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Not just avoidance: dogs show
subtle individual differences in
reacting to human fear
chemosignals

Svenja Capitain*, Friederike Range* and Sarah Marshall-Pescini

Domestication Lab, Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of
Ethology, University of Veterinary Medicine Vienna, Vienna, Austria

Recent olfactory studies suggest that human emotional chemosignals can alter
dog behavior. However, their methods impeded a firm conclusion on whether
dogs reacted to the scent directly or to the present human's unconscious response
to the intraspecific stimulus. Moreover, whether these reactions differ between
dogs has not yet been explored. Therefore, we investigated dogs’ reactions to
human fear or neutral chemosignals while shielding the present human from the
smells. Dogs were first trained to approach a single empty target on command,
before they were given the choice between two targets laced with human smell
(experimental group (n = 41): one fear target and one neutral; control group
(n = 20): both neutral targets). Dogs in the experimental group stayed longer with
the experimenter, displayed lower tail posture, and took longer to approach a
target than control dogs, though target choice did not differ at the group level.
Age and sex showed no effect. Furthermore, dogs in the experimental group
compared to the control group showed stronger interindividual variation in how
quickly they approached one smell over the other and how many commands they
required. This finding suggests that dogs are indeed influenced by human fear
smell beyond the humans’ reaction, though it challenges previous assumptions
of an innate interspecific fear avoidance. The influence of life experience or breed
on the individual differences may be worth exploring to better understand and
guide dogs’ experience of the world.

KEYWORDS

dogs, companion animal, chemosignals, fear, olfactory, dog-human interaction,
emotional contagion

1 Introduction

Dogs have evolved closely with humans for millennia (1). They can discriminate between
the emotional information in human facial expressions (2-5), vocalizations (6), and body
language (7) and respond accordingly (5, 8, 9). While most studies focused on visual and
auditory cues, recent research has explored dogs” primary sense — smell — and the role of
human chemosignals (10-12). Chemosignals are chemical substances that animals (including
humans) excrete consciously or unconsciously to alter others’ behavior, including recognition,
mating, and alarm signals (13, 14). Recent evidence suggests that emotions also have distinct
chemosignal signatures, eliciting similar emotional and physiological states in intraspecific
recipients [e.g., humans: (15, 16), dogs: (17)].

The consideration of dogs’ co-evolution and daily life with us humans has sparked
investigations into our interspecific communication through these emotional chemosignals
(11, 12, 18). Perhaps unsurprisingly, dogs can be trained to distinguish the smells of different
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human emotions (19, 20). Additionally, studies have evidenced that
dogs exposed to human fear sweat samples spontaneously showed
more owner-seeking and higher heart rates than with happiness
samples (11, 21, 22). Similarly, dogs exposed to human fear in a
Judgment Bias Task showed greater pessimism than dogs exposed to
happy chemosignals (23). These results were hence interpreted as
olfactory-based interspecific emotional contagion between dogs and
humans (11, 12, 23).

However, in all these studies, a human was exposed to the scent
alongside the dog during the test, either handling the sample (17, 23)
or remaining in close proximity (11, 20-22). This is surprising, given
ample evidence of how easily dogs react to a handler’s physiological
modulations (24, 25) and subtle behaviors, including facial
expressions (7, 26, 27). As mentioned above, the smell of human fear
elicits unconscious reactions in other humans, both physiological
(e.g., neural fight or flight activation) and behavioral (e.g., fearful
facial expressions) (15, 28, 29). This simultaneous exposure of humans
and dogs in these studies therefore impedes a firm conclusion on
whether dogs react to the chemosignal itself or to human
behavioral changes.

Additionally, these studies exposed dogs separately to different
human emotional chemosignals, either in between-subjects designs
(11, 21, 22) or different conditions (23), limiting investigations of
potential variability in dogs reactions to human fear scent.
Concordantly, the persistent owner-seeking behavior during fear-
smell exposure across studies, which was already present in
6-month-old puppies, had been interpreted as an innate reaction of
dogs to human fear chemosignals (22). However, a learned response
or prey appraisal may be equally plausible (12). Supporting this
finding, dogs use different nostrils for sniffing human vs. canine fear
cues (17), suggesting distinct neural pathways rather than an
automatic fear response. Given dogs diverse demography, life
experience, and breed functions, we hypothesize that — assuming the
dogs react to the smell itself - some dogs may develop an avoidance
response to human fear, while others approach it.

