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Multi-omics insight into muscle
quality divergence between
high-altitude Bayinbuluke sheep
and low-altitude Turpan black
sheep

Par Arshati Akhmiyati, Bin Chen, Yaling Yang, Lingling Liu* and
Wujun Liu*

College of Animal Science, Xinjiang Agricultural University, Uriimqji, China

This study aimed to identify phenotypic biomarkers associated with high-altitude
adaptation in Bayinbuluke sheep and to investigate the correlations between
serum biochemical parameters and muscle transcriptomic, metabolomic, and
proteomic profiles. Bayinbuluke sheep (raised at 3200 m) and Turpan black sheep
(raised at—154 m) were selected for the experiment. The results demonstrated
that, to adapt to the complex high-altitude hypoxic environment, Bayinbuluke
sheep enhance glycolytic flux to rapidly generate energy, suppress intramuscular
lipid synthesis, regulate lipid metabolic homeostasis to maintain energy balance,
and remodel metabolic networks. Specifically, the GPAT3 gene promotes neutral
cholesterol ester hydrolase 1 (NCEH1) through the glycerophospholipid metabolism
pathway, facilitating the hydrolysis of cholesterol esters and fatty acid esters,
thereby modulating systemic lipid metabolism. The FASN gene regulates energy
metabolism via the AMPK signaling pathway, increasing the levels of glycolytic
intermediates and markers such as nicotinamide adenine dinucleotide (NAD).
Meanwhile, L-lactate dehydrogenase (LDHB) enhances the glycolytic process
under hypoxic conditions through the HIF-1 signaling pathway, catalyzing the
conversion between lactate and pyruvate in muscle tissue to produce energy,
thereby supporting energy supply under high-altitude hypoxia. Additionally, the
GSTAL gene improves detoxification capability and antioxidant responses through
the drug metabolism—other enzymes system, alleviating oxidative stress damage.
This study systematically elucidates the molecular regulatory network underlying
high-altitude adaptation in Bayinbuluke sheep, providing a theoretical foundation
for enhancing the genetic adaptability of livestock resources in high-altitude
environments.
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1 Introduction

Lamb meat serves as an important source of high-quality protein, characterized by low
cholesterol and fat content, and is rich in protein and vitamins. With evolving dietary
consumption patterns, its contribution to total meat consumption in China has been gradually
increasing (1). Bayinbuluke sheep, commonly referred to as Chateng big-tailed sheep,
Bayinbuluke big-tailed sheep, or Bayinbuluke black-headed sheep, are primarily found in the
Bayinbuluke Grassland of the Xinjiang Uygur Autonomous Region in northwestern China (2),

01 frontiersin.org


https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2025.1682137&domain=pdf&date_stamp=2025-11-07
https://www.frontiersin.org/articles/10.3389/fvets.2025.1682137/full
https://www.frontiersin.org/articles/10.3389/fvets.2025.1682137/full
https://www.frontiersin.org/articles/10.3389/fvets.2025.1682137/full
https://www.frontiersin.org/articles/10.3389/fvets.2025.1682137/full
https://www.frontiersin.org/articles/10.3389/fvets.2025.1682137/full
mailto:linglingliu1988@xjau.edu.cn
mailto:wujunliu1026@xjau.edu.cn
https://doi.org/10.3389/fvets.2025.1682137
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2025.1682137

Akhmiyati et al.

with additional populations recorded in Hejing, Heshuo, Yanqi, Bohu,
Luntai, and Korla (3). Turpan black sheep, also known as Turpan
big-tailed black sheep, originated from long-term breeding and
natural selection involving crosses among Bayinbuluke, Kazakh, and
Karakul sheep in Tucksun County, Xinjiang Uygur Autonomous
Region (4). Altitude is a critical factor influencing meat quality and
has been shown to affect livestock meat traits through mechanisms
such as hormone levels, fat deposition, and muscle metabolism (5).
Studies suggest that mammals at high altitudes may generate energy
through enhanced proteolytic and glycolytic pathways compared to
those in lowland regions (6). However, the effect of altitude on the
meat quality of Bayinbuluke and Turpan black sheep remains
unexplored and warrants further investigation. Advances in molecular
biology have established proteomics as a powerful tool for studying
muscle biology (7). Proteomics involves the comprehensive
identification and quantification of the expression, structure, function,
localization, interactions, and post-translational modifications of all
proteins within a cell, tissue, or organism at a specific time (8).
Top-down proteomics (TDP), an emerging mass spectrometry
(MS)-based technique, enables holistic characterization of intact
protein forms (9). Metabolomics refers to the qualitative and
quantitative analysis of low-molecular-weight metabolites across
samples, linking differentially expressed metabolites to phenotypic
variations and facilitating the identification of key metabolic drivers
and preliminary mechanistic insights (10). It can elucidate interspecies
interaction mechanisms and discover novel bioactive metabolites.
Depending on the research objectives, metabolomics is categorized
into untargeted (global, unbiased profiling) or targeted (focused
quantification of specific metabolites) approaches (11). Serum
biochemical parameters are widely recognized as indicators of
metabolic and health status in animals (12). Evidence indicates that
these parameters are significantly correlated with meat quality,
influencing disease resistance, oxygen transport capacity, growth
performance, genetic traits, and metabolic specificity (13). Previous
research on Bayinbuluke sheep has focused solely on the effects of
feeding regimens on meat quality (14), while studies on the impact of
different altitudes remain unreported. This study integrates proteomic,
metabolomic, transcriptomic, and serum biochemical analyses to
systematically compare meat quality between Bayinbuluke sheep and
Turpan black sheep. The aim is to uncover protein-level differences
shaped by high- and low-altitude environments and to identify
molecular targets for improved meat sheep breeding.

