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The periparturient period creates an intense energy demand due to the onset 
of lactation, which requires substantial glucose for milk synthesis, particularly in 
high producing cows, contributing to a high incidence of postpartum metabolic 
disease. We explored the transcriptomic adaptation of subcutaneous adipose tissue 
(AT), with a specific focus on metabolic gene networks and the mitochondrial 
component. Mitochondria coordinate cellular energy dynamics by linking the 
oxidation of nutrients to ATP synthesis via oxidative phosphorylation (OXPHOS). 
However, their role in postpartum metabolic disease is not clear. We therefore 
re-analysed a longitudinal RNA-seq dataset of subcutaneous AT from 12 healthy 
multiparous Holstein cows, sampled pre-calving and at two early-lactation time-
points, to explore mitochondrial pathways. This analysis revealed downregulation 
of differentially expressed genes (DEGs), encoding components of the electron 
transport system and OXPHOS, in the postpartum phase, concurrent with a shift 
to DEGs associated with glycolysis. Given the observed glycolytic shift, an analysis 
of plasma lactate during the periparturient period was undertaken, to explore 
how this glycolysis-derived substrate fluctuates in this altered metabolic state. 
A postpartum decline in plasma lactate, alongside rising β-hydroxybutyrate, was 
further demonstrated in clinical ketotic cows, revealing a potential metabolic 
toggle between lactate and ketones; aligning with the concept that fuel sources 
will alter depending on redox and metabolic conditions. This supports the emerging 
view that ketones are not merely pathological markers but may serve as adaptive 
metabolic signals, warranting further investigation into their role in dairy cow 
metabolism. Further understanding of how mitochondria function during this 
energy-intensive postpartum phase of the dairy cow, may help elucidate how 
adipose tissue contributes to metabolic resilience or perturbation during early 
lactation.
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Background

The periparturient period represents a challenging time for the 
dairy cow, with high incidences of metabolic-related disease affecting 
nearly half of all high-yielding cows (1). Only 15.4% of the 270 million 
global dairy cows provide 45.4% of milk output (2). This skewed 
production demonstrates the added metabolic pressure on high-
yielding cows. Compounding the normal mammalian transitions 
from gestation to the onset of lactation, is a high energy requirement 
for milk production. Feed intake often fails to meet the energy 
requirements in the weeks postpartum, resulting in a negative energy 
balance (3). To meet energy demands, adipose tissues (AT) mobilise 
fatty acid (FA) reserves via lipolysis (4). When lipolysis is excessive, it 
can give rise to an inflammatory state with concurrent oxidative stress, 
and excess remodelling of adipose tissue (4). This state is also 
correlated with a rise in blood ketones (hyperketonaemia), which can 
progress to ketosis and clinical symptoms, including reduced milk 
production, impaired reproductive performance, and increased risk 
of infectious disease (1).

It is possible to gain an understanding of metabolic changes in an 
animal by examining cellular processes that are involved in the 
production of energy. Mitochondria are cellular organelles found in 
almost all eukaryotic cells. Mitochondria regulate cellular respiration, 
maintain redox balance, buffer intracellular calcium, generate 
metabolic intermediates, initiate apoptotic signalling (5), and also 
produce chemical energy in the conversion of ADP to ATP, utilising 
oxygen for the process (5). A variety of substrates can be used for ATP 
production including FA (5). In the dairy cow with high lipolysis rates 
mitochondrial oxidative capacity can be overwhelmed, leading to the 
accumulation of intermediates and excess reactive oxidant species 
(ROS) (6). This further amplifies inflammation through cytokine 
release and macrophage recruitment (7). While these pathways are 
well described in rodent and human models, similar mitochondrial-
inflammatory mechanisms have also been demonstrated in bovine 
adipose tissue (8). However, how bovine adipose mitochondria adapt, 
or fail to adapt, during the periparturient period remains 
poorly understood.

Lactate (produced in the cytosol but oxidised in mitochondria) 
and ketone bodies (mostly synthesised in hepatic mitochondria and 
oxidised in the mitochondrial matrix of peripheral tissues) are two key 
metabolites in the context of adaptation, with lactate recognised as a 
signalling molecule linking glycolysis and OXPHOS (9). Ketone 
metabolism, in contrast, depends entirely on mitochondrial oxidation 
and sufficient oxygen availability (10). Both play roles in energy 
flexibility: lactate dominates when glycolytic flux is high, while 
ketones take precedence during prolonged energy stress (9, 10). The 
mobilisation and use of ketones are well described in early lactation, 
providing an energy source during periods of low glucose availability, 
particularly under intensive lipolysis (1). However, the role of lactate 
in bridging energy shortfalls in the bovine, and how these pathways 
intersect with mitochondrial control, remains less well defined.

Building on a previous analysis of dairy cow AT transcriptome 
(11), which provided a detailed exploration of lipolysis, inflammation, 
and tissue remodelling, our study now investigates mitochondrial 
adaptation. While FA oxidation is known to be a limiting factor in 
successful dairy cow transition, the reasons for the inadequate oxidative 
capacity remain unclear (6, 12). By focusing on transcriptomic changes 
that may influence mitochondrial function, we  aimed to explore 

whether adaptations related to oxidative capacity, immune-associated 
gene expression, and energy substrate flexibility were evident.

