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Introduction: Deep learning-based automated segmentation has significantly
improved the efficiency and accuracy of human medicine applications. However,
veterinary applications, particularly canine liver segmentation, remain limited.
This study aimed to develop and validate a deep learning model based on a
3D U-Net architecture for automated liver segmentation in canine abdominal
computed tomography (CT) scans.
Methods: A total of 221 canine abdominal CT scans were analyzed, comprising
159 cases without hepatic masses and 62 cases with hepatic masses. The model
was trained and evaluated using two separate datasets: one containing cases
without hepatic masses (Experiment 1) and the other combining cases with and
without hepatic masses (Experiment 2).
Results: Both experiments demonstrated high segmentation performance,
achieving mean Dice similarity coefficients of 0.926 (Experiment 1) and 0.929
(Experiment 2).
Discussion: The manual and predicted liver volumes showed excellent
agreement, highlighting the potential clinical applicability of this approach.

KEYWORDS

artificial intelligence, deep learning, automatic segmentation, liver, canine, dog,
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1 Introduction

Medical image segmentation, the process of delineating a medical image into distinct
anatomical structures, is an essential technology in diagnostic imaging that enables
clinicians to precisely analyze complex structures. In human medicine, deep-learning-
based segmentation techniques have greatly improved clinical workflows by enhancing
diagnostic accuracy and efficiency (1–3). These advancements support clinical applications,
such as surgical planning, radiation therapy, disease monitoring, and medical education
(4). Among the various organs, the liver is a key target for segmentation because of its
complex anatomy and role in numerous diseases. Accurate segmentation of liver structures
facilitates quantification tasks such as liver volumetry, which are essential for clinical
decision-making, including surgical resections and disease management (5–7). Recent
deep learning-based segmentation models have demonstrated the capability to accurately
segment liver structures from computed tomography (CT) images, achieving performance
comparable to that of expert manual segmentation (8, 9).
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However, in veterinary medicine, segmentation techniques
are still in their early stages of development (10, 11). Current
practice relies primarily on manual segmentation, which is labor-
intensive and time-consuming, hindering the consistency and
efficiency of diagnostic workflows. To date, only a few studies
have explored automated segmentation in veterinary imaging.
Specifically, deep learning has proven effective for the volumetric
analysis of the canine kidneys and adrenal glands, the identification
of abnormalities like kidney calculi, and the segmentation of
complex structures such as the medial retropharyngeal lymph
nodes, demonstrating feasibility in dogs (12–15). Most of these
reports employed U-Net or transformer-derived models. Overall,
favorable performance was reported for kidney and adrenal
gland volumetry and for renal calculi detection, whereas lower
performance was observed for medial retropharyngeal lymph-node
segmentation, which the authors attributed to the nodes’ irregular
morphology and their close proximity to surrounding soft tissues,
and the limited size of their single-center dataset.

To the best of our knowledge, no previous studies have applied
deep learning-based automated segmentation specifically targeting
the canine liver, despite its clinical relevance in veterinary medicine.
Accurate liver segmentation is beneficial because the precise
quantification of liver volume aids in assessing conditions such as
hepatomegaly or microhepatica, which are important indicators
of underlying diseases (16, 17). Moreover, precise volumetric
measurements have proven useful for monitoring postoperative
liver regeneration, such as in dogs undergoing surgical correction
of portosystemic shunts (PSS) (18–20). Given these clinical
implications, efforts have been made in veterinary medicine to
optimize liver segmentation procedures through simplified manual
methods, such as reducing the total number of CT slices and
reorienting the imaging plane (21, 22). Although these approaches
partially reduce the workload, they rely on manual segmentation.

Given these challenges, there is a clear need to develop
automated and reliable segmentation methods for canine liver
CT imaging. Therefore, we aimed to develop a deep learning-
based automated segmentation model to reduce the manual effort
and time required while maintaining a segmentation accuracy
comparable to that of expert manual delineation.