2 Materials and methods

2.1 Experimental animals and sample
collection

This study employed 15 male Bayinbuluke sheep (BY group) and
15 male Turpan black sheep (TLF group), all 12 months of age and in
good health, as experimental subjects. Prior to slaughter, all animals
underwent a 24-h fast followed by a 2-h period of water deprivation.
Body weight was recorded for each animal. Approximately 100 g
samples were collected from three muscles: the longissimus dorsi (LD,
at the level of the 12th-13th thoracic vertebrae), the triceps brachii
(TB, lateral head at the mid-humerus), and the quadriceps femoris
(QF, mid-portion of the rectus femoris). All samples were immediately
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snap-frozen in liquid nitrogen and stored at —80°C for
subsequent analysis.

2.2 Measurement indicators and methods

2.2.1 Serum biochemistry analysis

Serum levels of the following biochemical parameters were
determined using commercial ELISA kits (Nanjing Jiancheng
China) in
manufacturer’s protocols: total protein (TP; g L™'), albumin (ALB; g
L"), superoxide dismutase (SOD; U mL™"), malondialdehyde (MDA;
nmol mL™"), glutathione peroxidase (GSH-PX; U mL™), catalase
(CAT; U mL™), total antioxidant capacity (T-AOC; mmol L), lactate
dehydrogenase (LDH; U L), alanine aminotransferase (ALT; U L™),
creatinine (Cr; pmol L™), uric acid (UA; pmol L), triglycerides (TG;

Bioengineering Institute, accordance with the

mmol L), total cholesterol (TC; mmol L), calcium (Ca; mmol L),
inorganic phosphate (Pi; mmol L"), and immunoglobulin G (IgG;
mg mL™).

2.2.2 Measurement of slaughtering performance

Measurement of pre-slaughter fasting live weight, carcass weight,
and other relevant indicators was conducted. The specific procedure
was as follows: the live weight of each sheep was measured before
slaughter. Following slaughter and bleeding, the carcass was processed
by removing the skin, hair, head, hooves, and internal organs, while
retaining the kidneys. The remaining weight was recorded as the
carcass weight. Subsequently, the slaughter rate was calculated based
on the collected data using the following formula: slaughter rate
(%) = (carcass weight of meat sheep / pre-slaughter fasting live weight
of meat sheep) x 100.

2.2.3 Determination of physical properties and
nutrient content of meat

The carcass weight was recorded, and 100 g of muscle tissue
samples were collected from each Bayinbuluke sheep (n = 15) and
Turpan black sheep (n = 15) for subsequent analyses of meat physical
properties and nutritional composition. Key measurements included
shear force, moisture content, and other relevant parameters to
evaluate meat quality attributes such as tenderness, pH, and color. All
testing procedures were performed in accordance with the relevant
Chinese national food safety standards (including but not limited to
GB 5009.3-2016, GB 5009.5-2016, and GB 5009.6-2016). Mineral
composition, including iron content, was determined based on
appropriate national standards (e.g., GB 5009.90-2016, GB 5009.92-
2016, GB 5009.93-2017, GB 5009.241-2017) (15).

2.3 Protein extraction

2.3.1 Animal tissues

The samples were removed from —80 °C and ground into a fine
powder in liquid nitrogen. Subsequently, an appropriate amount of the
powdered sample was transferred to a 1.5 mL centrifuge tube, followed
by the addition of lysis buffer (comprising 8 M urea, 1 mM PMSE, and
2 mM EDTA). The mixture was sonicated on ice for 5 min and then
centrifuged at 15,000 g for 10 min at 4 °C to collect the supernatant.
Finally, protein extraction was performed using the BCA kit (Shanghai
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Biyuntian Bio-Tech Co., Ltd.), and the protein concentration
was determined.

2.3.2 Protease desalting

A total of 100 pg of protein was aliquoted based on the quantified
concentration, and the volume was adjusted to 200 pL with 8 M urea.
Subsequently, dithiothreitol (DTT) was added to a final concentration
of 5 mM, and the mixture was incubated at 37 °C for 45 min to reduce
disulfide bonds. Alkylation was then conducted by adding
iodoacetamide to a final concentration of 11 mM, and the solution
was incubated in darkness at room temperature for 15 min. Next,
800 pL of 25 mM ammonium bicarbonate buffer and 2 pL of trypsin
(Promega, V5280) were added, and enzymatic digestion was carried
out overnight at 37 °C. After digestion, the peptide solution was
acidified to pH 2-3 using 20% trifluoroacetic acid (TFA) and desalted
using C18 stationary phase material (Millipore, Billerica, MA, USA).
Finally, the concentration of the desalted peptide samples was
determined using the Pierce™ Quantitative Peptide Detection
Reagent with Standards kit (Thermo Fisher Scientific).

2.4 LC-MS/MS detection

2.4.1 Nanolitre liquid chromatography detection

Samples obtained from Bayinbuluke sheep (# = 15) and Turpan
black sheep (1 = 15) were analyzed using a Vanquish Neo UHPLC
nano-flow liquid chromatography system. The mobile phases consisted
of 0.1% formic acid in water (A) and 0.1% formic acid in 100%
acetonitrile (B). Separation was achieved using a trap-analytical dual-
column configuration, which included a PepMap Neo Trap Cartridge
(300 pm x 5 mm, 5 pm) and an Easy-Spray™ PepMap™ Neo UHPLC
analytical column (150 pm x 15 cm, 2 pm). The analytical column was
maintained at 55 °C via an integrated oven. A sample aliquot of 200 ng
was loaded at a flow rate of 2.5 pL/min. The effective gradient duration
was 6.9 min, with a total instrument run time of 8 min.

