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Introduction: Toxoplasma gondii infection causes severe congenital disease and
abortion in humans and animals. This study evaluated a novel multivalent DNA
vaccine targeting ROP6, and MIC12 for protection against acute (RH strain) and
chronic (PRU strain) toxoplasmosis in mouse models.

Methods: Eukaryotic plasmids encoding pVAX-ROP6 and pVAX-MIC12 were
constructed, and mice were immunized with either single or combined formulations.
Results and discussion: Vaccination elicited a robust Thl-biased immune
response, characterized by elevated IgG2a/lgGl ratios, enhanced cytotoxic
T lymphocyte activity, increased CD4+ and CD8+ T cell populations, and
elevated production of IFN-vy, IL-12, and IL-2. The dual vaccine demonstrated
superior efficacy, significantly prolonging survival following lethal RH challenge
(compared to uniform mortality in controls by day 6) and reducing PRU brain
cyst burden by 56.6%, outperforming single-gene formulations. Although
these results establish pVAX-ROP6/MIC12 as promising vaccine candidates,
protection remained partial, highlighting the need for further optimization.
Overall, this study underscores the potential of bivalent DNA vaccines to induce
broad protective immunity against toxoplasmosis, supporting their continued
development for clinical and veterinary use.
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1 Introduction

Toxoplasmosis, caused by the obligate intracellular protozoan Toxoplasma gondii, is a
globally prevalent zoonosis affecting all warm-blooded vertebrates (1-3). Infection poses
significant clinical risks for immunocompromised individuals and developing fetuses (4). In
livestock production systems, particularly small ruminants (sheep and goats), T. gondii infection
induces abortions, resulting in substantial economic losses (5-7). In humans, T. gondii causes
severe clinical outcomes such as chorioretinitis, lymphadenitis, myocarditis, and polymyositis
(8). The symptoms of T. gondii infection in adults are mild and includes fever, malaise, and
lymphadenitis (8). Congenital toxoplasmosis can result in encephalitis, intellectual disability,
microcephaly, hydrocephaly, microphthalmia, and jaundice (8). Acute maternal infection can
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also result in abortion or neonate death (8). T. gondii infection in sheep
and goats can result in a fetus that is mummified or macerated, fetal
embryonic death, stillbirth, and abortion storm, resulting in substantial
economic losses. The parasite establishes lifelong persistence in infected
hosts through tissue cyst formation, and currently available
therapeutics, including pyrimethamine, sulfadiazine, and spiramycin
cannot achieve complete parasite eradication (9).

Currently, $48 (Toxovax®) remains the only commercially licensed
vaccine against T. gondii and has been used to reduce abortion rates in
sheep (10). However, as a live-attenuated vaccine, its widespread
application is constrained by challenges in manufacturing, including
the theoretical risk of virulence reversion (11). These limitations
underscore the need for next-generation vaccine platforms that are
safer and more practical. While numerous vaccine candidates targeting
rhoptry and microneme proteins (including SAG1, ROP5, ROP18,
GRA5, GRA7 and MIC4) have demonstrated promise in murine
models, none have progressed to widespread application, primarily due
to insufficient protection against chronic infection (12-15). There is an
urgent need to develop safe and efficacious vaccines capable of
preventing T. gondii infection in both human and veterinary medicine.

DNA vaccines offer distinct advantages, including simplified
manufacturing processes, cost-effectiveness, and the ability to elicit
robust immune responses (16). Substantial evidence demonstrates
that DNA vaccination against T. gondii can simultaneously enhance
Th1-type cellular immunity and humoral responses, characterized by
elevated proinflammatory cytokine production and parasite-specific
antibodies that confer partial protection (17, 18). However, single-
antigen vaccines often exhibit limited efficacy. Recent comparative
studies reveal that multigenic formulations (e.g., SAG1 + SABP1 or
SAGLI + SRS29C) significantly prolong survival duration in murine
challenge models with the virulent RH strain, outperforming single-
gene vaccines (SAG1, SRS29C, or SABP1 alone) (19, 20). Previous
study identified ROP6 and MIC12 as highly immunogenic antigens
that remain unexplored for diagnostic or vaccine applications,
presenting new opportunities for translational development (21).
Also, ROP6 mRNA has been recognized as a promising platform for
next-generation toxoplasmosis vaccine development (21).

The immunogenic properties of TgROP6 and TgMIC12 position
these antigens as promising DNA vaccine candidates capable of
conferring robust protection against T. gondii infection. ROP6 is a
rhoptry protein secreted during the invasion process and contributes
to the formation of the parasitophorous vacuole, a key feature of
intracellular survival of T. gondii. It is expressed predominantly in the
tachyzoite stage and has been shown to induce both humoral and
cellular immune responses in infected hosts (22). These properties,
along with predicted strong T cell epitopes, make ROP6 a compelling
vaccine candidate. MIC12 is a microneme protein involved in early
host cell attachment, a critical step in T. gondii invasion. Given its
surface exposure and expression during the invasive stage, it presents
a promising target for immune recognition. Furthermore, its
conserved sequence and antigenicity in previous proteomic studies
support its inclusion as a vaccine antigen (18). Moreover, IL-24 and
IL-36y are promising adjuvants for enhancing protective immunity
induced by DNA vaccination against T. gondii (23, 24).