Methods

Samples

Data from a longitudinal cohort study on 12 healthy multiparous 
Holstein cows at Michigan State University Dairy Cattle Teaching and 
Research Center were re-analysed. The original data are available in the 
NCBI Gene Expression Omnibus (accession number: GSE159224) (11).

Weekly body condition scores (BCS) were assessed (13), and cows 
were categorised by BCS, previous lactation yield, and parity. 
Subcutaneous adipose tissue (SCAT) samples were collected at three 
time points as reported by Abou-Rjeileh et  al. (14): 11 ± 3.6 days 
prepartum (PreP), and 6 ± 1 day postpartum (PP1) and 13 ± 1.4 days 
postpartum (PP2). RNA was extracted from SCAT for transcriptomic 
analysis, as described by Salcedo-Tacuma et al. (11).

Initial data preparation

Total RNA extracted from the subcutaneous AT samples at PreP, 
PP1, and PP2 was sequenced and subjected to quality control as 
previously described (11) (samples were collected in 2019, flash-
frozen and sequenced by Novogene within 3 months; the present 
analysis revisits those data). Post-sequencing, the gene count matrix 
was analysed using NetworkAnalyst 3.0, to filter out genes with low 
transcription abundance and constant values, followed by log2 
normalisation of gene counts (15). Principal component analysis 
(PCA) and 3D PCA analyses were conducted, with edgeR package 
employed for differential expression analysis (16). Genes exhibiting 
fold changes > 1 and False Discover Rates (FDRs) < 0.05 were 
identified as DEGs for further analysis. Pathway enrichment was 
originally performed using Ingenuity Pathway Analysis (IPA), which 
relies on a proprietary knowledge base and licence-restricted content. 
To improve reproducibility and allow independent verification, 
we repeated the enrichment using only publicly accessible, citable 
resources [DAVID, STRING-db, WikiPathways/PathVisio and 
MitoCarta (see below)]. This allows other investigators to re-run the 
analysis directly from the GEO dataset (GSE159224), review the gene 
lists, thresholds and multiple-testing corrections, and trace each 
pathway or term back to publicly curated records. Where IPA features 
(such as proprietary upstream-regulator predictions), had no direct 
public equivalent, we used network-based enrichment in STRING-db 
and community-maintained pathway maps in WikiPathways/
PathVisio. These changes preserve the biological conclusions, improve 
methodological transparency, and removes dependence on private 
sources, aligning the study with FAIR and open science best practices 
(see Figures 1, 2).

Open-source functional enrichment 
re-analysis of the transcriptomes

The DEGs from both the PP1 and PP2 comparisons were cross-
referenced against the MitoCarta 3.0 database (17) (a comprehensive 
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inventory of mammalian mitochondrial genes), using Venny 2.1.1 This 
step was taken to identify DEGs with known mitochondrial function 
and better isolate mitochondrial changes within the dataset.

Gene Ontology term analysis was conducted as an initial step to 
provide a broad overview of the biological processes, molecular 
functions, and cellular components impacted by DEGs in PP2 vs. PreP, 
using the tools described below. Building on these findings, functional 
enrichment was employed to categorise DEGs into specific clusters 
and pathways.

Enrichment analyses of upregulated and downregulated PP2 
transcripts were conducted with STRING-db a functional protein 
association network,2 to identify significant biological processes 
(FDR < 0.05) (18). The resulting GO terms were visualised, and graphs 
were generated using Matplotlib (version 3.4.3). Downregulated 
transcripts were grouped into distinct clusters using k-means clustering, 
and the optimal number of clusters was determined using the elbow 
method (19). This process was performed in R (20) and identified four 
clusters of downregulated transcripts in the PP2 vs. PreP comparison 
with GO terms visualised using Matplotlib (version 3.4.3) (21).

1  https://bioinfogp.cnb.csic.es/tools/venny/index.html

2  https://string-db.org/

Gene identifiers from the DEGs list were converted to recognised 
gene symbols using the DAVID Bioinformatics Resources 6.83 
conversion tool. Following the conversion, DEGs from the PP2 
upregulated and downregulated transcripts were categorised into 
functional clusters using DAVID, this tool brings together information 
from Gene Ontology (GO), KEGG pathways, and other curated 
datasets to help group DEGs into meaningful biological categories 
based on common features or functions. The counts of DEGs in the 
top three enrichment categories for each cluster were visualised using 
Matplotlib (version 3.4.3) (21), which is a Python 2D library, plotting 
-log10 (FDR) values against the terms with colour intensity reflecting 
enrichment strength (21). Mitochondrial DEGs from the PP2 vs. PreP 
dataset were cross-referenced with MitoCarta3.0 to classify genes 
linked to oxidative phosphorylation (complexes I–V) and uncoupling 
proteins, using the R package “dplyr” (20).

Genes and pathways within GeneCards (22), were cross-
referenced with the DEGs, also via the R studio package “dplyr” (20), 
bar graphs were generated with Matplotlib (version 3.4.3) (21).

