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Arbutin protects against
methotrexate-induced
pulmonary injury in rats via
modulation of oxidative stress,
inflammation, and ER stress
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Introduction: Methotrexate (MTX) is a widely utilized agent in the treatment
of cancer, yet it is notable that it can induce pulmonary toxicity in cases of
high-dose chemotherapy. Arbutin (ARB) is a hydroquinone compound that is
present in members of the Lamiaceae, Ericaceae and Rosaceae families, and
experimental studies have demonstrated its capacity for lung protection. The
present study aimed to determine whether ARB could reduce the pulmonary
toxicity of MTX and to explore the underlying mechanisms.

Methods: The lung toxicity rat model was created by means of a single
intraperitoneal injection of MTX at a dose of 20 mg/kg. The animals were then
treated with two different doses of ARB (50 and 100 mg/kg) for a period of 7
days. Following the conclusion of the treatment period, a histopathological
examination of the lung tissue samples was conducted. The remaining tissue
samples were evaluated for oxidative stress (OS), inflammation, endoplasmic
reticulum stress (ERS), sirtuin 1 (SIRT1)/nuclear factor erythroid-related factor 2
(Nrf2) pathway, and apoptosis for further analysis.

Results: The administration of MTX resulted in the inhibition of SIRT1/Nrf2 in
lung tissue, accompanied by an escalation in OS, inflammation, ERS, and
apoptosis levels. This was concomitant with a significant enhancement in the
severity of histopathological findings. Nevertheless, ARB reversed MTX-induced
biochemical and pathological changes through SIRT1/Nrf2 modulation.
Discussion: It is asserted that further comprehensive studies are required to
support the hypothesis that ARB has the potential to improve oxidative and
inflammatory lung injury via SIRT1/Nrf2 modulation.
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1 Introduction

Methotrexate (MTX), a folate antagonist, is utilized in the
treatment of a number of medical conditions, including leukemia,
lung, breast and uterine cancers, as well as ectopic pregnancy and
rheumatoid arthritis (1). The classical anticancer mechanism of
action for MTX is to deplete cellular tetrahydrofolate pools by
inhibiting dihydrofolate reductase (DHFR), thereby stopping
DNA synthesis and thus cell proliferation in cancer cells (2). In
addition, reduction of NADH/NADPH production via MTX
antagonism of NADPH-dependent
subsequent glutathione (GSH) depletion has been proposed as a

oxidoreductases and
second mechanism of its cytotoxicity (3). Despite its recognized
effectiveness in treating numerous cancers, MTX can induce
adverse effects, notably in healthy tissues exhibiting high
metabolic activity (1, 4). It is generally administered in higher
doses in the context of cancer chemotherapy, a practice that can
result in toxicity and the onset of side effects, including bone
marrow suppression, pulmono-, nephro- and hematological
toxicities (1). It has been documented that treatment with MTX
carries an elevated risk of developing lung disease, with
MTX-related pulmonary toxicity potentially manifesting in the
form of fibrosis, interstitial pneumonitis, and alveolar damage
(4). Despite the absence of a comprehensive understanding of the
mechanism of MTX toxicity, molecular studies have demonstrated
that oxidative stress (OS) and inflammatory reactions are pivotal
factors (5). It is established that MTX induces oxidative tissue
damage of a severe nature by inhibiting antioxidant enzymes,
(SOD)
peroxidase (GPx), depleting the GSH pool, and inducing lipid

including superoxide dismutase and glutathione
peroxidation (LPO) (3, 6). The inflammatory response to MTX

