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As a conditional pathogenic bacterium, Escherichia coli is a major contributor
to infect calf diarrhea. It has attracted extensive attention due to antimicrobial
resistance (AMR) and pathogenicity. To elucidate the AMR profiles and resistance-
related genes in E. coli isolated from calf diarrhea samples in the Ulagai region E.
coli was isolated and identified from samples of calf feces using E. coli chromogenic
medium, Gram staining, and 16S rRNA sequencing. The antimicrobial susceptibility
was tested using the Kirby-Bauer disk diffusion method. Resistance genes were
analyzed using PCR. Additionally, strains showing severe multidrug resistance
were selected for whole-genome sequencing. Multidrug resistance was observed
in all 50 isolated E. coli strains. They were resistant to bacitracin, and 82% were
resistant to gentamicin. Strains 24, 27, 36, and 15 exhibited particularly high levels
of resistance. Analysis of resistance-related genes detected over 90% resistance
associated with TEM-1 and tetR and over 80% for CTXM-55, QacH, strB, and floR,
sul2 was observed in 100% of the isolates. Four strains indicated genome sizes of
5,144,828 bp, 4,798,224 bp, 4,813,249 bp, and 5,450,201 bp, respectively, harboring
5, 3, 6, and 2 plasmids. Prediction of antibiotic resistance genes revealed that
the isolates contained numerous resistance genes, strain 27 carried the highest
number (148 in total). All strains isolated from diarrheic calves exhibited multidrug
resistance and carried numerous resistance genes. Furthermore, the observation
of abundant mobile genetic elements in the strains increases the risk of horizontal
gene transfer of resistance genes, indicating the severity of issues faced by clinical
prevention and control measures.
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Escherichia coli, calf diarrhea, gut microbiota, resistance genes, whole-genome
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1 Introduction

Diarrhea in newborn calves is common, typically occurring
within the first few weeks after birth. It is associated with high
mortality rates and has significant effects on the economic efficiency
and development of the farming industry throughout the world (1-4).
Both infectious and non-infectious factors can contribute to calf
diarrhea, including poor management practices, the quality of animal
nutrition, and the health status of the dam. However, the major cause
is pathogenic infection (5-8).

E. coli is a commensal gut bacterium and a conditional pathogen.
Under normal conditions, it contributes to the maintenance of
intestinal homeostasis in the host. However, situations of reduced host
immunity or microbiota imbalances can activate the expression of
virulence genes, transforming it into a pathogen that causes diarrhea
or even systemic infection in calves (9-11). Animal husbandry has
relied heavily on antimicrobials for disease prevention and control.
However, the excessive and inappropriate use of antibiotics in livestock
and poultry farming has led to the emergence and spread of bacterial
resistance. This resistance is associated with increased abundance of
antibiotic resistance genes (ARGs) in pathogens, which not only
severely influences the effective prevention and treatment of disease
but also poses a serious threat to global public health security (12-14).
As a potential source, intermediate vector, and important reservoir of
ARGs, E. coli plays a crucial role in the dissemination of bacterial
resistance (15).

Horizontal gene transfer (HGT) is a key factor influencing the
spread of ARGs among bacteria. Mobile genetic elements (MGEs),
such as plasmids, transposons, and integrons, promote the
dissemination of ARGs through transduction, transformation, and
conjugation (16, 17). These elements carry various genes related to
microbial functions. Plasmids, which form part of the bacterial
genome, contain genetic information that can be self-transferred via
conjugation or assisted by other genomic elements, and are the
primary mediators of ARG transmission (18). Bacterial integrons are
genetic determinants containing components of site-specific
recombination systems that can recognize and capture mobile gene
cassettes, thereby also playing a significant role in mediating antibiotic
resistance (19). However, integrons lack the capability for autonomous
transfer and rely instead on associations with transposons and/or
conjugative plasmids, utilizing insertion sequences (IS) within these
elements as vectors for intra- or interspecies transmission (20, 21).
There are five classes of integrons involved in the transfer of ARGs, of
which Class I and II integrons are most commonly found in clinical
isolates (22). Recurrent antimicrobial resistance (AMR) in bacteria
represents a significant challenge in many developing countries.
MGEs not only mediate HGT of ARGs but also drive the diversification
of AMR bacteria, exacerbating the problem of resistance through this
dual role.

