, including 
GATA4, SMAD3, FOXL2, INHBA, POU1F1, LHX3, SPP1, SNAP25, COLQ, and AMPH. 
These results elucidate the multi-tissue molecular mechanisms underlying egg-
laying performance in chickens, providing novel targets for improving poultry 
reproductive efficiency through marker-assisted breeding.
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1 Introduction

The hypothalamic–pituitary-ovarian (HPO) axis is a critical 
neuroendocrine network that regulates reproductive function in 
chickens (1, 2). The hypothalamus integrates environmental and 
internal signals, secreting gonadotropin-releasing hormone (GnRH), 
which then stimulates the anterior pituitary gland to synthesize and 
release luteinizing hormone (LH) and follicle-stimulating hormone 
(FSH) (3, 4). These gonadotropins subsequently act on the ovary, 
stimulating gametogenesis and the secretion of sex steroid hormones 
(5). Estradiol (E2), a key sex steroid produced by the ovaries, is 
essential for oocyte development, follicle maturation, and ovulation 
(6). Studies have shown that modern laying hens exhibit sustained 
pituitary sensitivity to GnRH, recurrent elevations in FSH mRNA 
levels, and cyclical rises in E2 levels, all of which support extended 
laying periods (7).

Beyond the core components of the HPO axis (GnRH, FSH, LH, 
steroid hormones), a complex interplay among other genes significantly 
influences reproductive function. One key player is KiSS-1 metastasis-
suppressor (KISS1), which encodes kisspeptin, a neuropeptide crucial 
for GnRH secretion and puberty onset (8). Mutations in KISS1 or its 
receptor, KISS1R (also known as GPR54), can lead to hypogonadotropic 
hypogonadism. Furthermore, genes involved in neurokinin B (NKB) 
and dynorphin signaling, such as tachykinin precursor 3 (TAC3) and 
prodynorphin (PDYN), respectively, interact with kisspeptin-expressing 
neurons in the arcuate nucleus, thus modulating GnRH pulsatility (9). 
Additionally, genes related to steroidogenesis, such as cytochrome P450 
family 19 subfamily A member 1 (CYP19A1) and hydroxy-delta-5-
steroid dehydrogenase, 3 beta- and steroid delta-isomerase 2 (HSD3B2), 
which encode enzymes involved in estrogen and progesterone 
biosynthesis, are essential for follicular development and ovulation (10, 
11). Li et al. (12) found that 7-dehydrocholesterol reductase (DHCR7) 
plays a crucial role in chicken follicular development and selection 
downstream of estrogen signaling, influencing granulosa cell 
proliferation, apoptosis, and differentiation and thereby advancing 
follicle maturation. These studies highlight the intricate genetic 
network beyond the classical HPO axis hormones that contributes to 
reproductive health and fertility.

The HPO axis is also influenced by factors such as metabolic 
and nutritional status and environmental conditions at the 
organism level, and endocrine and metabolic regulation, cytokines, 
signaling pathways, and epigenetic modifications at the cellular and 
molecular levels (13). Furthermore, accumulating evidence suggests 
that non-coding RNAs are critically involved in this sophisticated 
regulatory network, potentially exerting significant influence on the 
HPO axis and its control of reproductive processes (14, 15). For 
instance, He  et  al. (16) found that miR-7 selectively inhibits 
gonadotropin expression, synthesis, and secretion by targeting 
Raf1, and acts as a feedback switch regulated by GnRH (inhibitory) 
and estrogen (enhancing). In sheep, Leng et  al. (1) found that 
lncRNA SM2, which is highly expressed in the pituitary, regulates 
cell proliferation and gonadotropin (FSH/LH) secretion by 
sponging oar-miR-16b and modulating TGF-β/SMAD2 signaling. 
Another lncRNA, MSTRG 4701.7, was also reported to 

competitively regulate proliferation and apoptosis in chicken 
follicular granulosa cells by targeting the miR-1786/RORα 
pathway (17).

While traditional methods such as microarray analysis and 
Northern blotting are widely used for identifying genes or ncRNAs, 
their application has significant limitations, including low throughput, 
the inability to detect novel transcripts, and their time-consuming 
nature. Moreover, they cannot provide comprehensive insights into 
complex ncRNA regulatory networks (18–20). RNA-seq offers high 
sensitivity and specificity, enabling the identification of novel 
transcripts and the quantification of gene expression levels across 
different conditions. Employing RNA-seq analysis of pituitary 
transcriptomes in sheep with high and low prolificacy, Zheng et al. 
(14) identified 57 lncRNAs and 298 mRNAs showing differential 
expression between the two conditions. These RNAs were found to 
be functionally enriched in pituitary hormone-related pathways and 
reproductive processes. Chen et al. (21) conducted a genome-wide 
analysis of pituitary-derived circRNAs in pigs at pre-, peri-, and post-
puberty stages, and identified 5,148 circRNAs whose expression levels 
peaked during puberty onset and whose parental genes were enriched 
in pituitary-related pathways. Additionally, 17 differentially regulated 
circRNAs were found to be linked to miRNA-gene networks. These 
results provided insights into circRNA-mediated regulation of puberty 
timing in gilts. Fan et al. (22) analyzed expression profiles in Wuding 
chickens’ hypothalamus, pituitary, and ovary during laying and 
brooding, finding 590, 423, and 5,371 DE genes in these tissues, 
respectively. Li et al. (23) sequenced the pituitary transcriptome of 
Hy-Line Brown hens at 15, 20, 30, and 68 weeks of age, identifying 470 
DE-lncRNAs, 38 DE-miRNAs, and 2,449 DE-mRNAs.

