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The periparturient period creates an intense energy demand due to the onset
of lactation, which requires substantial glucose for milk synthesis, particularly in
high producing cows, contributing to a high incidence of postpartum metabolic
disease. We explored the transcriptomic adaptation of subcutaneous adipose tissue
(AT), with a specific focus on metabolic gene networks and the mitochondrial
component. Mitochondria coordinate cellular energy dynamics by linking the
oxidation of nutrients to ATP synthesis via oxidative phosphorylation (OXPHOS).
However, their role in postpartum metabolic disease is not clear. We therefore
re-analysed a longitudinal RNA-seq dataset of subcutaneous AT from 12 healthy
multiparous Holstein cows, sampled pre-calving and at two early-lactation time-
points, to explore mitochondrial pathways. This analysis revealed downregulation
of differentially expressed genes (DEGs), encoding components of the electron
transport system and OXPHQOS, in the postpartum phase, concurrent with a shift
to DEGs associated with glycolysis. Given the observed glycolytic shift, an analysis
of plasma lactate during the periparturient period was undertaken, to explore
how this glycolysis-derived substrate fluctuates in this altered metabolic state.
A postpartum decline in plasma lactate, alongside rising g-hydroxybutyrate, was
further demonstrated in clinical ketotic cows, revealing a potential metabolic
toggle between lactate and ketones; aligning with the concept that fuel sources
will alter depending on redox and metabolic conditions. This supports the emerging
view that ketones are not merely pathological markers but may serve as adaptive
metabolic signals, warranting further investigation into their role in dairy cow
metabolism. Further understanding of how mitochondria function during this
energy-intensive postpartum phase of the dairy cow, may help elucidate how
adipose tissue contributes to metabolic resilience or perturbation during early
lactation.
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Background

The periparturient period represents a challenging time for the
dairy cow, with high incidences of metabolic-related disease affecting
nearly half of all high-yielding cows (1). Only 15.4% of the 270 million
global dairy cows provide 45.4% of milk output (2). This skewed
production demonstrates the added metabolic pressure on high-
yielding cows. Compounding the normal mammalian transitions
from gestation to the onset of lactation, is a high energy requirement
for milk production. Feed intake often fails to meet the energy
requirements in the weeks postpartum, resulting in a negative energy
balance (3). To meet energy demands, adipose tissues (AT) mobilise
fatty acid (FA) reserves via lipolysis (4). When lipolysis is excessive, it
can give rise to an inflammatory state with concurrent oxidative stress,
and excess remodelling of adipose tissue (4). This state is also
correlated with a rise in blood ketones (hyperketonaemia), which can
progress to ketosis and clinical symptoms, including reduced milk
production, impaired reproductive performance, and increased risk
of infectious disease (1).

It is possible to gain an understanding of metabolic changes in an
animal by examining cellular processes that are involved in the
production of energy. Mitochondria are cellular organelles found in
almost all eukaryotic cells. Mitochondria regulate cellular respiration,
maintain redox balance, buffer intracellular calcium, generate
metabolic intermediates, initiate apoptotic signalling (5), and also
produce chemical energy in the conversion of ADP to ATP, utilising
oxygen for the process (5). A variety of substrates can be used for ATP
production including FA (5). In the dairy cow with high lipolysis rates
mitochondrial oxidative capacity can be overwhelmed, leading to the
accumulation of intermediates and excess reactive oxidant species
(ROS) (6). This further amplifies inflammation through cytokine
release and macrophage recruitment (7). While these pathways are
well described in rodent and human models, similar mitochondrial-
inflammatory mechanisms have also been demonstrated in bovine
adipose tissue (8). However, how bovine adipose mitochondria adapt,
or fail to adapt, during the periparturient period remains
poorly understood.

Lactate (produced in the cytosol but oxidised in mitochondria)
and ketone bodies (mostly synthesised in hepatic mitochondria and
oxidised in the mitochondrial matrix of peripheral tissues) are two key
metabolites in the context of adaptation, with lactate recognised as a
signalling molecule linking glycolysis and OXPHOS (9). Ketone
metabolism, in contrast, depends entirely on mitochondrial oxidation
and sufficient oxygen availability (10). Both play roles in energy
flexibility: lactate dominates when glycolytic flux is high, while
ketones take precedence during prolonged energy stress (9, 10). The
mobilisation and use of ketones are well described in early lactation,
providing an energy source during periods of low glucose availability,
particularly under intensive lipolysis (1). However, the role of lactate
in bridging energy shortfalls in the bovine, and how these pathways
intersect with mitochondrial control, remains less well defined.

Building on a previous analysis of dairy cow AT transcriptome
(11), which provided a detailed exploration of lipolysis, inflammation,
and tissue remodelling, our study now investigates mitochondrial
adaptation. While FA oxidation is known to be a limiting factor in
successful dairy cow transition, the reasons for the inadequate oxidative
capacity remain unclear (6, 12). By focusing on transcriptomic changes
that may influence mitochondrial function, we aimed to explore
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whether adaptations related to oxidative capacity, immune-associated
gene expression, and energy substrate flexibility were evident.