This study aims to investigate the AMR characteristics of E. coli
isolated from diarrheic calves in the Ulagai region of China. The
investigation involves the isolation and identification of resistant
strains, assessment of antimicrobial susceptibility, and analysis of
resistance-related genes, thereby providing a preliminary assessment
of the AMR status of E. coli from diarrheic calves in this region. The
findings will provide a basis and guidance for clinical treatment and
disease control in diarrheic calves in Ulagai and establish a foundation
for further research into the transmission of bacterial resistance.
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2 Materials and methods
2.1 Sample collection and strain isolation

From March to July 2023, 121 fecal samples were collected
aseptically from 1 to 2-week-old diarrheic Simmental calves in the
Ulagai region of Inner Mongolia. All fecal samples were collected
non-repetitively from calves exhibiting diarrhea symptoms for the
first time and without prior antibiotic treatment. The fecal samples
were inoculated onto E. coli chromogenic medium and incubated
at 37 °C for 12-18 h. Distinctive colored single colonies were
selected and repeatedly streaked for purification. The isolated
strains were identified using Gram staining and 16S rRNA
sequencing. Genomic DNA was extracted from the isolates using
a bacterial genomic DNA extraction kit (TransGen Biotech,
Beijing, China), followed by PCR amplification with 16S rRNA
primers. The amplification products were sequenced by Sangon
Biotech (Shanghai) Co., Ltd., and analyzed using the BLASTN
program on the National Center for Biotechnology Information
(NCBI) website (54). The E. coli quality control strain ATCC 25922
was kindly provided by the Laboratory of Pharmacology and
Toxicology, Medicine,  Jilin

College of  Veterinary

Agricultural University.

2.2 Antimicrobial susceptibility testing

The susceptibility of the isolates to 12 antimicrobial agents consist
of Kanamycin, Ofloxacin, Doxycycline, Cefotaxime, Norfloxacin,
Amikacin, Cefradine, Amoxicillin, Gentamicin, Bacitracin,
Cefoperazone/Sulbactam and Florfenicol was investigated according
to the standards recommended by the Clinical and Laboratory
Standards Institute (CLSI), using E. coli ATCC 25922 as the quality
control strain with the Kirby-Bauer disk diffusion method. The results
were interpreted according to the CLSI guidelines and the
manufacturer’s reference documentation for the susceptibility disks,
and were categorized as Susceptible (S), Intermediate (I), or Resistant
(R) (24). Strains resistant to three or more classes of antibiotics were

defined as multidrug-resistant (MDR) (25).

2.3 Detection of resistance genes

Genomic DNA of the isolated bacterial strains was extracted using
a commercial bacterial genomic DNA extraction kit according to the
manufacturer’s instructions (TransGen Biotech, Beijing, China).
Primers for E. coli resistance genes and virulence genes were designed
using Primer Premier 5.0 software, according to Wang Z (23).
Universal primers for the 16S rRNA gene were synthesized by Comate
Bioscience Co., Ltd. (Jilin, China) and subsequently employed in PCR
detection. The primer sequences and amplification conditions are
detailed in Supplementary Table 1. The presence of resistance genes in
the isolates was examined using PCR. The PCR reaction system
consisted of 12.5 pL of 2 x Fine Taq PCR SuperMix, 7.5 pL ddH,O,
1pL each of forward and reverse primers, and 3 pL DNA
template.2 x Fine Taq PCR SuperMix were synthesized by Vazyme
Bioscience Co., Ltd. (Jilin, China). The PCR reaction conditions were
95 °C for 5 min, 35 cycles at 94 °C for 30 s, 56 °C for 30 s, and 72 °C
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for 40's, followed by 72 °C for 10 min. The PCR products were
identified by 1.5% agarose gel electrophoresis.