This study aimed to: (i) assess the vaccine potential of T. gondii
virulence proteins TgROP6 and TgMICI12 through construction of
recombinant eukaryotic plasmids (pVAX-ROP6 and pVAX-MIC12),
and (ii) systematically evaluate the protective efficacy of these DNA
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vaccines against both acute and chronic toxoplasmosis in BALB\c mice.
While previous studies have examined TgROP or TgMIC proteins
individually, this study is the first to combine TgROP6 and TgMIC12 in
a DNA vaccine, leveraging their complementary functions in host cell
invasion and parasitophorous vacuole maintenance. This strategy aims
to enhance the breadth of the immune response and improve
protective efficacy.

2 Materials and methods
2.1 Mice, parasites and cells

Seven-week-old female BALB\c mice (specific pathogen-free [SPF]
grade) were procured from Zhejiang Laboratory Animal Center,
Hangzhou (China) and maintained under strict compliance with the
Chinese National Laboratory Animal Welfare Guidelines. All
experimental procedures were approved by the Institutional Animal
Care and Use Committee of the Animal Ethics Committee of Ningbo
University (permission: SYXK(ZHE)2019-0005).

For challenge studies, we utilized (i) RH strain (Type I) tachyzoites
and (ii) PRU strain (Type II) tissue cysts, both propagated using
previously established methods in our laboratory (23, 25). Freshly
harvested RH tachyzoites were processed to prepare Toxoplasma lysate
antigen (TLA) and for total RNA extraction using the RNAprep Pure
Tissue Kit (TTANGEN), as previously optimized (26). 293-T cells were
maintained in Dulbeccos modified Eagle’s medium (DMEM;
Invitrogen) with 10% heat-inactivated fetal calf serum (FCS), 100 IU/
mL streptomycin, and 100 IU/mL penicillin at 37 °C with 5% CO2.

2.2 Construction of DNA vaccine plasmid

The coding sequences of TgROP6 and TgMIC12 were amplified
from T. gondii RH strain tachyzoite cDNA using high-fidelity PCR
with the following primer pairs: TgROP6: Forward 5-GGGGTACCAT
GCATCCGATATCCTGTT-3" (Kpnl site underlined), Reverse
5-GCTCTAGACTACGCGCGTATCATACG-3" (Xbal site under
lined); TgMICI12: Forward 5-GGGGTACCATGCGTGAATAT
CCTCTC-3" (Kpnl site underlined), Reverse 5-GCTCTAGATA
CCAGTACTAGCAACTT-3" (Xbal site underlined). PCR products
were cloned into the pMD18-T vector (Takara Bio, Kusatsu, Shiga,
Japan) for bidirectional sequencing, generating pMD-ROP6 and
pMD-MICI2. Following sequence verification, ROP6 and MICI12
fragments were excised using Kpnl/Xbal (TaKaRa) and subcloned
into the eukaryotic expression vector pVAXI. The recombinant
plasmids pVAX-ROP6 and pVAX-MIC12 were transformed into
E. coli DH5a, with positive clones selected through dual restriction
analysis and Sanger sequencing. Plasmids were purified using an
EndoFree Plasmid Giga Kit (Qiagen Sciences, Germantown MD,
USA) and resuspended in sterile PBS with the determination of
concentrations of pVAX-ROP6 and pVAX-MIC12 by NanoDrop
spectrophotometer at OD260 and OD280 (1 mg/mL, A260/A280 ratio
1.8-2.0). Aliquots were stored at —20 °C until use. For PCR program
as follow: Initial Denaturation: 95 °C for 5 min. Amplification Cycles
(repeated 30 times). Denaturation: 95 °C for 30 s. Annealing: 60 °C
for 30 s. Extension: 72 °C for 1 min. Final Extension: 72 °C for 5 min.
Hold: 4 °C forever.

frontiersin.org


https://doi.org/10.3389/fvets.2025.1674435
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Xu et al.

2.3 The expression of recombinant plasmid
in vitro

To confirm recombinant plasmid expression, Human Embryonic
Kidney (HEK) 293-T cells transfected with pVAX-ROP6 or pVAX-
MIC12 was detected by indirect immunofluorescence assay (IFA). In
brief, the recombinant plasmid pVAX-ROP6 or pVAX-MIC12 was
transfected into Human Embryonic Kidney (HEK) 293-T cells using
LipofectamineTM 2000 (Invitrogen, Carlsbad, CA, USA) following the
manufacturer’s protocol. At 48 h post-transfection, cells were fixed with
ice-cold acetone for 15 min and permeabilized with PBS containing 0.1%
Triton X-100 (PBST). After three washes with PBST, cells were incubated
with goat anti-T. gondii polyclonal antibody (1:100 dilution in PBST)
(Abcam, Cambridge, MA, USA) at 37 °C for 1 h, followed by incubation
with FITC-conjugated donkey anti-goat IgG secondary antibody
(Proteintech Group Inc., Chicago, IL, USA; 1:100) at room temperature
for 45 min. Fluorescence signals were visualized using a Zeiss Axio-plan
fluorescence microscope (Carl Zeiss, Oberkochen, Germany). Cells
transfected with empty pVAX1 vector served as negative controls.