The DEGs in the PP2 vs. PreP comparison were integrated with 
Wikipathways (23) using PathVisio software (24) with colour-coded 

3  https://davidbioinformatics.nih.gov/

FIGURE 1

Workflow for transcriptomic analysis of periparturient adipose tissue. Adipose tissue samples were collected at three timepoints. RNA sequencing and 
PCA identified differentially expressed genes (DEGs) based on fold change (>1) and statistical significance (FDR < 0.05). Key mitochondrial changes 
were mapped using MitoCarta 3.0 and Venny 2.1. GO Terms analyses and Functional enrichment were performed using STRING-db and DAVID to 
classify DEGs into biological pathways. Pathway validation involved cross-referencing with GeneCards and visualising networks through PathVisio and 
WikiPathways.
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annotations to indicate changes in transcript levels. Pathway selection 
was informed by the biological themes emerging from GO and 
DAVID enrichment results, specifically those relating to mitochondrial 
respiration, glycolysis, and inflammatory signalling.

Stage-matched contrasts of dietary oleic acid versus control were 
also re-analysed from the same transcriptomic dataset (accession 
number: GSE159224) (11) using the identical pipeline (edgeR, 
FDR < 0.05). Analyses did not identify additional significant DEGs 
after correction (Supplementary materials 1–3).

Lactate and metabolite analysis

Blood samples were collected at PreP, PP1, and PP2 via coccygeal 
venipuncture using coated collection tubes (K2 EDTA) before morning 
feeding and stored on ice. Samples were then centrifuged at 2,000 x g 
for 15 min at 4 °C for plasma fraction collection and then stored at 
−20 °C until further analysis. L-Lactate detection and quantification 
was performed using the Lactate-Glo Assay (J5022; Promega) 
following manufacturer’s protocol. Briefly, plasma samples were 
thawed on ice and diluted (1:20) in 1X PBS. 50 μL of diluted plasma 
samples were added into the wells of a white 96-well assay plate. 50 μL 
of freshly prepared Lactate Detection Reagent was added. Plate was 
placed on a shaker for 60 s to mix and then incubated at room 
temperature for 60 min protected from light. After incubation, 
luminescence was recorded using BioTek Synergy H1 plate reader.

Additionally, plasma samples from 22 clinically ketotic (CK) cows 
and 19 healthy controls (HC) were analysed to investigate lactate 
correlations with metabolic parameters, which were sourced from a 

previously conducted randomized clinical trial investigating lipolysis 
inhibition in clinical ketosis (25). The trial was conducted over a 
7-month period (n = 1,250), in a commercial Jersey dairy herd of 
2,645. Cows were classified as CK primarily on the basis of clinical 
signs (depressed appetite, reduced rumen fill, and lethargy), and 
subsequently confirmed if blood β-hydroxybutyrate (BHB) 
concentrations were ≥1.2 mmol/L, in accordance with previously 
established thresholds and matched with controls (25). The study was 
approved by the Institutional Animal Care and Use Committee 
(IACUC) at Michigan State University (AUF: 202100139).

Blood sampling and processing for these CK and control cows 
followed the same protocol described above. Plasma lactate was 
measured as described above. Non-esterified fatty acids (NEFA) were 
quantified using a colorimetric enzymatic assay (HR Series NEFA-
HR(2), Wako Diagnostics) following the manufacturer’s protocol. 
Plasma glucose, total protein, BHB, and triglycerides were measured 
using a small-scale automated biochemistry analyser 
(CataChemWell-T, Catachem Inc.).

Results and discussion

Early lactation (PP2) coincides with a 
pronounced downregulation of 
mitochondrial-related transcripts

Transcriptomics analyses revealed a downregulation of 
mitochondrial-related genes during the PP2 vs. PreP comparison. 
Of the 448 mitochondrial-related DEGs identified utilising the 

FIGURE 2

The distribution of DEGs in adipose tissue across the 3 timepoints (pre-calving PreP compared with the two post-calving timepoints PP1 and PP2). 
DEGs were identified based on a fold change > 1 and a false discovery rate (FDR) < 0.05. A greater number of DEGs were observed in the PP2 vs. PreP 
comparison (1,861), with 1,487 shared DEGs between the two post-calving timepoints and 457 unique to PP1 vs. PreP. Of the combined 3,805 DEGs, 
448 were mitochondrial-related (as identified using the MitoCarta 3.0 database). The vast majority of mitochondrial-related DEGs (440) were observed 
in the PP2 vs. PreP comparison, with 404 downregulated and 36 upregulated. Graphic made using Sankeymatic.com.
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MitoCarta 3.0 database, 440 were in PP2 vs. PreP, with 404 of those 
DEGs downregulated and 36 upregulated. This observed 
downregulation of DEGs in the PP2 comparison suggests a shift in 
gene expression for FA oxidation and OXPHOS, which may impair 
adipose tissue to efficiently mobilise reserves. To explore this 
further with the transcriptomic data, GO Term analyses were 
undertaken for both the upregulated and downregulated PP2 vs. 
PreP DEGs.

Early lactation (PP2) transcriptomic profiles 
reveal increased immune and inflammatory 
activity and reduced bioenergetic function

GO term analysis of the upregulated DEGs in PP2 vs. PreP 
revealed that the most prominent process was the “Immune system 
process” with 381 out of 1,806 upregulated genes (FDR: 8.83e-42), 
followed by “Defense response” and “Regulation of immune system 
process” (Figure  3). The main GO terms associated with 
downregulated transcripts in PP2 were “small molecule metabolic 
processes,” with 282 of the 1,380 downregulated genes (FDR: 6.78e-
53). Other affected processes include “Carboxylic acid metabolic 
process,” “Mitochondrion organisation,” and “Organic acid metabolic 
process” (Figure 3B).

