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Isochlorogenic acid (ICGA), a phenolic compound with demonstrated antioxidant,
antibacterial, and anti-inflammatory properties, is widely present in plants. This study
investigated the effects of dietary ICGA supplementation on growth performance,
diarrhea incidence, antioxidant status, immune function, and intestinal microbiota
in weaned piglets. A total of 180 crossbred piglets (Duroc X Landrace x Yorkshire)
with an average initial body weight of 6.77 + 0.18 kg were randomly allocated
to five dietary treatments based on gender and weight. The diets consisted of
a basal formulation supplemented with 0 (CON), 100, 200, 400, or 800 mg/kg
ICGA for 28 days. Each treatment comprised six replicates, with six piglets per pen.
Supplementation with 200 mg/kg ICGA significantly increased the average daily
gain (ADG) by 3.49% during days 15-28 compared to the CON group (p < 0.05).
Furthermore, diets containing 200 and 400 mg/kg ICGA improved the apparent
total tract digestibility (ATTD) of dry matter (by 1.84 and 1.54%), crude protein (by
448 and 4.39%), gross energy (by 3.01 and 2.99%), ether extract (by 23.18 and
1749%), and ash (by 8.80 and 5.13%) (p < 0.01). On day 14, serum catalase (CAT)
activity increased by 47.78% in the 400 mg/kg group (p < 0.05), and this increase
reached 77.65% by day 28 (p < 0.05). Meanwhile, the 200 mg/kg group exhibited
a 75.78% elevation in total antioxidant capacity (T-AOC) on day 28 (p < 0.05).
Serum immunoglobulin levels were also enhanced; 200 and 400 mg/kg ICGA
up-regulated IgA by 23.77 and 33.42%, and IgM by 18.81 and 30.86% on day 14
(p < 0.01). Microbiota analysis indicated that ICGA supplementation increased the
abundance of beneficial Bacteroidota and Prevotella, while reducing pathogenic
taxa such as Peptostreptococcaceae, Proteobacteria, and Staphylococcus. In
conclusion, dietary ICGA at 200—-400 mg/kg effectively reduced diarrhea incidence,
enhanced nutrient digestibility, improved antioxidant capacity, strengthened humoral
immunity, and positively modulated gut microbiota in weaned piglets. Further
research is warranted to elucidate the underlying mechanisms and assess the
potential for practical application in swine production.
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1 Introduction

Weaning is a critical challenge in pig production, as multiple
stressors compromise piglet health and growth. Abrupt separation
from the sow, dietary shift from milk to solid feed, and environmental
alterations frequently trigger post-weaning syndrome, manifested as
reduced feed intake, intestinal inflammation, oxidative stress, and
heightened susceptibility to enteric infections. These disruptions lead
to growth retardation, impaired nutrient utilization, and increased
morbidity and mortality, causing substantial economic losses.
Although antibiotic growth promoters have been widely employed to
enhance growth and prevent disease, rising concerns regarding
antimicrobial resistance have driven the pursuit of sustainable plant-
based alternatives that support gastrointestinal health and immune
function without relying on conventional antimicrobials.

Isochlorogenic acid (ICGA), a structural analog of chlorogenic
acid (CGA), is a naturally occurring polyphenolic compound
synthesized via the shikimic acid pathway during aerobic respiration
in plants (1). The shikimic acid pathway, a key metabolic route in
plants and microorganisms, produces aromatic amino acids and
secondary metabolites. It initiates with the condensation of
phosphoenolpyruvate and erythrose-4-phosphate, ultimately
generating precursors for numerous phenolic compounds like
ICGA. ICGA is found in a variety of plant species, including Ilex
hainanensis, Atractylodes macrocephala, Stevia rebaudiana, and
Lonicera periclymenum (2, 3). This compound exists as three distinct
isomers, [CGA A, B, and C, which differ in their molecular structures
(molecular formula: C,sH,,0,,; molecular weight: 516.45) (4). In
contrast to CGA, ICGA contains one molecule of quinic acid linked
to two molecules of caffeic acid, making it structurally more complex
by having an additional caffeic acid group (5, 6). Research has
demonstrated that ICGA exhibits a broad spectrum of biological
activities, including antioxidant, antibacterial, antiviral, anti-
inflammatory, hepatoprotective, and neuroprotective effects,
highlighting its therapeutic potential (5, 7-10). Additionally, ICGA is
included as an active ingredient in several established pharmaceutical
formulations, such as Siji-kangbingdu Mixture, Shuanghuanglian
Granules, and Reduning Injection, underscoring its relevance in both
traditional and modern medicinal applications (5). Given its diverse
biological activities, ICGA presents a promising alternative to
conventional antibiotic feed additives in the livestock and poultry
industries, offering a potential strategy for promoting animal health
while reducing reliance on antibiotics.