2 Materials and methods

2.1 Dataset for CT scans

This retrospective study utilized post-contrast CT scans of dogs
collected at Hokkaido University Veterinary Teaching Hospital
(HUVTH), Japan. Approval from the Animal Care and Use
Committee of our institution was not required because of the
retrospective nature of the study. A total of 221 CT scans from 206
dogs were included, with some dogs having undergone multiple
CT scans for various clinical reasons. All medical records used in
this study were fully anonymized. Owing to the limited number of
samples, the evaluation was performed at the individual image level
rather than at the individual dog level. Therefore, the separation
of scans from the same dog across the training, validation, and
test sets was not guaranteed. Comprehensive medical records

including breed and body weight were reviewed to provide a
detailed characterization of the study population.

The data were structured into two distinct datasets to
evaluate the model performance under various liver conditions.
The first dataset consisted of 159 CT scans without hepatic
masses, obtained from 147 dogs. As an initial step toward
automatic liver segmentation, this dataset specifically included
scans that demonstrated normal hepatic anatomy. The second
dataset combined cases with and without hepatic masses, resulting
in 221 CT scans from 206 dogs. This dataset included all the scans
from the first dataset and an additional 62 scans from 60 dogs
with hepatic masses. Because many abdominal CT scans performed
at HUVTH are primarily intended for surgical planning, hepatic
masses were included in the second dataset. Cases that could alter
hepatic morphology owing to factors other than hepatic masses,
such as cirrhosis or PSS, as well as those with a large amount of
ascites were excluded because of their limited number, which could
adversely affect the robustness of the deep learning model. In the
case of PSS, the timing of imaging acquisition at HUVTH differed
from the standard imaging protocol used for other abdominal cases,
potentially introducing inconsistencies in the training data. Both
datasets were randomly shuffled and initially split into training and
test sets in an 80:20 ratio. The training set was further subdivided
by allocating 10% of the data for validation. For the second dataset,
particular attention was paid to ensure a balanced representation
of cases with and without masses across the training, validation,
and test sets. This stratified splitting aimed to minimize bias
during model training and evaluation, thereby providing a robust
assessment of the generalizability of the model. The overall study
design and the detailed allocation of CT scans into the datasets are
summarized in Figure 1.

CT scans were acquired using an 80-row multidetector CT
scanner (Aquillion PRIME; Toshiba Medical Systems, Tochigi,
Japan) with standardized imaging protocols. The scanning
parameters included tube voltage settings of 80–120 kVp, Auto
Exposure Control (Sure Exposure 3D, Toshiba Medical Systems,
Tochigi, Japan), a 512 × 512 matrix, slice thickness of 0.5 mm,
helical pitch of 0.813, and a 0.5-s rotation time. All dogs
were anesthetized with propofol induction and maintained using
isoflurane inhalation during the CT procedures, positioned in
either the dorsal or sternal recumbency position. The contrast
agents iohexol (Omnipaque 300, GE Healthcare Co., Ltd., Tokyo,
Japan) and iopamidol (Iopamidol 150, Fuji Pharma Co., Ltd.,
Tokyo, Japan) were administered at a dose of 600 mgI/kg via the
cephalic vein using a power injector (Dual Shot, Nemoto Kyorindo
Co., Ltd., Tokyo, Japan), with an injection duration of 20 s.
Segmentation was conducted using portal venous phase images,
although the exact timing of portal venous phase acquisition after
contrast injection varied slightly depending on the case.

2.2 Manual segmentation

To obtain an accurate and consistent ground truth, a
single-annotator segmentation protocol was implemented. A
highly skilled veterinary radiology technologist with 15 years of
experience performed all manual segmentation on a 3D image
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FIGURE 1

Flowchart of the study design and dataset allocation. Numbers represent the count of CT scans in each group. CT, computed tomography.

FIGURE 2

Architecture scheme illustrating the 3D U-Net model used in this study. The model consists of an encoder path (left) for feature extraction and a
decoder path (right) for segmentation map reconstruction, connected by skip connections.

analysis workstation (Synapse Vincent, Fujifilm Corporation,
Tokyo, Japan). The intrahepatic vessels were included within the
operator-defined region of interest. The segmentation results were
subsequently reviewed by a veterinary radiology specialist with >10
years of experience (G.S.) to ensure accuracy.