Using K-means clustering, with the optimal number of clusters 
determined using the elbow method (19) four distinct clusters were 
identified in downregulated PP2 transcripts. GO Cluster 4 was the 
largest, comprising 444 out of a total of 1,463 DEGs, containing GO 
Terms related to mitochondrial function. The GO Terms 
“Mitochondrial respiratory chain complex assembly” and “Respiratory 
electron transport chain” had the greatest number of DEGs showing 
significant enrichment (FDR: 4.8e-97 and 5.9e-132, respectively). This 
cluster’s focus on energy production is further evidenced by the 
inclusion of terms like “Oxidative phosphorylation” and “Aerobic 
respiration” (Figure 3C). Briefly, the remaining clusters highlighted 
processes including protein catabolism (Cluster 1), lipid biosynthesis 
(Cluster 2), and cellular response mechanisms (Cluster 3) (detailed 
GO term enrichments provided in Supplementary Figures 1–3).

Functional clustering of PP2 transcripts 
highlights changes in mitochondrial and 
immune activity

Functional enrichment (FE) was utilised to extend the GO term 
analysis by identifying biological pathways and regulatory networks. 
Functional clustering in PP2 vs. PreP showed that upregulated 
transcripts were mostly in immune-related categories 

FIGURE 3

GO terms enriched in PP2 upregulation, ranked by FDR significance on the x-axis and enrichment strength (colour). (A) Bars show the number of DEGs 
per term. Immune processes dominate, highlighting a strong immune response in PP2. (B) GO terms enriched in PP2 downregulation, Metabolic and 
mitochondrial processes are changed, suggesting an alteration of energy metabolism in PP2. (C) GO terms enriched in PP2 downregulation (GO 
cluster 4), Mitochondrial and oxidative processes dominate, suggesting a strong focus on energy metabolism and respiration.

https://doi.org/10.3389/fvets.2025.1676955
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


O’Boyle et al.� 10.3389/fvets.2025.1676955

Frontiers in Veterinary Science 06 frontiersin.org

(Supplementary Figure  4). FE Cluster 1 was most enriched in 
immune activity, with the highest DEG counts (83) (P Val. 2.5E-22) 
in the “Immune response” category. FE Cluster 2 had significant 
counts in “Calcium ion binding” (99) (P Val. 9.0E-10) 
(Supplementary Figure 4).

Clustering of downregulated transcripts in PP2 showed the 
enrichment of mitochondrial activity. FE Cluster 1 showed a count of 
307, and P Val of 4.0E-149 for cellular component “Mitochondrion,” 
FE Cluster 2 revealed a count of 78 and P Val, of 8.0E-47 for the KEGG 
Pathway “Oxidative Phosphorylation” (Supplementary Figure 5).

The GO term analysis and functional enrichment revealed two 
main themes: immune activation and mitochondrial dysfunction. 
Similar patterns have been described in human and rodent models of 
obesity and diabetes, where mitochondrial stress is linked to immune 
activation, creating a damaging feedback (26). Similarly, a review of 
periparturient lipolysis in cows describes how intense lipolysis triggers 
mitochondrial oxidative stress, which perpetuates inflammation in a 
vicious cycle (6). To gain deeper insight into the mitochondrial role in 
these processes in bovine adipose tissue, specific pathways were 
analysed, including mitophagy, apoptosis, oxidative stress, and 
calcium signalling.

Exploration of specific pathways related to 
metabolic stress, pro-inflammatory 
signalling and mitochondrial dysfunction

Analyses of specific pathways via GeneCards, based on the GO 
Terms and Functional Enrichment results, were undertaken to 
identify relevant biological processes beyond broad 
functional classifications.

Immune activation is evident from the significant upregulation of 
acute-phase proteins, notably haptoglobin (HP) and IL-6 
(Supplementary Figure 6a), with adjusted p-values of 7.19 × 10−12 and 
5.38 × 10−7, respectively. These transcripts highlight a strong 
pro-inflammatory state (6), potentially geared c protecting against 
metabolic and microbial challenges. Conversely, the downregulation 
of RNASE2, CAMK2B, and PRLR may indicate a reprioritisation of 
immune-regulatory pathways, aligning with the elevated inflammatory 
state (27–29) (the full names of selected DEGs are provided in 
Supplementary Table 1). Overall, these changes denote an acute-phase 
immune response in adipose tissue (6).

The upregulation of oxidative stress-related genes, including IL-6, 
TREM2, IGFBP3, and HMOX1, in the PP2 vs. PreP dataset 
(Supplementary Figure 6b) suggests an increased inflammatory and 
oxidative response; in contrast, GSTT1, SGK2, ALB, and G6PD, genes 
linked to antioxidant defence and redox regulation were 
downregulated, indicating potential disruptions in oxidative stress 
management and cellular homeostasis (30–32). These changes indicate 
a metabolic shift in which stress-response activation is coupled with 
reduced antioxidant capacity, potentially affecting overall cellular 
resilience. Lipopolysaccharide-binding protein (LBP) is also 
upregulated, indicating an active defence mechanism against 
endotoxins (33). Meanwhile, the downregulation of GDF5, alongside 
the upregulation of transcripts such as CXCR4 and LITAF, suggests a 
reprogramming of cytokine and chemokine signalling pathways 
associated with the LPS response cluster (34) (Supplementary  
Figure 6d).