Together, these methodological gaps may have biased our
interpretation of dogs’ behavior toward human fear smell, impeding
not only our understanding of how dogs experience their interactions
with human emotions and the environment, but also the exploration
of individualized mitigation strategies if dogs indeed react to the smell
itself. Thus, the aim of the current study was two-fold. First, dogs’
reactions to human fear chemosignals were investigated, while
preventing the present humans from reacting to the intraspecific
chemosignals. Since human-directed behaviors were central in the
previous chemosignal studies, we kept the human in the setup but
shielded them from the smells’ influence through a mask and gum
chewing (30, 31). Second, interindividual variability was tested when
given a choice between human neutral and fear chemosignals. Hence,
we adopted a between- and within-subject design, allowing subjects
to manifest both approach and avoidance behaviors toward the fear
and control scents. Dogs were first trained to touch an empty target
on command, which served as a foundation for the choice task during
testing. In the test, the dogs were presented with two targets laced
either with human fear and neutral chemosignals (experimental
group) or both with human neutral chemosignals (control group).
Across ten trials, the animals were given the choice to accomplish the
command at their preferred target. We analyzed approach and
avoidance tendencies, human-directed behavior, and tail posture.
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We hypothesized that if dogs’ negative reaction to the fear smell
in the previous studies was independent of human influence, we would
see more target avoidance, low tail postures, and perhaps human-
directed behavior (given that the experimenter was familiar but not
the owner) in the experimental vs. control group. Alternatively, or
additionally, considering the possibility of individual differences, e.g.,
due to age, sex, different life experiences, or learned responses,
we further expected that there may be interindividual variation in
some of the behavioral reactions.

2 Methods
2.1 Ethical approval

The study received ethical approval from the ‘Ethik und
Tierschutzkommission’ of the University of Veterinary Medicine
(Ref.: ETK-031/03/2024) and the
Ethikkommission of the FH Campus Wien for the human scent

Vienna for the dogs
donors (Ref.: 262/2025). All scent donors and dog owners gave written
informed consent for their (dogs’) participation in the study and the
use of the resulting data and video.

2.2 Scent collection

Sixteen female students (average age 25.3 years), unfamiliar with
the dog participants, were sampled at the University of Veterinary
Medicine, Vienna. Following standard protocols (11, 22, 23, 32), each
donor watched a 23-min nature narration (neutral smell) and horror
scenes (fear smell) (“The Passenger,” “Nighty Night, Nancy;” “Vicious,”
“Mr Creak’; for details see Supplementary material) [scenes validated
by (29, 33)] alone in a darkened room while wearing sterile absorbent
compresses (Cutisorb, BSN Medical) in their axillaries. Participants
were non-smokers, outside the fertile phase of their cycle, and avoided
odorous foods and products for 16 h prior to sampling. Our within-
study design necessitated that the two samples from each participant
differ only in the emotion. Following Wilson et al. (20), each
participant therefore first watched the neutral movie (“Smell 17),
wiped their arms after sample processing was completed and then
repeated the same procedure with the second movie (“Smell 2”).
Control group donors watched the neutral movie again for Smell 2,
while experimental group donors watched the horror movie second.
The movies effectiveness was confirmed using Spielberger’s State—
Trait Anxiety Inventory (34, 35) pre-post exposure (see
Supplementary material for analysis). Immediately after each movie,
each absorbent was cut into four pieces, and the participant blew their
breath on them (23). Samples were stored at —20 °C.

2.3 Subjects

Sixty-two pet dogs (>1year old, various breeds,
Supplementary data) were recruited through the Clever Dog Lab
Database (Messerli Institute, University of Veterinary Medicine,
Vienna), social media, and a local dog school. One dog failed training,
leaving 61 dogs to be randomly assigned to the experimental group

[n =41, 26 females, 15 males, mean age (SD) 5.9 years (2.6)] and
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control group [n=20, 10 females, 10 males, mean age (SD)
5.85 years (3.9)].