2.4 Whole-genome sequencing of
multidrug-resistant strains

Genomic DNA of the isolated bacterial strains was extracted using
a commercial bacterial genomic DNA extraction kit according to the
manufacturer’s instructions 3edd (TransGen Biotech, Beijing, China),
and its concentration and quality were determined. Purity and
integrity were assessed using a Qubit spectrophotometer (Invitrogen,
Waltham, MA, USA) and a NanoDrop spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). Sequencing libraries were
prepared using the TruSeq DNA Sample Preparation Kit (Illumina,
San Diego, CA, USA) and the Template Preparation Kit (Pacific
Biosciences, Menlo Park, CA, USA). Genome sequencing was
performed by Personal Biotechnology Co., Ltd. (Shanghai, China)
using the Illumina NovaSeq (insert size 400 bp)sequencing platform,
yielding raw sequencing data (20). Data were filtered using
AdapterRemoval (Lindgreen, 2012) (58) and SOAPec (Luo et al,,
2012) (59). The filtered data were assembled using SPAdes (Bankevich
et al,, 2012) (60) and A5-miseq (Coil et al., 2014) (61) to construct
scaffold sequences and contigs (26, 28). The genomic sequences were
obtained after correction using Pilon software (62).

2.5 Data analysis

Gene prediction was performed using GeneMarkS v4.32 software
(30). The gene sequences were cross-referenced with the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) databases for functional annotation (31, 32). Resistance genes
were identified by comparing the sequences with the CARD database
using ResFinder software (33, 34). Plasmid replicon types in the
assembly results were identified using PlasmidFinder software (35).
TransposonPSI software was used to predict transposons in the
bacterial genomes (36). ISEScan software was used for the
identification and annotation of full-length or partial IS elements in
prokaryotic genomes (37, 38). IntegronFinder software was used to
identify integrons in the bacterial genomes (39).

2.6 Statistical analysis
Statistical analysis was performed using the GraphPad Prism 8
software package (Graph Software, San Diego, CA, USA). All data are

expressed as the mean + standard error based on three independent
experiments. A p-value < 0.05 was considered statistically significant.

3 Results
3.1 Identification of E. coli

Through bacterial isolation and identification, 50 suspected
strains were isolated on E. coli chromogenic medium and were
numbered 1-50. DNA was extracted from the isolates and amplified
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using 16S rRNA gene PCR, yielding specific bands of 1,369 bp. The
sequencing results were compared against the NCBI database using
BLAST, indicating over 99% sequence identity with E. coli, thereby
confirming the isolates as E. coli.

3.2 Results of antimicrobial susceptibility
testing

The antimicrobial susceptibility test results for the 50 E. coli strains
are shown in Table 1. Among all strains, nine exhibited resistance rates
exceeding 80%. Strains 15, 24, 27, and 36 sequenced isolates showed
the highest resistance levels, with rates of 83, 83, 92, and 92%,
respectively. Additionally, Strains 4, 5, 21, 31, 44, and 45 also
demonstrated considerable resistance, with rates as high as 75%.
Furthermore, all the strains exhibited MDR are shown in Table 2, and
all were resistant to bacitracin. The rates of resistance were gentamicin
82%, amikacin 78%, ofloxacin and norfloxacin 56%, doxycycline 44%,
cefotaxime 58%, amikacin and florfenicol 40%, and cefradine and
amoxicillin 60%. All the strains were susceptible to cefoperazone/
sulbactam (see Supplementary Table S2).