Methods
Samples

Data from a longitudinal cohort study on 12 healthy multiparous
Holstein cows at Michigan State University Dairy Cattle Teaching and
Research Center were re-analysed. The original data are available in the
NCBI Gene Expression Omnibus (accession number: GSE159224) (11).

Weekly body condition scores (BCS) were assessed (13), and cows
were categorised by BCS, previous lactation yield, and parity.
Subcutaneous adipose tissue (SCAT) samples were collected at three
time points as reported by Abou-Rjeileh et al. (14): 11 + 3.6 days
prepartum (PreP), and 6 + 1 day postpartum (PP1) and 13 + 1.4 days
postpartum (PP2). RNA was extracted from SCAT for transcriptomic
analysis, as described by Salcedo-Tacuma et al. (11).

Initial data preparation

Total RNA extracted from the subcutaneous AT samples at PreP,
PP1, and PP2 was sequenced and subjected to quality control as
previously described (11) (samples were collected in 2019, flash-
frozen and sequenced by Novogene within 3 months; the present
analysis revisits those data). Post-sequencing, the gene count matrix
was analysed using NetworkAnalyst 3.0, to filter out genes with low
transcription abundance and constant values, followed by log2
normalisation of gene counts (15). Principal component analysis
(PCA) and 3D PCA analyses were conducted, with edgeR package
employed for differential expression analysis (16). Genes exhibiting
fold changes > 1 and False Discover Rates (FDRs) < 0.05 were
identified as DEGs for further analysis. Pathway enrichment was
originally performed using Ingenuity Pathway Analysis (IPA), which
relies on a proprietary knowledge base and licence-restricted content.
To improve reproducibility and allow independent verification,
we repeated the enrichment using only publicly accessible, citable
resources [DAVID, STRING-db, WikiPathways/PathVisio and
MitoCarta (see below)]. This allows other investigators to re-run the
analysis directly from the GEO dataset (GSE159224), review the gene
lists, thresholds and multiple-testing corrections, and trace each
pathway or term back to publicly curated records. Where IPA features
(such as proprietary upstream-regulator predictions), had no direct
public equivalent, we used network-based enrichment in STRING-db
and community-maintained pathway maps in WikiPathways/
PathVisio. These changes preserve the biological conclusions, improve
methodological transparency, and removes dependence on private
sources, aligning the study with FAIR and open science best practices
(see Figures 1, 2).

Open-source functional enrichment
re-analysis of the transcriptomes

The DEGs from both the PP1 and PP2 comparisons were cross-
referenced against the MitoCarta 3.0 database (17) (a comprehensive
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RNA sequencing, PCA, and data
preparation: DEG analysis (Fold
change >1, FDR <0.05)

v

Subcutaneous adipose tissue
samples - 3 periparturient timepoints

Network Analysis 3.0
3D Principal Component Analysis (PCA)

Key areas of mitochondrial shifts
identified utilising Venny 2.1 and
MitoCarta 3.0
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!

WIKIPATHWAYS
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GO and functional analyses via String
db and DAVID Bioinformatics to
identify enriched processes and
categorise DEGs into functional
groups

<

Pathway verification involved cross-referencing DEGs
with GeneCards and visualisation using PathVisio/
WikiPathways and String db

FIGURE 1

WikiPathways.

Workflow for transcriptomic analysis of periparturient adipose tissue. Adipose tissue samples were collected at three timepoints. RNA sequencing and
PCA identified differentially expressed genes (DEGs) based on fold change (>1) and statistical significance (FDR < 0.05). Key mitochondrial changes
were mapped using MitoCarta 3.0 and Venny 2.1. GO Terms analyses and Functional enrichment were performed using STRING-db and DAVID to
classify DEGs into biological pathways. Pathway validation involved cross-referencing with GeneCards and visualising networks through PathVisio and

inventory of mammalian mitochondrial genes), using Venny 2.1.' This
step was taken to identify DEGs with known mitochondrial function
and better isolate mitochondrial changes within the dataset.

Gene Ontology term analysis was conducted as an initial step to
provide a broad overview of the biological processes, molecular
functions, and cellular components impacted by DEGs in PP2 vs. PreP,
using the tools described below. Building on these findings, functional
enrichment was employed to categorise DEGs into specific clusters
and pathways.

Enrichment analyses of upregulated and downregulated PP2
transcripts were conducted with STRING-db a functional protein
association network,? to identify significant biological processes
(FDR < 0.05) (18). The resulting GO terms were visualised, and graphs
were generated using Matplotlib (version 3.4.3). Downregulated
transcripts were grouped into distinct clusters using k-means clustering,
and the optimal number of clusters was determined using the elbow
method (19). This process was performed in R (20) and identified four
clusters of downregulated transcripts in the PP2 vs. PreP comparison
with GO terms visualised using Matplotlib (version 3.4.3) (21).