Mitochondrial quality control denotes the pathways of repair, 
generation and clearance of mitochondria to sustain cellular energy 
dynamics. This process was evident from prominent changes in 
mitophagy-related transcripts; SPATA18 was highly upregulated, 
pointing to increased mitophagy (35). Other mitophagy-related 
changes included SRC and VPS13C upregulation, while MFN2, PRKN 
(PARKIN), PINK1, OPTN, VDAC1, and SLC25A4 were 
downregulated, indicating significant alterations in mitochondrial 
quality control and turnover (36) (Supplementary Figure 6c). Several 
components of mitochondrial calcium ion transport showed reduced 
expression, including VDAC1-3, LETM1, and the MCU complex, 
which are essential for mitochondrial ion exchange (Supplementary  
Figure 6f) (37). Concurrently, MCUB was upregulated, suggesting a 
potential shift in calcium transport dynamics (37). Transcripts linked 
to the mitochondrial apoptosis pathway showed increased expression, 
including CASP8, MCL1, and BAX, suggesting enhanced apoptotic 
signalling (38) (Supplementary Figures 6e,f).

Collectively, the shift towards immune activation, oxidative stress, 
and altered mitochondrial function, suggests that AT may 
be undergoing metabolic reprogramming postpartum.

Metabolic reprogramming

The downregulation of OXPHOS components across Complexes 
I  to IV during PP2 indicates a significant metabolic shift 
(Supplementary Figure 7), supporting an adaptive strategy to altered 
energetic demands (39). The upregulation of UCP2 alongside 
OXPHOS downregulation suggests an effort to balance energy 
production and mitigate oxidative stress (40).

Cellular metabolic reprogramming (a phenomenon widely 
described as the Warburg effect, in tumour biology), involves shifting 
from primarily oxidative phosphorylation to elevated glycolysis, even 
in the presence of adequate oxygen (41). Studies show that 
non-tumour cells, including adipocytes, can adopt this approach 
under stress to meet urgent energy demands and generate essential 
metabolic intermediates (42). In postpartum dairy cows, such a 
physiological transition may help adipose tissue cope with sudden 
metabolic pressures linked to milk production while reducing ROS 
produced by fatty acid oxidation. However, prolonged reliance on 
glycolysis could diminish overall oxidative capacity, intensify 
inflammation, and disrupt tissue homeostasis; changes that match the 
strong immune signals and reduced mitochondrial transcript 
abundance seen in the data. This prompted a further exploration, 
focusing on metabolic reprogramming pathways and transcripts.

STRING-db network analysis (which predicts protein–protein 
interaction networks to reveal enriched biological pathways) of 
Pyruvate Carboxylase (PC; an enzyme that aids in replenishment of 
TCA cycle) portrays increased glycolytic flux, with PKLR, LDHA, 
ME2, and PKM upregulated (involved in pyruvate metabolism and 
glycolytic throughput), while reduced substrate entry into the TCA 
cycle is suggested by the downregulation of PDHA1, GOT1, GOT2, 
ALDOA, and PC (5, 43) (Supplementary Figure  8). GeneCards 
pathway analysis reinforces metabolic reprogramming, showing 
upregulation of HK3, LDHA, and PKM, consistent with enhanced 
glycolysis (Supplementary Figure 9). Meanwhile, the suppression of 
PDHA1, ACO2, and SLC16A1 reflects impaired mitochondrial 
substrate utilisation, and downregulation of G6PD, HK2, and TKT 
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suggests reduced pentose phosphate pathway activity, potentially 
affecting redox balance (5). The downregulation of ACLY and FASN 
indicates a shift away from lipogenesis, indicating changes in energy 
partitioning (5, 44). Interestingly, MCT4 (SLC16A3) was upregulated, 
while MCT1 (SLC16A1) was downregulated, suggesting a shift toward 
lactate export.

Enhanced glycolysis is evident (HK3, PKM, LDHA) with 
concurrent reduced OXPHOS (PDHA1, ACO2, IDH3G, SDHB) 
pointing to lower mitochondrial functionality (5) (Figure  4). 
Lipogenesis is decreased (FASN, ACLY), but there is an upregulation 
in DEGs associated with lactate export (LDHA, SLC16A3) (5). 
Increased HIF1α denotes hypoxia. However, although we assume this 
is metabolic reprogramming reminiscent of the aforementioned 
Warburg effect (41), postpartum adipose tissue is not driving 
uncontrolled proliferation or building block synthesis. Instead, these 
changes may be supporting the heightened energy demands of early 

lactation, producing and exporting lactate, managing redox balance, 
and adjusting substrate usage.

A similar metabolic reprogramming profile occurs in physiological 
and pathological settings such as human cancer cachexia, where 
immune activation and TLR4 signalling drive lipolysis, tissue 
remodelling, and thermogenic activation of white AT (42). Muscle loss 
in dairy cows also fits with an energy deficit, a proteomic study in 
early-lactation Holstein muscle reports a similar suppression of TCA 
cycle proteins and induction of enzymes for glycolysis, fatty acid 
breakdown, and lactate metabolism (45).