2.4.2 Orbitrap astral mass spectrometer detection

Data-independent acquisition (DIA) mass spectrometry was
performed using a nanoscale Vanquish Neo liquid chromatography
system (Thermo Fisher Scientific) for chromatographic separation.
Following nanoscale HPLC separation, samples were analyzed with
an Orbitrap Astral high-resolution mass spectrometer (Thermo
Scientific). The mass spectrometer was operated in positive ion mode
with a precursor scanning range of 380-980 m/z. Full MS scans were
acquired at a resolution of 240,000 (at 200 m/z), with a normalized
automatic gain control (AGC) target of 500% and a maximum
injection time of 5 ms. MS?* analysis was conducted in DIA mode
using 299 scanning windows with an isolation window of 2 Th.
Higher-energy collisional dissociation (HCD) was applied with a
collision energy of 25%. The normalized AGC target for MS* was set
to 500%, with a maximum injection time of 3 ms (16).

2.5 RNA isolation and sequencing
2.5.1 Total RNA extraction and quality control

Total RNA was isolated from the triceps brachii, longissimus
dorsi, and quadriceps femoris muscles of Bayinbuluke sheep (1 = 15)
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and Turpan black sheep (n=15) using TRIzol reagent. RNA
concentration and purity were determined using a NanoDrop 2000
spectrophotometer, while RNA integrity was assessed with an Agilent
2,100 Bioanalyzer using the RNA integrity number (RIN). Only
samples with RIN values exceeding 8.5 and 285/18S rRNA ratios
above 0.7 were used for subsequent library preparation.

2.5.2 Library preparation and sequencing

Total RNA was digested with DNase I to remove genomic DNA
contamination, and mRNA was subsequently enriched using
Oligo(dT)-coupled magnetic beads. The purified mRNA was
fragmented, and double-stranded cDNA was synthesized and purified.
Following end repair, adenylation, and adapter ligation, cDNA
fragments of appropriate size were selected and amplified via PCR. The
quality of the libraries was assessed based on concentration and insert
size, with only those exceeding a final concentration of 2 nM being
retained for sequencing. Paired-end sequencing (2 x 150 bp) was
conducted on an Illumina NovaSeq 6,000 platform (Biomarker
Technologies, Beijing, China).

2.5.3 Quality control of raw sequencing data

The cDNA libraries constructed from RNA isolated from the
triceps brachii, longissimus dorsi, and quadriceps femoris muscles of
high-altitude Bayinbuluke sheep (n = 15) and low-altitude Turpan
black sheep (1 = 15) were sequenced on an Illumina high-throughput
platform. Following adapter removal and quality control steps, high-
quality clean reads were retained for subsequent bioinformatic analysis.

2.5.4 Alignment to the reference genome

Clean reads were aligned to the Ovis aries reference genome
(ARS-UI_Ramb_v3.0) using HISAT?2 to generate accurate genomic
mappings, including genomic distribution, alignment rate, and gene
structural information. The aligned reads were then assembled into a
reference-guided transcriptome using StringTie for subsequent
downstream analyses.

2.6 Statistics and analyses

To comprehensively characterize protein function, data-
independent acquisition mass spectrometry data were analyzed using
DIA-NN (v1.8.1) against the UniProt Ovis aries proteome database
(23,108 sequences), with identifications filtered at a false discovery
rate (FDR) < 1%. Proteins exhibiting a fold change (FC) > 1.5 or <
0.667 and a p-value < 0.05 were considered differentially abundant.
Both these proteins and the full set of identifications were subjected
to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis based on a hypergeometric test, using all
identified proteins as the background, to identify significantly
enriched functional terms. Metabolomic datasets are high-
dimensional and large in scale; thus, both univariate and multivariate
statistical approaches were applied. Differential metabolites were
screened using thresholds of variable importance in projection
(VIP) > 1.0, FC > 1.2 or < 0.833, and p < 0.05, with at least two
biological replicates. Serum biochemical parameters were analyzed
using independent-samples *#*-tests in SPSS Statistics 27.0 to assess
statistical significance, and results are expressed as mean =+
standard deviation.
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TABLE 1 Serum biochemical indices of Bayinbuluke and Turpan black
sheep.

10.3389/fvets.2025.1682137

TABLE 2 Results of slaughtering performance of Bayinbuluke sheep and
Turpan black sheep.

Items BY TLF Items BY TLF

Protein TP (g/L) 54.31 £ 7.05%* 38.63 + 4.09 Live-weight/kg 35.74 +3.91" 32,65+ 3.45

ALB (g/L) 28.59 £ 4.56%* 19.21 +2.76 Carcass weight/kg 16.38 + 2.24™ 1427 £ 1.95

SOD (U/mL) 148.45 + 22.50%* 93.09 + 10.80 Slaughter rate 0.46 + 0.03™ 0.44 + 0.04

GSH-PX (U/mL) 118.12 + 124.03* 38.69 +7.20

CAT (U/mL) 3.50 + 3.67%* 0.79 + 0.43 sheep (n = 15) (p < 0.05). No significant differences were observed in

CK (U/mL) 0.44 4 014" 0524 0.15 the remaining indicators (p > 0.05).

ALP (King 3 2 3 Hi . .. .