is initiated by pro-inflammatory cytokines, including
interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a),
which are known to increase dramatically as a consequence of the
activation of the nuclear factor-kappa B (NF-kB) pathway (5).
Chronic inflammation due to increased reactive oxygen species
(ROS) and NF-kB activation eventually disrupts endoplasmic
reticulum (ER) homeostasis and ER stress (ERS) occurs. All these
processes act as triggers for apoptotic cell death and cause
permanent lung damage (6, 7). Sirtuin 1 (SIRT1) is a NAD"-
dependent deacetylase and functions as a transcription factor in
various cellular processes, such as metabolism, OS, inflammation,
apoptosis and cell cycle (8). It is known that inhibition of SIRT1
aggravates the degree of OS and inflammation (9). In addition to
SIRT1, the nuclear factor erythroid-related factor 2 (Nrf2)
pathway has been shown to play a crucial role in the elimination
of ROS and inflammation-induced cellular damage (8). The
extant body of experimental evidence has revealed a direct link
between SIRT1 and Nrf2 signaling, thus demonstrating that both
proteins exert a regulatory influence on each other’s activity (9).
Over the past few years, significant progress has been made in the
understanding of the molecular mechanisms underlying
MTX-induced tissue damage, with a particular focus on the role
of suppressed SIRT1/Nrf2 signaling (10, 11). This has led to a
growing focus on identifying molecules capable of counteracting
this inhibition, which is of strategic importance in the
development of effective therapeutic interventions to mitigate
MTX-induced tissue damage (7, 10).
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Arbutin (ARB) is a hydroquinone glycoside that has been detected
in a variety of plants, including members of the Asteraceae, Ericaceae,
and Rosaceae families (12). It has demonstrated a number of biological
activities, including antimicrobial, antihyperlipidemic, antioxidant,
and anti-tumor properties (13). Experimental findings also indicate
the capacity of ARB to influence the SIRT1 and Nrf2 pathways (14,
15). The aforementioned beneficial biological properties of ARB have
resulted in an increase in its industrial application on an annual basis
(12, 13). Experimental data have also been found suggesting a
protective role for ARB in lipopolysaccharide (LPS) (14) and
(16)
Nonetheless, the impact of ARB on MTX-induced pulmonary toxicity

Mycoplasma  gallinarum-induced lung injury models.
remains ambiguous. The present study aimed to investigate whether
ARB protects against MTX-induced lung injury biochemically and

histologically, including the SIRT1/Nrf2 signaling.

2 Materials and methods
2.1 Drugs and chemicals
The MTX, ARB, carboxymethylcellulose (CMC), dimethyl

(DMSO) phosphate-buffered (PBS) tablet,
thiobarbituric acid (TBA), sulfuric acid, paraformaldehyde, ethanol,

sulfoxide saline
xylene, hematoxylin and eosin (H&E) solution were purchased from
Sigma-Aldrich (St. Louis, MO, United States). MTX was dissolved in
physiological serum and administered intraperitoneally, while ARB
was dissolved in 0.5% CMC containing 5% DMSO and administered
orally to the animals. The total oxidant status (TOS) kit was purchased
from Rel Assay Diagnostics (Gaziantep, Tiirkiye). All ELISA Kkits
utilized for biochemical measurements were procured from Fine
Biotech Co., Ltd. (Wuhan, China), and measurements were conducted
in strict accordance with the manufacturer’s guidelines.

2.2 Animals and treatments

Thirty healthy female Sprague-Dawley rats, with a weight range of
170-180 g and aged between 8 and 10 weeks, were procured from the
Surgical Practice Research Center of Karadeniz Technical University.
The rats were housed within the same facility, under standard laboratory
conditions that were maintained at a temperature between 22 and 24 °C
and a humidity level between 40 and 70%, with free access to food and
water. Following a 7-day acclimation period, the rats were randomly
assigned to one of five groups of six rats each: control, high-dose ARB,
MTX, MTX + low-dose ARB and MTX + high-dose ARB. The rats in
the control group were administered 0.5% CMC orally for a period of 7
days and received an intraperitoneal saline injection on the second day.
The rats in the high-dose ARB group were administered high dose ARB
(100 mg/kg) orally for a period of 7 days and received an intraperitoneal
saline injection on the second day. The rats in the MTX group were
administered 0.5% CMC orally for a period of 7 days and received an
intraperitoneal MTX (20 mg/kg) injection on the second day. The
administered MTX dose was determined through consideration of the
dose employed in previous experimental MTX-induced lung toxicity
models (7, 17). The rats in the MTX + low-dose ARB group were
administered ARB (50 mg/kg) orally for a period of 7 days and received
an intraperitoneal MTX (20 mg/kg) injection on the second day. The
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rats in the MTX + high-dose ARB group were administered ARB
(100 mg/kg) orally for a period of 7 days and received an intraperitoneal
MTX (20 mg/kg) injection on the second day. The preferred ARB doses
for this study were determined on the basis of prior research
demonstrating the capacity of ARB to demonstrate antioxidant and
anti-inflammatory properties in experimental models of ischemia/
reperfusion-induced testicular injury (18) and complete Freund’s
adjuvant-induced arthritis (19). On the morning of the 8th day of the
experiment, all subjects were euthanized following overdose of ketamine
and xylazine (4:1). Thereafter, the lung tissues of the subjects were
retrieved for further analysis. Approval for this experimental study was
granted by the Animal Research Ethics Committee of Karadeniz
Technical University (Approval no: 2024/38), and the study was
conducted in strict accordance with the ARRIVE guidelines.