However, research on the ncRNA-mediated regulation of 
reproduction and egg production in the HPO axis of chickens remains 
limited. In this study, we sought to elucidate the involvement of HPO 
axis-linked ncRNAs in modulating reproductive performance in layer 
hens. Using Chinese indigenous Bian chickens as the experimental 
model, we collected hypothalamic, pituitary, and ovarian tissues from 
hens exhibiting extremely high and extremely low egg production 
phenotypes. Through whole-transcriptome sequencing and 
bioinformatic analysis, we  aimed to systematically identify and 
characterize reproduction-related lncRNAs, miRNAs, and mRNAs 
within the HPO axis, thereby providing molecular insights into the 
regulatory mechanisms underlying avian reproduction.

2 Materials and methods

2.1 Animals

The Bian chicken is a prominent local breed in China, classified as 
a dual-purpose type for both meat and egg production. Originating 
from northern Shanxi Province and southern Inner Mongolia, the 
Bian chicken is characterized by its large egg weight, high-quality 
meat, and strong stress resistance. In 2011, the breed was included in 
the Animal Genetic Resources in China: Poultry. Bian chickens 
typically begin egg laying in September and reach peak production by 
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early November. The total egg output per bird was recorded from 
September to November (228 days of age), a period encompassing the 
onset of laying, the increase to peak production, and one month of 
sustained peak lay. From this population, 15 healthy hens with the 
highest egg production and 15 with the lowest egg production were 
selected as the high-yield group (mean ± SD: 45.33 ± 2.75 eggs) and 
the low-yield group (mean ± SD: 26.80 ± 3.08 eggs) (p < 0.01, 
Supplementary Table S1). Within each group, hens were randomly 
allocated to three biological replicates, with five birds per replicate. 
Hypothalamic, pituitary, and ovarian tissues were collected from each 
bird, with pooled samples prepared for each replicate group. This 
resulted in six experimental sample sets: hypothalamus (HH), 
pituitary (HP), and ovary (HO) from high-yield birds, paired with the 
corresponding tissues (LH, LP, LO) from their low-yield counterparts. 
All chickens were obtained from the Bian Chicken Breeding Farm of 
Shanxi Agricultural University. The study protocol received ethical 
approval from the Institutional Animal Care and Use Committee of 
Shanxi Agricultural University (Approval No. SXAU-EAW-
2023C. WW.011023199).

2.2 Sampling

All the chickens were euthanized via cervical dislocation. 
Subsequently, the head was removed, and an incision was made 
through the skull along the midline, exposing the brain. The 
hypothalamus was identified based on anatomical landmarks and then 
dissected using fine scissors and forceps. Immediately after the 
hypothalamus was collected, the pituitary gland was accessed by 
gently lifting it from the sella turcica at the base of the skull, and fine 
forceps were used to detach it from surrounding structures. For 
ovarian tissue collection, the abdominal cavity was opened to expose 
the left ovary. Cortical tissue was then isolated after carefully excising 
larger follicular structures, ensuring the purity of the collected samples.

2.3 RNA processing and sequencing

Total RNA was extracted from pooled tissue samples using TRIzol 
reagent (Invitrogen, Carlsbad, CA, United  States) following the 
manufacturer’s protocol for animal tissues. RNA quality was evaluated 
using the Agilent 2100 Bioanalyzer (Agilent Technologies), yielding 
RNA Integrity Numbers (RINs) ≥ 8.0, and further confirmed by 1.5% 
denaturing agarose gel electrophoresis. RNA concentrations were 
quantified via NanoDrop spectrophotometry. For lncRNA and mRNA 
sequencing library construction, ribosomal RNA (rRNA) was depleted 
using the Ribo-off rRNA Depletion Kit (Vazyme, Nanjing, China). 
Subsequent strand-specific library preparation for lncRNA sequencing 
was performed with the VAHTS Universal V6 RNA-seq Library Prep 
Kit for Illumina (Vazyme), following the manufacturer’s guidelines.

Small RNA library construction was performed using the 
NEBNext Small RNA Library Prep Set for Illumina (NEB, MA, 
United States). Following total RNA extraction, small RNA fragments 
(18–30 nt) were isolated via polyacrylamide gel electrophoresis 
(PAGE) gel excision and recovery. Adaptors were sequentially ligated 
to the 3′ and 5′ ends, followed by reverse transcription and PCR 
amplification. The final library was purified by PAGE gel excision to 
recover ~140-bp fragments, which were dissolved in EB solution.

Quality control for library integrity and yield for both the 
lncRNA and small RNA libraries was conducted using the Agilent 
2100 Bioanalyzer and the ABI StepOnePlus Real-Time PCR 
System (Life Technologies). Sequencing was performed on the 
Illumina HiSeq 4000 platform (Illumina, Inc., CA, United States) 
by Gene Denovo Biotechnology Co. (Guangzhou, 
Guangdong, China).

2.4 Sequencing data collection and analysis

Raw reads were filtered using fastp (24) to remove adapter 
sequences and low-quality bases, generating high-quality clean reads 
for downstream transcriptomic analyses. Bowtie2 (25) was used to 
map the clean reads obtained from the lncRNA sequencing library to 
the ribosomal RNA (rRNA) database, following which rRNA-aligned 
reads were removed. The remaining unmapped clean reads were 
subsequently aligned to the reference genome (GRCg6a) using 
HISAT2 (v2.1.0) (26) and assembled into transcripts with StringTie 
(v1.3.1) (27). These procedures enabled the identification of both 
annotated and novel transcripts. Novel transcripts were evaluated for 
coding potential using CNCI (28) and CPC (29), and those predicted 
to be  non-coding by both tools were retained as novel lncRNAs. 
Finally, the trans-target genes of lncRNAs were predicted using a 
rigorous screening criterion established based on correlation 
coefficients ≥0.98 between lncRNA and mRNA co-expression.