The downregulation of TCA cycle enzymes (e.g., MDH2, IDH3B) 
and upregulation of glutaminolysis genes (GLS, SLC38A1) that we see 
indicate a shift toward glutamine metabolism (46) (Figure 4). This 
process can increase muscle protein breakdown, generating lactate 
and alanine that replenish the TCA cycle via substrate-level 
phosphorylation (46). Elevated HIF1α also signifies a hypoxic 

FIGURE 4

Visualisation of metabolic reprogramming pathways in bovine adipose tissue. DEGs in red are upregulated, blue are downregulated. In combination, 
these shifts are consistent with adipose tissue metabolic reprogramming. Adapted from WikiPathways (23).
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response, pushing cells from OXPHOS toward glycolysis and lactate 
production (5).

UCP2 and SLC38A1 upregulation corroborates the idea of a 
metabolic shift, by facilitating glutamine uptake and usage when 
glucose availability is restricted (40). UCP2 reduces mitochondrial 
pyruvate oxidation, lowers glucose oxidation, and boosts glutamine 
metabolism, a pattern that may underlie disease-related metabolic 
adaptations (40). Its co-expression with SLC38A1 heightens metabolic 
flexibility, and in immune cells, UCP2 is pivotal for glutamine 
oxidation and regulation of ROS (40). Although the transcript-level 
changes are consistent with a potential shift toward glutamine 
metabolism and a Warburg-like metabolic profile, these interpretations 
remain speculative without direct flux measurements or additional 
functional assays. While the data hint at metabolic adaptations 
involving glutaminolysis and hypoxia-induced reprogramming, 
further experimental evidence is required to confirm whether these 
changes genuinely reflect Warburg-like metabolism in postpartum 
adipose tissue.

Transcriptomic insights into the potential 
role of lactate in postpartum metabolism

The AT continuously adjusts between OXPHOS and glycolysis 
based on oxygen levels and energy demands (47). While OXPHOS, 
driven by fatty acid oxidation, dominates under normal conditions, 
acute energy stress or hypoxia shifts metabolism toward glycolysis 
for rapid ATP production (41). Recent studies have also highlighted 
lactate, as a stimulant for OXPHOS, a regulator of redox balance, 
and a key player in maintaining mitochondrial homeostasis (9), 
indicating that the ability, flux and rate of lactate export are critical. 
Our transcriptomic analysis shows this shift may be happening 
postpartum in adipose tissue, with OXPHOS transcripts 
downregulated and glycolytic pathways upregulated. This abrupt 
energy demand disrupts redox balance, altering the NADH/NAD+ 
ratio and effecting metabolic reprogramming, similar to other 
high-demand states such as cancer, immune activation, and 
exercise (9, 41). Rather than supporting local oxidative 
phosphorylation or lipid storage, AT may be  shifting towards 
lactate export. Lactate is potentially oxidised in  local tissues, 
supplying the liver for gluconeogenesis precursors or the mammary 
gland for milk production (48). Simultaneously, the upregulation 
of glutamine transporter SLC38A5 and glutaminase (GLS) suggests 
glutamine metabolism may provide alternative TCA cycle 
intermediates, further supporting metabolic rerouting under 
mitochondrial downregulation (5).

The evolving role of lactate in adipose 
tissue metabolism

Our findings support the evolving view that AT is no longer 
seen solely as an energy store, but rather a dynamic organ that has 
endocrine function, along with regulating redox and inflammatory 
states (49). Lactate is now considered to be a signalling molecule 
that bridges OXPHOS and glycolysis (9). Lactate is integral to 
adipocyte metabolism, extending beyond glycolysis to control 
glucose balance (even under insulin resistance), redox homeostasis, 

and immune function (9). Lactate also has a role in stabilising 
HIF-1α, and influences macrophage polarisation and associated 
inflammation (50). Lactate production increases substantially in 
adipocytes under hypoxia, reflecting a metabolic shift that redirects 
glucose from oxidative metabolism toward glycolysis, rewires 
glutamine utilisation, and alters fatty acid synthesis (51). 
Furthermore, lactate flux in adipocytes was shown to coordinate a 
proinflammatory cascade, drive insulin resistance and explain 
lactate’s pivotal role in obesity-linked metabolic dysfunction (52). 
It has been demonstrated that lactating cows dynamically adjust 
hepatic lactate uptake based on substrate availability (53). 
Considering the intense energy demands of early lactation and 
lactate’s increasingly recognised role in adipose tissue dynamics 
(spanning redox balance, inflammatory regulation, and insulin 
resistance), further investigation into this shift toward glycolysis 
and lactate-driven metabolism may offer novel insights into 
metabolic health in postpartum dairy cows.

Plasma lactate decreases in early lactation 
(PP2) relationship with metabolic markers 
in control and ketosis

Plasma lactate concentrations were measured across the three 
biopsy periods; PreP (11 ± 3.6 days before calving), PP1 (6 ± 1 day 
post-calving), and PP2 (13 ± 1.4 days post-calving) (Figure  5). 
Concentrations were significantly lower at PP2 than at both PreP 
(p = 0.0007) and PP1 (p = 0.036), whereas PP1 did not differ from 
PreP (p = 0.15) (see Supplementary Table 2 for LS-means estimates, 
confidence intervals, and adjusted pairwise comparisons). The decline 
in PP2 may arise from several factors, such as reduced adipose-
derived lactate production or altered systemic clearance, potentially 
driven by increased mammary uptake, enhanced hepatic 
gluconeogenesis, or greater oxidative metabolism in peripheral tissues. 
Although a multitude of factors may be  causal, it coincides with 
intense change in mitochondrial function, energy redirection and 
tissue redox levels.