3.3 Detection of resistance genes

The resistance genes detected in the 50 E. coli isolates are shown
in Table 3. The sulfonamide-resistance gene sul2 had a detection rate
of 100%, while TEM-1, responsible for f-lactam resistance, and fetR
associated with tetracycline resistance had detection rates of 90% or
above. The MDR-associated gene QacH, the chloramphenicol-
resistance gene floR, the aminoglycoside-resistance gene strB, and the
B-lactam-resistance gene CTXM-55 had detection rates of 80% and
above. These results indicate that the predominant genes involved in
antimicrobial resistance in E. coli from diarrheic calves in the Ulagai
region are sul2, TEM-1, tetR, strB, QacH, floR, and CTXM-55.
Furthermore, the resistance phenotypes of most strains corresponded
to their genotypic resistance profiles.

TABLE 1 Drug sensitivity test results.

Name Number of drug-  Drug-resistance
resistance strains rate (%)
Kanamycin 40/50 80
Ofloxacin 29/50 58
Doxycycline 22/50 44
Cefotaxime 29/50 58
Norfloxacin 28/50 56
Amikacin 20/50 40
Cefradine 29/50 58
Amoxicillin 30/50 60
Gentamicin 41/50 82
Bacitracin 50/50 100
Cefoperazone/
Sulbactam 0750 0
Florfenicol 22/50 44
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TABLE 2 Drug sensitivity of all strains test results.

Strain No Drug- Strain No Drug-
resistance resistance
rate (%) rate (%)
2 58 27 92
3 17 28 50
4 75 29 33
5 75 30 83
6 25 31 75
7 50 32 67
8 33 33 25
9 17 34 83
10 25 35 4
11 67 36 92
12 25 37 83
13 58 38 67
14 50 39 58
15 83 40 67
16 83 41 50
17 25 42 67
18 33 43 33
19 17 44 75
20 67 45 75
21 75 46 50
22 25 47 50
23 50 48 83
24 83 49 67
25 67 50 67

3.4 Whole-genome sequencing of
multidrug-resistant strains

3.4.1 Genome assembly statistics

The WGS results for the 4 MDR strains revealed that Strain
24 had a total genome length of 5,144,828 bp, containing five
plasmids, with a G + C content of 50.61%. Strain 27 had a total
genome length of 4,798,224 bp, containing three plasmids, with
a G + C content of 50.66%. The total genome length of Strain 36
was 4,813,249 bp, with six plasmids and a G + C content of
50.65%, while the length of the Strain 15 genome was 5,450,201 bp
with two plasmids and a G + C content of 50.65%. The sequences
have been deposited in the NCBI Sequence Read Archive
(SRA) under the accession numbers CP195580-
CP195584, CP195607-CP195610, CP195776-CP195782, and
CP195330-CP195332 for Strains 24, 27, 36, and 15, respectively,
and are publicly accessible. Circular whole genome maps of the
four E. coli strains are shown in Figure 1. Comparative analysis of
the four genome maps revealed that Strain 15 exhibited advantages
in amino acid transport and metabolism, DNA replication/
recombination/repair, carbohydrate transport and metabolism,
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TABLE 3 Identified drug-resistance genes.

Drug resistance Number of Detection rate
gene detected (%)
QacH 40 80
qnrB 4 8
sull 20 40
tetA 39 78
TEM-1 45 90
qnrS 8 16
sul3 2 4
sul2 50 100
strB 44 88
aadA2 27 54
cmlA6 11 22
qnrD 35 70
CTXM-55 44 88
aadA5 14 28
AAC(3)-Tia 19 38
tetD 37 74
tetR 47 94
floR 40 80

and lipid transport and metabolism compared to the other three
strains, but was less efficient in the biosynthesis, transport, and
catabolism of secondary metabolites.

3.4.2 KEGG and GO functional annotation

KEGG pathway annotation was performed on the gene
sequences of the four E. coli strains. The results showed that the
annotated genes were primarily involved in metabolic pathways,
including amino acid synthesis and carbon metabolism. GO
functional annotation indicated that most genes were most
enriched in the molecular function category, particularly in RNA
binding, which is closely related to the life activities of the strains.
Compared to the other three strains, the genes in Strain 15
showed greater enrichment in metabolic functions (see
Supplementary Figures SIA-D).