The CT scans were preprocessed to standardize the dataset
and ensure compatibility with the deep learning model. All
preprocessing steps were implemented using Python, PyTorch and
TorchIO library. Binary masks were generated from the manually
segmented liver labels by assigning a voxel value of 1 to the
liver and 0 to all other areas. This conversion enabled the model
to clearly distinguish the liver from the surrounding structures
during training. Subsequently, CT images were normalized by
scaling their voxel intensities to a range of [−1, 1] using TorchIO’s
RescaleIntensity transform, thereby enhancing the model’s training
efficiency. To ensure a uniform input size for the network, all
volumes were resized to 256 × 256 × 200 voxels using TorchIO’s

Resize transform, with linear interpolation applied to the images
and nearest-neighbor interpolation to the masks.

2.3 Model architecture

In this study, we employed a three-dimensional (3D) U-
Net architecture for liver segmentation of CT images (Figure 2).
The network architecture was based on the original U-Net
and was modified to support volumetric data by replacing 2D
operations with their corresponding 3D counterparts, including 3D
convolution, 3D max-pooling, and trilinear upsampling methods
(23). The 3D U-Net model uses an encoder-decoder format
designed to effectively capture spatial features from 3D CT data.
The encoder path includes 3D convolutions and pooling layers
to progressively extract higher-level spatial features, whereas the
decoder mirrors this structure using transposed convolutions to
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restore spatial resolution and facilitate precise localization of the
liver regions. Skip connections between the encoder and decoder
allow the integration of both high- and low-level features, thereby
preserving the spatial details and enhancing the segmentation
accuracy. These characteristics make 3D U-Net highly suitable
for volumetric data and for addressing the anatomical variability
of canine livers. In this study, preprocessed CT images and the
corresponding binary label masks were used as inputs to the model.

2.4 Network parameters

The model was trained for 100 epochs using an NVIDIA
RTX 4090 GPU. A stochastic gradient descent optimizer was
utilized, configured with a batch size of four, learning rate of 0.01,
momentum of 0.9, and weight decay set to 1×10−4. The learning
rate remained constant throughout the training process.

The input data comprised grayscale CT images with a single
input channel, and the network produced a two-channel output
that represented the background and liver regions. The primary
loss function employed was cross-entropy loss, which is a standard
and widely adopted choice for multiclass segmentation tasks
in medical imaging. To efficiently manage large 3D volumes,
the training data were divided into smaller patches of size
96 × 96 × 96 pixels, with each patch overlapping by eight
pixels. These patches were systematically extracted using the
TorchIO GridSampler, whereas predictions from the model were
aggregated into full-volume segmentations during the evaluation
using the TorchIO GridAggregator. This patch-based approach
optimizes memory usage while maintaining spatial coherence in the
segmentation results.

Model performance was monitored during training through
periodic evaluations of the validation set. The validation accuracy
served as the primary metric for checkpointing, and the top 10
epochs were saved based on this metric to ensure optimal model
performance during testing.

2.5 Evaluation metrics

To evaluate the model performance, several quantitative
metrics were employed to assess the segmentation accuracy
between the predicted liver masks and ground truth masks on
the test set. The metrics were calculated for each test sample and
averaged across the entire dataset to obtain the overall performance
indicators. These were computed on the reassembled full-volume
predictions aggregated from patch-based evaluations, as described
in the Implementation Details section.

The Dice similarity coefficient (DSC) was used to measure
the overlap between the predicted and ground truth segmentation
masks. This is defined as the ratio of twice the area of intersection
to the total area of both the predicted and ground truth masks. The
formula used is as follows:

DSC = 2 × |P ∩ G|
|P| + |G| (1)

where P and G denote the predicted and ground truth
masks, respectively.