2.4 Immunization and challenge

Experimental groups (n = 30 per group) received intramuscular
immunizations with 100 pL (100 pg) of DNA vaccines - pVAX-ROPS6,
pVAX-MICI12, their binary (1:1, the dual vaccine was mixed before
injection) combination, — administered at 2-week intervals, while
control groups received PBS, empty pVAX1 vector, or remained naive.
Serial blood collections at weeks 0, 2, 4, and 6 post-immunization
yielded sera through clotting (37 °C, 30 min) followed by centrifugation
(4,000 x g, 5 min, 4 °C). Two weeks post-final immunization, parallel
challenge studies were conducted: (i) intraperitoneal injection of
1 x 10° RH strain tachyzoites (n = 10/group) with 30-day survival
monitoring, which is widely used to induce a lethal acute infection in
mouse models, enabling clear evaluation of vaccine-induced protection
in a stringent model (27, 28) and (ii) oral inoculation with 20 PRU
strain cysts (1 = 5/group) followed by brain cyst burden quantification
at 4 weeks post-infection, which was chosen for oral challenge to
simulate natural infection and assess the ability of the vaccine to reduce
chronic cyst formation in the brain, as supported by earlier studies
using comparable models (26, 29).

Two weeks after the final immunization, splenocytes were
harvested from nine mice per group and allocated for different assays:
flow cytometric analysis, lymphoproliferation assays, and cytokine
measurements (five mice per assay, with samples pooled as needed),
with all measurements performed in triplicate using independent
The overall mice immunization and

biological replicates.

immunological analyses is outlined in the flowchart in

Figure 1A. Experimental design is shown in Table 1.

2.5 Antibody analysis

Serum levels of anti-T. gondii 1gG, 1gGl, and IgG2a were
quantified by ELISA using the SBA Clonotyping System-HRP Kit
(Southern Biotech Co., Ltd., Birmingham, UK) at weeks 0, 2, 4, and
6 post-immunization following previously described methods (26).
Briefly, 96-well plates were coated with 100 pL/well of TLA (10 pg/
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mL in PBS) and incubated overnight at 4 °C. After three washes
with PBST (PBS + 0.05% Tween-20), plates were blocked with 5%
BSA/PBS for 1 h at 37 °C. Serum samples (100 pL/well), diluted in
PBS, were incubated for 1h at room temperature, followed by
incubation with HRP-conjugated anti-mouse IgG/IgG1/IgG2a
antibodies (1:5,000 dilution) for 1h at 37 °C. Colorimetric
development was achieved using ABTS substrate solution (1.05%
citrate buffer [pH 4.0], 1.5% ABTS, 0.03% H202; 100 pL/well,
30 min RT), with absorbance measured at 405 nm (BioTek EL x 800,
Winooski, VT, USA). All experimental and control samples were
run in triplicate.

2.6 Lymphocyte proliferation assayed by
MTT

Two weeks after the last immunization, splenocytes were collected
from three mice of each group as described previously (20). After the
erythrocytes were lysed using erythrocyte lysis buffer (0.15 M NH4Cl,
1.0 M KHCO3, 0.1 M EDTA,ph 7.2; Sigma, St. Louis, MO, USA), the
splenocytes were resuspended in DMEM medium supplemented with
10% fetal calf serum(FCS). In brief, 3 x 106 cells per well were cultured
in 96-well Costar plates and treated with TLA (10 pg/mL),
concanavalin A (ConA) (5 pg/mL; Sigma), or medium alone (negative
control) at 37 °C under 5% CO2 for 72 h. Thereafter, 10ul of 3-(4,
5-dimethylthylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT,
5 mg/mL, Sigma) was added to each well, and incubated for 4 h. The
proliferative activity was measured using a 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyl-tetrazolium bromide (MTT, 5 mg/mL, Sigma) dye
assay according to the method described by Bounous et al. (30). The
proliferative activity was measured using MTT dye assay according to
the formula: (OD570 TLA/OD570 Control):(OD570 ConA/OD570
Control). All experimental and control samples were run in triplicate.