2.3 Histological examination

Tissue samples were obtained from the same lobes of the rat lung
tissues and fixed in 10% formaldehyde solution. Following dehydration
via a graded series of alcoholic solutions, the samples were cleared with
xylene and embedded in paraffin blocks. Following the staining of 5 pm
sections from the paraffin blocks with H&E, they were subjected to
evaluation and photography using a light microscope (Olympus BX51,
Tokyo, Japan). The researcher conducting this analysis was unaware of
the procedures applied to the groups (17). Furthermore, the presence
of vascular congestion, hemorrhage, edema, leukocyte infiltration and
apoptotic cell with hyperchromatic and pyknotic nuclei in five distinct
regions, scanned at 200x magnification in a clockwise direction, was
evaluated on a scale ranging from 0 to 4, with 0 representing a absence
of such features and 4 indicating a widespread presence (20).

2.4 Tissue preparation

Following a rigorous washing process with ice-cold PBS to remove
any contaminants, the lung tissues were then homogenized in PBS
buffer (10% w/v; pH: 7.4) using an appropriate homogenizer.
Following the obtaining of homogenates, the centrifugation process
was initiated at 1,800 g, at a temperature of 4 °C, for a duration of
15 min. The protein content present within the collected supernatants
was subsequently determined by means of the bicinchoninic acid
method (21). Subsequently, the supernatants were utilized for
biochemical analysis.

2.4.1 Evaluation of the levels of LPO and TOS in
lung tissue

The level of LPO in rat lung tissue was determined by means of a
manual colorimetric method (22). In summary, 1 mL of supernatant
was combined with TBA and sulfuric acid, and then heated at 100 °C
for 60 min. Following this, the samples were cooled and then
centrifuged at 1,800 g for 10 min. The degree of absorbance was
measured at a wavelength of 532 nm, using a spectrophotometer
(Molecular Devices, CA, United States) and the LPO levels in tissue
were expressed with nmol malondialdehyde (MDA)/mg protein (23).
The TOS levels in lung tissues were detected using a colorimetric kit
in accordance with the kit instruction.
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2.4.2 Evaluation of the levels of antioxidant
biomarkers in lung tissue

The GSH level in rat lung tissue was determined by means of the
Ellman’s reagent-based a manual colorimetric kit (24). In summary,
following the amalgamation of 100 pL of the supernatant and 100 pL
of the Ellman’s reagent, the mixture was subjected to an incubation
period at ambient temperature for a duration of 5 min. The subsequent
step involved the measurement of the sample’s optical density at a
wavelength of 412 nm using a spectrophotometer. The concentrations
of GSH present within the tissue samples were expressed in terms of
pmol/mg protein.

The levels of SOD, GPx, SIRT1, Nrf2 and heme oxygenase-1
(HO-1) in lung tissues were detected using rat-specific ELISA kits
in accordance with the kit instructions. A conventional ELISA
measurement comprises the following steps: Firstly, 100 pL of
sample and standard solutions are transferred to a 96-well plate
that has been coated with primary antibody. The plate is then
incubated at 37 °C for 90 min. Subsequent to the completion of
this period, the plate content is removed and washed. Then, 100 pL
of biotin-labeled antibody solution is added to each well, and the
plate is incubated at 37 °C for a further 60 min. Subsequent to the
completion of this step, the plate content is removed and washed.
Then, 100 pL of horseradish peroxidase solution is added to each
well and the plate is incubated at 37 °C for 30 min. Subsequently,
the plate content is removed and washed, then 90 pL of TMB
substrate solution is added to each well and the plate is incubated
at 37 °C for 20 min. Subsequent to the conclusion of this period,
50 pL of stop solution is added to each well, and the absorbances
of the wells are measured at 450 nm using a spectrophotometer. A
standard curve is plotted with absorbance values against standard
concentrations. The amount of analyte in the samples is calculated
by substituting the sample absorbances on the plotted graph of
absorbances against standard concentrations (25).