Blastall (v2.2.25) was first used to align small RNA clean tags to 
the GenBank (Release 209.0) and Rfam (Release 11.0) databases to 
exclude rRNA/scRNA/snoRNA/snRNA/tRNA contamination. Then, 
the clean reads were mapped to the reference genome using Bowtie 
(30) to remove exonic/intronic (potential mRNA degradation 
fragments) and repetitive sequences. The remaining clean tags were 
annotated against miRBase (release 22) to identify conserved miRNAs. 
Mirdeep2 software (31) was used to predict novel miRNAs by 
exploring the secondary structure, the Dicer cleavage site, and the 
minimum free energy of the unannotated small RNA tags. Candidate 
mRNA target genes were predicted with both Miranda (v3.3a) and 
TargetScan (v7.0), with only the intersecting hits commonly predicted 
by both tools selected for subsequent analysis. Differential expression 
analysis for mRNAs and lncRNAs was separately conducted using 
DESeq2 (32), while differential miRNA expression was analyzed with 
edgeR (33). Finally, Gene Ontology (GO) function and KEGG 
pathway enrichment analyses of target genes corresponding to the 
differentially expressed (DE) lncRNAs, miRNAs, and mRNAs were 
performed using the clusterProfiler R package.

3 Results

3.1 Quality control of sequencing data

A total of 1,639,957,796 raw reads were generated through 
lncRNA sequencing (Supplementary Table S2). After quality filtering, 
1,635,297,404 clean reads were retained, corresponding to an overall 
clean read rate of 99.71%. Each sample achieved a clean data ratio 
exceeding 99.63%. Sequencing quality metrics showed Q30 values 
above 91.51%, and GC contents ranging between 44.00 and 46.15%, 
consistent with RNA sequencing expectations. These results indicated 
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that the lncRNA sequencing data were of good quality and suitable for 
downstream analyses.

For miRNA sequencing, a total of 645,744,492 raw reads were 
generated, yielding 642,197,641 high-quality reads (99.45% of raw 
reads) after the removal of low-quality sequences 
(Supplementary Table S3). Following stringent filtering to remove 
reads lacking 3′ adapters, empty reads without detectable small RNA 
inserts, reads contaminated with 5′ adapters, and polyA-tailed reads 
(>70% adenine content), 629,596,293 clean reads were retained, 
corresponding to 98.03% of the high-quality reads. Sample-specific 
clean tags retention rates ranged from 94.58 to 98.60%, demonstrating 
that data processing was efficient and reliable.

3.2 Sequencing alignment results

Analysis of lncRNA sequencing alignment results demonstrated 
that rRNA contamination control was effective, with mapped rRNA 
reads accounting for less than 1.07% across all samples, while 
unmapped rRNA reads (valid reads) exceeded 99.16% 
(Supplementary Table S4). Among the valid reads, 94.37–95.67% were 
successfully mapped to the reference genome, indicative of high 
alignment efficiency. Regarding annotation regions, reads were 
predominantly enriched in exons (48.49–69.93%), with partial 
distribution in introns (25.46–43.99%) and intergenic regions (4.48–
8.92%), consistent with the transcriptional characteristics of lncRNAs.

For miRNA, sequencing alignment results showed an average 
total clean tag count (Total_Abundance) of 629.60 million 
(Supplementary Table S5), with tags in miRBase of chicken accounting 

for 51.99–74.93% (Exist_miRNA_Abundance). Tags aligned to other 
vertebrates’ miRBase constitute 4.51–10.20% (Known_miRNA_
Abundance) of the total clean tag count, and novel miRNAs represent 
0.05–0.09% (Novel_miRNA_Abundance). Base-edited miRNAs 
(Exist_miRNA_Edit_Abundance) comprised 13.59–23.65% (average 
18.22%) of the total miRNAs, indicating that editing events 
were prevalent.

3.3 Differential expression analysis

DE lncRNAs, miRNAs, and mRNAs between the low-yield and 
high-yield groups in hypothalamic, pituitary, and ovarian tissues of 
Bian chicken were identified using the criteria of p < 0.05 and fold 
change (FC) > 2 (Figures 1A–C). Compared to the low-yield group, 
the high-yield group exhibited 57 DE lncRNAs in the hypothalamus 
(33 upregulated, 24 downregulated), along with 86 DE miRNAs (26 
upregulated, 60 downregulated), and 36 DE mRNAs (19 upregulated, 
17 downregulated). The pituitary displayed the most pronounced 
changes, with 206 DE lncRNAs (33 upregulated, 173 downregulated), 
234 DE miRNAs (18 upregulated, 216 downregulated), and 528 DE 
mRNAs (35 upregulated, 493 downregulated), which showed a strong 
bias toward downregulation. In the ovary, we  identified 111 DE 
lncRNAs (59 upregulated, 52 downregulated), 230 DE miRNAs (30 
upregulated, 200 downregulated), and 62 DE mRNAs (49 upregulated, 
13 downregulated). Notably, this tissue featured the highest number 
of upregulated lncRNAs and mRNAs.

Venn diagrams were used to visualize the distribution of DE 
RNAs between low- and high-yield groups across the hypothalamus 

FIGURE 1

Results of lncRNA, miRNA, and mRNA differential expression analysis. (A) The number of differentially expressed (DE) lncRNAs in hypothalamus, 
pituitary and ovary; (B) The number of DE miRNAs in hypothalamus, pituitary and ovary; (C) The number of DE mRNAs in hypothalamus, pituitary and 
ovary; (D) Venn diagram of DE lncRNAs; (E) Venn diagram of DE miRNAs; (F) Venn diagram of DE mRNAs.
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(LH vs. HH), pituitary (LP vs. HP), and ovary (LO vs. HO). For 
lncRNAs, the pituitary featured the highest unique transcript count 
(202 lncRNAs), followed by the ovary with 109 and the hypothalamus 
with 51 (Figure  1D). Four lncRNAs were shared between the 
hypothalamus and the pituitary, and two were shared between the 
hypothalamus and the ovary. None was shared between the pituitary 
and the ovary or across all three tissues. Regarding miRNAs, the 
pituitary contained the highest number of unique miRNAs (132 
miRNAs), followed by the ovary (111 miRNAs) and the hypothalamus 
(34 miRNAs) (Figure 1E). Thirty-one miRNAs were common to all 
tissues. Additionally, two miRNAs were common to the hypothalamus 
and the pituitary, 19 were common to the hypothalamus and the 
ovary, and 69 were shared between the pituitary and the ovary. For 
mRNAs, the pituitary exhibited the greatest unique transcript count 
(520 mRNAs), while the hypothalamus had 31 and the ovary 55 
(Figure 1F). The pairwise overlaps included 3 mRNAs shared between 
the hypothalamus and the pituitary, 2 shared between the 
hypothalamus and the ovary (2 mRNAs), and 5 shared between the 
pituitary and the ovary; no mRNAs were common to all tissues.