2.4 Experimental setup

The study was conducted in a fenced outdoor area at the Clever
Dog Lab (n = 53), the local dog school (n =7), or the participants’
home (n = 1). A black plastic disc (d = 40 cm) on a short metal pole
acted as the “target,” fixed in place with a cobblestone (Figure 1A).
Three cutouts in the plastic disc connected to a plastic box at the back
of the disc that held the sample tube. The study comprised one to four
training sessions, followed by one test session. Each session was
conducted on a different day.

2.5 Training procedure

Each session started with the dog freely exploring the area. The
experimenter used positive reinforcement to train the dogs on a single
target (empty, no scent) based on a combined hand and voice
command (see Supplementary Video S1). The maximum length of a
training session was 15 min of active training time, broken up by
5-min breaks according to the dogs’ engagement level. Since dogs rely
less on their nose in more automated tasks (36, 37), training was
aimed at getting dogs to reliably approach the target to a minimum of
20 cm proximity on command while keeping training minimal.
Therefore, dogs were trained on their first offered movement: nose
touch (n = 38), paw touch (n = 6), or running closely around the target
(n =17). This approach ensured an inclusive sample, with only one of
the 61 dogs failing training. Dogs were considered trained once they
successfully completed the command three times in a row from 3 m
away (1-4 sessions, average 1.3), receiving a food reward each time
after being called back to the experimenter. The test was conducted in

10.3389/fvets.2025.1679991

the next session. The point of training the dogs for the approach was
to facilitate analyzable choosing and avoidance behavior when
exposed to the scents in the test.

2.6 Test procedure

Two sample tubes were defrosted 30-min before testing, either
both neutral (control group) or one neutral tube and one fear tube
(experimental group). Each tube contained sweat samples from two
donors sampled in the same condition. Tubes were marked to track
placement and pairings, but their content was concealed to keep the
experimenter blind to group and smell allocation (for blinding
procedure see Supplementary material).

The session started with three warm-up trials where the dog
approached a single, centrally located, empty target on command for
an experimenter-delivered food reward. The dog was then leashed and
seated with the owner 6 m from the setup, facing away. The
experimenter placed two targets 3 m apart and 3 m from the starting
position (Figure 1B).

The experimenter started chewing mint gum and wore an FFP2-
mask to keep from being influenced by the smells. Then, donning
gloves, she opened and placed one tube in each plastic box at the back
of the respective target, before disinfecting her hands. Each of the ten
trials had two phases (Supplementary Video S1):

1. Guided phase: The experimenter walked the leashed dog to one
target, allowing the dog to sniff at least 3 s in target proximity
(50 cm) before repeating the same at the second target. The
order was counterbalanced across trials.

Test phase: The unleashed dog was positioned parallel to the
experimenter, facing the targets. The experimenter gave the
command while looking straight and pointing exactly between
the targets. The dog was verbally rewarded by the experimenter

Setup. (A) The target from the front (top) and side (bottom), and (B) the test setup with the Guided Phase (top) and Test Phase (bottom), and the

(A) (B) Guided Phase
Test Phase
back
FIGURE 1
walking trajectory (green dotted line).
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upon executing the command at whatever target it chose,
called back, given a food reward (kibble or sausage), leashed,
and returned to the owner.

The command was repeated up to five times if the dog moved
toward the target but did not approach it within 20 cm before
looking at the experimenter. If the dog did not move forward
at all for three consecutive commands in a row, the trial was
likewise terminated.

Targets were repositioned between trials, either exchanging their
side or just shortly lifting them in place (sequence counterbalanced
within and across dogs). Terminated trials were not repeated. If the
dog did not approach the target three trials in a row, the session
was terminated.