1 https://bioinfogp.cnb.csic.es/tools/venny/index.html
2 https://string-db.org/
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Gene identifiers from the DEGs list were converted to recognised
gene symbols using the DAVID Bioinformatics Resources 6.8°
conversion tool. Following the conversion, DEGs from the PP2
upregulated and downregulated transcripts were categorised into
functional clusters using DAVID, this tool brings together information
from Gene Ontology (GO), KEGG pathways, and other curated
datasets to help group DEGs into meaningful biological categories
based on common features or functions. The counts of DEGs in the
top three enrichment categories for each cluster were visualised using
Matplotlib (version 3.4.3) (21), which is a Python 2D library, plotting
-log10 (FDR) values against the terms with colour intensity reflecting
enrichment strength (21). Mitochondrial DEGs from the PP2 vs. PreP
dataset were cross-referenced with MitoCarta3.0 to classify genes
linked to oxidative phosphorylation (complexes I-V) and uncoupling
proteins, using the R package “dplyr” (20).

Genes and pathways within GeneCards (22), were cross-
referenced with the DEGs, also via the R studio package “dplyr” (20),
bar graphs were generated with Matplotlib (version 3.4.3) (21).

The DEGs in the PP2 vs. PreP comparison were integrated with
Wikipathways (23) using PathVisio software (24) with colour-coded

3 https://davidbioinformatics.nih.gov/
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PP1 Vs PreP
457
PP2 Vs PreP l
1,861 DEGs
3,805

MitoCarta 3.0

Shared Vs PreP 448

1,487

Number of unique and
shared DEGs of the post-
calving timepoints
compared to pre-calving.

FIGURE 2

Non-MitoCarta 3.0
3,357

Breakdown of how many

DEGs are mitochondrial-

related and split between
the timepoints.

The distribution of DEGs in adipose tissue across the 3 timepoints (pre-calving PreP compared with the two post-calving timepoints PP1 and PP2).
DEGs were identified based on a fold change > 1 and a false discovery rate (FDR) < 0.05. A greater number of DEGs were observed in the PP2 vs. PreP
comparison (1,861), with 1,487 shared DEGs between the two post-calving timepoints and 457 unique to PP1 vs. PreP. Of the combined 3,805 DEGs,
448 were mitochondrial-related (as identified using the MitoCarta 3.0 database). The vast majority of mitochondrial-related DEGs (440) were observed
in the PP2 vs. PreP comparison, with 404 downregulated and 36 upregulated. Graphic made using Sankeymatic.com.

P2 Downregulated
218 Shared + PP2 404
440
- Shared
167
Upregulated
PP1 - 36
8

The number of up and
downregulated
mitochondrial DEGs in
the PP2 timepoint.

annotations to indicate changes in transcript levels. Pathway selection
was informed by the biological themes emerging from GO and
DAVID enrichment results, specifically those relating to mitochondrial
respiration, glycolysis, and inflammatory signalling.

Stage-matched contrasts of dietary oleic acid versus control were
also re-analysed from the same transcriptomic dataset (accession
number: GSE159224) (11) using the identical pipeline (edgeR,
FDR < 0.05). Analyses did not identify additional significant DEGs
after correction (Supplementary materials 1-3).

Lactate and metabolite analysis

Blood samples were collected at PreP, PP1, and PP2 via coccygeal
venipuncture using coated collection tubes (K, EDTA) before morning
feeding and stored on ice. Samples were then centrifuged at 2,000 x g
for 15 min at 4 °C for plasma fraction collection and then stored at
—20 °C until further analysis. L-Lactate detection and quantification
was performed using the Lactate-Glo Assay (J5022; Promega)
following manufacturer’s protocol. Briefly, plasma samples were
thawed on ice and diluted (1:20) in 1X PBS. 50 pL of diluted plasma
samples were added into the wells of a white 96-well assay plate. 50 pL
of freshly prepared Lactate Detection Reagent was added. Plate was
placed on a shaker for 60 s to mix and then incubated at room
temperature for 60 min protected from light. After incubation,
luminescence was recorded using BioTek Synergy H1 plate reader.

Additionally, plasma samples from 22 clinically ketotic (CK) cows
and 19 healthy controls (HC) were analysed to investigate lactate
correlations with metabolic parameters, which were sourced from a
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previously conducted randomized clinical trial investigating lipolysis
inhibition in clinical ketosis (25). The trial was conducted over a
7-month period (n = 1,250), in a commercial Jersey dairy herd of
2,645. Cows were classified as CK primarily on the basis of clinical
signs (depressed appetite, reduced rumen fill, and lethargy), and
subsequently confirmed if blood p-hydroxybutyrate (BHB)
concentrations were >1.2 mmol/L, in accordance with previously
established thresholds and matched with controls (25). The study was
approved by the Institutional Animal Care and Use Committee
(TACUC) at Michigan State University (AUF: 202100139).