35.43 +12.19% 28.83 +8.44 .2.3 Histological characteristics of muscle tissue
it/100 mL - . . .

unit/100 mL) As shown in Table 3, the high-altitude Bayinbuluke sheep (1 = 15)

ALT (U/L) 1.77 £ 0.59% 1.2940.36 demonstrated significantly higher moisture content, increased shear

UA (pmol/L) 94.55 + 49.41°%% 4571 +14.32 force, and elevated iron concentration compared to the low-altitude

BUN (mmol/L) .44 + 0,977 358+ 0.73 Turpan black sheep (1 =15) (p < 0.05). In contrast, no significant
differences were observed in the remaining metrics between the two

T-BIL (pmol/L) 9.85 3.74"™ 7.85 £ 0.82 N .
groups (p > 0.05) (see Figure 1; Table 4).

y-GT (U/L) 72.45£21.29™ 76.90 + 16.30

GLU (mmol/L) 633+ 1.43%% 334101

TG (mmol/L) 0.41 £ 0.14%% 024+0.11 3.3 Proteomics

TC (mmol/L) 1.92 + 0.54%% 1.26 £0.24 . . . S
3.3.1 Results of differential protein screening in

For the same measure, data with a shoulder marker ** indicates a highly significant
difference (p < 0.01), with a shoulder marker * indicates a significant difference (p < 0.05),
and the abbreviation “ns” indicates a non-significant difference (p > 0.05).

3 Results
3.1 Serum biochemical indicators

Serum biochemical parameters of Bayinbuluke sheep (n = 15) and
Turpan black sheep (n = 15) are summarized in Table 1. Levels of TP
(g/L), ALB (g/L), SOD (U/mL), CAT (U/mL), T-AOC (mmol/L),
LDH (U/L), Cr (pmol/L), UA (pmol/L), GLU (mmol/L), TG
(mmol/L), and TC (mmol/L) were significantly higher in Bayinbuluke
sheep compared to Turpan black sheep (p < 0.01). Additionally, MDA
(nmol/mL), GSH-PX (U/mL), and ALT (U/L) were also notably
elevated in Bayinbuluke sheep (p < 0.05). The remaining indicators
showed no significant differences between the two breeds (p > 0.05).

3.2 Slaughter performance and
physicochemical properties of muscle

3.2.1 Refinement of slaughter performance

As presented in Table 2, no significant difference was observed in
pre-slaughter live weight between the two breeds, averaging 35.74 kg
for Bayinbuluke sheep (n = 15) and 32.65 kg for Turpan black sheep
(n = 15). Similarly, carcass weight did not differ significantly, with
values of 16.38 kg and 14.27 kg for Bayinbuluke and Turpan black
sheep, respectively (p > 0.05). Furthermore, both slaughter rate and
net meat rate were comparable between the two groups, with no
statistically significant differences (p > 0.05).

3.2.2 Physicochemical properties of muscle

As presented in Table 3, the high-altitude Bayinbuluke sheep
(n = 15) exhibited significantly greater moisture content, shear force,
and iron concentration compared with the low-altitude Turpan Black
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muscle tissue

Volcano plots identified 29 up-regulated and 43 down-regulated
differentially expressed proteins (DEPs) in the triceps brachii
(Figure 2A), 17 up-regulated and 51 down-regulated in the
longissimus dorsi (Figure 2B), and 111 up-regulated and 56 down-
regulated in the quadriceps femoris (Figure 2C).

3.3.2 KEGG pathway analysis of muscle tissue

KEGG pathway enrichment analysis of DEPs was conducted to
explore biological functions potentially related to ovine meat quality.
In the comparison BY2-B3 vs. TLF2-B3 (Figure 3A), 52 DEPs were
significantly enriched in 16 KEGG pathways (p < 0.05), four of
which—cholesterol metabolism, glycerophospholipid metabolism,
HIF-1 signaling, and AMPK signaling—were associated with lipid
metabolism. In BY-BZ vs. TLE-BZ (Figure 3B), 11 DEPs were enriched
in four pathways (p < 0.05), including AMPXK signaling, ferroptosis,
and the regulation of adipocyte lipolysis. For BY-G4 vs. TLF-G4
(Figure 3C), 166 DEPs were enriched in 14 pathways (p < 0.05),
among which cholesterol metabolism was also linked to lipid
metabolism. These pathways constitute major signaling and
biochemical networks involving the identified DEPs.

3.4 Metabolomics

3.4.1 Metabolomic differences in muscle tissue
Volcano plots (Figures 4A-C) identified 72 up-regulated and 172
down-regulated differential metabolites in the triceps brachii; 575
up-regulated and 126 down-regulated in the longissimus dorsi; and
238 up-regulated and 207 down-regulated in the quadriceps femoris.

3.4.2 Analysis of KEGG pathways in muscle tissue
KEGG pathway enrichment of differential metabolites was
performed to elucidate their potential roles in ovine meat quality. As
shown in Figure 5A, nine metabolites from the BY2-B3 versus
TLF2-B3 comparison were significantly enriched (p < 0.05) in the
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nucleotide-sugar ~ biosynthesis ~ and  pentose-glucuronate
interconversion pathways, both of which govern sugar and energy
metabolism essential for myogenesis and meat formation. In the
BY-BZ versus TLF-BZ comparison, five metabolites were significantly
enriched (p <0.05) in one pathway associated with xenobiotic
detoxification rather than with direct meat-quality traits (Figure 5B).
Six metabolites from the BY-G4 versus TLF-G4 comparison were
significantly enriched (p < 0.05) in three pathways: amino sugar and
nucleotide sugar metabolism, diabetic cardiomyopathy, and lysosomal
function (Figure 5C). Among these, the amino sugar and nucleotide
sugar metabolism pathway mirrors the molecular profile underlying
meat formation, whereas alterations in lysosomal activity regulate

myofibrillar protein turnover and consequently affect meat maturation.