2.7 Flow cytometry assay

The frequencies of T lymphocyte subsets, including CD4* and
CD8" T cells, were analyzed and quantified by flow cytometry as
described previously (26, 31). Briefly, single-cell splenocyte suspensions
were stained with fluorochrome-conjugated monoclonal antibodies
(PE-anti-CD3, APC-anti-CD4, and FITC-anti-CD8; eBioscience, San
Diego, CA, USA) for 30 min at 4 °C in the dark. Cells were washed
twice with PBS (2 mL) and fixed in FACScan buffer (PBS containing
1% FBS and 0.1% sodium azide) with 2% paraformaldehyde. To
quantify cytokine production ex vivo, single-cell suspensions were
cultured in RPMI 1640 supplemented with 10% FBS and stimulated for
4 h at 37 °C with 50 ng/mL PMA and 3 pM ionomycin in the presence
of 2.5 mg/mL Brefeldin A (Biolegend, San Diego, CA, USA) to enable
intracellular cytokine accumulation. Following surface marker staining,
cells were fixed and permeabilized for 30 min at 4 °C using BD Cytofix/
Cytoperm (BD Biosciences, San Jose, CA, USA), then washed with 1X
Permeabilization Buffer (Invitrogen, Carlsbad, CA, USA) prior to
intracellular staining with anti-IFN-y (eBioscience, San Diego, CA,
USA), anti-Granzyme B (eBioscience, San Diego, CA, USA). Samples
were acquired on a BD FACScan flow cytometer (BD Biosciences, San
Jose, CA, USA) and analyzed using SYSTEM 1I software (Coulter, Brea,
CA, USA). All experimental and control samples were run in triplicate.
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FIGURE 1
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Flow chart of the vaccine immunization strategy and in vitro antigen expression validation. (A) Flow chart of mice immunization and immunological
analyses. (B) Protein detection in cells transfected with either empty pVAX | vector (control), pVAX-ROPS6, or pVAX-MIC12 constructs.

Final immunization Challenge
Serum collection for IgG,
T cell, and cytokine assays

ROP6 pVAX-MIC12

TABLE 1 Experimental design.

Group 1

Group 2
Group 3
Group 4
Group 5

Group 6

pVAX-ROP6 im. x3, 2-wk interval RH tachyzoites (i.p.) & PRU Cyst burden, survival
(p.0.)
pVAX-MIC12 im. x3 RH & PRU Cyst burden, survival
ROP6 + MIC12 im. x3 RH & PRU All assays
PBS None RH & PRU Control
Empty vector im. x3 RH & PRU Control
Naive None RH & PRU Control

2.8 Cytokine assay

Splenocytes were cultured in 96-well plates under antigen

stimulation (TLA, 10 pg/mL). Cell-free supernatants were collected at
defined timepoints for cytokine profiling: TNF-a at 48 h; IL-2 and IL-4;
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IL-10 at 72 h; IFN-y and IL-12 at 96 h. Cytokine concentrations were
quantified using commercial ELISA kits (Biolegend, San Diego, CA,
USA) with by comparing sample measurements to standard curves
generated using mouse recombinant TNF-«, IFN-y, IL-2, IL-4, IL-12,
and IL-10. All experimental and control samples were run in triplicate.
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2.9 CTL activity assessment

Following spleen lymphocyte isolation, CTL activity was assessed
using the CytoTox96® Non-Radioactive Cytotoxicity Assay Kit
(Promega, Madison, WI, USA) as previously described (23, 25).
Briefly, spleen cells were stimulated with 100 U/mL recombinant
murine IL-12 (eBioscience, San Diego, CA, USA) and served as
effector cells. Target cells consisted of Sp2/0 mouse cells transfected
with eukaryotic expression plasmids (pVAX-ROP6, pVAX-MIC12 or
pVAX-ROP6 + pVAX-MIC12) using Lipofectamine™ 2000 reagent
(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s
protocol. Effector and target cells were co-cultured at ratios of 10:1,
20:1, 40:1, and 80:1 for 6 h. Specific lysis was then calculated using the
formula: Specific Lysis (%) = (Experimental — Effector spontaneous
—  Target spontaneous)/(Target —maximum —  Target
spontaneous) x 100. All experimental and control samples were run

in triplicate.

2.10 Statistical analysis

Statistical analyses were performed using GraphPad Prism 5.0
(GraphPad Software) and SPSS 17.0 (IBM). Continuous variables
(antibody titers, cytokine concentrations) were compared using
one-way ANOVA with Bonferroni post hoc test for multiple
comparisons. Survival curves following RH strain challenge were
analyzed by the Kaplan-Meier method with log-rank (Mantel-Cox)
testing. All tests were two-tailed, with statistical significance defined as
P <0.05. Data are presented as mean + SEM unless otherwise specified.

3 Results

3.1 Expression of pVAX-ROP6 and
pVAX-MIC12 plasmids in vitro

Immunofluorescence analysis revealed distinct intracellular green
fluorescence signals in Human Embryonic Kidney (HEK) 293-T cells
expressing pVAX-ROP6 or pVAX-MICI12 (Figure 1B), confirming

10.3389/fvets.2025.1674435

vector-transfected controls (pVAX I) exhibited no detectable
fluorescence (Figure 1B), validating the specificity of the

observed signals.