Blood sampling and processing for these CK and control cows
followed the same protocol described above. Plasma lactate was
measured as described above. Non-esterified fatty acids (NEFA) were
quantified using a colorimetric enzymatic assay (HR Series NEFA-
HR(2), Wako Diagnostics) following the manufacturer’s protocol.
Plasma glucose, total protein, BHB, and triglycerides were measured
using a small-scale automated biochemistry
(CataChemWell-T, Catachem Inc.).

analyser

Results and discussion

Early lactation (PP2) coincides with a
pronounced downregulation of
mitochondrial-related transcripts

Transcriptomics analyses revealed a downregulation of
mitochondrial-related genes during the PP2 vs. PreP comparison.
Of the 448 mitochondrial-related DEGs identified utilising the
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MitoCarta 3.0 database, 440 were in PP2 vs. PreP, with 404 of those
DEGs downregulated and 36 upregulated. This observed
downregulation of DEGs in the PP2 comparison suggests a shift in
gene expression for FA oxidation and OXPHOS, which may impair
adipose tissue to efficiently mobilise reserves. To explore this
further with the transcriptomic data, GO Term analyses were
undertaken for both the upregulated and downregulated PP2 vs.
PreP DEGs.

Early lactation (PP2) transcriptomic profiles
reveal increased immune and inflammatory
activity and reduced bioenergetic function

GO term analysis of the upregulated DEGs in PP2 vs. PreP
revealed that the most prominent process was the “Immune system
process” with 381 out of 1,806 upregulated genes (FDR: 8.83e-42),
followed by “Defense response” and “Regulation of immune system
process” (Figure 3). The main GO terms associated with
downregulated transcripts in PP2 were “small molecule metabolic
processes,” with 282 of the 1,380 downregulated genes (FDR: 6.78e-
53). Other affected processes include “Carboxylic acid metabolic

» <«

process,” “Mitochondrion organisation,” and “Organic acid metabolic

process” (Figure 3B).

10.3389/fvets.2025.1676955

Using K-means clustering, with the optimal number of clusters
determined using the elbow method (19) four distinct clusters were
identified in downregulated PP2 transcripts. GO Cluster 4 was the
largest, comprising 444 out of a total of 1,463 DEGs, containing GO
GO Terms
“Mitochondrial respiratory chain complex assembly” and “Respiratory

Terms related to mitochondrial function. The

electron transport chain” had the greatest number of DEGs showing
significant enrichment (FDR: 4.8e-97 and 5.9¢-132, respectively). This
cluster’s focus on energy production is further evidenced by the
inclusion of terms like “Oxidative phosphorylation” and “Aerobic
respiration” (Figure 3C). Briefly, the remaining clusters highlighted
processes including protein catabolism (Cluster 1), lipid biosynthesis
(Cluster 2), and cellular response mechanisms (Cluster 3) (detailed
GO term enrichments provided in Supplementary Figures 1-3).

Functional clustering of PP2 transcripts
highlights changes in mitochondrial and
immune activity

Functional enrichment (FE) was utilised to extend the GO term
analysis by identifying biological pathways and regulatory networks.
Functional clustering in PP2 vs. PreP showed that upregulated

transcripts  were mostly in immune-related categories

GO Terms in PP2 (Upregulation): FDR and Strength
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(Supplementary Figure 4). FE Cluster 1 was most enriched in
immune activity, with the highest DEG counts (83) (P Val. 2.5E-22)
in the “Immune response” category. FE Cluster 2 had significant
counts in “Calcium ijon binding” (99) (P Val. 9.0E-10)
(Supplementary Figure 4).

Clustering of downregulated transcripts in PP2 showed the
enrichment of mitochondrial activity. FE Cluster 1 showed a count of
307, and P Val of 4.0E-149 for cellular component “Mitochondrion,”
FE Cluster 2 revealed a count of 78 and P Val, of 8.0E-47 for the KEGG
Pathway “Oxidative Phosphorylation” (Supplementary Figure 5).

The GO term analysis and functional enrichment revealed two
main themes: immune activation and mitochondrial dysfunction.
Similar patterns have been described in human and rodent models of
obesity and diabetes, where mitochondrial stress is linked to immune
activation, creating a damaging feedback (26). Similarly, a review of
periparturient lipolysis in cows describes how intense lipolysis triggers
mitochondrial oxidative stress, which perpetuates inflammation in a
vicious cycle (6). To gain deeper insight into the mitochondrial role in
these processes in bovine adipose tissue, specific pathways were
analysed, including mitophagy, apoptosis, oxidative stress, and
calcium signalling.

Exploration of specific pathways related to
metabolic stress, pro-inflammatory
signalling and mitochondrial dysfunction

Analyses of specific pathways via GeneCards, based on the GO
Terms and Functional Enrichment results, were undertaken to
identify  relevant  biological  processes beyond  broad
functional classifications.