3.5 Transcriptomics

3.5.1 Transcriptomic differences in muscle tissue
Differentially expressed genes (DEGs) were defined using

thresholds of |fold-change| > 1.5 and FDR < 0.01 (Figures 6A-C). In

the triceps brachii, 337 DEGs were identified, including 62

TABLE 3 Physicochemical properties of muscle of Bayinbuluke and
Turpan black sheep.

10.3389/fvets.2025.1682137

up-regulated and 275 down-regulated genes. In the longissimus dorsi,
748 DEGs were detected, of which 440 were up-regulated and 308
down-regulated. In the quadriceps femoris, 751 DEGs were identified,
comprising 128 up-regulated and 623 down-regulated genes.

3.5.2 KEGG enrichment analysis of muscle tissue

KEGG pathway enrichment analysis was conducted to investigate
the differentially expressed genes between high-altitude Bayinbuluke
sheep and low-altitude Turpan black sheep. In the comparison BY2-B3
vs. TLF2-B3 (Figure 7A), 337 genes were significantly enriched in 199
pathways (p < 0.05), among which five pathways were related to lipid
metabolism: drug metabolism - other enzymes, HIF-1 signaling,
AMPK signaling, pentose and glucuronate interconversions, and
glycerophospholipid metabolism. For BY-BZ vs. TLE-BZ (Figure 7B),
748 genes were assigned to 285 significantly enriched pathways
(p <0.05), including cholesterol metabolism, amino sugar and
nucleotide sugar metabolism, HIF-1 signaling, glycerophospholipid
metabolism, AMPK signaling, drug metabolism - other enzymes, and
pentose and glucuronate interconversions. In the BY-G4 vs. TLF-G4
comparison (Figure 7C), 751 genes were enriched in 250 pathways
(p <0.05), with lipid metabolism-related pathways such as drug
metabolism—other enzymes, glycerophospholipid metabolism,
amino sugar and nucleotide sugar metabolism, and AMPK signaling.
These pathways represent key biochemical and signaling networks
associated with the differentially expressed genes.

ltems BY TLF
Padding (%) 77.09 + 0.41% 76.94 + 0.75 3.5.3 Integrated analysis of multi-omics data
Shearing force (kef) 706 +2.20% 6214151 Differential analysis was performed separately on the
metabolomic, proteomic, and transcriptomic datasets. Significantly
Iron 16.41 + 1.00%** 15.76 £2.18 . . . . .
differentially expressed genes and proteins from transcriptomic and
g @ 5 @4’@"
O = G OF
FIGURE 1
Muscle organization of Bayinbuluke and Turpan black sheep. (A) Triceps brachii muscle tissue section from a Bayinbuluke sheep; (B) Longissimus dorsi
muscle tissue section from a Bayinbuluke sheep; (C) Quadriceps femoris muscle tissue section from a Bayinbuluke sheep; (D) Triceps brachii muscle
tissue section from a Turpan black sheep; (E) Longissimus dorsi muscle tissue section from a Turpan black sheep; (F) Quadriceps femoris muscle tissue
section from a Turpan black sheep.
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TABLE 4 Detection results of muscle tissue related data of Bayinbuluke and Turpan black sheep.

Laboratory animal

Longissimus dorsi

Organization

Triceps brachii

10.3389/fvets.2025.1682137

Quadriceps femoris
muscles

BY 1231.96 + 511.85%* 1605.78 + 663.31%* 1536.98 + 522.63%**
Muscle fiber area

TLF 77591 £ 268.74 786.25 £ 251.87 1921.17 £ 797.90

BY 35.15 + 8.08** 41.39 £ 8.75%* 38.77 £ 7.07%*
Muscle fiber diameter

TLF 28.64 £5.15 27.67 £4.85 43.34£9.63

For the same measure, data with a shoulder marker ** indicates a highly significant difference (p < 0.01), with a shoulder marker * indicates a significant difference (p < 0.05), and without a
shoulder marker indicates a non-significant difference (p > 0.05). BY-B3: Triceps brachii of the Bayinbuluke sheep; TLF-B3: Triceps brachii of the Turpan black sheep; BY-G4: quadriceps
femoris of the Bayinbuluke sheep, TLF-G4: quadriceps femoris of the Turpan black sheep; BY-BZ: longest dorsal muscle of the Bayinbuluke sheep, TLF-BZ: longest dorsal muscle of the Turpan
black sheep, same as the following figure.

A B

© Down regulated (43)  Not sig (3053) ® Up regulated (29) © Down regulated (51) © Not sig (3070) ® Up regulated (17) © Down regulated (56) ~ © Notsig (2958) ~ ® Up regulated (111)
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BY_vs_TLF BY_vs_TLF BY_vs_TLF
FIGURE 2

Volcano map of differential protein at different sites. (A) Volcano plot of differentially expressed proteins in BY-B3 vs. TLF-B3; (B) Volcano plot of
differentially expressed proteins in BY-BZ vs. TLF-BZ; (C) Volcano plot of differentially expressed proteins in BY-G4 vs. TLF-G4. Differential protein
volcano plots. Each dot represents an individual protein. Gray dots indicate proteins without significant differential expression, red dots represent
significantly up-regulated proteins, and blue dots indicate significantly down-regulated proteins.
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FIGURE 3

KEGG functional annotation analysis of the three sets of differentially expressed proteins. (A) Bubble plot of KEGG pathway enrichment analysis of
differentially expressed proteins in BY-B3 vs. TLF-B3; (B) Bubble plot of KEGG pathway enrichment analysis of differentially expressed proteins in BY-BZ
vs. TLF-BZ; (C) Bubble plot of KEGG pathway enrichment analysis of differentially expressed proteins in BY-G4 vs. TLF-G4. The bubble plot displays the
KEGG pathway enrichment analysis of differentially expressed proteins. The size of the bubbles corresponds to the number of DEPs, while the color
intensity indicates the level of statistical significance (darker red represents lower Q-value).