3.4 GO functional enrichment analysis

A total of 545 lncRNA trans-target genes were identified in the 
hypothalamus, 2,783 in the pituitary gland, and 97 in the ovaries. 
Meanwhile, across the whole genome, a total of 8,199, 7,438, and 8,936 
miRNA target genes were predicted in the hypothalamus, pituitary 
gland, and ovaries, respectively. To further elucidate their functional 
roles, GO enrichment analysis was performed on the trans-target 
genes of the DE lncRNAs, the target genes of the DE miRNAs, and the 

DE mRNAs. The top 20 GO terms are shown in Figure 2 as both circle 
and bubble charts.

GO enrichment analysis of the DE lncRNA target genes across the 
hypothalamus, pituitary, and ovary revealed distinct tissue-specific 
patterns (Figures  2A–C; Supplementary Table S6). In both the 
hypothalamus and the pituitary gland, lncRNA target genes were 
significantly enriched in cell cycle-related terms within the GO 
Biological Process (BP) category, such as cell cycle, cell cycle process, 
mitotic cell cycle process, and mitotic cell cycle, indicating that 
lncRNAs in these tissues play a crucial role in the regulation of cell 
proliferation and division. In contrast, lncRNA target genes in the 
ovary were enriched in processes related to sensory perception, such 
as detection of chemical stimulus involved in sensory perception and 
detection of chemical stimulus, implying that they function in sensory 
signal transduction.

GO enrichment analysis of the DE miRNA target genes revealed 
tissue-specific functions (Supplementary Table S7). In the 
hypothalamus (Figure  2D), the miRNA targets were primarily 
associated with metabolic processes (cellular metabolic process and 
cellular protein metabolic process), suggesting that they play 
regulatory roles in cellular metabolism. The miRNA target genes in 
the pituitary gland were enriched in transport and localization 
processes, including nitrogen compound transport, intracellular 
transport, and regulation of localization, indicating that they are 
involved in nutrient and protein trafficking (Figure 2E). In the ovary 
(Figure 2F), meanwhile, the miRNA target genes showed enrichment 
in protein localization, metabolic processes, and cellular responses to 
chemical stimuli, with terms such as protein  localization, small 
molecule metabolic process, and cellular response to chemical 
stimulus being highly represented.

FIGURE 2

GO functional enrichment analysis results. (A–C) Circular plot of top 20 GO results for trans-target genes of DE lncRNAs in the hypothalamus, pituitary 
and ovary; (D–F) Circular plot of top 20 GO results for target genes of DE miRNAs in the hypothalamus, pituitary and ovary; (G–I) Bubble plot of top 20 
GO results for DE mRNAs in the hypothalamus, pituitary and ovary.
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GO enrichment analysis of the DE mRNAs across the 
hypothalamus, pituitary, and ovary revealed that they participated in 
a diverse range of biological processes (Supplementary Table S8). In 
the hypothalamus (Figure  2G), the DE mRNAs were found to 
be involved in RNA processing and neurotransmitter synthesis, as 
evidenced by their enrichment in RNA phosphodiester bond 
hydrolysis, endonucleolytic, and serotonin biosynthetic process. The 
DE mRNAs in the pituitary gland were enriched in developmental 
processes, including pituitary gland development, endocrine system 
development, and tissue development (Figure  2H). In the ovary 
(Figure 2I), the DE mRNAs were predominantly linked to processes 
such as DNA integration, RNA phosphodiester bond hydrolysis, 
endonucleolytic, and regulation of neurotransmitter levels. These 
results suggested that ovarian mRNAs are involved in complex 
interactions with pathogens and may also contribute to genetic 
information processing and neurological function.

In summary, a systematic analysis of GO enrichment results 
across the hypothalamus, pituitary, and ovary revealed that lncRNAs, 
miRNAs, and mRNAs exhibit tissue-specific enrichment profiles, 
reflecting their diverse biological functions and regulatory 
mechanisms. These findings provide valuable insights into the 
molecular underpinnings of tissue-specific physiological processes.

3.5 KEGG pathway enrichment analysis

In the hypothalamus and pituitary, DE lncRNA target genes were 
significantly enriched in direct reproduction-associated pathways 
(Figures 3A,B; Supplementary Table S9). In both the hypothalamus 
and the pituitary, these genes exhibited strong enrichment in 
Progesterone-mediated oocyte maturation and oocyte meiosis, 
processes that are critical for follicular development and ovulation. 
LncRNA target genes in the hypothalamus and pituitary were also 
prominently associated with other pathways, such as Cell cycle, DNA 
replication, and Adherens junction, suggesting that they play roles in 
cellular proliferation and signal transduction during reproduction. In 
contrast, ovarian DE lncRNA target genes were predominantly linked 
to immune/inflammatory pathways, reflecting their involvement in 
tissue-specific immune regulation of follicle integrity (Figure 3C).