Immune activation is evident from the significant upregulation of
(HP) and IL-6

(Supplementary Figure 6a), with adjusted p-values of 7.19 x 107"? and

acute-phase proteins, notably haptoglobin
5.38 x 1077, respectively. These transcripts highlight a strong
pro-inflammatory state (6), potentially geared ¢ protecting against
metabolic and microbial challenges. Conversely, the downregulation
of RNASE2, CAMK2B, and PRLR may indicate a reprioritisation of
immune-regulatory pathways, aligning with the elevated inflammatory
state (27-29) (the full names of selected DEGs are provided in
Supplementary Table 1). Overall, these changes denote an acute-phase
immune response in adipose tissue (6).

The upregulation of oxidative stress-related genes, including IL-6,
TREM?2, IGFBP3, and HMOXI, in the PP2 vs. PreP dataset
(Supplementary Figure 6b) suggests an increased inflammatory and
oxidative response; in contrast, GSTT1, SGK2, ALB, and G6PD, genes
linked to antioxidant defence and redox regulation were
downregulated, indicating potential disruptions in oxidative stress
management and cellular homeostasis (30-32). These changes indicate
a metabolic shift in which stress-response activation is coupled with
reduced antioxidant capacity, potentially affecting overall cellular
resilience. Lipopolysaccharide-binding protein (LBP) is also
upregulated, indicating an active defence mechanism against
endotoxins (33). Meanwhile, the downregulation of GDF5, alongside
the upregulation of transcripts such as CXCR4 and LITAF, suggests a
reprogramming of cytokine and chemokine signalling pathways
associated with the LPS response cluster (34) (Supplementary
Figure 6d).
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Mitochondrial quality control denotes the pathways of repair,
generation and clearance of mitochondria to sustain cellular energy
dynamics. This process was evident from prominent changes in
mitophagy-related transcripts; SPATAI8 was highly upregulated,
pointing to increased mitophagy (35). Other mitophagy-related
changes included SRC and VPS13C upregulation, while MFN2, PRKN
(PARKIN), PINKI, OPTN, VDACI, and SLC25A4 were
downregulated, indicating significant alterations in mitochondrial
quality control and turnover (36) (Supplementary Figure 6¢). Several
components of mitochondrial calcium ion transport showed reduced
expression, including VDACI-3, LETM1, and the MCU complex,
which are essential for mitochondrial ion exchange (Supplementary
Figure 6f) (37). Concurrently, MCUB was upregulated, suggesting a
potential shift in calcium transport dynamics (37). Transcripts linked
to the mitochondrial apoptosis pathway showed increased expression,
including CASP8, MCL1, and BAX, suggesting enhanced apoptotic
signalling (38) (Supplementary Figures 6¢,f).

Collectively, the shift towards immune activation, oxidative stress,
and altered mitochondrial function, suggests that AT may
be undergoing metabolic reprogramming postpartum.

Metabolic reprogramming

The downregulation of OXPHOS components across Complexes
I to IV during PP2 indicates a significant metabolic shift
(Supplementary Figure 7), supporting an adaptive strategy to altered
energetic demands (39). The upregulation of UCP2 alongside
OXPHOS downregulation suggests an effort to balance energy
production and mitigate oxidative stress (40).

Cellular metabolic reprogramming (a phenomenon widely
described as the Warburg effect, in tumour biology), involves shifting
from primarily oxidative phosphorylation to elevated glycolysis, even
in the presence of adequate oxygen (41). Studies show that
non-tumour cells, including adipocytes, can adopt this approach
under stress to meet urgent energy demands and generate essential
metabolic intermediates (42). In postpartum dairy cows, such a
physiological transition may help adipose tissue cope with sudden
metabolic pressures linked to milk production while reducing ROS
produced by fatty acid oxidation. However, prolonged reliance on
glycolysis could diminish overall oxidative capacity, intensify
inflammation, and disrupt tissue homeostasis; changes that match the
strong immune signals and reduced mitochondrial transcript
abundance seen in the data. This prompted a further exploration,
focusing on metabolic reprogramming pathways and transcripts.

STRING-db network analysis (which predicts protein—protein
interaction networks to reveal enriched biological pathways) of
Pyruvate Carboxylase (PC; an enzyme that aids in replenishment of
TCA cycle) portrays increased glycolytic flux, with PKLR, LDHA,
ME?2, and PKM upregulated (involved in pyruvate metabolism and
glycolytic throughput), while reduced substrate entry into the TCA
cycle is suggested by the downregulation of PDHAI, GOTI1, GOT2,
ALDOA, and PC (5, 43) (Supplementary Figure 8). GeneCards
pathway analysis reinforces metabolic reprogramming, showing
upregulation of HK3, LDHA, and PKM, consistent with enhanced
glycolysis (Supplementary Figure 9). Meanwhile, the suppression of
PDHAI, ACO2, and SLCI6AI reflects impaired mitochondrial
substrate utilisation, and downregulation of G6PD, HK2, and TKT
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suggests reduced pentose phosphate pathway activity, potentially
affecting redox balance (5). The downregulation of ACLY and FASN
indicates a shift away from lipogenesis, indicating changes in energy
partitioning (5, 44). Interestingly, MCT4 (SLC16A3) was upregulated,
while MCT1 (SLC16A1) was downregulated, suggesting a shift toward
lactate export.