3.4.3 Analysis of resistance genes

The prediction of resistance genes in the four E. coli strains 24,
27, 36, and 15 carried 152, 166, 162, and 50 resistance genes,
respectively. Among these, 135, 148, 137, and 49 resistance genes
were associated with the chromosomal genes, respectively, and 17, 18,
25, and 1 with the plasmid genomes. The total number of distinct
resistance gene types in the strains were 26, 28, 29, and 26,
respectively (see Supplementary Tables S3-56). The resistance genes
in the chromosomal genomes of the four strains mediated resistance
to fluoroquinolones, tetracyclines, aminoglycosides, f-lactams, and
macrolides, among others, while the genes in the plasmid genomes
mediated resistance to sulfonamides, quinolones, p-lactams,
aminoglycosides, and fosfomycin, among others. The mechanisms
associated with resistance to these antibiotics primarily included
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antibiotic efflux, modification-induced inactivation, target
replacement, and alteration of antibiotic targets.

3.4.4 Analysis of virulence genes

The prediction of virulence genes in the four E. coli strains 24, 27,
36, and 15 carried 314, 253, 263, and 988 virulence genes, respectively.
Among these, 299, 236, 246, and 988 virulence genes were associated
with the chromosomal genes, respectively, and 15, 17, 17 and 27 with
the plasmid genomes. The virulence genes in the chromosomal
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genomes of the four strains mediated resistance to Immune modulation,
Nutritional/Metabolic factor, Motility, Effector delivery system, and
Adherence, among others, while the genes in the plasmid genomes
mediated resistance to Adherence, Nutritional/Metabolic factor.

3.4.5 Multilocus sequence typing (MLST) analysis
MLST analysis identified three sequence types (STs): ST69,

ST744, and ST392, with ST744 being the predominant type. Plasmid

typing revealed that the four E. coli isolates collectively carried seven
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TABLE 4 Plasmid types.

10.3389/fvets.2025.1685829

SeqlD Database Plasmid Identity
plasmid1(E24) enterobacteriales IncFIB(AP001918) 98.68
plasmid1(E24) enterobacteriales IncFII (29) 100
plasmid1(E24) enterobacteriales IncFII(pCoo) 96.18
plasmid2(E24) enterobacteriales IncHI2 99.69
plasmid2(E24) enterobacteriales IncHI2A 99.52
plasmid3(E24) enterobacteriales IncY 99.61
plasmid4(E24) enterobacteriales IncI1-I(Alpha) 100
plasmid5(E24) enterobacteriales Col(pHAD28) 92.25
plasmid1(E27) enterobacteriales IncFIB(AP001918) 98.39
plasmid1(E27) enterobacteriales IncFIC(FII) 95.79
plasmid2(E27) enterobacteriales IncI1-I(Alpha) 100.00
plasmid3(E27) enterobacteriales IncN 99.81
plasmid1(E36) enterobacteriales IncFIB(AP001918) 98.39
plasmid1(E36) enterobacteriales IncFIC(FII) 95.79
plasmid1(E36) enterobacteriales IncN 100.0
plasmid2(E36) enterobacteriales IncFII(pHN7AS) 100.0
plasmid2(E36) enterobacteriales IncN 100.0
plasmid2(E36) enterobacteriales IncR 100.0
plasmid3(E36) enterobacteriales Incl1-I(Alpha) 99.3
plasmid4(E36) - - _
plasmid5(E36) - - -
Plasmid6(E36) enterobacteriales Col4401 95.45
plasmid1(E15) - - -
plasmid2(E15) enterobacteriales IncFIA(HI1) 95.08
plasmid2(E15) enterobacteriales IncFIB(AP001918) 99.27
Plasmid2(E15) enterobacteriales IncFII 95.83
Plasmid3(E15) enterobacteriales IncX1 98.66

plasmid types are shown in Table 4, among which IncF and IncI
plasmids were the most prevalent. The IncF-type plasmid was
present in all isolates, primarily belonging to the IncFIB and
IncFII subtypes.