pathways commonly regulated across omics layers, pathways
significantly enriched (p < 0.05) in at least two omics datasets were

proteomic data were identified using a standard threshold (p < 0.05),
while significant metabolites were selected based on VIP > 1.0 and
p <0.05. KEGG pathway enrichment analysis was subsequently  extracted and defined as multi-omics intersection pathways. These

conducted for all significantly altered molecules. To identify biological ~ cross-omics pathways were visualized using a bubble plot (Figure 8).
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Volcano plot of differential metabolites among three muscle groups. (A) Volcano plot of differential metabolites in BY-B3 vs. TLF-B3; (B) Volcano plot
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KEGG functional annotation analysis of differential metabolites in three muscle groups. (A) KEGG enrichment analysis of differentially expressed
metabolites between BY-B3 and TLF-B3. (B) KEGG enrichment analysis of differentially expressed metabolites between BY-BZ and TLF-BZ. (C) KEGG
enrichment analysis of differentially expressed metabolites between BY-G4 and TLF-G4. The bubble chart displays the KEGG pathway enrichment
analysis of differentially expressed metabolites. The size of each bubble is proportional to the number of metabolites assigned to the pathway, and the

color intensity indicates the level of statistical significance, with darker red representing lower Q-values.

This analytical approach enabled clear identification of core
pathways—including glycerophospholipid metabolism, cholesterol
metabolism, and the AMPK signaling pathway—that were
significantly perturbed across multiple omics levels. These pathways
collectively form a multi-layered regulatory network within muscle
tissue, demonstrating considerable biological significance.

4 Discussion
4.1 Serum biochemical indicators

Serum biochemical indicators reflect the health and metabolic
status of animals and are closely correlated with nutrient uptake and
metabolism (17). This study compared serum biochemical profiles of
high-altitude Bayinbuluke sheep and low-altitude Turpan black sheep
to elucidate breed differences in meat-quality traits. Total protein (TP)
and albumin (ALB) maintain plasma osmolality and pH; their serum
levels indicate hepatic protein-synthetic capacity and overall
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nutritional status (18). In this study, the TP content (g/L) and ALB
content (g/L) were found to be significantly higher in Bayinbuluke
sheep compared to Turpan black sheep. It is hypothesized that this
differential expression of total protein may contribute to a greater
ability for muscle protein deposition in Bayinbuluke sheep. This
phenomenon could be linked to more active liver function, increased
efficiency of protein anabolism, or superior nutrient uptake, thereby
indirectly regulating muscle tissue growth and development.

The serum glucose (GLU) level (mmol/L) serves as an indicator of
the energy metabolism within the animal organism, representing a
primary substrate for ATP production and supplying the necessary
energy required by the host (19). Elevated GLU levels are indicative of
increased energy metabolism (20). Research has demonstrated that GLU
functions as an essential energy substrate that sustains tissue and organ
functionality, facilitating energy provision to the body through enhanced
glycolysis, thereby maintaining ATP levels (21). In this experiment, it was
observed that the serum glucose GLU content (mmol/L) in Bayinbuluke
sheep was significantly higher than that in Turpan black sheep. This
finding suggests that elevated energy metabolism in the muscle tissues
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more intense colors denoting greater statistical significance.

of Bayinbuluke sheep may promote glycolytic processes, consequently
enhancing ATP production efficiency within these muscles. This
observation aligns with previous findings discussed above.

Total cholesterol (TC) and triglycerides (TG) are crucial lipid
components in the blood. TG serves as the primary form of energy
storage in the body, playing a significant role in energy metabolism,
while TC is an essential precursor for cell membrane composition and
the synthesis of steroid hormones and vitamin D. Studies have
demonstrated that lipids are metabolized by the liver into TC and TG,
which subsequently enter circulation by binding to low-density
lipoproteins (22). High-density lipoprotein (HDL) facilitates the
transport of TC deposited within the inner walls of blood vessels back
to the liver for lipid metabolism, thereby preventing atherosclerosis
(23). In this study, serum total cholesterol levels (mmol/L) and
triglyceride concentrations (mmol/L) were found to be significantly
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higher in Bayinbuluke sheep compared to Turpan black sheep. It is
hypothesized that Bayinbuluke sheep possess a more active capacity
for lipid metabolism within their muscles, which may be associated
with their enhanced energy reserves and utilization efficiency.
Catalase (CAT) (U/mL), glutathione peroxidase (GSH-PX)
(U/mL), and superoxide dismutase (SOD) (U/mL) are the primary
antioxidant enzymes in organisms, which effectively scavenge free
radicals (24). These enzymes play a crucial role in the antioxidant
defense mechanisms of living organisms. In this study, serum levels of
CAT and SOD were found to be significantly higher in Bayinbuluke
sheep compared to Turpan black sheep. Additionally, the content of
GSH-PX was also significantly elevated in Bayinbuluke sheep relative
to Turpan black sheep across all groups. Bayinbuluke sheep displayed
significantly higher serum CAT, SOD, and GSH-PX activities (p < 0.05),
denoting a robust antioxidant capacity. This enhanced system is capable
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of effectively scavenging reactive oxygen species (ROS), thereby
mitigating oxidative stress-related damage to muscle cells.