Enhanced glycolysis is evident (HK3, PKM, LDHA) with
concurrent reduced OXPHOS (PDHA1, ACO2, IDH3G, SDHB)
pointing to lower mitochondrial functionality (5) (Figure 4).
Lipogenesis is decreased (FASN, ACLY), but there is an upregulation
in DEGs associated with lactate export (LDHA, SLCI6A3) (5).
Increased HIFIa denotes hypoxia. However, although we assume this
is metabolic reprogramming reminiscent of the aforementioned
Warburg effect (41), postpartum adipose tissue is not driving
uncontrolled proliferation or building block synthesis. Instead, these
changes may be supporting the heightened energy demands of early

10.3389/fvets.2025.1676955

lactation, producing and exporting lactate, managing redox balance,
and adjusting substrate usage.

A similar metabolic reprogramming profile occurs in physiological
and pathological settings such as human cancer cachexia, where
immune activation and TLR4 signalling drive lipolysis, tissue
remodelling, and thermogenic activation of white AT (42). Muscle loss
in dairy cows also fits with an energy deficit, a proteomic study in
early-lactation Holstein muscle reports a similar suppression of TCA
cycle proteins and induction of enzymes for glycolysis, fatty acid
breakdown, and lactate metabolism (45).

The downregulation of TCA cycle enzymes (e.g., MDH2, IDH3B)
and upregulation of glutaminolysis genes (GLS, SLC38A1) that we see
indicate a shift toward glutamine metabolism (46) (Figure 4). This
process can increase muscle protein breakdown, generating lactate
and alanine that replenish the TCA cycle via substrate-level
phosphorylation (46). Elevated HIFla also signifies a hypoxic
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Visualisation of metabolic reprogramming pathways in bovine adipose tissue. DEGs in red are upregulated, blue are downregulated. In combination,
these shifts are consistent with adipose tissue metabolic reprogramming. Adapted from WikiPathways (23).
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response, pushing cells from OXPHOS toward glycolysis and lactate
production (5).

UCP2 and SLC38AI upregulation corroborates the idea of a
metabolic shift, by facilitating glutamine uptake and usage when
glucose availability is restricted (40). UCP2 reduces mitochondrial
pyruvate oxidation, lowers glucose oxidation, and boosts glutamine
metabolism, a pattern that may underlie disease-related metabolic
adaptations (40). Its co-expression with SLC38A1 heightens metabolic
flexibility, and in immune cells, UCP2 is pivotal for glutamine
oxidation and regulation of ROS (40). Although the transcript-level
changes are consistent with a potential shift toward glutamine
metabolism and a Warburg-like metabolic profile, these interpretations
remain speculative without direct flux measurements or additional
functional assays. While the data hint at metabolic adaptations
involving glutaminolysis and hypoxia-induced reprogramming,
further experimental evidence is required to confirm whether these
changes genuinely reflect Warburg-like metabolism in postpartum
adipose tissue.

Transcriptomic insights into the potential
role of lactate in postpartum metabolism

The AT continuously adjusts between OXPHOS and glycolysis
based on oxygen levels and energy demands (47). While OXPHOS,
driven by fatty acid oxidation, dominates under normal conditions,
acute energy stress or hypoxia shifts metabolism toward glycolysis
for rapid ATP production (41). Recent studies have also highlighted
lactate, as a stimulant for OXPHOS, a regulator of redox balance,
and a key player in maintaining mitochondrial homeostasis (9),
indicating that the ability, flux and rate of lactate export are critical.
Our transcriptomic analysis shows this shift may be happening
postpartum in adipose tissue, with OXPHOS transcripts
downregulated and glycolytic pathways upregulated. This abrupt
energy demand disrupts redox balance, altering the NADH/NAD*
ratio and effecting metabolic reprogramming, similar to other
high-demand states such as cancer, immune activation, and
exercise (9, 41). Rather than supporting local oxidative
phosphorylation or lipid storage, AT may be shifting towards
lactate export. Lactate is potentially oxidised in local tissues,
supplying the liver for gluconeogenesis precursors or the mammary
gland for milk production (48). Simultaneously, the upregulation
of glutamine transporter SLC38A5 and glutaminase (GLS) suggests
glutamine metabolism may provide alternative TCA cycle
intermediates, further supporting metabolic rerouting under
mitochondrial downregulation (5).

