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Introduction: Toxoplasma gondii infection causes severe congenital disease and 
abortion in humans and animals. This study evaluated a novel multivalent DNA 
vaccine targeting ROP6, and MIC12 for protection against acute (RH strain) and 
chronic (PRU strain) toxoplasmosis in mouse models.
Methods: Eukaryotic plasmids encoding pVAX-ROP6 and pVAX-MIC12 were 
constructed, and mice were immunized with either single or combined formulations.
Results and discussion: Vaccination elicited a robust Th1-biased immune 
response, characterized by elevated IgG2a/IgG1 ratios, enhanced cytotoxic 
T lymphocyte activity, increased CD4+ and CD8+ T cell populations, and 
elevated production of IFN-γ, IL-12, and IL-2. The dual vaccine demonstrated 
superior efficacy, significantly prolonging survival following lethal RH challenge 
(compared to uniform mortality in controls by day 6) and reducing PRU brain 
cyst burden by 56.6%, outperforming single-gene formulations. Although 
these results establish pVAX-ROP6/MIC12 as promising vaccine candidates, 
protection remained partial, highlighting the need for further optimization. 
Overall, this study underscores the potential of bivalent DNA vaccines to induce 
broad protective immunity against toxoplasmosis, supporting their continued 
development for clinical and veterinary use.
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1 Introduction

Toxoplasmosis, caused by the obligate intracellular protozoan Toxoplasma gondii, is a 
globally prevalent zoonosis affecting all warm-blooded vertebrates (1–3). Infection poses 
significant clinical risks for immunocompromised individuals and developing fetuses (4). In 
livestock production systems, particularly small ruminants (sheep and goats), T. gondii infection 
induces abortions, resulting in substantial economic losses (5–7). In humans, T. gondii causes 
severe clinical outcomes such as chorioretinitis, lymphadenitis, myocarditis, and polymyositis 
(8). The symptoms of T. gondii infection in adults are mild and includes fever, malaise, and 
lymphadenitis (8). Congenital toxoplasmosis can result in encephalitis, intellectual disability, 
microcephaly, hydrocephaly, microphthalmia, and jaundice (8). Acute maternal infection can 
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also result in abortion or neonate death (8). T. gondii infection in sheep 
and goats can result in a fetus that is mummified or macerated, fetal 
embryonic death, stillbirth, and abortion storm, resulting in substantial 
economic losses. The parasite establishes lifelong persistence in infected 
hosts through tissue cyst formation, and currently available 
therapeutics, including pyrimethamine, sulfadiazine, and spiramycin 
cannot achieve complete parasite eradication (9).

Currently, S48 (Toxovax®) remains the only commercially licensed 
vaccine against T. gondii and has been used to reduce abortion rates in 
sheep (10). However, as a live-attenuated vaccine, its widespread 
application is constrained by challenges in manufacturing, including 
the theoretical risk of virulence reversion (11). These limitations 
underscore the need for next-generation vaccine platforms that are 
safer and more practical. While numerous vaccine candidates targeting 
rhoptry and microneme proteins (including SAG1, ROP5, ROP18, 
GRA5, GRA7 and MIC4) have demonstrated promise in murine 
models, none have progressed to widespread application, primarily due 
to insufficient protection against chronic infection (12–15). There is an 
urgent need to develop safe and efficacious vaccines capable of 
preventing T. gondii infection in both human and veterinary medicine.

DNA vaccines offer distinct advantages, including simplified 
manufacturing processes, cost-effectiveness, and the ability to elicit 
robust immune responses (16). Substantial evidence demonstrates 
that DNA vaccination against T. gondii can simultaneously enhance 
Th1-type cellular immunity and humoral responses, characterized by 
elevated proinflammatory cytokine production and parasite-specific 
antibodies that confer partial protection (17, 18). However, single-
antigen vaccines often exhibit limited efficacy. Recent comparative 
studies reveal that multigenic formulations (e.g., SAG1 + SABP1 or 
SAG1 + SRS29C) significantly prolong survival duration in murine 
challenge models with the virulent RH strain, outperforming single-
gene vaccines (SAG1, SRS29C, or SABP1 alone) (19, 20). Previous 
study identified ROP6 and MIC12 as highly immunogenic antigens 
that remain unexplored for diagnostic or vaccine applications, 
presenting new opportunities for translational development (21). 
Also, ROP6 mRNA has been recognized as a promising platform for 
next-generation toxoplasmosis vaccine development (21).