Like lactate, ketones also serve as alternative metabolic fuels, and 
ketone metabolism is closely linked to mitochondrial function, insulin 
resistance, hypoxia, and oxidative stress (10). Excessive ketone 
accumulation due to prolonged negative energy balance, is associated 
with various metabolic and health issues in dairy cows (1). 
We examined plasma lactate concentrations in control and clinically 
ketotic cows to better understand their dynamics.

Plasma lactate concentrations were compared between clinically 
healthy (HC, n = 19) and ketotic (CK, n = 22) cows to assess metabolic 
differences in clinical ketosis (Figure  5B). While no significant 
difference was observed (p = 0.06), a trend toward lower lactate levels 
in ketotic cows was noted.

In controls, lactate positively correlates with NEFA and 
triglycerides (Supplementary Table 3), linking higher lactate to 
enhanced fat mobilisation. Whether this reflects a direct role in 
lipid mobilisation or an adaptive metabolic response is not clear. 
However, in ketotic cows, lactate instead shows a negative 
relationship with total protein (Supplementary Table 4), and no 
significant ties to NEFA or triglycerides. In the combined 
regression analysis (Figure 5C), the inverse association between 
plasma lactate and BHB, could point to a compensatory relationship 
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between these two metabolites. Lactate has also been shown to 
suppress adipose lipolysis via the G-protein–coupled receptor 
GPR81, lowering cAMP and limiting hormone-sensitive lipase 
activity (54). Therefore, the lower lactate observed in ketotic cows 
may reflect loss of this anti-lipolytic brake, contributing to the 
elevated NEFA. Ketogenesis plays an important role in regenerating 
NAD+ during fatty acid oxidation, providing an alternative 
mechanism to manage redox stress when lactate metabolism alone 
is insufficient (5). This shift suggests that under more extreme 
metabolic stress, ketones may take over as the dominant energy 
source and redox buffer, reflecting a system under prolonged 
metabolic strain.

Implications for diagnosis and therapy

Our finding of heightened immune and inflammatory gene 
expression, together with the observed lactate–ketone toggle, is 
supported by a study that shows changes in IL-6 and lactate/BHB 
dynamics can precede ketosis (55). A greater understanding of the 
mitochondrion’s role in inflammatory and immune function 
during lipolysis, may lead to novel interventions to prevent and 
treat ketosis and elucidate its role in the transition cow disease 
process. Further longitudinal studies would aid clarification but 
involving lactate and inflammatory/immune markers could 

already provide a more informative toolset for ketosis diagnosis 
and management.

Limitations

As with any transcriptomic study, these data do not support 
conclusions of functional outcomes but provide additional evidence that 
will need to be validated with further targeted functional experiments.

It is possible some of the transcriptomic shifts reported in PP2 
may reflect differences in cellular composition of subcutaneous AT, 
rather than intrinsic transcriptional changes. We did not carry out 
cell-type specific resolution or immune phenotyping in this study, so 
that distinction cannot be made here. Future work using approaches 
such as cell deconvolution, flow cytometry, or single-cell and single-
nucleus RNA sequencing will be needed to separate changes in cell 
abundance from reprogramming within existing cell types. The study 
was also limited by sample size, which meant we were unable to fully 
assess the oleic acid treatment effect.

Conclusion

Our study provides initial transcriptomic and biochemical evidence 
that metabolic reprogramming occurs at the transcription level in 

FIGURE 5

(A) Lactate concentrations were measured in cows across the three biopsy periods: PP1, PP2, and PreP. Least squares means (LS Means) estimates for 
lactate concentrations, relative to the PreP period, are shown for each biopsy period. The error bars represent the 95% confidence intervals for the LS 
Means estimates. PP2 showed lower lactate concentrations than both PreP and PP1, whereas PP1 did not differ from PreP. Tukey–Kramer pairwise 
comparisons confirmed significant differences for PP2 vs. PP1 (p = 0.036) and PP2 vs. PreP (p = 0.0007), with no significant difference between PP1 
and PreP (p = 0.15). (B) Comparison of plasma lactate concentrations between control (Healthy Cows HC) and Ketotic (Clinically Ketotic, CK) Each 
point represents an individual cow. The bars represent the mean lactate concentration, and the error bars denote the standard error of the mean (SEM). 
An initial significant difference in lactate concentration was not observed between the groups but was close at p < 0.06. (C) Standardised coefficients 
between plasma lactate concentrations and various metabolic parameters in both control and ketotic cows. The parameters analysed include albumin, 
BHB, calcium, cholesterol, glucose, magnesium, NEFA, total protein (TP) and triglycerides. Plasma lactate was significantly associated with BHB 
(coefficient = −1.4319, p = 0.03396).
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subcutaneous AT of postpartum dairy cows, characterised by a pronounced 
downregulation of mitochondrial transcripts, a shift away from OXPHOS, 
and a concurrent activation of immune and stress-response pathways. Our 
data support the concept that adipose tissue is not merely a passive energy 
store but plays an active role in regulating metabolic and inflammatory 
processes during the postpartum energy demand (4).