2.4.3 Evaluation of the levels of inflammatory
biomarkers in lung tissue

The levels of NF-kB p65, IL-6 and myeloperoxidase (MPO) in
lung tissues were detected using rat-specific ELISA kits in accordance
with the kit instructions.

2.4.4 Evaluation of the levels of ERS and
apoptosis biomarkers in lung tissue

The levels of heat shock protein family A member 5 (HSPA5),
activating transcription factor 6 (ATF6), growth arrest and DNA
damage-inducible gene 153 (GADDI153) and cleaved caspase-3
(CASP3) in lung tissues were detected using rat-specific ELISA kits in
accordance with the kit instructions.

2.5 Statistical analysis

Data analysis was performed using the SPSS 23.0 program
(Chicago, IL). Distribution of variables was evaluated using the
Shapiro-Wilk test. ANOVA and post-hoc Tukey test were used in the
statistical analysis of parametrically distributed variables. The results
were expressed as mean+SEM. Differences at p < 0.05 were considered
statistically significant.
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3 Results

3.1 Effect of ARB on pulmonary OS and
antioxidant parameters of the
MTX-intoxicated rats

The data pertaining to OS and antioxidant biomarkers in the lung
is illustrated in Figure 1. No statistically significant difference was
observed between the control group and the ARB group. However, in
comparison with the control group, the MTX group exhibited
significantly elevated MDA and TOS levels, alongside significantly
diminished GSH, GPx, and SOD levels. Conversely, ARB dose-
dependently reduced OS and restored antioxidant defenses.

3.2 Effect of ARB on pulmonary SIRT1/
Nrf2/HO-1 axis of the MTX-intoxicated rats

The levels of SIRT1, Nrf2 and HO-1 in the lungs are illustrated in
Figure 2. There was no significant difference between the control

10.3389/fvets.2025.1680886

group and the rats of ARB group. However, when compared with the
control group, the MTX group exhibited a significant suppression of
lung SIRT1, Nrf2 and HO-1 levels. Conversely, ARB treatments
significantly enhanced the levels of these proteins, with the 100 mg/kg
ARB treatment group demonstrating greater efficacy compared to the
50 mg/kg ARB treatment group.

3.3 Effect of ARB on pulmonary
inflammatory parameters of the
MTX-intoxicated rats

The levels of inflammatory biomarkers in lung tissues are
presented in Figure 3. The results indicate that there is no statistically
significant difference between the control group and the rats of the
ARB group. However, when compared with the control group,
administration of MTX resulted in a marked induction of lung
inflammation. However, the administration of ARB in conjunction
with MTX led to a substantial suppression of the level of
lung inflammation.
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Effects of ARB on OS and antioxidant biomarkers in lung tissues of MTX-intoxicated rats. The levels of MDA (A), TOS (B), GSH (C), SOD (D), and GPx
(E) in lung tissues. Values are expressed as mean + SEM (n = 6). Compared with control group **p < 0.01 and ***p < 0.001. Compared with MTX group
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FIGURE 4

Effects of ARB on ERS and apoptosis biomarkers in lung tissues of MTX-intoxicated rats. The levels of HSPA5 (A), ATF6 (B), GADD153 (C), and
CASP3 (D) in lung tissues. Values are expressed as mean + SEM (n = 6). Compared with control group ***p < 0.001. Compared with MTX group

3.4 Effect of ARB on pulmonary ERS and
apoptosis parameters of the
MTX-intoxicated rats

The levels of ERS and apoptosis in the lung tissues are
presented in Figure 4. The results indicate that there is no
statistically significant difference between the control group and
the rats of the ARB group. However, administration of MTX
significantly induced ERS and apoptosis levels in comparison with
the control group. Conversely, the combination of ARB treatment
with MTX administration led to a substantial improvement in lung
ERS and apoptosis levels.
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3.5 Effect of ARB on pulmonary
histopathological findings of the
MTX-intoxicated rats