3.4.6 Analysis of mobile elements

The MGE in the genomes were predicted and analyzed using
bioinformatics. The results showed that the MGEs in all four
strains were primarily IS, including a large number of repetitive
sequences (Figure 2). Complete integrons were found on plasmid
3 of strain 27 and on plasmids 1 and 2 of strain 36. The MGEs
involved in the transmission of resistance genes were mostly
insertion sequences, with most belonging to the IS6 family.
Horizontal transfer of these IS elements can regulate the expression
of resistance genes or assist in their horizontal transfer. Insertion
sequences involved in the horizontal transfer of resistance genes
were found on both the chromosome and plasmids 1, 2, and 4 of
strain 24, on the chromosome and plasmids of strain 27, and on
the chromosome and plasmids 1 and 2 of strain 36. However, none
of the four strains contained composite transposons (see
Supplementary Tables S7-S9).
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4 Discussion

Diarrhea in calves is common in the global cattle industry,
resulting in significant economic losses and severely hindering
the development of cattle farming (8, 40). A relatively high
incidence of calf diarrhea has been reported in Northeast China,
with enterotoxigenic E. coli (ETEC) being a major causative
agent. Antibiotics, the first-choice drugs for preventing and
treating animal diseases, play a crucial role in the treatment of
bacterial diseases. However, extensive long-term antibiotic use
has led to the development of increasingly severe bacterial
resistance, extension of the resistance spectra, and the frequent
emergence of MDR strains. The persistent increase in E. coli
resistance has become a growing public health safety concern
(41-47).

In this study, antimicrobial susceptibility testing of 50 E. coli
strains isolated from diarrheic calves in the Ulagai region indicated
varying degrees of resistance to 12 antibiotics. All isolates were
resistant to bacitracin, this is due to the fact that the drug has been
broadly administered in this area, over 80% were resistant to
gentamicin, and all exhibited MDR, although they remained
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susceptible to cefoperazone/sulbactam. In recent domestic studies,
Zhang et al. (44) reported high levels of antibiotic resistance genes,
including gyrB, blaTEM, floR, tetD, gyrA, catAl, and tetB, in 1685
diarrheic calves, with the quinolone resistance gene gyrB and the
p-lactam resistance gene blaTEM detected at 100%. Wang et al.
(23) analyzed MDR E. coli from diarrheic calves in the Tongliao
region and observed high levels of resistance, with resistance rates
to sulfadiazine sodium, enrofloxacin, and ciprofloxacin of up to
100%. The resistance genes TEM-1, TEM-206, strA, strB, gacH, and
blaCTX were all found to be 100%. Additionally, Yan et al. (45)
found highly resistant pathogenic E. coli in fecal samples from
diarrheic calves on farms around Hohhot, with resistance rates to
penicillin and ampicillin of 100%, and over 50% against
cephalosporins. In international studies, Srinivasan et al. (46)
reported that all of their 135 bovine E. coli isolates from New York
were MDR, with resistance rates to tetracycline, sulfisoxazole,
streptomycin, aztreonam, and ampicillin of 24.8, 34.1, 40.3, 97.7,
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and 98.4%, respectively, although they were susceptible to
cinoxacin and ciprofloxacin. Furthermore, Eldesoukey et al. (47)
found that all EPEC isolates from rectal swabs of diarrheic dairy
cows in Egypt were resistant, with rates of resistance to ampicillin,
tetracycline, cefazolin, and ciprofloxacin of 100, 89.3, 71, and
64.3%, respectively. A compilation of these findings suggests that
the differences in E. coli resistance profiles to various antimicrobials
across species and regions. Moreover, we observed a high overlap
between the resistance genes detected in the present study and
those reported from diarrheic calves in the Tongliao region. In
subsequent research, we will continue to monitor the resistance
profiles of E. coli strains isolated from diarrheic calves in Ulagai
and compare them with those from the Tongliao region.