3.2 Humoral responses induced by DNA
immunization

Serum antibody responses were quantified by ELISA (Figure 2).
Mice immunized with single- or double-gene constructs (pVAX-
ROP6, pVAX-MIC12, or pVAX-ROP6 + pVAX-MIC12) exhibited
significantly elevated total anti-T. gondii 1gG levels compared to
control groups (p <0.05). Also, the increase in antibody levels
occurred with successive DNA immunizations (p < 0.05). The dual
(PVAX-ROP6 + pVAX-MIC12)
anti-T. gondii IgG production, demonstrating a significantly enhanced

vaccine induced a higher
effect compared to either treatment alone (Figure 2A). Notably, all
vaccinated groups showed a Thl-skewed response, evidenced by
elevated anti-T. gondii IgG2a/IgG1 ratios (Figure 2B). This bias was
higher pronounced in the bivalent group (p < 0.01), consistent with

robust cellular immunity.

3.3 Cellular responses induced by DNA
immunization

Splenocyte proliferative responses were assessed via MTT assay
(Figure 3A). The bivalent vaccine group (pVAX-ROP6 + pVAX-
MIC12) exhibited the highest stimulation index (SI) among all groups
(p < 0.05), demonstrating superior T cell activation. While the mono
formulation (pVAX-ROP6 or pVAX-MICI12)
significantly higher SI values than control groups, but there were no

also induced
any significant differences between single-antigen vaccines (p > 0.05).
Also, no notable proliferation was observed in control groups
(p > 0.05).

Flow cytometric analysis revealed significant expansion of
antigen-specific T cell populations in vaccinated mice (Figure 3B). The
bivalent vaccine group (pVAX-ROP6 + pVAX-MIC12) demonstrated
the highest CD8 + T cell frequency (p < 0.05 vs. all groups), which

successful recombinant protein expression. In contrast, outperformed = single-antigen  vaccines (pVAX-ROP6 or
A B
Blank control 067 Blank control

E =1 PBS E =1 PBS

] £ puaXI 5 0.4+ = puAXI

M =1 pVAX-ROP6 M 3 pVAX-ROP6

% =31 pVAX-MIC12 % 0.2 3 pVAX-MIC12

z PVAX-ROPS + pVAX-MIC12 > ’ 1 pVAX-ROP6 + pVAX-MIC12

o <)

0.0-
\é’\ \QC'??

FIGURE 2
Assessment of humoral immunity induced by single or bivalent gene DNA vaccination. (A) Serum anti-T. gondii IgG antibody levels in BALB\c mice at
weeks 0, 2, 4, and 6 post-immunization. (B) Levels of IgG1 and IgG2a subclasses measured 2 weeks after the final immunization. Data are presented as
means + SD (ns, no significant, *p < 0.05, ***p < 0.001).
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FIGURE 3
Cellular immune responses induced by single or bivalent gene DNA vaccination. (A) Splenocyte proliferation in vaccinated and control groups.
(B) Frequencies of CD4+ and CD8+ T cells in immunized versus control mice. (C) Percentages of IFN-y and Granzyme B in CD8+ T cells. For flow
cytometric analysis, a minimum of 1 X 10° T cells per sample were acquired. Data are presented as mean + SD (**p < 0.01, ***p < 0.001).

pVAX-MIC12) (p < 0.05). A parallel trend was observed for CD4+ T
cells, with all vaccinated groups showing elevated percentages
compared to controls (p < 0.05). Similarly, immunophenotyping of
CD8 + T cells revealed that the bivalent vaccine robustly induced the
highest frequencies of IFN-y and Granzyme B producing cells,
significantly outperforming all single-antigen formulations
(Figure 3C). No significant differences were detected among control

groups (p > 0.05).

3.4 Measurement of cytokine secretion and
cytotoxic T lymphocyte response

Cytokine analysis of splenocyte supernatants (collected 2 weeks
post-immunization) revealed significant Thl polarization in
vaccinated mice (Figure 4). Compared to controls, DNA-immunized
groups exhibited elevated TNF-a, IFN-y, IL-2 and IL-12, with the
(PVAX-ROP6 + pVAX-MIC12)
superior induction over single-antigen vaccines (p < 0.05). While IL-4

bivalent formulation showing
and IL-10 levels showed modest increases, these changes were not
statistically significant in the controls (p > 0.05).

The CTL activity of spleen cells in immunized mice exhibited a
dose-dependent enhancement, peaking at an effector-to-target cell
ratio of 80:1. Notably, the dual-gene combination (pVAX-
ROP6 + pVAX-MIC12) elicited significantly stronger CTL responses
compared to single-gene immunizations (Figure 5). In contrast, the
three control groups showed comparable CTL activity levels (p > 0.05).