Sensitivity was calculated to evaluate the ability of the model
to correctly identify the positive pixels in the segmentation mask.
This is defined as the ratio of true-positive pixels to the sum of
true-positive and false-negative pixels:

Sensitivity = True Positive
True Positive + False Negative

(2)

Specificity measures the ability of the model to correctly
identify negative pixels (background) and is calculated as the ratio
of true-negative pixels to the sum of true-negative and false-
positive pixels:

Specificity = True Negative
True Negative + False Positive

(3)

Precision quantifies the proportion of true-positive pixels
among all pixels classified as positive by the model:

Precision = True Positive
True Positive + False Positive

(4)

The overall accuracy of the model was calculated as the ratio
of correctly classified pixels (positive and negative) to the total
number of pixels in the segmentation mask:

Accuracy = True Positive + True Negative
Total Pixels

(5)

The intersection-over-union (IoU), also known as the Jaccard
Index, measures the overlap between the predicted and ground
truth masks by dividing the intersection area by the union area:

IoU = |P ∩ G|
|P ∪ G| (6)

The volume ratio was computed to assess the volumetric
accuracy of the segmentation. This is defined as the ratio of the
predicted liver volume to the ground truth liver volume. Each liver
volume was calculated by multiplying the number of positive voxels
in the respective segmentation mask by the voxel volume derived
from the original CT scan as follows:

Volume ratio = Number of positive Voxels in Predicted Mask × Voxel volume
Number of positive Voxels in Ground Truth Mask × Voxel volume

(7)

This patch-based evaluation approach, combined with metrics
computed from aggregated full-volume predictions, ensured
consistency and reliability in assessing segmentation accuracy.
All metrics were implemented using Python and PyTorch and
calculated voxel-wise across the entire 3D volume. In addition,
Pearson correlation coefficient (r) was calculated to assess the
linear relationship between the predicted and manually measured
liver volumes.

3 Results

3.1 Evaluation of liver segmentation on the
dataset without hepatic masses
(Experiment 1)

This experiment used a dataset of 159 CT scans without
hepatic masses, divided into 115, 12, and 32 scans for training,
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TABLE 1 Characteristics of the study datasets, including breed distribution, median body weight, and median liver volume.

Group Number
of cases

Median body
weight (kg)
[IQR]

Median liver
volume (mL)
[IQR]

Breeds included (number of dogs)

Without
hepatic masses

159 9.05 [6–18] 297 [192–511] Mixed (22), Miniature Dachshund (21), Shiba (12), Toy Poodle (12), Labrador
Retriever (9), French Bulldog (8), Golden Retriever (8), Miniature Schnauzer (6),
Pomeranian (6), Jack Russell Terrier (5), Shetland Sheepdog (5), Bernese Mountain
Dog (4), Border Collie (4), Bulldog (4), Chihuahua (4), Samoyed (4), Shih Tzu (4),
Welsh Corgi (4), American Cocker Spaniel (2), Bichon Frise (2), Hokkaido (2),
Italian Greyhound (2), Pekingese (2), Boston Terrier (1), Cavalier King Charles
Spaniel (1), English Cocker Spaniel (1), Flat-coated Retriever (1), Miniature
Pinscher (1), Scottish Terrier (1), Standard Poodle (1)

With hepatic
masses

62 7.55 [5.03–10.95] 427.5 [245.5–721.5] Miniature Dachshund (11), Mixed (11), Toy Poodle (9), Shiba (4), Shih Tzu (4),
Border Collie (3), Samoyed (3), Yorkshire Terrier (3), Miniature Schnauzer (2),
Welsh Corgi (2), Chihuahua (1), French Bulldog (1), Jack Russell Terrier (1),
Labrador Retriever (1), Papillon (1), Scottish Terrier (1), Shetland Sheepdog (1),
Standard Poodle (1), West Highland White Terrier (1), Wire Fox Terrier (1)