4.2 The physicochemical characteristics of
meat

Moisture and other essential components of lamb significantly
influence the juiciness of the meat, with moisture content being a direct
determinant. Water-holding capacity is one of the critical factors
affecting both tenderness and juiciness in meat products. Most of the
water present in meat is stored within myogenic fibers, muscle fibers,
and their interstitial spaces (25). Research has demonstrated that
elevated moisture content significantly influences meat quality,
particularly in terms of tenderness and juiciness. Typically, higher
moisture levels lead to softer and juicier meat, while also impacting meat
color and water retention properties (26). These findings align with
those observed in the current experimental study. Jin et al. (27)
demonstrated that Merganser’s forelegs possess a denser musculature
along with an enhanced ability to retain water. van Laack et al. (28)
established that intramuscular fat content influences muscle shear;
specifically, higher intramuscular fat levels correlate with reduced muscle
shear force. In this study, the shear force of Bayinbuluke sheep was
significantly greater than that of Turpan black sheep (p < 0.05), which
we hypothesize is closely related to lower fat deposition levels. Reduced
fat deposition leads to diminished intermuscular fat content—this
component plays a buffering role within muscle tissue and can decrease
friction between muscle fibers, thereby influencing shear force.
Therefore, low fat deposition combined with reduced intermuscular fat
content and tightly structured muscle fibers may serve as significant
contributors to the elevated shear force observed in Bayinbuluke sheep.
Additionally, iron content was found to be significantly higher compared
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to Turpan black sheep (p < 0.01). As a key component of myoglobin,
iron enhances colour stability and antioxidant capacity, thereby
improving meat quality (29).

4.3 Differential expression characteristics
of the muscle tissue proteome

In skeletal muscle of Bayinbuluke and Turpan black sheep, the
NCEH]1 protein is enriched in the glycerophospholipid metabolism
and cholesterol metabolism pathways; LDHB is enriched in the HIF-1
signaling pathway. The cholesterol metabolism pathway and the
glycerophospholipid metabolism pathway are related to lipid
metabolism, while the HIF-1 signaling pathway is associated with
energy metabolism.

Neutral cholesterol ester hydrolase 1 (NCEH1), as a crucial serine
hydrolase, is mainly distributed in adipose tissue and liver cells. It
participates in lipid catabolism by catalyzing the hydrolysis of cholesterol
esters and fatty acid esters (30). In a diabetic mouse model, Sun etal. (31)
observed that NCEH1 deficiency diminished cholesterol ester synthesis
and consequently impaired endothelial function, establishing NCEH1 as
a critical regulator of cholesterol ester metabolism. Moreover, Matsuoka
et al. (32) demonstrated that retinoic acid receptor-related orphan
receptor-a (RORa) promotes cholesterol ester hydrolysis in macrophages
by directly activating NCEH1 transcription, thereby reducing lipid
droplet accumulation. In the present study, up-regulation of NCEH1 is
postulated to modulate intramuscular lipid deposition and distribution
via its regulatory role in lipid metabolism, thereby influencing meat
tenderness, juiciness, and flavor.

L-lactate dehydrogenase (LDHB) catalyses the reversible conversion
of pyruvate to lactate during glycolysis and is particularly active under
hypoxia, maintaining systemic pH (33). Kim et al. (34) reported that
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increasing the activity of lactate dehydrogenase is conducive to the
generation of NADH, which is used for the reduction of metmyoglobin
to maintain the stability of meat color. LDHB converts lactic acid into
pyruvic acid to maintain its growth and metabolism (35). In this study,
we observed that the expression of LDHB in the muscle tissue of
Bayinbuluke sheep was significantly upregulated. By promoting
glycolysis, maintaining muscle pH and NADH supply, it enhanced the
stability of meat color and affected the accumulation of flavor amino
acids, thereby improving the flavor and color of the meat.

4 .4 Differential expression characteristics
of the metabolome in muscle tissue

In the muscle tissues of Bayinbuluke sheep and Turpan black
sheep, glucosamine and uridine diphosphate-N-acetylglucosamine
were enriched in the biosynthesis pathway of nucleotide sugars, while
glycerol and pyruvate were enriched in the interconversion pathway
of pentose and glucuronic acid; nicotinamide adenine dinucleotide
was significantly enriched in the drug metabolism - other enzyme
systems pathway; and glucosamine 1-phosphate was significantly
enriched in the amino sugar and nucleotide sugar metabolism pathway.

Glucosamine is a precursor of uridine diphosphate-N-
acetylglucosamine, which plays a significant role in glycosylation
modifications and glycan synthesis (36). In animal hydrolysates,
glucosamine has been identified as having potential for flavor
modulation (37). This indicates that glucosamine and its derivatives
may influence the flavor and texture of meat by affecting the
glycosylation modifications of proteins, thereby impacting the overall
sensory characteristics of the meat.

Glycerol is an important biochemical substance that is widely
present in microorganisms. Within cells, glycerol is synthesized and
decomposed through multiple metabolic pathways, playing a crucial
role in providing energy and carbon sources (38). Glycerol serves as
one of the primary substrates in phospholipid biosynthesis and, along
with dihydroxyacetone phosphate (DHAP), acts as an intermediate in
glycolysis (39). In muscle metabolism, glycerol is converted into
pyruvate via the glycolytic pathway. This pyruvate then enters the
mitochondria, where it undergoes complete oxidation and
decomposition into carbon dioxide and water, thereby releasing
energy necessary for vital bodily functions (40). This process not only
provides energy to muscles but also plays a role in fat metabolism,
which influences both the flavor and tenderness of muscle tissue.

Pyruvic acid, also known as a-oxopropionic acid, is a crucial
intermediate in the sugar metabolism of all living cells and plays a
significant role in the interconversion of various substances within the
body. Its metabolic flux is closely associated with the synthesis of
flavor precursors, such as nucleotides and amino acids (41). As an end
product of glycolysis, pyruvate exhibits antioxidant properties (42).
Studies have demonstrated that pyruvate can inhibit the oxidation of
oxygen free radicals in rats (43). In this study, we observed down-
regulation of pyruvate expression; being an end product of glycolysis,
its reduced levels may inhibit mitochondrial oxidative phosphorylation
and subsequently affect ATP production. This inhibition could lead to
insufficient energy supply for muscle contraction and repair capacity
in muscle fibers, ultimately resulting in decreased tenderness (44).