The evolving role of lactate in adipose
tissue metabolism

Our findings support the evolving view that AT is no longer
seen solely as an energy store, but rather a dynamic organ that has
endocrine function, along with regulating redox and inflammatory
states (49). Lactate is now considered to be a signalling molecule
that bridges OXPHOS and glycolysis (9). Lactate is integral to
adipocyte metabolism, extending beyond glycolysis to control
glucose balance (even under insulin resistance), redox homeostasis,
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and immune function (9). Lactate also has a role in stabilising
HIF-1a, and influences macrophage polarisation and associated
inflammation (50). Lactate production increases substantially in
adipocytes under hypoxia, reflecting a metabolic shift that redirects
glucose from oxidative metabolism toward glycolysis, rewires
glutamine utilisation, and alters fatty acid synthesis (51).
Furthermore, lactate flux in adipocytes was shown to coordinate a
proinflammatory cascade, drive insulin resistance and explain
lactate’s pivotal role in obesity-linked metabolic dysfunction (52).
It has been demonstrated that lactating cows dynamically adjust
hepatic lactate uptake based on substrate availability (53).
Considering the intense energy demands of early lactation and
lactate’s increasingly recognised role in adipose tissue dynamics
(spanning redox balance, inflammatory regulation, and insulin
resistance), further investigation into this shift toward glycolysis
and lactate-driven metabolism may offer novel insights into
metabolic health in postpartum dairy cows.

Plasma lactate decreases in early lactation
(PP2) relationship with metabolic markers
in control and ketosis

Plasma lactate concentrations were measured across the three
biopsy periods; PreP (11 + 3.6 days before calving), PP1 (6 + 1 day
post-calving), and PP2 (13 + 1.4 days post-calving) (Figure 5).
Concentrations were significantly lower at PP2 than at both PreP
(p =0.0007) and PP1 (p = 0.036), whereas PP1 did not differ from
PreP (p = 0.15) (see Supplementary Table 2 for LS-means estimates,
confidence intervals, and adjusted pairwise comparisons). The decline
in PP2 may arise from several factors, such as reduced adipose-
derived lactate production or altered systemic clearance, potentially
driven by increased mammary uptake, enhanced hepatic
gluconeogenesis, or greater oxidative metabolism in peripheral tissues.
Although a multitude of factors may be causal, it coincides with
intense change in mitochondrial function, energy redirection and
tissue redox levels.

Like lactate, ketones also serve as alternative metabolic fuels, and
ketone metabolism is closely linked to mitochondrial function, insulin
resistance, hypoxia, and oxidative stress (10). Excessive ketone
accumulation due to prolonged negative energy balance, is associated
with various metabolic and health issues in dairy cows (1).
We examined plasma lactate concentrations in control and clinically
ketotic cows to better understand their dynamics.

Plasma lactate concentrations were compared between clinically
healthy (HC, n = 19) and ketotic (CK, n = 22) cows to assess metabolic
differences in clinical ketosis (Figure 5B). While no significant
difference was observed (p = 0.06), a trend toward lower lactate levels
in ketotic cows was noted.

In controls, lactate positively correlates with NEFA and
triglycerides (Supplementary Table 3), linking higher lactate to
enhanced fat mobilisation. Whether this reflects a direct role in
lipid mobilisation or an adaptive metabolic response is not clear.
However, in ketotic cows, lactate instead shows a negative
relationship with total protein (Supplementary Table 4), and no
significant ties to NEFA or triglycerides. In the combined
regression analysis (Figure 5C), the inverse association between
plasma lactate and BHB, could point to a compensatory relationship
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(A) Lactate concentrations were measured in cows across the three biopsy periods: PP1, PP2, and PreP. Least squares means (LS Means) estimates for
lactate concentrations, relative to the PreP period, are shown for each biopsy period. The error bars represent the 95% confidence intervals for the LS
Means estimates. PP2 showed lower lactate concentrations than both PreP and PP1, whereas PP1 did not differ from PreP. Tukey—Kramer pairwise
comparisons confirmed significant differences for PP2 vs. PP1 (p = 0.036) and PP2 vs. PreP (p = 0.0007), with no significant difference between PP1
and PreP (p = 0.15). (B) Comparison of plasma lactate concentrations between control (Healthy Cows HC) and Ketotic (Clinically Ketotic, CK) Each
point represents an individual cow. The bars represent the mean lactate concentration, and the error bars denote the standard error of the mean (SEM).
An initial significant difference in lactate concentration was not observed between the groups but was close at p < 0.06. (C) Standardised coefficients
between plasma lactate concentrations and various metabolic parameters in both control and ketotic cows. The parameters analysed include albumin,

(coefficient = —1.4319, p = 0.03396).

BHB, calcium, cholesterol, glucose, magnesium, NEFA, total protein (TP) and triglycerides. Plasma lactate was significantly associated with BHB

between these two metabolites. Lactate has also been shown to
suppress adipose lipolysis via the G-protein-coupled receptor
GPR81, lowering cAMP and limiting hormone-sensitive lipase
activity (54). Therefore, the lower lactate observed in ketotic cows
may reflect loss of this anti-lipolytic brake, contributing to the
elevated NEFA. Ketogenesis plays an important role in regenerating
NAD* during fatty acid oxidation, providing an alternative
mechanism to manage redox stress when lactate metabolism alone
is insufficient (5). This shift suggests that under more extreme
metabolic stress, ketones may take over as the dominant energy
source and redox buffer, reflecting a system under prolonged
metabolic strain.