Overall total 221 8.4 [5.53–14.88] 318 [204–563] Mixed (33), Miniature Dachshund (32), Toy Poodle (21), Shiba (16), Labrador
Retriever (10), French Bulldog (9), Miniature Schnauzer (8), Shih Tzu (8), Golden
Retriever (8), Border Collie (7), Samoyed (7), Jack Russell Terrier (6), Pomeranian
(6), Shetland Sheepdog (6), Welsh Corgi (6), Chihuahua (5), Bernese Mountain
Dog (4), Bulldog (4), Yorkshire Terrier (3), American Cocker Spaniel (2), Bichon
Frise (2), Hokkaido (2), Italian Greyhound (2), Pekingese (2), Scottish Terrier (2),
Standard Poodle (2), Boston Terrier (1), Cavalier King Charles Spaniel (1), English
Cocker Spaniel (1), Flat-coated Retriever (1), Miniature Pinscher (1), Papillon (1),
West Highland White Terrier (1), Wire Fox Terrier (1)

Values are presented as median [IQR]. IQR, Interquartile range.

TABLE 2 Quantitative segmentation performance metrics of the two experiments on the test set.

Experiment DSC IoU Sensitivity Specificity Precision Accuracy Volume ratio

Exp 1: Without hepatic masses 0.926 0.865 0.946 0.995 0.910 0.992 1.042

Exp 2: Combined dataset 0.929 0.868 0.931 0.995 0.928 0.991 1.006

Without hepatic masses subset 0.931 0.872 0.942 0.995 0.921 0.992 1.025

With hepatic masses subset 0.924 0.861 0.906 0.994 0.945 0.987 0.959

DSC, dice similarity coefficient; IoU, intersection-over-union.

validation, and testing, respectively. Table 1 provides an overview
of these scans, including the number of dogs, median body weight,
and median liver volume. Regarding the training performance,
the model showed stable convergence, with mean training and
validation losses of 0.124 and 0.125, respectively (Figure 3A). For
the test set, the model achieved an accuracy of 0.981 and a loss
of 0.05. The detailed segmentation metrics are summarized in
Table 2, revealing a mean DSC of 0.926, IoU of 0.865, and volume
ratio of 1.042, indicating strong volumetric agreement between
the predicted and ground truth masks. The additional metrics
included sensitivity (0.946), specificity (0.995), precision (0.910),
and accuracy (0.992). Figures 4A–D illustrates a representative
normal liver slice and its segmentation overlay, demonstrating the
precise delineation of the liver boundaries.

3.2 Evaluation of liver segmentation on the
combined dataset of cases with and
without hepatic masses (Experiment 2)

In this experiment, the original 159 CT scans without hepatic
masses were supplemented with 62 cases exhibiting hepatic masses,
resulting in 221 CT scans, which were divided into 160 for training,

16 for validation, and 45 for testing. Table 1 summarizes the
characteristics of both datasets, including the breed distribution,
median body weight, and median liver volume. The model trained
on this more heterogeneous dataset exhibited a mean training loss
of 0.170 and validation loss of 0.132 (Figure 3B). For the test set,
the model achieved an accuracy of 0.980 and a loss of 0.057. Table 2
shows a mean DSC of 0.929, an IoU of 0.868, and volume ratio of
1.006, which is slightly higher than that in Experiment 1. Sensitivity
(0.931), specificity (0.995), precision (0.928), and accuracy (0.991)
remained high. However, a subset analysis of the test set, which
involved dividing it into cases with and without hepatic masses,
revealed that the segmentation performance was higher for cases
without hepatic masses (DSC = 0.931) than for those with hepatic
masses (DSC = 0.924). Figures 4E–H shows a sample slice from
the liver with a hepatic mass, demonstrating greater morphological
variability owing to the presence of the hepatic mass.

3.3 Correlation analysis between predicted
and manually measured liver volumes

Figure 5 illustrates the correlation between the manually
measured and predicted liver volumes in both experiments.

Frontiers in Veterinary Science 05 frontiersin.org

https://doi.org/10.3389/fvets.2025.1681820
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Lee et al. 10.3389/fvets.2025.1681820

FIGURE 3

Training and validation loss curves of the liver segmentation models. (A) Experiment 1 (without hepatic masses). (B) Experiment 2 (combined dataset
with and without hepatic masses). The training loss (blue) and validation loss (orange) decreased steadily over the training steps, indicating stable
convergence without notable overfitting. The training loss curve in Experiment 2 exhibited higher fluctuations, reflecting the increased complexity
associated with the diverse morphological features of hepatic masses. The validation loss curves remained similarly stable across both experiments,
indicating consistent generalization.