Nicotinamide adenine dinucleotide (NAD) is a crucial coenzyme
in cellular energy metabolism and plays a significant role in various
redox reactions (45). The involvement of NAD in glycolysis and the
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tricarboxylic acid cycle is vital for proper muscle metabolism and
energy supply (46). Yang et al. (47) demonstrated that exogenous
supplementation of NAD* and NADH to yak M. longissimus thoracis
significantly elevated AMPK activity and accelerated post-mortem
glycolysis during aging. This intervention enhanced the rate of energy
metabolism and up-regulated AMPK protein expression, indicating
that NAD* promotes energy turnover in stored muscle by activating
AMPK and concomitantly increases muscle pH (47). Additionally,
both NAD and its metabolite NADH influence meat flavor and texture
through their participation in metabolic processes related to
energy production.

Glucosamine 1-phosphate is a phosphorylated derivative of
glucosamine that plays a significant role in the metabolism of amino
sugars. Research has demonstrated that glucosamine can enhance
sweetness perception by inducing the Maillard reaction, while also
exerting specific effects on umami and egg yolk flavors (48). The
presence of this metabolite in meat may indirectly influence its flavor
and texture through its participation in the Maillard reaction.

4.5 The interplay between serum
biochemical indicators and multi-omics

In this study, Bayinbuluke sheep exhibited a higher level of liver
metabolism, enhanced antioxidant enzyme activity, and improved
protein metabolism capabilities. The differences observed in proteomic
expression indicated that the expression of LDHB was down-regulated,
leading to reduced fat deposition. This suggests that Bayinbuluke sheep
may have developed a unique adaptation mode characterized by “high
metabolism-low fat deposition” The up-regulation of NCEHI
expression influenced fat deposition and intramuscular fat distribution
through the regulation of lipid metabolism. Additionally, PFKFB4-
mediated modulation of the AMPK signaling pathway and involvement
of LDHB in glycolysis further optimized intramuscular fat distribution,
energy metabolism, and pH stability. Metabolomics analysis revealed
that the levels of differential metabolites such as uridine 5’-diphosphate-
N-acetylgalactosamine were down-regulated in the muscles of
Bayinbuluke sheep, which impacted energy metabolism and
glycosylation modifications. This down-regulation has multiple
implications for normal muscle function and overall health. Conversely,
the up-regulation of certain differential metabolites like glucosamine
1-phosphate promotes the accumulation of flavor compounds. By
participating in amino sugar metabolic processes, these metabolites
influence meat qualities such as flavor, taste, tenderness, and juiciness.
Transcriptomic studies indicate that the expression level of the
differentially expressed gene FASN is upregulated, enhancing the
synthesis of long-chain fatty acids (49) and regulating fat deposition in
the body (50) to adapt to high-altitude hypoxic environments.
Conversely, the GSTA1 gene exhibits downregulation; it reduces
cellular apoptosis by inhibiting oxidative stress, thereby protecting
muscle fibers (51). Similarly, GPAT3 also shows a downward trend in
expression. This gene decreases triglyceride (TAG) synthesis (52) while
accelerating fatty acid (FA) oxidation, leading to reduced lipid
accumulation in the liver (53), while simultaneously promoting
systemic fat deposition (54). This process facilitates “hepatic-muscle
lipid flux redistribution. Through these combined effects, the meat
quality characteristics of Bayinbuluke sheep include lower fat
deposition, more stable meat color, enhanced accumulation of flavorful
amino acids, superior tenderness, and juiciness.
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5 Conclusion

In this study, we investigated the serum biochemical phenotypes,
muscle sections, proteomics, metabolomics and transcriptomics of
Bayinbuluke and Turpan black sheep to elucidate the significance of
lipid transport, energy metabolism, and antioxidant capacity in meat
quality. Through the analysis of serum biochemical indices, it was found
that total protein (TP) and glucose (GLU) are directly associated with
lipid metabolism and energy metabolism. Additionally, catalase (CAT)
and glutathione peroxidase (GSH-PX) were identified as key indicators
related to oxidative stress resistance. Proteomic analysis revealed an
up-regulation in the expression of neutral cholesterol ester hydrolase 1
(NCEH1) and phosphofructokinase-2/fructose-2,6-bisphosphatase 4
(PFKFB4), which play crucial roles in regulating pathways linked to
lipid metabolism. Conversely, lactate dehydrogenase B (LDHB)
expression was down-regulated to mitigate excessive fat accumulation
and reduce fatty acid synthesis. Metabolomic analysis indicated a down-
regulationinsixdifferentialmetabolites—includinguridine5’-diphosphate-
N-acetylgalactosamine, glycerol, and pyruvate—affecting energy
metabolism regulation. Furthermore, glucosamine 1-phosphate along
with 1-methyl-4-nitroimidazole exhibited up-regulated expression that
influenced meat flavor and taste. Transcriptomic analysis indicates that
the upregulation of FASN gene expression enhances fat deposition in
the body through lipid metabolism-related pathways. Concurrently, the
downregulation of GSTA1 and GPAT?3 gene expressions synergistically
inhibits oxidative stress and blocks hepatic triglyceride synthesis,
thereby promoting the directed deposition of fatty acids into skeletal
muscle. These findings further complement existing research on the
meat quality traits of Bayinbuluke sheep and provide new data support
for subsequent investigations into its potential biological mechanisms.
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