Through virulence gene detection, the most prominent
findings in our data were the ten virulence gene pairs with a 100%
detection rate: iroN, ompT, hlyF, Iss-F1, phoA, luxS, pfs, fimC, iucD,
and ompA. Additionally, three genes—iutA, Irp2, and Iss-F2—had
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detection rates exceeding 90%. Among the remaining genes, fyuA
and hlyE were not detected (0% detection rate). These data provide
valuable support for the investigation of E. coli virulence genes in
diarrheic calves in the Ulagai region. A study by Uruguayan
scholars examining 21 E. coli virulence genes in fecal samples from
252 dairy calves found that the iucU, f17A, afa8E, papC, clpG, and
f17G(I1) genes were the most prevalent, with detection rates of
81.3, 48.4, 37.3, 35.7, 34.1, and 31.3%, respectively (56). Their
results indicated high detection rates for fimbrial adhesins, which
is consistent with previously mentioned studies and the findings of
the present research. Korean researchers (57), through detection
of E. coli virulence genes in pre-weaned calf feces, concluded that
the incidence of E. coli is age-related, but found no association
between E. coli pathogenic genes and calf age or diarrhea. This may
suggest that the mechanism of calf diarrhea related to E. coli is not
primarily reflected in the existing virulence genes, and the
underlying mechanisms may be more complex. Iranian scholar
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Reza Ghanbarpour, upon analyzing pathogenic genes in E. coli
isolated from dairy cattle, found that among the isolates, 11.81%
carried iucD, 9.44% possessed f17c-A, 9.44% had cnf2, 7.87%
contained f17b-A, 6.29% had afaD-8 and afaE-8, 3.14% carried
f17d-A, 0.78% had cnfl, and 0.78% possessed clpG. With the
exception of the clpG and f17d-A genes, which were found alone,
all other detected pathogenic genes existed in combinations with
other genes. No isolates contained genes for F17a-A, adhesins, P
or S fimbriae (58). Thus, from a global perspective, the detection
rates of adhesin-like virulence genes are not consistent, and actual
detection results still vary across different regions.n the study by
Shietal. (55), it was demonstrated that the diversity and abundance
of antibiotic resistance genes (ARGs) in diarrheic calves were
significantly higher than those in healthy calves. In the present
study, the diversity and abundance of annotated antibiotic
resistance genes were also higher in the diarrheic group compared
to the healthy group, further validating the complex relationship
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between diarrheic behavior in calves and the presence of antibiotic
resistance genes in their microbiota. In the functional annotation
results of virulence factors from the VFDB in this study, eight of
the top ten virulence genes—namely fdeC, entF, espX4, ompA, entE,
entD, kdsA, and fimA—are closely associated with E. coli. These
genes may be present in many bacteria, particularly E. coli, which
aligns with the findings of Shi et al. (55). This undoubtedly provides
strong evidence supporting the notion that virulence genes in the
gut microbiota of diarrheic calves may be predominantly
dominated by E. coli.

Cefoperazone/sulbactam is one of the widely used clinical
treatments for Gram-negative bacterial infections. However, due to its
long-term use and the increasing prevalence of multidrug resistance,
its antibacterial efficacy has significantly declined. Currently,
polymyxin B—a member of the colistin class—has become a last-line
monotherapy for infections caused by resistant strains (48, 49). MDR
in E. coli is associated with its resistance phenotype. The detection of

Frontiers in Veterinary Science

resistance genes revealed high prevalence and detection rates for genes
related to #-lactam, aminoglycoside, fosfomycin, and fluoroquinolone
resistance. Overall, the results of this study indicate a serious
antimicrobial resistance problem in E. coli within the Ulagai region,
which appears to be worsening over time. Therefore, optimization of
local measures for preventing and controlling resistance is
urgently needed.