Implications for diagnosis and therapy

Our finding of heightened immune and inflammatory gene
expression, together with the observed lactate-ketone toggle, is
supported by a study that shows changes in IL-6 and lactate/BHB
dynamics can precede ketosis (55). A greater understanding of the
mitochondrion’s role in inflammatory and immune function
during lipolysis, may lead to novel interventions to prevent and
treat ketosis and elucidate its role in the transition cow disease
process. Further longitudinal studies would aid clarification but
involving lactate and inflammatory/immune markers could
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already provide a more informative toolset for ketosis diagnosis
and management.

Limitations

As with any transcriptomic study, these data do not support
conclusions of functional outcomes but provide additional evidence that
will need to be validated with further targeted functional experiments.

It is possible some of the transcriptomic shifts reported in PP2
may reflect differences in cellular composition of subcutaneous AT,
rather than intrinsic transcriptional changes. We did not carry out
cell-type specific resolution or immune phenotyping in this study, so
that distinction cannot be made here. Future work using approaches
such as cell deconvolution, flow cytometry, or single-cell and single-
nucleus RNA sequencing will be needed to separate changes in cell
abundance from reprogramming within existing cell types. The study
was also limited by sample size, which meant we were unable to fully
assess the oleic acid treatment effect.

Conclusion

Our study provides initial transcriptomic and biochemical evidence
that metabolic reprogramming occurs at the transcription level in
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subcutaneous AT of postpartum dairy cows, characterised by a pronounced
downregulation of mitochondrial transcripts, a shift away from OXPHOS,
and a concurrent activation of immune and stress-response pathways. Our
data support the concept that adipose tissue is not merely a passive energy
store but plays an active role in regulating metabolic and inflammatory
processes during the postpartum energy demand (4).

The placement of lactate and ketones as reciprocal redox
regulators and energy sources, aligns with the evolving view of ketone
metabolism. This challenges the perception of ketosis as strictly
pathological, and proposes that ketones may function as adaptive
metabolic signals under certain conditions (56, 57).

We provide evidence and highlight that metabolic health in dairy
cows cannot be fully understood solely through traditional markers
like ketone bodies. Instead, a better understanding of mitochondrial
adaptations, immune-metabolic interactions, and tissue-specific
energy partitioning, is required, to refine the understanding of
periparturient metabolic disorders. Future research should focus on
whether these mitochondrial and metabolic shifts can be modulated
to improve metabolic resilience (14), potentially reducing the risk of
disease while maintaining optimal production efficiency.
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SUPPLEMENTARY FIGURE 1

The top 10 enriched GO terms were ranked by False Discovery Rate (FDR) for
Cluster 1 using STRING-db. The bar length represents the-log10(FDR) value,
and the colour intensity indicates the enrichment strength (log10(observed/
expected))

SUPPLEMENTARY FIGURE 2

The top 10 enriched GO terms were ranked by False Discovery Rate (FDR)for
Cluster 2 using STRING-db. The bar length represents the-logl0(FDR) value,
and the colour intensity indicates the enrichment strength (log10(observed/
expected)).
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SUPPLEMENTARY FIGURE 3

The top 10 enriched GO terms were ranked by False Discovery Rate (FDR) for
Cluster 3 using String-db. The bar length represents the -log10(FDR) value,
and the colour intensity indicates the enrichment strength (log10(observed/
expected)).

SUPPLEMENTARY FIGURE 4

Functional enrichment of PP2 upregulated transcripts, showing DEG counts
across the top three clusters. Bars represent transcript counts per
enrichment category, with colours distinguishing clusters. FE Cluster 1
(purple) is enriched in immune-related processes, FE Cluster 2 (teal) in
calcium and growth factor binding, and FE Cluster 3 (yellow) in SH2 domain-
associated signalling.

SUPPLEMENTARY FIGURE 5

Functional enrichment of PP2 downregulated transcripts FE Cluster 1 (purple)
is enriched in mitochondrial and oxidative metabolism, FE Cluster 2 (teal) in
electron transport and neurodegenerative pathways, and FE Cluster 3
(yellow) in TCA cycle-associated processes.

SUPPLEMENTARY FIGURE 6

Upregulated (red) and downregulated (blue) transcripts in PP2 vs. PreP were
cross-referenced with pathways from GeneCards. (a) Immune Response. (b)
Oxidative Stress. (c) Mitophagy. (d) LPS-related. (e) Apoptosis regulation. (f)
Calcium-related mitochondrial genes.

SUPPLEMENTARY FIGURE 7

The electron transport system (complexes |-V) is depicted with associated
mitochondrial- and nuclear-encoded genes. Downregulated transcripts
(blue) indicate widespread suppression of nuclear-encoded OXPHOS
components, and Complex V, while UCP2 (red) highlights an upregulation in
uncoupling activity.

SUPPLEMENTARY FIGURE 8

STRING-db network visualisation depicting protein-protein interactions
among key metabolic enzymes linked to pyruvate carboxylase (PC). Red
nodes represent upregulated proteins, while blue nodes indicate
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