3.5 Immunoprotection against lethal/
nonlethal challenge

Vaccine efficacy was assessed through two key metrics, including
survival after i.p. challenge of tachyzoites of RH strain and cyst burden
reduction after oral challenge of cysts of PRU strain (Figure 6).
Following i.p. challenge with 1 x 10 tachyzoites of the virulent RH
strain, immunized mice exhibited significantly prolonged survival
compared to control groups, as depicted in Figure 6A. While control
mice succumbed within 6 days post-challenge, DNA immunization
using eukaryotic expression plasmids markedly enhanced survival
time. No statistically significant differences were observed among the
three control groups (p > 0.05).
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To assess protection against chronic T. gondii PRU strain infection,
brain cyst burdens were analyzed in immunized and control mice
4 weeks after the final immunization. As illustrated in Figure 68 and
Table 2, all vaccinated groups exhibited significantly cyst reduction
compared to controls, with the bivalent formulation (pVAX-
ROP6 + pVAX-MIC12) demonstrating superior protection (56.6%
cyst reduction vs. controls, p < 0.01). Cyst burden was also reduced by
the DNA immunization with single antigen (35.7% reduction in
pVAX-ROP6, or 36.2% reduction in pVAX-MIC12). Control groups
showed no statistical differences (p > 0.05).

4 Discussion

DNA vaccines have emerged as a promising immunization
strategy against toxoplasmosis, demonstrating the capacity to elicit
durable humoral and cellular immune responses that confer
protection in animal models (25, 26). Among various T. gondii
antigens investigated, including SAG1, ROP16, MIC4, GRA12 vector-
based vaccine, and MIC1/4/13 vaccines have shown particular
promise as vaccine candidates (32, 33). While previous studies have
indeed investigated members of the TgROP and TgMIC protein
families as vaccine candidates, our study is the first to evaluate the
combination of TgROP6 and TgMIC12 in a bivalent DNA vaccine
platform. Also, TgMIC12 has not previously been used in combination
with any ROP antigen, and TgROP6 has only been evaluated
individually or in other contexts. This novel antigen pairing was
selected based on their complementary roles in parasite invasion and
intracellular survival, as well as their high immunogenicity in silico
and confirmed expression in both tachyzoite and bradyzoite stages.
Our study demonstrates that immunization with either pVAX-ROP6
or pVAX-MICI2 induces robust Thl-polarized cellular immunity,
significant humoral responses as well as enhanced protection against
both acute (RH strain) and chronic (PRU strain) infection. Notably,
the combination with ROP6 and MICI12 exhibited significantly
enhanced protective effects, supporting the superior efficacy of multi-
antigen approaches observed in other T. gondii vaccine studies (17,
19). These findings highlight TgROP6 and TgMIC12 as potent
immunogens and reinforce the advantage of combinatorial antigen
strategies in toxoplasmosis vaccine development (16).

Following T. gondii infection, B cell activation leads to the
production of parasite-specific antibodies that play a crucial role in

06 frontiersin.org


https://doi.org/10.3389/fvets.2025.1674435
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Xu et al. 10.3389/fvets.2025.1674435

IL-2 IFN-y TNF-a
* Kk
*%k¥k
%%k %k
%%k %k
*okok 300
jr
800 1000 E
r a =4
E E g00 £ 2004
£ B ns|
B nsl E | s
c c 600 ° b-]
o o ove <] j >
2 400 2 £
£ £ 400 3
e c ns g
8 200 ns g L s
] | 2 200 [3)
o o
o o
LoD Lon
S P NN S & 4 N
FEFFEE FEFFE&E
‘_o° 3 < v'" v"'é ‘.oo R S vﬂ"}
& K\ S K\
N Q] 5\ é & 3 é xA
o o
& &
& S
IL-12 IL-4 IL-10
*kk
*%k*k
k%%
500 250
z s z z
= 400 ns| 3 B 200
= £ &
< 300 ° < c 150
2 K] 2
N = S
£ 200 £ £ 100
€ ns c T
8 . 8 8
g 100 g g 50
S S § Lop
LoD 0
> 2 &0
F G SFEE
« Q 4 v‘k'é &
S A\ S
&° 3 QA x~\ o8
o
Q.o‘z
&
FIGURE 4

Cytokine secretion profiles of splenocytes from mice immunized with single or bivalent gene DNA vaccines. The dashed horizontal line indicates the
lower limit of detection (TNF-a, LOD = 15.6 pg./mL, IFN-y, LOD = 8 pg./mL, IL-2, LOD = 2 pg./mL, IL-4, LOD = 2 pg./mL, IL-12, LOD = 3.2 pg./mL and
IL-10, LOD = 31.3 pg./mL). Data are shown as mean + SD (ns, no significant, **p < 0.01, ***p < 0.001).
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CTL responses of splenic lymphocytes from vaccinated mice. Specific lysis of T. gondii infected target cells (Sp2/0 cells transfected with eukaryotic
expression plasmids pVAX-ROP6, pVAX-MIC12 or pVAX-ROP6 + pVAX-MIC12) at varying effector to target (E: T) ratios is shown (mean + SD;
***p < 0.001).