In the hypothalamus, pituitary, and ovary, DE miRNA target 
pathways were found to be involved in both shared and tissue-specific 
regulation of reproductive processes (Figures  3D–F; 
Supplementary Table S10). Four pathways showed enrichment across 
all three tissues, namely, Metabolic pathways, Peroxisome, 
Endocytosis, and Cysteine and methionine metabolism. The universal 
enrichment of these pathways reflected fundamental requirements for 
energy metabolism, redox balance, signal transduction, and amino 
acid homeostasis across reproductive tissues. The hypothalamus and 
the pituitary exhibited unique co-enrichment in autophagy-animal, 
reflecting shared mechanisms for the maintenance of proteostasis in 
neuroendocrine cells under metabolic stress. The hypothalamus and 
the ovary exhibited exclusive convergence on reproductive-regulatory 
pathways, including Apoptosis, Circadian rhythm, and p53 signaling. 
The miRNA target pathways in the pituitary and the ovary showed 
unique co-enrichment in Chemical carcinogenesis-DNA adducts, 
emphasizing their mutual vulnerability to DNA damage and shared 
repair mechanisms in rapidly dividing secretory and follicular cells. 
For tissue-specific pathways, the hypothalamus featured 
neuroendocrine-specific regulators, including MAPK signaling 

pathway-fly, Apelin signaling, and FoxO signaling. The pituitary was 
distinguished by carbohydrate metabolism (Carbon metabolism, 
Glycolysis/Gluconeogenesis) and cytoskeletal organization 
(Regulation of actin cytoskeleton), aligning with its high energy 
demands for hormone secretion and exocytotic machinery. The ovary 
uniquely engaged Ferroptosis, Cell cycle, and Protein processing in 
endoplasmic reticulum, complemented by cellular senescence 
pathways relevant to reproductive aging.

A comparative analysis of differential mRNA-enriched KEGG 
pathways in the hypothalamus, pituitary, and ovary revealed both 
distinct and overlapping associations with reproduction (Figures 3G–
I; Supplementary Table S11). DE mRNAs in the hypothalamus and the 
ovary were enriched in several shared pathways, including the direct 
reproduction-related Serotonergic synapse, which modulates 
neuroendocrine signals in the hypothalamus and influences ovarian 
function. Additional shared enrichment included pathways such as 
Alcoholism, Systemic lupus erythematosus, and Fat digestion and 
absorption, which can indirectly affect reproduction through 
metabolic and immune dysfunction. The DE mRNAs in the pituitary 
and the ovary shared enrichment in two pathways, namely, 
ECM-receptor interaction (indirectly related via cell-matrix 
interactions) and the directly relevant Neuroactive ligand-receptor 
interaction, which is critical for hormone signaling in both tissues. In 
the hypothalamus, meanwhile, specific enrichment was observed for 
steroid biosynthesis and Parathyroid hormone synthesis, secretion, 
and action. Pituitary-specific DE mRNAs were enriched in Cortisol 
synthesis and secretion, a pathway that directly modulates the 
hypothalamic–pituitary-gonadal (HPG) axis by fine-tuning 
reproductive hormone release. In the ovary, DE mRNAs showed 
exclusive enrichment in signaling pathways regulating pluripotency 
of stem cells and the Hippo signaling pathway, highlighting their 
importance in gametogenesis.

3.6 Interaction network analysis of the 
differentially expressed RNAs

To further understand the interactions among the DE RNAs, 
we  constructed interaction networks between DE lncRNAs and 
trans-DE mRNAs, as well as between DE miRNAs and DE mRNAs. 
In these networks, lncRNA and miRNA node sizes represented their 
connectivity degree, while mRNA node sizes represented their 
expression abundance. In the hypothalamic network (Figures 4A,B), 
the GATA4 gene exhibited the highest abundance. Furthermore, it 
connected to the lncRNAs ENSGALT00000093830 and 
MSTRG.8413.3, both sharing the highest degree of connectivity 
(Figure  4A). GATA4 also interacted with 13 miRNAs, including 
miR-136-x, miR-1983-z, and miR-1843-x (Figure 4B).

A substantial number of DE lncRNA-DE mRNA and DE 
miRNA-DE mRNA pairs were generated in the pituitary, and the 
top  10 lncRNAs and miRNAs with the highest connectivity were 
selected for visualization. Figure 4C shows that among the highly 
abundant genes, SMAD family member 3 (SMAD3), family with 
sequence similarity 189 member A2 (FAM189A2), LIM homeobox 3 
(LHX3) and phospholipase B domain containing 1 (PLBD1) were 
potentially associated with pituitary-regulated reproduction. Further 
analysis revealed that they all interacted with the top  10 most 
abundant DE lncRNAs. Within the miRNA-mRNA interaction 
network (Figure 4D), Y-box binding protein 3 (YBX3) showed the 
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highest expression abundance as a target of novel-m0091-3p. 
Additionally, the highly expressed genes lysosomal protein 
transmembrane 4 beta (LAPTM4B) and forkhead box L2 (FOXL2), 
potentially implicated in pituitary function regulation, were identified 
as targets of gga-miR-1664-3p and novel-m0316-5p, respectively. 
Notably, novel-m0316-5p ranked among the miRNAs with the highest 
connectivity in the network.

Finally, in the DE lncRNA-DE mRNA interaction network in 
ovarian tissue, the most abundant mRNA was similarity 135 member 
B (FAM135B), followed by secreted phosphoprotein 1 (SPP1) and 

collagen like tail subunit of asymmetric acetylcholinesterase (COLQ) 
(Figure  4E). All three genes are potentially involved in ovarian 
development and reproduction. In the DE miRNA-DE mRNA 
network in the same tissue, we  identified synaptosome associated 
protein 25 (SNAP25) as the most abundant gene, and it was targeted 
by miR-497-x, miR-457-x, and miR-672-y, with the latter exhibiting 
the highest connectivity (Figure 4F). Additionally, the AMPH gene, 
potentially involved in the regulation of ovarian reproduction, was 
identified as a target of several miRNAs, including miR-653-x and 
miR-200-y.