In the lung sections of the control group, the thickness of the alveolar
wall and the general structure of the lungs exhibited regular morphology.
In the only high-dose ARB group, the lung sections exhibited a regular
morphology, closely resembling normal structures, with mild alveolar
thickening and vascular congestion in specific locations. In the lung
sections of the MTX group, widespread alveolar wall thickening,
moderate vascular congestion, inflammatory cell infiltration and edema
findings were obtained. The lung sections from the MTX + ARB (50 mg/
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kg) group exhibited signs of edema in the interalveolar area and mild
vascular congestion between the alveoli, with the alveolar structure
displaying characteristics that nearly resembled a normal appearance.
The lung sections from the MTX + ARB (100 mg/kg) group exhibited
characteristics that nearly resembled a normal appearance, with edema
and alveolar thickening in places in the interalveolar area (Figure 5).

MTX administration resulted in a marked increase in semi-
quantitative vascular congestion, hemorrhage and injury scores in
comparison with the control group, while ARB administration led to
a significant improvement in these scores (Table 1).

4 Discussion

The MTX is utilized in the management of inflammatory
diseases and various malignancies; however, its propensity to induce

10.3389/fvets.2025.1680886

lung toxicity represents a significant constraint on its therapeutic
application (1, 4). The present study concentrated on appraising the
protective efficacy of ARB (a renowned antioxidant and anti-
inflammatory agent) in counteracting the pulmonary toxicity of
MTX by biochemical and histological methods. The utilization of
experimental animals is a prevalent practice, particularly within the
domain of investigating the mechanism of organ toxicity associated
with MTX. In the course of such investigations, the establishment of
a toxicity model generally entails the administration of a single
intraperitoneal dose of MTX at an initial concentration of 20 mg per
kg of body mass (7, 17). Consequently, in the present study,
intraperitoneal MTX administration was performed on day 2 in the
MTX groups. In accordance with the findings of earlier research (7,
26, 27), the results demonstrated that rats administered with MTX
exhibited histopathological findings indicative of oxidative and
inflammatory damage in their lung tissues. This finding was

FIGURE 5

Effects of ARB treatment on the lung architecture in MTX-intoxicated rats (H&E staining, 200X, Scale bars = 40 pm). (A) The lung sections of the control
group exhibited regular morphology in terms of both alveolar wall thickness and general lung structure, and apoptotic cells with hyperchromatic and
pyknotic nuclei were present at the basal level. (B) In the only high-dose ARB group, lung sections with a regular morphology that closely resembled

normal structures. There was mild alveolar thickening and vascular congestion in specific locations, and apoptotic cells with hyperchromatic and pyknotic
nuclei were present at the basal level. (C) Widespread alveolar wall thickening, moderate vascular congestion, inflammatory cell infiltration, oedema and
elevated apoptotic cells with hyperchromatic and pyknotic nuclei were obtained in the lung sections of the MTX group. (D) Lung sections from the

MTX + ARB (50 mg/kg) group showed signs of oedema in the interalveolar area and mild vascular congestion between the alveoli. The alveolar structure
displayed characteristics that almost resembled normal appearance. Although fewer than in the MTX group, apoptotic cells with hyperchromatic and
pyknotic nuclei were also present. (E) Lung sections from the MTX + ARB (100 mg/kg) group exhibited characteristics that closely resembled normal lung
tissue, with localized oedema and alveolar thickening in the interalveolar area. There were also a small number apoptotic cells with hyperchromatic and
pyknotic nuclei, similar to those observed in the control group. Thick black arrow: alveol, thin black arrow: vascular congestion, thin blue arrow: apoptotic
cells with hyperchromatic and pyknotic nuclei, arrowhead: edema, elliptic: inflammatory cell infiltration.
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TABLE 1 Effect of ARB on histopathological changes in the lung tissue of MTX-intoxicated rats.