The placement of lactate and ketones as reciprocal redox 
regulators and energy sources, aligns with the evolving view of ketone 
metabolism. This challenges the perception of ketosis as strictly 
pathological, and proposes that ketones may function as adaptive 
metabolic signals under certain conditions (56, 57).

We provide evidence and highlight that metabolic health in dairy 
cows cannot be fully understood solely through traditional markers 
like ketone bodies. Instead, a better understanding of mitochondrial 
adaptations, immune-metabolic interactions, and tissue-specific 
energy partitioning, is required, to refine the understanding of 
periparturient metabolic disorders. Future research should focus on 
whether these mitochondrial and metabolic shifts can be modulated 
to improve metabolic resilience (14), potentially reducing the risk of 
disease while maintaining optimal production efficiency.
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SUPPLEMENTARY FIGURE 1

The top 10 enriched GO terms were ranked by False Discovery Rate (FDR) for 
Cluster 1 using STRING-db. The bar length represents the-log10(FDR) value, 
and the colour intensity indicates the enrichment strength (log10(observed/
expected)).

SUPPLEMENTARY FIGURE 2

The top 10 enriched GO terms were ranked by False Discovery Rate (FDR)for 
Cluster 2 using STRING-db. The bar length represents the-log10(FDR) value, 
and the colour intensity indicates the enrichment strength (log10(observed/
expected)).
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SUPPLEMENTARY FIGURE 3

The top 10 enriched GO terms were ranked by False Discovery Rate (FDR) for 
Cluster 3 using String-db. The bar length represents the -log10(FDR) value, 
and the colour intensity indicates the enrichment strength (log10(observed/
expected)).

SUPPLEMENTARY FIGURE 4

Functional enrichment of PP2 upregulated transcripts, showing DEG counts 
across the top three clusters. Bars represent transcript counts per 
enrichment category, with colours distinguishing clusters. FE Cluster 1 
(purple) is enriched in immune-related processes, FE Cluster 2 (teal) in 
calcium and growth factor binding, and FE Cluster 3 (yellow) in SH2 domain-
associated signalling.

SUPPLEMENTARY FIGURE 5

Functional enrichment of PP2 downregulated transcripts FE Cluster 1 (purple) 
is enriched in mitochondrial and oxidative metabolism, FE Cluster 2 (teal) in 
electron transport and neurodegenerative pathways, and FE Cluster 3 
(yellow) in TCA cycle-associated processes.

SUPPLEMENTARY FIGURE 6

Upregulated (red) and downregulated (blue) transcripts in PP2 vs. PreP were 
cross-referenced with pathways from GeneCards. (a) Immune Response. (b) 
Oxidative Stress. (c) Mitophagy. (d) LPS-related. (e) Apoptosis regulation. (f) 
Calcium-related mitochondrial genes.

SUPPLEMENTARY FIGURE 7

The electron transport system (complexes I–V) is depicted with associated 
mitochondrial- and nuclear-encoded genes. Downregulated transcripts 
(blue) indicate widespread suppression of nuclear-encoded OXPHOS 
components, and Complex V, while UCP2 (red) highlights an upregulation in 
uncoupling activity.

SUPPLEMENTARY FIGURE 8

STRING-db network visualisation depicting protein-protein interactions 
among key metabolic enzymes linked to pyruvate carboxylase (PC). Red 
nodes represent upregulated proteins, while blue nodes indicate 

downregulated proteins. Connectivity between nodes represents functional 
and regulatory interactions.

SUPPLEMENTARY FIGURE 9

All upregulated, and the top 10 downregulated transcripts associated with 
metabolic reprogramming. Red bars indicate upregulated transcripts, while 
blue bars represent downregulated transcripts, with log fold change (logFC) 
values shown on the x-axis.

SUPPLEMENTARY TABLE 2

Lactate concentrations were measured in cows across the three biopsy 
periods: PP1, PP2, and PreP. Least squares means (LS Means) estimates for 
lactate concentrations, relative to the PreP period, are shown for each biopsy 
period. The error bars represent the 95% confidence intervals for the LS 
Means estimates. P2 had lower lactate concentrations than both PreP and 
PP1, whereas PP1 did not differ from PreP. Tukey–Kramer pairwise 
comparisons confirmed significant differences for PP2 vs. PreP (p = 0.0007) 
and PP2 vs. PP1 (p = 0.036), with no significant difference between PP1 and 
PreP (p = 0.15). Least-squares means are relative to the PreP period. 
Significant differences (p < 0.05) are shown in bold.

SUPPLEMENTARY TABLE 3

Correlations between plasma lactate concentrations and various metabolic 
parameters in control cows. The parameters analysed include albumin, BHB, 
calcium, cholesterol, glucose, magnesium, NEFA, total protein (TP) and 
triglycerides. Plasma lactate was significantly correlated with both 
triglycerides (r = 0.5579, p = 0.0131) and NEFA (r = 0.5702, p = 0.0108).

SUPPLEMENTARY TABLE 4

Correlations between plasma lactate concentrations and various metabolic 
parameters in ketotic cows. In this ketotic group, lactate shows a significant 
negative correlation with total protein (r = –0.4345, p = 0.038) but no 
meaningful correlation with triglycerides or NEFA. This pattern differs from 
controls, where lactate was notably linked to lipid mobilisation markers 
(NEFA and triglycerides).
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