Experiment 1 showed a strong correlation (r = 0.995, R² = 0.990),
and Experiment 2, which was conducted using a combined dataset
of cases with and without hepatic masses, demonstrated slightly
higher agreement (r = 0.997, R² = 0.993). Most predictions were
closely aligned with the ideal correlation line, although slightly
increased variability was observed in Experiment 2.

4 Discussion

This study is the first to develop a deep learning-based
model specifically for canine liver segmentation in CT images,
addressing the existing gap in veterinary medicine. The
model trained exclusively on cases without hepatic masses
(Experiment 1) demonstrated strong performance, with a
mean DSC of 0.926 and an IoU of 0.865 (Table 2). These
results indicate that the model reliably segments the liver

in cases without significant anatomical complexities such as
hepatic masses. Establishing such a performance baseline is
essential because it provides a clear reference for interpreting
segmentation performance in anatomically more complex cases
involving hepatic masses. This baseline helps clarify whether
decreased segmentation performance results primarily from
anatomical variations caused by lesions, leading to distributional
shifts, or from the intrinsic limitations of the segmentation
model itself. A previous study highlighted the influence of
distributional shifts on model performance when encountering
previously unseen anatomical characteristics (24). Thus, the
results of Experiment 1 serve as a robust benchmark for
subsequent evaluations involving more diverse and complex
hepatic conditions.

In contrast, the model trained on a combined dataset, which
included cases with and without hepatic masses (Experiment 2),
achieved a slightly higher segmentation performance, with a DSC
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FIGURE 4

Representative computed tomography (CT) slices illustrating liver segmentation in cases without (A–D) and with (E–H) hepatic masses. (A, E) Original
CT image. (B, F) Ground truth segmentation masks generated by expert radiologists (cyan). (C, G) Segmentation masks predicted using the deep
learning model (red). (D, H) Overlay images demonstrating segmentation accuracy, indicating overlapping regions between the ground truth and
model predictions (light gray), regions segmented only by experts (cyan), and regions segmented only by the model (red). The arrows indicate the
location of the hepatic mass.

FIGURE 5

Correlation between predicted and manually measured liver volumes. (A) Experiment 1 (without hepatic masses). (B) Experiment 2 (combined dataset
with and without hepatic masses). Scatter plots illustrate the relationship between the actual (manually segmented) liver volumes and the volumes
predicted by the segmentation models. The diagonal line (y = x) represents perfect prediction. (A): r = 0.995, R² = 0.990, p < 0.001; (B): r = 0.997,
R² = 0.993, p < 0.001).

of 0.929 and an IoU of 0.868 (Table 2), suggesting that the increased
dataset size and diversity may contribute to improved model
robustness. Human medical research has previously demonstrated
that training on diverse datasets covering a broad age range and

multiple abnormalities such as tumors, inflammation, and vascular
disorders can enhance model generalizability (25). Similarly,
our study showed improved general segmentation performance
when the training included cases with and without hepatic

Frontiers in Veterinary Science 07 frontiersin.org

https://doi.org/10.3389/fvets.2025.1681820
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Lee et al. 10.3389/fvets.2025.1681820

masses. Nevertheless, the model exhibited increased segmentation
variability and a slight decrease in performance in cases involving
hepatic masses, likely because of the limited number of such cases
in our dataset. This limitation may have restricted the ability of the
model to fully learn the morphological variability associated with
hepatic masses.

Further insights were gained through the analysis of the
volume ratio metric, which is defined as the ratio between
the predicted liver volume and the volume derived from the
ground truth masks. This metric demonstrated a strong agreement
between the predicted and ground truth volumes. However,
because it does not directly assess spatial accuracy, it should be
complemented with spatially sensitive methods. Relying solely on
the volume ratio may overlook spatial discrepancies caused by
complex or irregular morphologies. Thus, it is important to use
a combination of different evaluation metrics to assess distinct
aspects and provide complementary information (26). Spatially
sensitive metrics such as DSC and IoU, which evaluate spatial
overlap, are valuable for assessing anatomically irregular cases
(27). In this study, we comprehensively evaluated segmentation
performance by incorporating multiple metrics.