FIGURE 3

KEGG pathway enrichment analysis results. (A–C) Top 20 KEGG results for trans-target genes of DE lncRNAs in the hypothalamus, pituitary and ovary; 
(D–F) Top 20 KEGG results for target genes of DE miRNAs in the hypothalamus, pituitary, and ovary; (G–I) Top 20 KEGG results for DE mRNAs in the 
hypothalamus, pituitary, and ovary.
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3.7 Competing endogenous RNA 
regulatory network analysis

The competing endogenous RNA (ceRNA) regulatory mechanism 
represents a key interaction framework among lncRNAs, miRNAs, 
and mRNAs, serving as an important pathway through which 
miRNAs and lncRNAs exert their functional roles. Consequently, 
we undertook a comprehensive ceRNA regulatory network analysis 
involving DE lncRNAs, DE miRNAs, and DE mRNAs in hypothalamic, 
pituitary, and ovarian tissues, and constructed corresponding Sankey 
diagrams to visualize these regulatory relationships. In those figures, 
lncRNA, miRNA and mRNA sizes represented their connectivity 
degree. In the hypothalamus, we  identified 30 ceRNA regulatory 
relationship pairs (Figure  5A), involving 19 DE lncRNAs, 14 DE 
miRNAs, and 6 DE mRNAs. GATA4 exhibited the highest degree of 
connectivity among the mRNAs within the regulatory network, 
suggesting that it may play a potentially critical role in hypothalamic 
function. It was modulated upstream by gga-miR-1746, which showed 
the greatest connectivity among the miRNAs. This miRNA interacts 
with multiple lncRNAs, including ENSGALT00000092809 and 
MSTRG.3494.2. Additionally, we found that lncRNAs targeting the 
miR-448-y-PMCH axis may also influence ovarian development and 
function by modulating hypothalamic activity.

In the pituitary tissue, a total of 14,935 ceRNA regulatory 
relationship pairs were predicted based on the targeting relationships 
among DE lncRNAs, DE miRNAs, and DE mRNAs. Subsequently, 
we selected the top 100 pairs based on lncRNA-mRNA expression 
correlation for visualization, as shown in Figure 5B. The genes POU 

class 1 homeobox 1 (POU1F1) and inhibin beta A subunit (INHBA) are 
closely associated with pituitary regulatory function, and they were 
predicted to be  targeted by the miRNAs novel-m0316-5p and 
miR-193-x, respectively. Novel-m0316-5p exhibited targeting 
relationships with the lncRNAs exhibiting the highest connectivity, 
namely, MSTRG.12676.1 and MSTRG.13102.1, while miR-193-x was 
only predicted to target lncRNA MSTRG.13102.1. Additionally, three 
genes MSTRG.1296, MSTRG.10849, and MSTRG.21391, which 
displayed the greatest degree of connectivity, may also influence 
pituitary function, suggesting that ceRNA-targeted lncRNA-miRNA 
pairs that regulate the expression of these three genes may play 
significant roles in this process.

In ovarian tissue, we similarly constructed a ceRNA regulatory 
network comprising the top  100 DE lncRNA-DE mRNA pairs 
showing the strongest expression correlation (Figure  5C). This 
network included 36 DE lncRNAs, 40 DE miRNAs, and 13 DE 
mRNAs. The gene synaptosome associated protein 25 (SNAP25) 
directly influences ovarian function, making the 
ENSGALT00000104049/ENSGALT00000097653-miR-457-x-SNAP25 
and ENSGALT00000097653-miR-9343-z-SNAP25 ceRNA regulatory 
axes particularly significant. MiR-195-x exhibited the highest degree 
of connectivity among the miRNAs, targeting the mitochondrial 
enolase superfamily member 1 (ENOSF1), TNF receptor superfamily 
member 13B (TNFRSF13B), and dopa decarboxylase (DDC) genes, all 
of which may participate in ovarian function regulation. Upstream, 
miR-195-x showed targeting relationships with 14 highly connected 
lncRNAs, including MSTRG.4534.1, MSTRG.18452.1, 
and ENSGALT00000100739.

FIGURE 4

Differentially expressed (DE) RNA interaction network diagram. (A,C,E) Network of DE lncRNA-DE mRNA in the hypothalamus, pituitary, and ovary; 
(B,D,F) Network of DE miRNA-DE mRNA in the hypothalamus, pituitary, and ovary.
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FIGURE 5

CeRNA interaction network diagram of DE lncRNAs, DE miRNAs, and DE mRNAs. (A) Sankey diagram of ceRNA relationship for hypothalamus; 
(B) Sankey diagram of ceRNA relationship for Pituitary; (C) Sankey diagram of ceRNA relationship for ovary.
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4 Discussion

Eggs are a globally significant food source, providing high-quality 
protein, essential vitamins (e.g., A, D, E, and B), and minerals (e.g., 
iron and selenium) crucial for human health and development (34–
36). Their nutritional value makes them particularly important in 
combating malnutrition, especially in developing countries (37, 38). 
However, egg production in poultry is a complex process influenced 
by numerous factors, including genetics, nutrition (feed quality and 
availability), environmental conditions (temperature, light, and 
housing), the bird’s overall health, and management practices (34, 
39–41). These factors collectively impact the physiological 
mechanisms that regulate reproduction in hens. At the core of these 
mechanisms is the intricate interplay between hormones and neural 
signals, which govern egg development and release (42). Central to 
this process is the HPO axis, a neuroendocrine system that 
orchestrates reproductive function (13).

To further unravel the molecular mechanisms by which the HPO 
axis regulates egg production, we  employed whole-transcriptome 
sequencing of hypothalamic, pituitary, and ovarian tissues collected 
from high-yield and low-yield Bian chickens, systematically profiling 
the expression patterns of lncRNAs, miRNAs, and mRNAs. In this 
study, tissues from five hens were pooled, forming one biological 
replicate. While this approach may reduce statistical power and 
obscure individual variations, rigorous quality control and 
standardized protocols ensured that the pooled samples reliably 
reflected population-level characteristics. Differential expression 
analysis across hypothalamic, pituitary, and ovarian tissues revealed 
distinct regulatory patterns for lncRNAs, miRNAs, and mRNAs 
between low- and high-yield groups. The pituitary exhibited the 
highest total number of DE RNAs (206 lncRNAs, 234 miRNAs, and 
528 mRNAs), with downregulated molecules predominating in the 
high-yield group. In contrast, the ovary showed the most upregulated 
RNA species (59 lncRNAs, 30 miRNAs, and 49 mRNAs). The 
hypothalamus had the lowest number of DE molecules (57 lncRNAs, 
86 miRNAs, and 36 mRNAs).