The immunogenic properties of TgROP6 and TgMIC12 position 
these antigens as promising DNA vaccine candidates capable of 
conferring robust protection against T. gondii infection. ROP6 is a 
rhoptry protein secreted during the invasion process and contributes 
to the formation of the parasitophorous vacuole, a key feature of 
intracellular survival of T. gondii. It is expressed predominantly in the 
tachyzoite stage and has been shown to induce both humoral and 
cellular immune responses in infected hosts (22). These properties, 
along with predicted strong T cell epitopes, make ROP6 a compelling 
vaccine candidate. MIC12 is a microneme protein involved in early 
host cell attachment, a critical step in T. gondii invasion. Given its 
surface exposure and expression during the invasive stage, it presents 
a promising target for immune recognition. Furthermore, its 
conserved sequence and antigenicity in previous proteomic studies 
support its inclusion as a vaccine antigen (18). Moreover, IL-24 and 
IL-36γ are promising adjuvants for enhancing protective immunity 
induced by DNA vaccination against T. gondii (23, 24).

This study aimed to: (i) assess the vaccine potential of T. gondii 
virulence proteins TgROP6 and TgMIC12 through construction of 
recombinant eukaryotic plasmids (pVAX-ROP6 and pVAX-MIC12), 
and (ii) systematically evaluate the protective efficacy of these DNA 

vaccines against both acute and chronic toxoplasmosis in BALB\c mice. 
While previous studies have examined TgROP or TgMIC proteins 
individually, this study is the first to combine TgROP6 and TgMIC12 in 
a DNA vaccine, leveraging their complementary functions in host cell 
invasion and parasitophorous vacuole maintenance. This strategy aims 
to enhance the breadth of the immune response and improve 
protective efficacy.

2 Materials and methods

2.1 Mice, parasites and cells

Seven-week-old female BALB\c mice (specific pathogen-free [SPF] 
grade) were procured from Zhejiang Laboratory Animal Center, 
Hangzhou (China) and maintained under strict compliance with the 
Chinese National Laboratory Animal Welfare Guidelines. All 
experimental procedures were approved by the Institutional Animal 
Care and Use Committee of the Animal Ethics Committee of Ningbo 
University (permission: SYXK(ZHE)2019–0005).

For challenge studies, we utilized (i) RH strain (Type I) tachyzoites 
and (ii) PRU strain (Type II) tissue cysts, both propagated using 
previously established methods in our laboratory (23, 25). Freshly 
harvested RH tachyzoites were processed to prepare Toxoplasma lysate 
antigen (TLA) and for total RNA extraction using the RNAprep Pure 
Tissue Kit (TIANGEN), as previously optimized (26). 293-T cells were 
maintained in Dulbecco’s modified Eagle’s medium (DMEM; 
Invitrogen) with 10% heat-inactivated fetal calf serum (FCS), 100 IU/
mL streptomycin, and 100 IU/mL penicillin at 37 °C with 5% CO2.

2.2 Construction of DNA vaccine plasmid

The coding sequences of TgROP6 and TgMIC12 were amplified 
from T. gondii RH strain tachyzoite cDNA using high-fidelity PCR 
with the following primer pairs: TgROP6: Forward 5′-GGGGTACCAT 
GCATCCGATATCCTGTT-3′ (KpnI site underlined), Reverse 
5′-GCTCTAGACTACGCGCGTATCATACG-3′ (XbaI site under​
lined); TgMIC12: Forward 5′-GGGGTACCATGCGTGAATAT 
CCTCTC-3′ (KpnI site underlined), Reverse 5′-GCTCTAGATA 
CCAGTACTAGCAACTT-3′ (XbaI site underlined). PCR products 
were cloned into the pMD18-T vector (Takara Bio, Kusatsu, Shiga, 
Japan) for bidirectional sequencing, generating pMD-ROP6 and 
pMD-MIC12. Following sequence verification, ROP6 and MIC12 
fragments were excised using KpnI/XbaI (TaKaRa) and subcloned 
into the eukaryotic expression vector pVAX1. The recombinant 
plasmids pVAX-ROP6 and pVAX-MIC12 were transformed into 
E. coli DH5α, with positive clones selected through dual restriction 
analysis and Sanger sequencing. Plasmids were purified using an 
EndoFree Plasmid Giga Kit (Qiagen Sciences, Germantown MD, 
USA) and resuspended in sterile PBS with the determination of 
concentrations of pVAX-ROP6 and pVAX-MIC12 by NanoDrop 
spectrophotometer at OD260 and OD280 (1 mg/mL, A260/A280 ratio 
1.8–2.0). Aliquots were stored at −20 °C until use. For PCR program 
as follow: Initial Denaturation: 95 °C for 5 min. Amplification Cycles 
(repeated 30 times). Denaturation: 95 °C for 30 s. Annealing: 60 °C 
for 30 s. Extension: 72 °C for 1 min. Final Extension: 72 °C for 5 min. 
Hold: 4 °C forever.
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2.3 The expression of recombinant plasmid 
in vitro