CGA has garnered significant attention as a promising alternative
to antibiotics in livestock production, with growing evidence
supporting its beneficial effects on animal health, especially in pigs,
CGA is also known to alleviate intestinal damage, ameliorate oxidative
stress, and regulate mitochondrial function (11, 12). However, despite
their structural similarities, the biological and pharmacological
properties of ICGA may differ from those of CGA due to variations in
their chemical configurations. While the antimicrobial mechanisms
of CGA, including bacterial injury repair, are well documented (13),
few studies have examined ICGASs effects in pigs. Recent research on
other plant-derived supplements supports the potential of phytogenic
additives. For example, Litsea cubeba essential oil enhanced growth
performance, immunity, antioxidant status, nutrient digestibility, and
fecal microflora in pigs (14). Similarly, rumen-protected lysine
supplementation improved nitrogen utilization and modified hindgut
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microbiota in dairy cows (15), illustrating how targeted dietary
interventions can modulate gut health. To address the lack of ICGA-
specific studies, we evaluated the effects of dietary ICGA
supplementation on growth performance, antioxidant status, immune
function, and gut microbiota in weaned piglets. This study aims to
elucidate ICGA’s potential as a novel feed additive for sustainable
livestock production.

2 Materials and methods

2.1 Experimental animals, diet, design and
housing

The ICGA used in this experiment was sodium isochlorogenic
acid (Chenguang Biotechnology Group Co., Ltd., Hebei, China, batch
number: 2-0969-200613), which was derived from stevia (Stevia
rebaudiana) through a standardized extraction process. The active
ingredient, ICGA content in this brownish-yellow powder was 51.3%.
The animal care and experimental procedures were approved by the
Institutional Animal Care and Use Committee of Sichuan Agricultural
University (No. 20190129).

In this experiment, 180 weaned piglets (Duroc x Landrace x
Yorkshire; 21 d of age; initial BW = 6.77 + 0.18 kg) were allotted to 5
dietary treatments. Each treatment comprised 6 replicate pens with 6
piglets per pen (3 barrows and 3 gilts). The basal diet was supplemented
with 0 (CON), 100, 200, 400, or 800 mg/kg of ICGA. We selected this
dose range based on the efficacy of its structural analog, CGA, which
improves growth performance and intestinal health in weaned pigs at
500-1000 mg/kg (16). The 100-800 mg/kg gradient was designed to
identify the optimal and potentially lower effective dose of ICGA,
considering its distinct bioavailability and efficacy. The 28-day
experimental period encompassed the critical post-weaning recovery
and growth phase. This duration allowed sufficient time for significant
differences in average daily gain (ADG) and feed efficiency (G: F) to
manifest and is consistent with established methodologies for
assessing the medium-term effects of dietary additives in swine. The
nutrient composition of the basal diet (Table 1) met or exceeded the
dietary requirements for weaned piglets as outlined by the National
Research Council (NRC, 2012).

The piglets were housed in standard flat-bed pens, each equipped
with duckbill drinkers, adjustable feeders, and perforated plastic
flooring. Throughout the experiment, the piglets had ad libitum access
to both feed and water. The environmental conditions within the pens
were carefully controlled, with a temperature range maintained
between 25 to 28 °C and relative humidity held at 60 to 70%. To
uphold optimal health and hygiene standards, the pens were
thoroughly cleaned and disinfected daily, ensuring a safe and sterile
environment for the animals throughout the study period.

2.2 Growth performance and diarrhea

The piglets were monitored daily to assess their health status
throughout the experiment. Daily feed intake for each pen was
recorded, and the average daily feed intake (ADFI) was calculated. The
body weight of fasted piglets was measured on days 1, 15, and 29 of
the trial to determine the average daily gain (ADG) and feed-to-gain
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TABLE 1 Ingredients composition and nutrient levels of basal diets (%, as-fed basis).