Frontiers in Veterinary Science 07 frontiersin.org


https://doi.org/10.3389/fvets.2025.1674435
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Xu et al.

10.3389/fvets.2025.1674435

>

FIGURE 6

4000~
100 R , =®- Blank control %
! ' - PBS 3
- Vo=
g r : : == pVAXI ok g
s -F - - =% pVAX-ROP6 @
= - ]
: o & <= PVAX-MIC12 .
= 7 *%k
i ; | =% pVAX-ROP6 + pVAX-MIC12 £
*- T A 3
] ! '
0 - — S—
0 10 20 30

Protective efficacy of vaccination in BALB\c mice. (A) Survival rates following intraperitoneal challenge with 1 x 10° RH strain tachyzoites, administered
2 weeks after the final immunization. Survival was monitored over 30 days. Statistical comparison was performed using the log-rank test. The hazard
ratio (HR) for the bivalent vaccine group versus the MIC12 group was 0.5385 (95% CI: 0.1559 to 1.860, p < 0.01), The HR for the bivalent vaccine group
versus the ROP6 group was 0.6538 (95% Cl: 0.1893 to 2.259, p < 0.01), as determined by Cox proportional hazards regression. (B) Brain cyst burden
quantified 4 weeks post-challenge with 20 PRU cysts, representing chronic infection. Data are presented mean + SD (**p < 0.01, ***p < 0.001).

TABLE 2 The number of brain cyst.

Blank control

PVAXI

pVAX-ROP6  pVAX-MIC12 pVAX-ROP6 + pVAX-

Mean + SEM 3,425+ 112 3,286 + 87

3,361 + 88

MIC12

2,131 £42 2091 +29 1805 + 41

host defense (34). These antibodies, particularly IgG, mediate
protection by binding to tachyzoite surface antigens, thereby blocking
host cell invasion and facilitating macrophage-mediated clearance (25,
34). Consistent with this mechanism, our bivalent antigen vaccine
elicited significantly elevated anti-T. gondii IgG titers, mirroring the
protective humoral responses observed with other antigenic targets
like TgROP5 and TgROP18 (14, 35, 36). Notably, our vaccination
strategy induced an enhanced IgG1 and IgG2a production and a
pronounced IgG2a/IgG1 ratio, dose-dependent increases in antibody
titers with bivalent antigen formulations. These findings demonstrate
robust Thl polarization, aligning with established DNA vaccine-
induced immune profiles (37, 38). The superior antibody responses
generated by the bivalent formulation (ROP6 + MIC12) further
support the advantage of multi-antigen approaches in eliciting
comprehensive protective immunity.

The adaptive immune response, particularly T cell-mediated
immunity, represents the cornerstone of host defense against T. gondii
infection (37, 39). Our vaccination strategy successfully elicited robust
antigen-specific splenocyte proliferation and cytokine production,
indicative of protective cellular immunity. The observed Th1-polarized
response, characterized by significantly elevated IFN-y, IL-12, and
IL-2 production (40-43), is particularly noteworthy given IFN-y’s
established role in macrophage activation and parasite control during
both acute and chronic infection phases (44). The cytokine analysis
showed a dominant Thl-type response characterized by elevated
IFN-y and IL-2 levels, with comparatively lower levels of IL-4 and
IL-10. While this suggests limited induction of Th2 or regulatory
responses, further studies including histopathological evaluation are
needed to assess the extent of inflammation or tissue damage.
Importantly, the bivalent vaccine formulation demonstrated superior
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immunogenicity, inducing higher Th1l-assosicated cytokine levels
along with elevated Th2-associated IL-4 and IL-10 responses
compared to single-antigen vaccines, but some previously developed
T gondii vaccines, engaging GRA7, ROP21, ROP1 and MYR1 provide
only Thl immune responses without inducing Th2 immunity (45-47).
A coordinated Th1/Th2 response is characterized by an optimal
IFN-y/IL-10 ratio. This balance reflects the vaccine’s capacity to
establish immune homeostasis, a critical determinant of protection
against intracellular pathogens (48, 49). The enhanced Th1 response
observed with our multi-antigen approach aligns with current
understanding of protective immunity while addressing the need for
vaccines that elicit comprehensive immune activation against this
complex parasite. These findings not only validate TgROP6 and
TgMIC12 as potent immunogens but also demonstrate the
immunological advantages of multi-antigen formulations in achieving
balanced, long-term protection against toxoplasmosis.