2.7 Behavioral variables

The test session was filmed, and behaviors were coded using
BORIS software [v.8.25.4, (38)]. Interactions with the targets were
analyzed in both phases, whereas choice behaviors, as well as
experimenter- and environment-directed behaviors, were only coded
in the Test phase (Table 1). Displacement signals (e.g., yawning, nose
licking) could not be reliably coded due to camera positioning. All
videos were coded blind to condition, group, and smell identity, and
21% (13 videos) were re-coded by a second coder who was blind to
hypotheses and group allocation, achieving an interrater agreement of
0.95 (ICC 0.82-1.00; see Supplementary Table A).

2.8 Statistical analysis

Analyses were conducted in R [RStudio v2023*0.06.0; (39)].
Duration variables were analyzed as proportions of the trial duration
or time in target proximity. Low-frequency behaviors were analyzed
as binary occurrences per trial. Behaviors occurring in less than 10%
of trials were excluded. Target-directed behaviors were first analyzed
as GLMMs with Smell and Group as main interaction factors, Sex,
Age, and Trial (both z-transformed) as control factors, and AnimalID
as a random effect. For the Smell factor, the first neutral movie sample
represented Smell 1, while the second movie sample (neutral for
control, fear for experimental group) was Smell 2. To further
investigate if and why some dogs may react differently to the fear
smell than others, we additionally analyzed the target-directed
behaviors in the experimental group as an interaction of Smell and
Sex as well as Smell and Age, with Trial as a control factor and
AnimalID as a random factor. Non-target-directed behaviors were
analyzed with the experimental group in interaction with Age and
Sex, respectively, as the factor of interest. Random slopes were
manually dummy-coded and centered. Relative durations were
analyzed using a beta distribution, frequencies were modeled with a
Poisson distribution, with the binomial model as the binary choice,
with total trial number as offset and latency as a Gaussian family
(log-transformed). Models were examined for overdispersion,
distribution of residuals, Best Linear Unbiased Prediction,
multicollinearity, and model stability. To keep the type I error rate at
5%, only significant variables in models that passed the full-null
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TABLE 1 Ethogram.

Behavior Definition

Guided phase

Looking at target (D) Time spent with the head directed toward

target

Sniffing target (D) Time spent with the nose within 10 cm of

the target while nose directed toward target

Proximity to target (D) Time spent with the nose within 50 cm

circle around the target

Test phase

Proximity to target (D) Time with the nose within 50 cm circle

around the target

Engaging with target (D) Time spent with the head or paw within
10 cm of the target, gazing at it, sniffing, or

touching it

Looking at target (D) Time spent with the head directed toward

target

Latency to accomplish Time from first command to accomplishing

command (D) it (touch for touch dogs, within 10 cm for
close proximity dogs, half-way around
target within 50 cm for running-around

dogs)

Command accomplished (F/B) Command (definition above) accomplished

at target

Not accomplished (F/B) Dog did not execute the command at all in

that trial

Redirection (F) Animal gets within 1 m of target with head
oriented to the target, then executes the

command at the other target

Number of commands (F) Every time human gives a verbal and hand

signal command

Tail high (D) Time spent with the majority of the tail held
at mid-point or above body line
Tail low (D) Time spent with the majority of the tail held

below body line

Looking at experimenter (D) Time spent with the head directed toward

experimenter

Proximity to experimenter (D) Time with at least one paw within 1 m of

the experimenter

Sniffing environment (D) Nose within 10 cm of floor, directed at floor

Trial duration Time from first command until dog returns

to experimenter (first paw within

50 cm + remains there)

Behaviors were coded as durations (D), frequencies (F), or binary (B) in the two phases
(Guided/Test) of each trial. Target-directed behaviors were coded as directed at the left or
right target and later cross-referenced to the smell currently located on the respective side for
analysis.

model comparisons using a likelihood ratio test (40) were examined
in Tukey-adjusted pairwise comparisons (emmeans package (41)).
Confidence intervals were obtained through Parametric
bootstrapping (glmmTMB package (42)). Detailed model outputs are

reported in the Supplementary material. A Fisher’s test determined
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whether test session termination or side biases occurred significantly
more frequently in the experimental vs. control group. To analyze the
strength of individual differences, mean target-directed behavior
values were calculated per smell and individual, and the absolute
difference between smells was computed for each individual. Due to
non-parametric distribution, Mann-Whitney U tests were used to
compare the strength of absolute differences between groups.