To confirm recombinant plasmid expression, Human Embryonic 
Kidney (HEK) 293-T cells transfected with pVAX-ROP6 or pVAX-
MIC12 was detected by indirect immunofluorescence assay (IFA). In 
brief, the recombinant plasmid pVAX-ROP6 or pVAX-MIC12 was 
transfected into Human Embryonic Kidney (HEK) 293-T cells using 
LipofectamineTM 2000 (Invitrogen, Carlsbad, CA, USA) following the 
manufacturer’s protocol. At 48 h post-transfection, cells were fixed with 
ice-cold acetone for 15 min and permeabilized with PBS containing 0.1% 
Triton X-100 (PBST). After three washes with PBST, cells were incubated 
with goat anti-T. gondii polyclonal antibody (1:100 dilution in PBST) 
(Abcam, Cambridge, MA, USA) at 37 °C for 1 h, followed by incubation 
with FITC-conjugated donkey anti-goat IgG secondary antibody 
(Proteintech Group Inc., Chicago, IL, USA; 1:100) at room temperature 
for 45 min. Fluorescence signals were visualized using a Zeiss Axio-plan 
fluorescence microscope (Carl Zeiss, Oberkochen, Germany). Cells 
transfected with empty pVAX1 vector served as negative controls.

2.4 Immunization and challenge

Experimental groups (n = 30 per group) received intramuscular 
immunizations with 100 μL (100 μg) of DNA vaccines - pVAX-ROP6, 
pVAX-MIC12, their binary (1:1, the dual vaccine was mixed before 
injection) combination, − administered at 2-week intervals, while 
control groups received PBS, empty pVAX1 vector, or remained naive. 
Serial blood collections at weeks 0, 2, 4, and 6 post-immunization 
yielded sera through clotting (37 °C, 30 min) followed by centrifugation 
(4,000 × g, 5 min, 4 °C). Two weeks post-final immunization, parallel 
challenge studies were conducted: (i) intraperitoneal injection of 
1 × 103 RH strain tachyzoites (n = 10/group) with 30-day survival 
monitoring, which is widely used to induce a lethal acute infection in 
mouse models, enabling clear evaluation of vaccine-induced protection 
in a stringent model (27, 28) and (ii) oral inoculation with 20 PRU 
strain cysts (n = 5/group) followed by brain cyst burden quantification 
at 4 weeks post-infection, which was chosen for oral challenge to 
simulate natural infection and assess the ability of the vaccine to reduce 
chronic cyst formation in the brain, as supported by earlier studies 
using comparable models (26, 29).

Two weeks after the final immunization, splenocytes were 
harvested from nine mice per group and allocated for different assays: 
flow cytometric analysis, lymphoproliferation assays, and cytokine 
measurements (five mice per assay, with samples pooled as needed), 
with all measurements performed in triplicate using independent 
biological replicates. The overall mice immunization and 
immunological analyses is outlined in the flowchart in 
Figure 1A. Experimental design is shown in Table 1.

2.5 Antibody analysis

Serum levels of anti-T. gondii IgG, IgG1, and IgG2a were 
quantified by ELISA using the SBA Clonotyping System-HRP Kit 
(Southern Biotech Co., Ltd., Birmingham, UK) at weeks 0, 2, 4, and 
6 post-immunization following previously described methods (26). 
Briefly, 96-well plates were coated with 100 μL/well of TLA (10 μg/

mL in PBS) and incubated overnight at 4 °C. After three washes 
with PBST (PBS + 0.05% Tween-20), plates were blocked with 5% 
BSA/PBS for 1 h at 37 °C. Serum samples (100 μL/well), diluted in 
PBS, were incubated for 1 h at room temperature, followed by 
incubation with HRP-conjugated anti-mouse IgG/IgG1/IgG2a 
antibodies (1:5,000 dilution) for 1 h at 37 °C. Colorimetric 
development was achieved using ABTS substrate solution (1.05% 
citrate buffer [pH 4.0], 1.5% ABTS, 0.03% H2O2; 100 μL/well, 
30 min RT), with absorbance measured at 405 nm (BioTek EL × 800, 
Winooski, VT, USA). All experimental and control samples were 
run in triplicate.

2.6 Lymphocyte proliferation assayed by 
MTT

Two weeks after the last immunization, splenocytes were collected 
from three mice of each group as described previously (20). After the 
erythrocytes were lysed using erythrocyte lysis buffer (0.15 M NH4Cl, 
1.0 M KHCO3, 0.1 M EDTA,ph 7.2; Sigma, St. Louis, MO, USA), the 
splenocytes were resuspended in DMEM medium supplemented with 
10% fetal calf serum(FCS). In brief, 3 × 106 cells per well were cultured 
in 96-well Costar plates and treated with TLA (10 μg/mL), 
concanavalin A (ConA) (5 μg/mL; Sigma), or medium alone (negative 
control) at 37 °C under 5% CO2 for 72 h. Thereafter, 10ul of 3-(4, 
5-dimethylthylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT, 
5 mg/mL, Sigma) was added to each well, and incubated for 4 h. The 
proliferative activity was measured using a 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyl-tetrazolium bromide (MTT, 5 mg/mL, Sigma) dye 
assay according to the method described by Bounous et al. (30). The 
proliferative activity was measured using MTT dye assay according to 
the formula: (OD570 TLA/OD570 Control):(OD570 ConA/OD570 
Control). All experimental and control samples were run in triplicate.