Whole-genome sequencing (WGS) enables in-depth analysis
of the genetic information of resistant strains (50). In this study,
WGS of four MDR E. coli strains revealed that strains 24, 27, 36,
and 15 carried five, three, six, and two plasmids, respectively. GO
functional annotation of the four E. coli strains indicated
significant enrichment of ARGs in all three GO categories of
cellular components, metabolic processes, and molecular
functions. A greater number of genes in Strain 24, in particular,
were involved in metabolic activities, cell membrane and
cytoplasmic components, and transport functions, suggesting the
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importance of these processes in antibiotic efflux and the
prevention of uptake. The KEGG analysis showed significant
enrichment of the ARGs in pathways associated with signal
transduction, the processing of genetic information, amino acid
metabolism, and carbon metabolism, consistent with the GO
annotation results. Studies have shown that E. coli can develop
resistance through various mechanisms, especially those
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associated with efflux pumps, enzymatic modification, biofilm
formation, and altered cell membrane permeability. Predictions
using the CARD database showed that all four E. coli strains in
this study exhibited MDR, which was primarily linked to
antibiotic efflux. Strain 36 carried more ARGs on its plasmids
than the other three strains, and testing of itsantimicrobial
susceptibility confirmed resistance to multiple antibiotics.
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MGEs serve as critical vectors for the dissemination of AMR
in bacteria. They facilitate the horizontal transfer of ARGs
through various mechanisms, significantly accelerating the
evolution and spread of multidrug-resistant strains (51). In this
study, IncF and Incl plasmids were identified as the most
prevalent types among the four bacterial isolates subjected to
whole-genome sequencing. IncF plasmids are highly common in
Enterobacteriaceae, particularly in E. coli, and play an essential
role in mediating the transmission of blaCTX-M. Incl plasmids
are currently the most frequently reported vectors carrying the
mcr-1 gene. As self-transmissible conjugative plasmids, both IncF
and Incl types are capable of independent conjugative transfer
and can also co-transfer, thereby enhancing the flexibility and
efficiency of horizontal gene transfer and further promoting the
dissemination of resistance genes. Furthermore, the prediction of
gene islands identified numerous IS6 family insertion sequences.
IS enrichment may indicate that the gene island was recently
acquired through exogenous DNA capture (e.g., via phage,
plasmid, or conjugative transposons). IS elements encode
transposases that can mediate the cleavage, recombination, and
integration of gene islands, promoting their HGT within the
genome or between strains (52). Integron prediction identified
complete integrons on plasmid 3 of strain 27 and on plasmids 1
and 2 of strain 36. An integron is a mobile DNA molecule that,
through association with transposons or conjugative plasmids,
enables the horizontal spread of MDR genes among bacteria (53).
The prediction of these mobile elements indicates a risk of
horizontal transfer for the ARGs carried by the isolated strains.
But because of the sample size of strains in our study is relatively
insufficient. Therefore, continuous strengthening of the
monitoring of E. coli ARGs from diarrheic calves is essential to
effectively prevent future public health risks.

5 Conclusion

This study isolated, identified, and analyzed antimicrobial
resistance in E. coli from fecal samples from diarrheic calves in
the Ulagai region of China. The findings revealed high levels of
antibiotic resistance in the local E. coli population. The resistance
rate to bacitracin was 100%, and the detection rate of the ARG
sul2 was also 100%. Whole-genome sequencing demonstrated
that the four sequenced MDR strains carried plasmids harboring
ARGs, and these resistance genes were abundant within insertion
sequences. Furthermore, the plasmids of strains 27 and 36
contained complete integrons. The presence of these mobile
elements increases the risk of ARG transmission between
bacteria, leading to a significant increase in strain resistance.
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