All utilized analyses were suitable for imbalanced sample sizes
(43-45).

3 Results

Dogs in the experimental group spent more time within 1 m of
the experimenter (Control vs. experimental: est. = — 0.17, SE = 0.07,
z.ratio = —2.51, p = 0.01) and were more likely to hold their tail in a
position below the midpoint (control vs. experimental: est. = —1.79,
SE = 0.87, z.ratio = —2.06, p = 0.04) (Figure 2). There was no difference
between groups in how long the dogs held their tail up (x> = 4.38,
df =5, p = 0.50), looked at the experimenter (y* = 1.5, df = 5, p = 0.90),
or sniffed the ground (y* = 8.78, df = 5, p = 0.12). Group did not affect
how often they did not accomplish a trial (y* = 2.00, df = 5, p = 0.85),
but ten dogs (out of 41) stopped to participate entirely in the
experimental group compared to one dog (out of 20) in the control
group, which was a marginal effect (Fisher’s Exact Test, p = 0.08). The
frequency of redirection was too infrequent to be analyzed (10/515
trials). No effect of age or sex emerged for the group differences,
neither as an interaction with group nor as an additive effect (see
Supplementary material).

10.3389/fvets.2025.1679991

There was no choice preference for a certain smell in either group,
neither in the first trial (y* = 4.88, df = 3, p = 0.18) nor across all trials
(x> =4.29, df =6, p =0.64) (see Table 2 for choice overview). On
average, dogs in both groups chose one side 47% more often than the
other. The probability of side bias did not differ significantly between
groups (Fisher’s exact test, p = 0.53), with 45% of dogs in the Control
group and 36% of dogs in the experimental group choosing the same
side in at least 80% of trials (i.e., above chance at p = 0.055, assuming
10 trials). For details per dog, see Supplementary Table B.

Regarding target-directed behaviors, there was no difference
between smells or groups for sniffing (y* = 1.63, df = 3, p = 0.65),
engaging with (y* = 0.31, df = 3, p = 0.96), looking at (y* = 1.21, df = 3,
p =0.75), or staying close to either target (y*> = 1.86, df = 3, p = 0.60).
Similarly, the number of commands needed to accomplish the task did
not differ (y>=2.20, df=3, p=0.53). However, dogs in the
experimental group tended to be slower to approach the target
compared to the control group, though there was no interaction with
Smell on a group level (Group effect: * = 83.93, df = 3, p < 0.01, post-
—0.19, SE=0.11,
z.ratio = —1.72, p = 0.08). Neither sex nor age showed an interaction

hoc control vs. experimental group: est.

effect with smell in the experimental group (for outcome details see
Supplementary material), but an additive effect emerged across
groups, wherein age was negatively correlated with time spent sniffing
the target (est. = — 0.21, SE = 0.08, z.ratio = —2.47, p = 0.013).
Similarly, dogs in the experimental group did not show bigger
individual differences in how long they engaged with the two smells
(W =403, p = 0.92), sniffed them (W = 460, p = 0.45), looked at them
(W =400, p = 0.89), stayed in proximity to them (W =347, p = 0.34),
or which one they chose (W = 449, p = 0.54) compared to the control
group. However, compared to the control group, dogs in the
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TABLE 2 Choice behavior.