2.7 Flow cytometry assay

The frequencies of T lymphocyte subsets, including CD4+ and 
CD8+ T cells, were analyzed and quantified by flow cytometry as 
described previously (26, 31). Briefly, single-cell splenocyte suspensions 
were stained with fluorochrome-conjugated monoclonal antibodies 
(PE-anti-CD3, APC-anti-CD4, and FITC-anti-CD8; eBioscience, San 
Diego, CA, USA) for 30 min at 4 °C in the dark. Cells were washed 
twice with PBS (2 mL) and fixed in FACScan buffer (PBS containing 
1% FBS and 0.1% sodium azide) with 2% paraformaldehyde. To 
quantify cytokine production ex vivo, single-cell suspensions were 
cultured in RPMI 1640 supplemented with 10% FBS and stimulated for 
4 h at 37 °C with 50 ng/mL PMA and 3 μM ionomycin in the presence 
of 2.5 mg/mL Brefeldin A (Biolegend, San Diego, CA, USA) to enable 
intracellular cytokine accumulation. Following surface marker staining, 
cells were fixed and permeabilized for 30 min at 4 °C using BD Cytofix/
Cytoperm (BD Biosciences, San Jose, CA, USA), then washed with 1X 
Permeabilization Buffer (Invitrogen, Carlsbad, CA, USA) prior to 
intracellular staining with anti-IFN-γ (eBioscience, San Diego, CA, 
USA), anti-Granzyme B (eBioscience, San Diego, CA, USA). Samples 
were acquired on a BD FACScan flow cytometer (BD Biosciences, San 
Jose, CA, USA) and analyzed using SYSTEM II software (Coulter, Brea, 
CA, USA). All experimental and control samples were run in triplicate.

https://doi.org/10.3389/fvets.2025.1674435
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Xu et al.� 10.3389/fvets.2025.1674435

Frontiers in Veterinary Science 04 frontiersin.org

2.8 Cytokine assay

Splenocytes were cultured in 96-well plates under antigen 
stimulation (TLA, 10 μg/mL). Cell-free supernatants were collected at 
defined timepoints for cytokine profiling: TNF-α at 48 h; IL-2 and IL-4; 

IL-10 at 72 h; IFN-γ and IL-12 at 96 h. Cytokine concentrations were 
quantified using commercial ELISA kits (Biolegend, San Diego, CA, 
USA) with by comparing sample measurements to standard curves 
generated using mouse recombinant TNF-α, IFN-γ, IL-2, IL-4, IL-12, 
and IL-10. All experimental and control samples were run in triplicate.

FIGURE 1

Flow chart of the vaccine immunization strategy and in vitro antigen expression validation. (A) Flow chart of mice immunization and immunological 
analyses. (B) Protein detection in cells transfected with either empty pVAX I vector (control), pVAX-ROP6, or pVAX-MIC12 constructs.

TABLE 1  Experimental design.

Group Treatment Immunization Challenge Outcome Measured

Group 1 pVAX-ROP6 i.m. ×3, 2-wk interval RH tachyzoites (i.p.) & PRU 

(p.o.)

Cyst burden, survival

Group 2 pVAX-MIC12 i.m. ×3 RH & PRU Cyst burden, survival

Group 3 ROP6 + MIC12 i.m. ×3 RH & PRU All assays

Group 4 PBS None RH & PRU Control

Group 5 Empty vector i.m. ×3 RH & PRU Control

Group 6 Naive None RH & PRU Control
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2.9 CTL activity assessment

Following spleen lymphocyte isolation, CTL activity was assessed 
using the CytoTox96® Non-Radioactive Cytotoxicity Assay Kit 
(Promega, Madison, WI, USA) as previously described (23, 25). 
Briefly, spleen cells were stimulated with 100 U/mL recombinant 
murine IL-12 (eBioscience, San Diego, CA, USA) and served as 
effector cells. Target cells consisted of Sp2/0 mouse cells transfected 
with eukaryotic expression plasmids (pVAX-ROP6, pVAX-MIC12 or 
pVAX-ROP6 + pVAX-MIC12) using Lipofectamine™ 2000 reagent 
(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s 
protocol. Effector and target cells were co-cultured at ratios of 10:1, 
20:1, 40:1, and 80:1 for 6 h. Specific lysis was then calculated using the 
formula: Specific Lysis (%) = (Experimental − Effector spontaneous 
− Target spontaneous)/(Target maximum − Target 
spontaneous) × 100. All experimental and control samples were run 
in triplicate.