Control ARB (100 mg/kg) MTX + ARB MTX + ARB

(50 mg/kg) (100 mg/kg)
Vascular congestion 0.33+0.21 0.50 +0.22 2.50 & 0.227%#* 1.17 £ 0.177 0.67 +0.21°
Hemorrhage 0.33+£0.21 0.50 £0.22 1.50 + 0.22%%* 0.66 +0.21 0.50 + 0.22°
Injury score 0.33+£0.21 0.67 £0.21 2.50 + 0.22%%* 0.83 £0.17" 0.67 +0.33"*

ARB, arbutin; MTX, methotrexate. Data were expressed as mean + SEM (n = 6). p-values according to ANOVA and post-hoc Tukey test. Compared with control group: **p < 0.01 and

¥ p < 0.001. Compared with MTX group: “p < 0.05, “p < 0.01, and **p < 0.001.

interpreted as an indication that the MTX-induced pulmonotoxicity
had been established. However, the
administration of ARB treatments in combination with MTX

model successfully
(particularly at a dose of 100 mg/kg) resulted in a significant
improvement in the histopathological findings in lung tissue. These
results were consistent with the findings of previous studies which
demonstrated that ARB was capable of exerting a lung-protective
effect through the reduction of inflammatory cell infiltration in a
model of lung injury induced by LPS (14), as well as through the
improvement of inflammatory cell infiltration, congestion, and
bleeding findings in a model of lung injury induced by Mycoplasma
gallinarum (16).

The OS has been identified as a primary initiating mechanism in
tissue damage caused by pathological stimuli. Over time, this stress
can induce inflammation, ERS and cell death pathways, which can
ultimately lead to organ failure (6). It is widely accepted that increased
OS is the primary cause of MTX-induced pulmonary toxicity (5). A
body of experimental studies conducted to date has indicated that the
administration of MTX leads to an augmentation in the production
of ROS, with a particular emphasis on the formation of superoxide
radical (1, 3). It has been demonstrated that excessive ROS instigates
LPO and results in the generation of toxic and mutagenic by-products,
including MDA, while concurrently inducing structural damage to the
cell’s antioxidant proteins SOD and GPx. Consequently, the presence
of these mechanisms results in the occurrence of oxidative damage
induced by MTX (5). The most significant regulatory factor in the
process of cellular responses to stress factors is Nrf2 (28). In the event
of cellular toxicity, increased ROS abolish the Nrf2/Kelch-like
ECH-associated protein 1 interaction, and the nuclear translocation
of released Nrf2 induces the expression of numerous antioxidant
genes, including SOD, HO-1, and GPx (28). SIRT1, a member of the
histone deacetylase family, plays a pivotal role in the regulation of OS
and mitochondrial metabolism (29). In line with these informations,
our research demonstrated that administration of MTX led to an
increase in LPO levels in lung tissue, which was a result of the
inhibition of the SIRT1/Nrf2 axis and the suppression of the
antioxidant system. These results were in accordance with those of
previous research, which has shown that MTX causes oxidative
damage to tissue by inhibiting the SIRT1 and Nrf2 pathways (5, 10,
11). However, the application of ARB in conjunction with MTX
resulted in a substantial suppression of LPO and TOS levels, achieved
through the regeneration of the antioxidant system by modulating
SIRT1 and Nrf2 in a dose-dependent manner. The radical scavenging
activity of ARB is well documented (13). In this study, the reduction
in MTX-induced OS levels in the ARB treatment groups is
hypothesized to be due to the direct radical scavenging activity of ARB
and a synergistic effect of the previously demonstrated SIRT1/Nrf2
modulatory effects of ARB (14, 25, 30).