Smell (mean across all

trials + SD)

Smell (total in first trial)

10.3389/fvets.2025.1679991

Side (mean across all Side (total in first trial)

trials + SD)

Experimental Smell 1 (neutral) Smell 1 (neutral) Left Left
44% + 16% n=18 50% + 30% n=26
Smell 2 (fear) Smell 2 (fear) Right Right
46% + 17% n=23 40% +29% n=15
No choice Dogs showing bias
10% + 18% (>80%) 45%
Preference Preference for one side over the
Smell 2 > Smell 1 other
2% £ 27% 47% + 32%

Control Smell 1 (neutral) Smell 1 (neutral) Left Left
44% + 13% n=7 35% +27% n=7
Smell 2 (neutral) Smell 2 (neutral) Right Right
50% + 16% n=13 59% +29% n=13

No choice

6% + 11%

Dogs showing bias (>80%) 36%

Preference
Smell 2 > Smell 1
6% * 26%

Preference for one side over the
other
47% + 36%

Summary of dogs” choice behavior in the experimental and control group for a certain side or smell in the first trial and across all trials.

experimental group showed stronger individual differences in how
quickly they approached one smell compared to the other (W = 262,
p =0.02) and a trend in the mean number of commands they needed
to approach one smell compared to the other (W =302, p =0.09)
(Figure 3).

4 Discussion

Studies across the last decade suggest that dogs react to human
emotional chemosignals (11, 22, 23), but confirmation of the direct
effect of the chemosignals in the absence of the potential reaction of
simultaneously exposed humans to the scent was lacking. Although
we did not find an overall preference for the fear or neutral scent,
the presence of the human fear smell affected dogs’ behavior
similarly to previous studies, even while the human present was
shielded from the chemosignals. Moreover, it seems that the focus
on between-group comparisons in previous studies might have
masked subtle differences in individual reactions to human
fear chemosignals.

In detail, dogs exposed to the fear smell spent more time near the
experimenter, took longer to approach the target, were more likely to
hold their tail low, and tended to disengage from the session
(marginally) more frequently than dogs in the control group. D’Aniello
and colleagues interpreted the proximity seeking, in their case, to the
owner, as a safe-haven effect (21, 22), where dogs seek human
attachment figures in threatening situations (46, 47). While our
experimenter was not the owner, she was positioned closer to the
owner than the targets and had previously interacted with the dog in
rewarding training sessions, rendering her more familiar than the
strangers in previous tests. This might explain dogs pronounced
proximity-seeking in the experimental group compared to the control

Frontiers in Veterinary Science

group, suggesting dogs’ discomfort or uncertainty in the presence of
the fear smell. Dogs’ decreased willingness to approach the targets and
the higher likelihood of disengagement align with that interpretation,
mirroring dogs’ disinclination to approach strangers (11, 21) or
ambiguous stimuli when exposed to human fear smell (23). Consistent
with previous results, we also found a higher likelihood of a lowered
tail posture (48, 49). This behavior, taken alone, may either be an
expression of a relaxed or disinterested state or indicate more negative
affect. However, we suggest that, integrated with our other results, the
discomfort explanation is more likely. The consistency of these
outcomes, despite the human being shielded from the smell, provides
further and stronger evidence that dogs distinguish and react to the
presence of human fear smell in the environment with behaviors
indicating low-level discomfort or hesitation.

While we cannot entirely rule out that the human was not
influenced by the smell, we believe our methodological precautions
excluded this possibility. The test was conducted outdoors, reducing
scent detectability (50). The experimenter wore an FFP-mask, which
significantly decreases olfactory sensitivity and increases detection
thresholds (30, 31). Furthermore, she chewed mint gum, increasing
volatile concentration and inducing positive affect (51). Given that
humans have significantly higher detection thresholds than dogs,
especially for animalistic smells (52), we are confident that human
influence was unlikely.

Having said that, our results suggest a more complex situation than
direct interspecific olfactory-mediated emotional contagion. Moving
beyond spontaneous behavior and between-group comparisons (11,21,
22), our choice paradigm required dogs to take an action, eliciting greater
variability and the possibility to robustly explore variation within and
between subjects and smells. Therein, dogs in the experimental group
showed stronger interindividual variation in their latency and the
number of needed commands to approach the smells than the control
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FIGURE 3

Individual differences. The mean (A) latency and (B) number of commands a dog needed in each group to approach Smell 1 [neutral (white)] or Smell 2
[Control group: neutral (grey), experimental group: fear (brown)]. Each individual animal is represented by a color consistent between both smells,
connected by a grey line. The steeper the line, the stronger the individual's preference to show the behavior at one smell target over the other. E.g.,

a steep upward line in the experimental group in (A) suggests the individual approached the fear smell much slower than the neutral human smell.