The performance of the model closely aligns with that of the
leading liver segmentation methods used in medical imaging. For
instance, top-ranking algorithms in the Liver Tumor Segmentation
Challenge consistently report DSCs between 0.93 and 0.96, which is
comparable to expert manual segmentation (28). This comparison
highlights the effectiveness of our approach, particularly given the
inherent challenges in veterinary imaging, such as significant inter-
breed variations in liver shape and size, and relatively limited
sample sizes compared to human studies. Considering these
challenges, achieving DSC and IoU values that closely match those
of human studies further demonstrates that advanced segmentation
techniques can be effectively adapted to veterinary imaging, despite
these dataset limitations.

Veterinary imaging presents unique complexities distinct from
those in human medicine, primarily due to breed-related
anatomical variations and diverse clinical presentations.
Similar challenges have been reported in canine kidney
segmentation studies (12). Such factors complicate the
segmentation task, particularly in livers with hepatic masses,
which typically exhibit greater morphological variability than
human livers, as demonstrated by the decreased segmentation
performance and increased segmentation variability observed
in Experiment 2. Furthermore, although the dataset in
this study, consisting of 221 CT scans from 206 dogs, is
large compared with several previous veterinary imaging
studies, such as those involving 40 (14) and 76 dogs (13),
it remains relatively modest compared with human imaging
databases (29). Nonetheless, the current findings clearly
demonstrate that deep learning-based segmentation models
can effectively overcome these complexities, achieve competitive
performance. This highlights their clinical applicability, in
providing rapid and accurate liver volumetry for diagnosing
conditions like hepatomegaly or microhepatica, aiding
pre-operative planning for mass resection, and enabling
objective monitoring of postoperative liver regeneration in
veterinary medicine.

This study has some limitations. First, the dataset size
was derived from a single institution and was small compared
with studies in human medicine, with a limited representation
of various breeds and clinical conditions. A larger and more
diverse dataset could enhance the robustness and adaptability
of the model. Although some studies in human medicine have
demonstrated good segmentation performance using comparable
or smaller datasets, the inherent variability in veterinary medicine
owing to breed differences suggests that similar-sized datasets
may not sufficiently represent this diversity (28, 30). The
model’s generalizability could be further enhanced by employing
data augmentation to compensate for the limited dataset
size. The evaluation in this study was performed at the
image level rather than at the individual dog level, without
ensuring the separation of dogs across the training, validation,
and test sets, potentially influencing model generalizability.
Additionally, although various dog sizes, ranging from small to
large breeds, were included, the breed size distribution across
subsets was not controlled, further limiting the representativeness
of our dataset.

To address these limitations, several future directions are
planned. Multi-institutional validation is essential to assess the
model’s robustness across diverse imaging conditions. This issue
is particularly relevant in veterinary medicine, where there is no
clear scientific consensus regarding optimal patient positioning,
leading to substantial variations among institutions (31). Transfer
learning could also be explored, using models pre-trained on large
human liver datasets (32). Finally, future work could explore the
use of other loss functions, such as focal loss, to potentially enhance
segmentation accuracy, particularly for challenging cases involving
hepatic masses.

5 Conclusion

This study presents the first deep learning-based liver
segmentation model specifically developed for veterinary medicine
to achieve reliable segmentation results. Including hepatic
masses improved the generalizability but slightly increased the
segmentation variability, whereas simpler anatomies without
lesions resulted in a more consistent performance. Despite
challenges such as breed-specific anatomical variations, limited
sample sizes, and non-standardized imaging protocols, this
approach demonstrates considerable potential for enhancing
diagnostic precision, reducing clinician workload, and expediting
decision-making in veterinary practice. Future research should
prioritize expanding the dataset to include a broader variety of
clinical cases, performing external validations, and exploring
hybrid training strategies to further enhance the reliability and
clinical applicability of the model.
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