Frontiers in Veterinary Science

Inflammation is defined as a physiological response of the body
to pathological stimuli, which activates three mechanisms: namely, an
increased perfusion of the affected tissue, an increased permeability
of the capillaries, and an elevated leukocyte infiltration (indicating
higher MPO levels) (5). A plethora of preceding investigations have
demonstrated that inflammation, characterized by elevated levels of
pro-inflammatory cytokines, is a contributing factor to MTX-induced
tissue injury (10, 11). The NF-xB is a pivotal regulator that plays a
critical role in the activation of numerous inflammatory cytokines,
such as IL-6 and TNF-a (31). In this study, MTX treatment activated
the NF-kB cascade in lung tissue and induced a strong inflammatory
response, in agreement with previous studies (5, 32). Interestingly, the
inflammatory response induced by MTX in lung tissue was greatly
attenuated by the administration of ARB. The identification of a
negative regulation between Nrf2 and NF-kB pathways confirmed the
hypothesis that a reduction in ROS production could lead to a
reduction in inflammation (5). Additionally, SIRT1 has been shown
to suppress the inflammatory response by hindering NF-kB signaling
(8). In light of this information, it is suggested that the mechanism by
which ARB treatment reduces MTX-induced lung damage may
involve the anti-inflammatory activity of ARB resulting from their
antioxidant and SIRT1/Nrf2 modulator properties. This hypothesis is
supported by the lower levels of OS and higher levels of SIRT1/Nrf2 in
the ARB groups compared with the MTX group. In addition, this
situation is in line with the results of the anti-inflammatory activity of
the ARB previously demonstrated in experimental models of
LPS-induced lung injury (14) and in cyclophosphamide-induced liver
injury (30).

The ER is a multi-functional organelle within the cell that is
responsible for the synthesis, folding and quality control of proteins
(33). Insults like OS, toxins, ischemia and inflammation impair the
folding capacity of ER proteins in cells, and the unfolded proteins
build up in the ER lumen, leading to ERS (34). Cells activate the
unfolded protein response (UPR), which activates mechanisms,
such as inhibition of protein synthesis, regulation of gene expression
and apoptosis, in order to restore proteostasis by eliminating the
ERS (35). HSPA5, ATF6 and GADD153 are ERS biomarker proteins
frequently used to determine ERS level (7). Recent reports have
highlighted the role of increased ERS and ERS-induced apoptosis in
MTX-associated tissue damage (7, 36). In line with these reports,
the results of our study showed that the administration of MTX
induced the levels of the biomarkers of ERS and apoptosis in the
lung tissue. A growing body of evidence points to the possibility of
cross-regulation of ERS components and SIRT1 expression (34).
Activation of SIRT1 reduces the level of OS and inflammation,
which also alleviates the ERS (33). Nrf2 is also known to regulate
the expression of proteins responsible for removing unfolded
proteins by proteasomal degradation (35). These results are
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supported by our findings of increased ERS and apoptosis in MTX
despite decreased SIRT1/Nrf2. However, ERS and apoptosis levels
were significantly abolished by ARB treatment in combination with
MTX. These results were in line with previous studies showing that
ARB could suppress ERS and apoptosis in models of LPS-induced
renal injury (36) and ischaemia/reperfusion-induced testis
injury (18).

5 Conclusion

The results of this study demonstrate for the first time that ARB
can play a protective role in an experimental model of MTX-related
pulmonary toxicity, reducing OS, inflammatory and ERS mechanisms.
This protective effect of ARB was found to be mediated at least in part
through the regulation of the SIRT1/Nrf2 pathway. ARB shows
potential as an adjuvant to reduce MTX-induced pulmonary toxicity,
warranting further preclinical and clinical evaluation.
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Glossary

ARB - Arbutin LPS - Lipopolysaccharide

ATF6 - Activating transcription factor 6 MDA - Malondialdehyde

CASP3 - Cleaved caspase-3 MTX - Methotrexate

CMC - Carboxymethylcellulose MPO - Myeloperoxidase

DHER - Dihydrofolate reductase NF-kB - Nuclear factor kappa B p65
DMSO - Dimethyl sulfoxide Nrf2 - Nuclear factor erythroid 2-related factor 2
ERS - Endoplasmic reticulum stress OS - Oxidative stress

GADD153 - Growth arrest and DNA damage-inducible gene 153 PBS - Phosphate-buffered saline
GPx - Glutathione peroxidase ROS - Reactive oxygen species

GSH - Glutathione SEM - Standard error of the mean
H&E - Hematoxylin and eosin SIRT1 - Sirtuin 1

HO-1 - Heme oxygenase-1 SOD - Superoxide dismutase

HSPA5 - Heat shock protein family A member 5 TBA - Thiobarbituric acid

IL-6 - Interleukin-6 TNF-a - Tumor necrosis factor-alpha
LPO - Lipid peroxidation UPR - Unfolded protein response
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