2.10 Statistical analysis

Statistical analyses were performed using GraphPad Prism 5.0 
(GraphPad Software) and SPSS 17.0 (IBM). Continuous variables 
(antibody titers, cytokine concentrations) were compared using 
one-way ANOVA with Bonferroni post hoc test for multiple 
comparisons. Survival curves following RH strain challenge were 
analyzed by the Kaplan–Meier method with log-rank (Mantel-Cox) 
testing. All tests were two-tailed, with statistical significance defined as 
p < 0.05. Data are presented as mean ± SEM unless otherwise specified.

3 Results

3.1 Expression of pVAX-ROP6 and 
pVAX-MIC12 plasmids in vitro

Immunofluorescence analysis revealed distinct intracellular green 
fluorescence signals in Human Embryonic Kidney (HEK) 293-T cells 
expressing pVAX-ROP6 or pVAX-MIC12 (Figure 1B), confirming 
successful recombinant protein expression. In contrast, 

vector-transfected controls (pVAX I) exhibited no detectable 
fluorescence (Figure  1B), validating the specificity of the 
observed signals.

3.2 Humoral responses induced by DNA 
immunization

Serum antibody responses were quantified by ELISA (Figure 2). 
Mice immunized with single- or double-gene constructs (pVAX-
ROP6, pVAX-MIC12, or pVAX-ROP6 + pVAX-MIC12) exhibited 
significantly elevated total anti-T. gondii IgG levels compared to 
control groups (p < 0.05). Also, the increase in antibody levels 
occurred with successive DNA immunizations (p < 0.05). The dual 
vaccine (pVAX-ROP6 + pVAX-MIC12) induced a higher 
anti-T. gondii IgG production, demonstrating a significantly enhanced 
effect compared to either treatment alone (Figure 2A). Notably, all 
vaccinated groups showed a Th1-skewed response, evidenced by 
elevated anti-T. gondii IgG2a/IgG1 ratios (Figure 2B). This bias was 
higher pronounced in the bivalent group (p < 0.01), consistent with 
robust cellular immunity.

3.3 Cellular responses induced by DNA 
immunization

Splenocyte proliferative responses were assessed via MTT assay 
(Figure  3A). The bivalent vaccine group (pVAX-ROP6 + pVAX-
MIC12) exhibited the highest stimulation index (SI) among all groups 
(p < 0.05), demonstrating superior T cell activation. While the mono 
formulation (pVAX-ROP6 or pVAX-MIC12) also induced 
significantly higher SI values than control groups, but there were no 
any significant differences between single-antigen vaccines (p > 0.05). 
Also, no notable proliferation was observed in control groups 
(p > 0.05).

Flow cytometric analysis revealed significant expansion of 
antigen-specific T cell populations in vaccinated mice (Figure 3B). The 
bivalent vaccine group (pVAX-ROP6 + pVAX-MIC12) demonstrated 
the highest CD8 + T cell frequency (p < 0.05 vs. all groups), which 
outperformed single-antigen vaccines (pVAX-ROP6 or 

FIGURE 2

Assessment of humoral immunity induced by single or bivalent gene DNA vaccination. (A) Serum anti-T. gondii IgG antibody levels in BALB\c mice at 
weeks 0, 2, 4, and 6 post-immunization. (B) Levels of IgG1 and IgG2a subclasses measured 2 weeks after the final immunization. Data are presented as 
means ± SD (ns, no significant, *p < 0.05, ***p < 0.001).
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pVAX-MIC12) (p < 0.05). A parallel trend was observed for CD4+ T 
cells, with all vaccinated groups showing elevated percentages 
compared to controls (p < 0.05). Similarly, immunophenotyping of 
CD8 + T cells revealed that the bivalent vaccine robustly induced the 
highest frequencies of IFN-γ and Granzyme B producing cells, 
significantly outperforming all single-antigen formulations 
(Figure 3C). No significant differences were detected among control 
groups (p > 0.05).

3.4 Measurement of cytokine secretion and 
cytotoxic T lymphocyte response

Cytokine analysis of splenocyte supernatants (collected 2 weeks 
post-immunization) revealed significant Th1 polarization in 
vaccinated mice (Figure 4). Compared to controls, DNA-immunized 
groups exhibited elevated TNF-α, IFN-γ, IL-2 and IL-12, with the 
bivalent formulation (pVAX-ROP6 + pVAX-MIC12) showing 
superior induction over single-antigen vaccines (p < 0.05). While IL-4 
and IL-10 levels showed modest increases, these changes were not 
statistically significant in the controls (p > 0.05).