group. The slopes in Figure 3 underline that, while some dogs in the
experimental group hesitated to approach the fear sample, others
approached it faster than the neutral sample. This variability contradicts
the idea of a uniform, inherent avoidance of human fear scent in dogs

22). However, these results fit previous findings that dogs sniff human
fear with the left nostril (rather than the right nostril when sniffing dog
fear) (17), which is connected to threat-validity analysis (left-hemisphere)
rather than a direct threat response (right hemisphere). This finding
could suggest that dogs’ life experience may impact dogs reaction to
human fear smell, for example, by associatively learning that the smell of
fear means something negative (e.g., the owner yanking the leash) or
positive (e.g., the owner petting the dog for personal stress relief), or
through training that outside stimuli beyond the task should be ignored
completely. Interestingly, similarly to previous studies, neither age nor
sex predicted how dogs reacted to the fear compared to the control smell
in the experimental group (21). On the other hand, Siniscalchi, d'Ingeo
(17) found that dogs’ predatory behavior was correlated with how much
they used the left nostril to smell human fear, leading the authors to
hypothesize that dogs prey drive may modulate how much they choose
to approach interspecific fear smell. Unfortunately, life experiences,
training backgrounds, and breeds were too varied in our sample to
be analyzed as possible explanators. Future studies with more uniform,
dedicated recruitment will be needed to elucidate the underlying drivers.
Furthermore, the area in which dogs are exposed to the smell may play
arole in their reaction. We had balanced our experimental and control
groups across the test locations (Clever Dog Lab and dog school), both
chosen as locations where the participating dogs had a comparatively
variable experience in how often they had been there before and what
kind of tasks they engaged in. For the sake of model complexity and
small sample tested outside the lab (n=7/61 at dog school, n=1 at
home), location was not added to the analysis, and no descriptive
differences emerge from the data (see Supplementary Table B). However,
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future studies may want to explore whether familiar and unfamiliar
location influences dogs reactions toward human fear
chemosignals differently.

Since we were unable to code the displacement behaviors,
we cannot make any claims about discomfort beyond what matched the
behaviors from previous studies. Hence, it needs to be further explored
whether the overall slower approach in the experimental group
compared to the control group was a remnant of innate fear avoidance,
whether it was discomfort at all, or whether it may reflect initial
uncertainty before determining whether the approach was safe or
allowed. Given the correlation to affect, monitoring dogs’ lateralized
behavior in, for example, their tail wagging direction or paw or nostril
use, may help further clarify, beyond simple approach metrics, why each
dog chose a certain behavior toward the human fear smell (17, 53-55).

While the finding of significant individual preferences for one smell
over the other in the latency to approach but not the choice itself might
seem puzzling, this pattern aligns with prior findings in dogs free
choice behavior. Beyond the ubiquitous problem of side biases in choice
tests (56, 57), recency effects significantly influence decision-making in
dogs (58). While trained dogs excel at scent detection, untrained dogs
tend to rely on win-stay/loose-shift strategies when choosing between
familiar and unfamiliar stimuli (37, 58). Since our dogs were rewarded
for any choice, this factor likely influenced the behavior in our sample.

Taken together, dogs exposed to the human fear smell displayed more
negative affect and reluctance to leave the human and approach either
target, strengthening previous findings that dogs react to human fear
smell even when the human is unaffected. Despite this, some dogs
avoided the human fear smell, while others approached it faster than the
neutral smell, suggesting subtle individual differences in how dogs react
to human fear chemosignals. Age and sex did not explain this pattern.
Our results emphasize that exploring variability in dogs’ reactions rather

than assuming uniformity is crucial when researching companion dog
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behavior. Studies to validate this outcome and explore possible drivers are
clearly needed. Better understanding why and whether a dog approaches
or avoids human fear may aid our interactions with dogs all from safety
(e.g., attacks on fearful people), welfare (e.g., decreasing overall dog
stress), and practical (e.g., selecting therapy dogs) perspectives.
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