The coordinated activation of CD4+ and CD8+ T lymphocytes
constitutes a critical defense mechanism against T. gondii infection,
with CD8+ T cells playing a particularly vital role in controlling acute
parasitemia through synergistic interactions with CD4+ T cells (50-
52). Our findings demonstrate that vaccination with pVAX-ROP6 or
pVAX-MICI2 significantly elevated both CD4+ and CD8+ T cell
populations compared to controls, with the bivalent formulation
(ROP6 + MIC12) showing the most pronounced effect. These results
align with previous reports on ROP5/ROP18 and GRA35/42/43
vaccines (25, 36), and suggest that the observed T cell activation may
underlie the vaccine’s protective efficacy by: (1) limiting tachyzoite
dissemination during acute infection, and (2) reducing cyst formation
in chronic stages. The enhanced T cell responses with IFN-y and
Granzyme B elicited by the multi-antigen approach further support
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the strategic advantage of combinatorial antigen formulations in
toxoplasmosis vaccine development. Cytotoxic T lymphocytes (CTLs)
serve as crucial mediators of immunity against intracellular pathogens,
with T. gondii-specific CD8 + CTLs demonstrating particular
importance in controlling parasitic replication and facilitating
pathogen clearance (52, 53). Consequently, eliciting parasite-specific
CTL responses represents a cornerstone strategy for developing
effective anti-T. gondii vaccines. Our findings reveal significantly
enhanced CTL activity in splenocytes from vaccinated mice compared
to control groups, demonstrating successful induction of pathogen-
specific cytotoxic responses. This aligns with recent advances in
T. gondii vaccinology, including mRNA-LNP (TGGT1_216200) and
DNA (GRA24-based) platforms (38, 54), further validating CTL
induction as a critical determinant of vaccine efficacy against
intracellular parasites.

The genetic and phenotypic diversity of T. gondii strains
necessitates vaccine candidates capable of eliciting cross-protective
immunity. Using the susceptible Kunming mouse model,
we demonstrate that vaccination with pVAX-ROP6 or pVAX-MIC12
induces significant protection against both virulent RH (Type I) and
avirulent PRU (Type II) strains, confirming the broad protective
potential of virulence antigens as seen in prior studies with MIC13/
GRA1/ROP7 (14, 32). While robust Thl-polarized responses
(characterized by elevated TNF-a, IFN-y, IL-2, IL-12 and IgG2a) and
antibody production were observed, protection remained partial,
likely due to: (i) incomplete coverage of strain-specific epitopes, (ii)
suboptimal T cell (CD4+ T and CD8+ T cells) activation, or (iii)
absence of bradyzoite-stage antigens. The superior efficacy of the
bivalent (ROP6 + MIC12) vaccine over single-antigen formulations
(p <0.05) indicates that combinatorial strategies, which aim to
synergistically engage multiple immune pathways, represent a
promising approach to enhance protection, as supported by recent
hybrid vaccine studies (35, 55). These findings position bivalent
antigen vaccines as a promising foundation for developing universally
protective toxoplasmosis vaccines, though future work should explore
incorporation of additional stage-specific antigens to achieve
sterile immunity.

One limitation of this study is the lack of serological and
histopathological analyses post-challenge, which precludes direct
conclusions about humoral or tissue-level immune responses.
Although survival benefit was observed, further work is needed to
define the immunological mechanisms underlying this protection. In
addition, future studies will focus on evaluating specific anti-T. gondii
IgG responses post-challenge, as well as parasite burden in key tissues
(brain, liver, spleen). These analyses will help clarify the immunological
basis for the observed protection. Also,initiating a long-term follow-up
study in mice to monitor T and B cell memory responses and
protection at 3, 6, and 12 months post-vaccination is a critical next
step for evaluation of long-term immune memory and durability of
protection. Moreover, the critical role of mucosal immunity in
defending against T. gondii warrants the exploration of mucosal
immune analysis, including mucosal IgA and tissue-resident memory
T cells in future.

While BALB/c mice are commonly used in preliminary vaccine
evaluation due to their consistent immune responses and susceptibility
to T. gondii, the extent to which these results translate to outbred
animals or natural intermediate hosts (e.g., sheep and goats) remains
uncertain. Further studies in such models will be essential to confirm
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the protective efficacy and immune response characteristics of the
TgROP6/TgMIC12 vaccine under conditions that more closely mimic
natural infection.

In summary, our findings establish TgROP6 and TgMIC12 as
promising DNA vaccine candidates capable of eliciting robust
humoral and cellular immune responses against both acute and
chronic toxoplasmosis. The bivalent formulations demonstrated
particular efficacy, suggesting significantly enhanced benefits of multi-
antigen vaccination strategies. Future development should prioritize:
(1) optimization of antigen combinations (e.g., with ROP5/16/18) to
enhance protective breadth, and (2) refinement of delivery platforms
to maximize immune potency. The vaccine conferred partial
protection during acute infection and significantly reduced brain cyst
formation following chronic infection. While these findings are
promising, further investigation is needed to determine whether this
protection extends to distinct parasitic life stages, as this was not
directly assessed in the current study. Additionally, we could include
a consideration of potential strategies to enhance vaccine efficacy, such
as the incorporation of bradyzoite-specific antigens to target the
chronic stage more effectively.
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