The CTL activity of spleen cells in immunized mice exhibited a 
dose-dependent enhancement, peaking at an effector-to-target cell 
ratio of 80:1. Notably, the dual-gene combination (pVAX-
ROP6 + pVAX-MIC12) elicited significantly stronger CTL responses 
compared to single-gene immunizations (Figure 5). In contrast, the 
three control groups showed comparable CTL activity levels (p > 0.05).

3.5 Immunoprotection against lethal/
nonlethal challenge

Vaccine efficacy was assessed through two key metrics, including 
survival after i.p. challenge of tachyzoites of RH strain and cyst burden 
reduction after oral challenge of cysts of PRU strain (Figure  6). 
Following i.p. challenge with 1 × 103 tachyzoites of the virulent RH 
strain, immunized mice exhibited significantly prolonged survival 
compared to control groups, as depicted in Figure 6A. While control 
mice succumbed within 6 days post-challenge, DNA immunization 
using eukaryotic expression plasmids markedly enhanced survival 
time. No statistically significant differences were observed among the 
three control groups (p > 0.05).

To assess protection against chronic T. gondii PRU strain infection, 
brain cyst burdens were analyzed in immunized and control mice 
4 weeks after the final immunization. As illustrated in Figure 6B and 
Table 2, all vaccinated groups exhibited significantly cyst reduction 
compared to controls, with the bivalent formulation (pVAX-
ROP6 + pVAX-MIC12) demonstrating superior protection (56.6% 
cyst reduction vs. controls, p < 0.01). Cyst burden was also reduced by 
the DNA immunization with single antigen (35.7% reduction in 
pVAX-ROP6, or 36.2% reduction in pVAX-MIC12). Control groups 
showed no statistical differences (p > 0.05).

4 Discussion

DNA vaccines have emerged as a promising immunization 
strategy against toxoplasmosis, demonstrating the capacity to elicit 
durable humoral and cellular immune responses that confer 
protection in animal models (25, 26). Among various T. gondii 
antigens investigated, including SAG1, ROP16, MIC4, GRA12 vector-
based vaccine, and MIC1/4/13 vaccines have shown particular 
promise as vaccine candidates (32, 33). While previous studies have 
indeed investigated members of the TgROP and TgMIC protein 
families as vaccine candidates, our study is the first to evaluate the 
combination of TgROP6 and TgMIC12 in a bivalent DNA vaccine 
platform. Also, TgMIC12 has not previously been used in combination 
with any ROP antigen, and TgROP6 has only been evaluated 
individually or in other contexts. This novel antigen pairing was 
selected based on their complementary roles in parasite invasion and 
intracellular survival, as well as their high immunogenicity in silico 
and confirmed expression in both tachyzoite and bradyzoite stages. 
Our study demonstrates that immunization with either pVAX-ROP6 
or pVAX-MIC12 induces robust Th1-polarized cellular immunity, 
significant humoral responses as well as enhanced protection against 
both acute (RH strain) and chronic (PRU strain) infection. Notably, 
the combination with ROP6 and MIC12 exhibited significantly 
enhanced protective effects, supporting the superior efficacy of multi-
antigen approaches observed in other T. gondii vaccine studies (17, 
19). These findings highlight TgROP6 and TgMIC12 as potent 
immunogens and reinforce the advantage of combinatorial antigen 
strategies in toxoplasmosis vaccine development (16).

Following T. gondii infection, B cell activation leads to the 
production of parasite-specific antibodies that play a crucial role in 

FIGURE 3

Cellular immune responses induced by single or bivalent gene DNA vaccination. (A) Splenocyte proliferation in vaccinated and control groups. 
(B) Frequencies of CD4+ and CD8+ T cells in immunized versus control mice. (C) Percentages of IFN-γ and Granzyme B in CD8+ T cells. For flow 
cytometric analysis, a minimum of 1 × 105 T cells per sample were acquired. Data are presented as mean ± SD (**p < 0.01, ***p < 0.001).
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FIGURE 4

Cytokine secretion profiles of splenocytes from mice immunized with single or bivalent gene DNA vaccines. The dashed horizontal line indicates the 
lower limit of detection (TNF-α, LOD = 15.6 pg./mL, IFN-γ, LOD = 8 pg./mL, IL-2, LOD = 2 pg./mL, IL-4, LOD = 2 pg./mL, IL-12, LOD = 3.2 pg./mL and 
IL-10, LOD = 31.3 pg./mL). Data are shown as mean ± SD (ns, no significant, **p < 0.01, ***p < 0.001).