Analysis of the top 20 GO terms showed that lncRNA functions 
exhibit profound tissue-specific specialization. In neuroendocrine 
tissues (hypothalamus, pituitary), lncRNAs uniformly regulated cell 
proliferation, as indicated by their observed enrichment in the BP 
terms cell cycle, cell cycle process, mitotic cell cycle process, and 
mitotic cell cycle. Cell proliferation and mitosis are indispensable for 
the development, functional integration, and homeostasis of the 
hypothalamus and pituitary gland, which support both the precise 
differentiation of endocrine cell types and the dynamic adaptation to 
physiological demands required for proper regulation of critical 
neuroendocrine functions (43, 44). In the hypothalamus, miRNAs 
showed the broadest metabolic control, specifically in cellular 
metabolic process and cellular protein metabolic process. This is 
consistent with the role of the hypothalamus as a metabolic integrator 
crucial for physiological functions such as reproduction, energy 
balance, and thermoregulation (45, 46). DE Pituitary miRNAs were 
uniquely enriched in transport-related processes, including nitrogen 
compound transport and intracellular transport. These processes are 
closely linked to pituitary endocrine secretion via the regulation of 
hormone synthesis, vesicle trafficking, and calcium-dependent 
exocytosis, which are essential for the proper release of hormones 
such as LH and GH (47–49). In the hypothalamus, DE mRNAs were 

predominantly enriched in neurodevelopmental processes (serotonin 
biosynthesis process) and nucleic acid metabolism (RNA 
phosphodiester bond hydrolysis, endonucleolytic), aligning with its 
neuromodulatory functions (50, 51). In the pituitary, meanwhile, the 
DE mRNAs were mainly associated with developmental 
morphogenesis (pituitary gland development, endocrine system 
development, and tissue development). In the ovary, enrichment 
analysis of DE lncRNA target genes, DE miRNA target genes, and DE 
mRNAs also highlighted several important BP terms, such as detection 
of chemical stimulus, protein  localization, nitrogen compound 
transport, and RNA phosphodiester bond hydrolysis, endonucleolytic. 
The interplay among these processes reflects the ovary’s capacity for 
dynamic adaptation to environmental signals and precise metabolic 
regulation (52).

KEGG pathway enrichment analysis revealed that the trans-target 
genes of the DE lncRNAs were enriched in the Progesterone-mediated 
oocyte maturation and oocyte meiosis pathways in both the 
hypothalamus and the pituitary. Progesterone-mediated oocyte 
maturation is a key step in the reproductive cycle, ensuring that the 
oocyte reaches a state of readiness for fertilization. Progesterone plays 
a dual role in this process through both genomic and non-genomic 
signaling pathways (53, 54). Oocyte meiosis is a highly regulated 
process essential for the production of haploid gametes, which 
safeguards genetic diversity and enables successful fertilization (54, 
55). Additional pathways enriched in both the hypothalamus and the 
pituitary included Cell cycle, DNA replication, and Adherens 
junctions. Cell cycle and DNA replication pathways are related to cell 
proliferation, analogous to the previously mentioned enriched GO BP 
terms. Adherens junctions are cell structures crucial for cell–cell 
adhesion, tissue organization, and signal transduction (56). They likely 
contribute to the proper functioning of the hypothalamus and the 
pituitary by maintaining tissue integrity, influencing signaling 
pathways, and regulating cell polarity (57), all of which are essential 
for hormone production and the regulation of the HPO axis.

In the hypothalamus, the pituitary, and the ovary, KEGG 
enrichment analysis relating to DE miRNA target genes revealed 
several key overlapping pathways, such as Metabolic pathways, 
Endocytosis, Peroxisome, and Cysteine and methionine metabolism. 
Metabolic pathways are fundamental for cellular energy and 
biosynthetic processes, supporting the high energy demands of 
reproductive processes (58, 59). Endocytosis is important for receptor-
mediated signaling, which is involved in hormone regulation (60, 61). 
Peroxisome pathways contribute to both lipid and reactive oxygen 
species metabolism, processes important for steroidogenesis and 
follicular development (62, 63). Cysteine and methionine metabolism, 
a component of amino acid metabolism, influences antioxidant 
capacity and methylation processes, thereby affecting reproductive 
functions (64–66). Shared enrichment between the hypothalamus and 
the ovary was also observed for Apoptosis, p53 signaling pathway, and 
Circadian rhythm. Apoptosis and p53 signaling are key regulators of 
follicular atresia and germ cell quality control (67–69), while the 
circadian rhythm pathway influences the timing of reproductive 
events (70, 71). We also identified unique enrichment patterns in 
individual tissues, such as the FoxO signaling pathway in the 
hypothalamus, Carbon metabolism in the pituitary, and Ferroptosis 
in the ovary.

In the KEGG enrichment results for DE mRNAs, pathways 
co-enriched across all three tissues were limited, while pairwise 
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overlaps uncovered integrated communication axes. Notably, DE 
mRNAs in the hypothalamus and ovary were both enriched in 
pathways with dual relevance, most notably Serotonergic synapse, 
which directly regulates neuroendocrine signaling in the 
hypothalamus, while potentially also influencing ovarian 
steroidogenesis (72). The DE mRNAs in the hypothalamus exhibited 
unique enrichment in steroid biosynthesis and Parathyroid hormone 
synthesis, secretion, and action pathways, emphasizing its dual 
function in neurotransmitter production and calcium homeostasis 
regulation. The pituitary-ovary axis demonstrated functional synergy 
through two key pathways: Neuroactive ligand-receptor interaction, 
which directly mediates hormone signaling in both tissues (73), and 
ECM-receptor interaction, which indirectly supports tissue 
remodeling during folliculogenesis by regulating cell-matrix 
interactions (74). The DE mRNAs in the pituitary were specifically 
enriched in Cortisol synthesis and secretion, which emerged as a 
critical regulator of the HPG axis, fine-tuning reproductive hormone 
release through stress feedback mechanisms (75). In the ovary, DE 
mRNAs were exclusively enriched in the Hippo signaling pathway and 
signaling pathways regulating pluripotency of stem cells, underscoring 
their central role in gametogenesis and follicular reserve maintenance, 
with Hippo-mediated follicular atresia ensuring oocyte quality control 
(76, 77).