FIGURE 5

CTL responses of splenic lymphocytes from vaccinated mice. Specific lysis of T. gondii infected target cells (Sp2/0 cells transfected with eukaryotic 
expression plasmids pVAX-ROP6, pVAX-MIC12 or pVAX-ROP6 + pVAX-MIC12) at varying effector to target (E: T) ratios is shown (mean ± SD; 
***p < 0.001).
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host defense (34). These antibodies, particularly IgG, mediate 
protection by binding to tachyzoite surface antigens, thereby blocking 
host cell invasion and facilitating macrophage-mediated clearance (25, 
34). Consistent with this mechanism, our bivalent antigen vaccine 
elicited significantly elevated anti-T. gondii IgG titers, mirroring the 
protective humoral responses observed with other antigenic targets 
like TgROP5 and TgROP18 (14, 35, 36). Notably, our vaccination 
strategy induced an enhanced IgG1 and IgG2a production and a 
pronounced IgG2a/IgG1 ratio, dose-dependent increases in antibody 
titers with bivalent antigen formulations. These findings demonstrate 
robust Th1 polarization, aligning with established DNA vaccine-
induced immune profiles (37, 38). The superior antibody responses 
generated by the bivalent formulation (ROP6 + MIC12) further 
support the advantage of multi-antigen approaches in eliciting 
comprehensive protective immunity.

The adaptive immune response, particularly T cell-mediated 
immunity, represents the cornerstone of host defense against T. gondii 
infection (37, 39). Our vaccination strategy successfully elicited robust 
antigen-specific splenocyte proliferation and cytokine production, 
indicative of protective cellular immunity. The observed Th1-polarized 
response, characterized by significantly elevated IFN-γ, IL-12, and 
IL-2 production (40–43), is particularly noteworthy given IFN-γ’s 
established role in macrophage activation and parasite control during 
both acute and chronic infection phases (44). The cytokine analysis 
showed a dominant Th1-type response characterized by elevated 
IFN-γ and IL-2 levels, with comparatively lower levels of IL-4 and 
IL-10. While this suggests limited induction of Th2 or regulatory 
responses, further studies including histopathological evaluation are 
needed to assess the extent of inflammation or tissue damage. 
Importantly, the bivalent vaccine formulation demonstrated superior 

immunogenicity, inducing higher Th1-assosicated cytokine levels 
along with elevated Th2-associated IL-4 and IL-10 responses 
compared to single-antigen vaccines, but some previously developed 
T. gondii vaccines, engaging GRA7, ROP21, ROP1 and MYR1 provide 
only Th1 immune responses without inducing Th2 immunity (45–47). 
A coordinated Th1/Th2 response is characterized by an optimal 
IFN-γ/IL-10 ratio. This balance reflects the vaccine’s capacity to 
establish immune homeostasis, a critical determinant of protection 
against intracellular pathogens (48, 49). The enhanced Th1 response 
observed with our multi-antigen approach aligns with current 
understanding of protective immunity while addressing the need for 
vaccines that elicit comprehensive immune activation against this 
complex parasite. These findings not only validate TgROP6 and 
TgMIC12 as potent immunogens but also demonstrate the 
immunological advantages of multi-antigen formulations in achieving 
balanced, long-term protection against toxoplasmosis.

The coordinated activation of CD4+ and CD8+ T lymphocytes 
constitutes a critical defense mechanism against T. gondii infection, 
with CD8+ T cells playing a particularly vital role in controlling acute 
parasitemia through synergistic interactions with CD4+ T cells (50–
52). Our findings demonstrate that vaccination with pVAX-ROP6 or 
pVAX-MIC12 significantly elevated both CD4+ and CD8+ T cell 
populations compared to controls, with the bivalent formulation 
(ROP6 + MIC12) showing the most pronounced effect. These results 
align with previous reports on ROP5/ROP18 and GRA35/42/43 
vaccines (25, 36), and suggest that the observed T cell activation may 
underlie the vaccine’s protective efficacy by: (1) limiting tachyzoite 
dissemination during acute infection, and (2) reducing cyst formation 
in chronic stages. The enhanced T cell responses with IFN-γ and 
Granzyme B elicited by the multi-antigen approach further support 

FIGURE 6

Protective efficacy of vaccination in BALB\c mice. (A) Survival rates following intraperitoneal challenge with 1 × 103 RH strain tachyzoites, administered 
2 weeks after the final immunization. Survival was monitored over 30 days. Statistical comparison was performed using the log-rank test. The hazard 
ratio (HR) for the bivalent vaccine group versus the MIC12 group was 0.5385 (95% CI: 0.1559 to 1.860, p < 0.01), The HR for the bivalent vaccine group 
versus the ROP6 group was 0.6538 (95% CI: 0.1893 to 2.259, p < 0.01), as determined by Cox proportional hazards regression. (B) Brain cyst burden 
quantified 4 weeks post-challenge with 20 PRU cysts, representing chronic infection. Data are presented mean ± SD (**p < 0.01, ***p < 0.001).

TABLE 2  The number of brain cyst.