To further clarify the interaction relationships among the DE 
RNAs, we constructed pairwise interaction networks for lncRNAs-
mRNAs and for miRNAs-mRNAs, along with a ceRNA regulatory 
network involving all three types of RNA. In the hypothalamus, 
we identified the GATA4 gene as a significant node appearing in both 
the lncRNA-mRNA and miRNA-mRNA interaction networks, as well 
as in the ceRNA regulatory network. The GATA4 gene, encoding a key 
hypothalamic transcription factor, regulates basal GnRH expression 
by binding to its enhancer region and coordinating transcription in 
synergy with OCT1/CEBPB (78). In mice, the conditional knockout 
of GATA4 in hypothalamic neurons and glia leads to reproductive 
abnormalities, mimicking conditions such as polycystic ovary 
syndrome (PCOS) (79). Additionally, we found that the lncRNAs-
miR-448-y-PMCH ceRNA axis may also be  a key regulator of 
hypothalamic function. The PMCH gene encodes the precursor for 
melanin-concentrating hormone (MCH), a hypothalamus-derived 
neuropeptide that functions as a key regulator of energy homeostasis, 
sleep architecture, and reward-related behaviors (80, 81). Studies have 
revealed that E2 reduces hypothalamic MCH neuron counts and 
serum MCH levels, while progesterone receptor blockade elevates 
MCH expression (82), indicating that reproductive hormones tightly 
regulate MCH expression to coordinate energy balance with 
reproductive demands.

In the pituitary gland, analysis of the lncRNA-mRNA interaction 
network revealed that SMAD3 and LHX3 are directly associated with 
pituitary function, that of the miRNA-mRNA interaction network 
identified FOXL2 as functionally relevant, and that of the ceRNA 
regulatory network implicated POU1F1 and INHBA in pituitary 
regulation. SMAD3 mediates activin-induced transcription of the gene 
encoding the FSHβ subunit, which is essential for gonadal development 
and function (83). Additionally, SMAD3 regulates follistatin gene 
transcription in cooperation with FOXL2, further influencing activin 
bioavailability and FSH synthesis (84). INHBA encodes the inhibin βA 
subunit, which forms activin A, a key regulator of FSH synthesis in 
pituitary gonadotropes. Activin A stimulates Fshb (follicle stimulating 

hormone beta) transcription through SMAD3 and FOXL2 (85), while 
also regulating follistatin expression, thereby creating a feedback loop 
that modulates activin bioavailability (86). PRL, regulated by POU1F1, 
is essential for lactation and has inhibitory effects on GnRH secretion, 
which can impact reproductive cycles (87). In mice, LHX3 mutations 
lead to significant decreases in LH and FSH expression, resulting in 
hypogonadotropic hypogonadism (88). Within the ovarian lncRNA-
mRNA interaction network, we identified SPP1 and COLQ as genes 
associated with ovarian function. Concurrently, SNAP25 and AMPH 
emerged as key components in the miRNA-mRNA regulatory axis. 
Notably, SNAP25 was also detected as a target gene in the ceRNA 
network, suggesting that it has a multifaceted role in ovarian regulatory 
processes. In PCOS, SPP1 is highly expressed in granulosa cells and is 
associated with monocyte activation, which can lead to ovarian fibrosis 
(89). Additionally, SPP1, a target of SOX3, acts as a key signaling node 
that activates the PI3K/AKT pathway, thereby promoting granulosa 
cell proliferation and inhibiting apoptosis. This suggests that SPP1 may 
exert a promotive effect on female reproductive capacity (90). In 
PCOS, reduced expression of SNAP25 is associated with impaired 
exocytosis in granulosa cells, which may contribute to the 
pathophysiology of the disease (91). COLQ is primarily associated with 
the assembly of acetylcholinesterase tetramers, and its involvement in 
protein assembly and cellular processes suggests that it may potentially 
indirectly affect ovarian health (92). AMPH is expressed in endocrine 
cells and is involved in synaptic vesicle dynamics. While AMPH was 
not shown to directly affect ovarian function, its expression in 
endocrine tissues suggests that it may be  involved in hormonal 
regulation, which could indirectly impact ovarian function (93).

All the genes discussed above, along with their interacting DE 
lncRNAs and DE miRNAs, play essential roles in the HPO axis. 
Notably, additional genes that were noted to be highly expressed or 
highly connected in this axis, including FAM189A2, FAM135B, YBX3, 
and TNFRSF13B, along with their regulatory networks, demonstrate 
potential for modulating HPO axis activity.

5 Conclusion

This study systematically elucidated the molecular regulatory 
landscape of the HPO axis in Bian chickens, identifying tissue-specific 
differential expression patterns for lncRNAs, miRNAs, and mRNAs 
between the low-yield and high-yield groups. GO function and KEGG 
pathway analyses revealed key biological processes (cell proliferation, 
metabolic regulation, transport) and signaling cascades (progesterone-
mediated oocyte maturation, steroid biosynthesis, Hippo signaling) 
underlying reproductive performance in the chicken. The integration 
of lncRNA, miRNA, and mRNA networks highlighted critical 
regulatory interactions targeting reproduction-related genes (e.g., 
GATA4, SMAD3, FOXL2), providing novel molecular markers for 
improving poultry egg-laying efficiency via targeted breeding 
strategies. These findings advance our understanding of chicken 
reproductive regulation and offer actionable targets for breeding.
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