Group Blank control PBS pVAXI pVAX-ROP6 pVAX-MIC12 pVAX-ROP6 + pVAX-
MIC12

Mean ± SEM 3,425 ± 112 3,286 ± 87 3,361 ± 88 2,131 ± 42 2091 ± 29 1805 ± 41

https://doi.org/10.3389/fvets.2025.1674435
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Xu et al.� 10.3389/fvets.2025.1674435

Frontiers in Veterinary Science 09 frontiersin.org

the strategic advantage of combinatorial antigen formulations in 
toxoplasmosis vaccine development. Cytotoxic T lymphocytes (CTLs) 
serve as crucial mediators of immunity against intracellular pathogens, 
with T. gondii-specific CD8 + CTLs demonstrating particular 
importance in controlling parasitic replication and facilitating 
pathogen clearance (52, 53). Consequently, eliciting parasite-specific 
CTL responses represents a cornerstone strategy for developing 
effective anti-T. gondii vaccines. Our findings reveal significantly 
enhanced CTL activity in splenocytes from vaccinated mice compared 
to control groups, demonstrating successful induction of pathogen-
specific cytotoxic responses. This aligns with recent advances in 
T. gondii vaccinology, including mRNA-LNP (TGGT1_216200) and 
DNA (GRA24-based) platforms (38, 54), further validating CTL 
induction as a critical determinant of vaccine efficacy against 
intracellular parasites.

The genetic and phenotypic diversity of T. gondii strains 
necessitates vaccine candidates capable of eliciting cross-protective 
immunity. Using the susceptible Kunming mouse model, 
we demonstrate that vaccination with pVAX-ROP6 or pVAX-MIC12 
induces significant protection against both virulent RH (Type I) and 
avirulent PRU (Type II) strains, confirming the broad protective 
potential of virulence antigens as seen in prior studies with MIC13/
GRA1/ROP7 (14, 32). While robust Th1-polarized responses 
(characterized by elevated TNF-α, IFN-γ, IL-2, IL-12 and IgG2a) and 
antibody production were observed, protection remained partial, 
likely due to: (i) incomplete coverage of strain-specific epitopes, (ii) 
suboptimal T cell (CD4+ T and CD8+ T cells) activation, or (iii) 
absence of bradyzoite-stage antigens. The superior efficacy of the 
bivalent (ROP6 + MIC12) vaccine over single-antigen formulations 
(p < 0.05) indicates that combinatorial strategies, which aim to 
synergistically engage multiple immune pathways, represent a 
promising approach to enhance protection, as supported by recent 
hybrid vaccine studies (35, 55). These findings position bivalent 
antigen vaccines as a promising foundation for developing universally 
protective toxoplasmosis vaccines, though future work should explore 
incorporation of additional stage-specific antigens to achieve 
sterile immunity.

One limitation of this study is the lack of serological and 
histopathological analyses post-challenge, which precludes direct 
conclusions about humoral or tissue-level immune responses. 
Although survival benefit was observed, further work is needed to 
define the immunological mechanisms underlying this protection. In 
addition, future studies will focus on evaluating specific anti-T. gondii 
IgG responses post-challenge, as well as parasite burden in key tissues 
(brain, liver, spleen). These analyses will help clarify the immunological 
basis for the observed protection. Also,initiating a long-term follow-up 
study in mice to monitor T and B cell memory responses and 
protection at 3, 6, and 12 months post-vaccination is a critical next 
step for evaluation of long-term immune memory and durability of 
protection. Moreover, the critical role of mucosal immunity in 
defending against T. gondii warrants the exploration of mucosal 
immune analysis, including mucosal IgA and tissue-resident memory 
T cells in future.

While BALB/c mice are commonly used in preliminary vaccine 
evaluation due to their consistent immune responses and susceptibility 
to T. gondii, the extent to which these results translate to outbred 
animals or natural intermediate hosts (e.g., sheep and goats) remains 
uncertain. Further studies in such models will be essential to confirm 

the protective efficacy and immune response characteristics of the 
TgROP6/TgMIC12 vaccine under conditions that more closely mimic 
natural infection.

In summary, our findings establish TgROP6 and TgMIC12 as 
promising DNA vaccine candidates capable of eliciting robust 
humoral and cellular immune responses against both acute and 
chronic toxoplasmosis. The bivalent formulations demonstrated 
particular efficacy, suggesting significantly enhanced benefits of multi-
antigen vaccination strategies. Future development should prioritize: 
(1) optimization of antigen combinations (e.g., with ROP5/16/18) to 
enhance protective breadth, and (2) refinement of delivery platforms 
to maximize immune potency. The vaccine conferred partial 
protection during acute infection and significantly reduced brain cyst 
formation following chronic infection. While these findings are 
promising, further investigation is needed to determine whether this 
protection extends to distinct parasitic life stages, as this was not 
directly assessed in the current study. Additionally, we could include 
a consideration of potential strategies to enhance vaccine efficacy, such 
as the incorporation of bradyzoite-specific antigens to target the 
chronic stage more effectively.
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