10.3389/fvets.2025.1672217

Item Contents Nutrient level* Contents
Corn 31.70 DE, Mcal/kg 3.53
Extruded corn 30.25 Cp 18.70
Soybean meal 7.90 OM 94.68
Extruded soybean 8.50 ADF 291
Fish meal 3.83 NDF 7.61
Whey powder 5.40 Ca 0.78
Soybean protein concentrate 6.60 Total P 0.57
Soybean oil 1.60 Available P 0.38
Glucose 2.00 D-Lysine 1.30
Limestone 0.60 D-Methionine 0.38
Dicalcium phosphate 0.50 D-Threonine 0.77
Salt 0.20 D-Tryptophan 0.22
L-LysHCl 032

DL-Methionine 0.07

L-Threonine 0.02

Tryptophan 0.01

Chloride choline 0.15

Vitamin premix’ 0.05

Mineral premix’ 0.30

Total 100.00

'Crude protein (CP), calcium (Ca), total phosphorus (P), organic matter (OM), acid detergent fiber (ADF) and neutral detergent fiber (NDF) are measured values, the rests are calculated
values. “The premix provides following per kilogram of diet: vitamin A, 15,000 IU; vitamin D;, 5,000 IU; vitamin E, 40 mg; vitamin K, 5 mg; vitamin B,, 5 mg; vitamin B,, 12.5 mg; vitamin By,
6 mg; vitamin B,,, 0.06 mg; folic acid, 2.5 mg; nicotinic acid, 50 mg; D-pantothenic acid, 25 mg; D-biotin, 0.25 mg. *The premix provides following per kilogram of diet: Fe (as ferrous sulfate),
100 mg; Cu (as copper sulfate), 6 mg; Mn (as manganese sulfate), 4 mg; Zn (zinc sulfate), 100 mg; I (potassium iodide), 0.14 mg; Se (as sodium selenite), 0.30 mg.

ratio (F: G). To evaluate the incidence and severity of diarrhea, fecal
consistency was scored on a 0 to 3 scale: 0 = normal, firm feces;
1 = soft feces, potential slight diarrhea; 2 = unformed, moderately
fluid feces; and 3 = very watery, frothy diarrhea. Diarrhea was defined
as a score of 2 or greater. The diarrhea rate and diarrhea index were
calculated as follows: diarrhea rate (%) = (number of piglets with
diarrhea per pen x days of diarrhea) / (total number of piglets x
28 days) x 100, and diarrhea index = sum of diarrhea scores per pen/
(number of piglets per pen x total days) (17).

2.3 Sampling and measurements

Fecal samples were obtained on d 25 and 28 to capture any
changes in nutrient utilization once piglets had adapted to their diets.
Immediately after collection, each 100 g sample of fresh manure (from
pens housing 6 piglets) was treated with 10 mL of 10% H,SO, to
reduce nitrogen volatilization. At the conclusion of the trial, all fecal
samples from each pen were thoroughly mixed, dried at 65 °C for
96h, and then finely ground through a 1mm screen to
ensure uniformity.

All feed and fecal samples were analyzed for dry matter (Method
930.15), crude protein (Method 990.03), ether extract (Method
920.39), and ash (Method 942.05), according to AOAC (2005). Gross
energy was quantified using an adiabatic oxygen bomb calorimeter
(Parr Instrument Co., Moline, IL, USA). The organic matter (OM)
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content in feeds and feces was calculated by subtracting the crude ash
content from the dry matter (DM). Neutral detergent fiber (NDF) and
acid detergent fiber (ADF) in feeds and feces was determined using
Method 973.18 with an Ankom A200i fiber analyzer (Ankom
Technology, Macedon, NY, USA). The analysis employed heat-stable
a-amylase and sodium sulfite, with residual ash uncorrected. Acid-
insoluble ash (AIA), a robust endogenous marker for nutrient
digestibility, was determined using the procedure described by China
Standards Press (2009). Apparent total digestibility (ATTD) of
nutrients was then calculated based on (18), using the
following equation:

AIA diet x Nutrient feces
X

ATTD (%)=1-
AIA feces x Nutrient diet

100.

Blood samples (10 mL) were collected on d 14 and d 28 from the
anterior cava vein of one piglet per pen. The samples were drawn into
vacuum tubes lacking anticoagulant and centrifuged at 3,500 x g for
10 min at 4 °C to separate the serum. Serum aliquots were immediately
transferred into clean centrifuge tubes and stored at —20 °C for
subsequent laboratory analyses. To further investigate local intestinal
immune status, one piglet (per replicate pen) was chosen at the end of
the trial and euthanized via an intravenous injection of chlorpromazine
hydrochloride (3 mg/kg body weight). After opening the abdominal
cavity, the jejunum, ileum, colon, and cecum were isolated according
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to standard anatomical markers. The contents of the ileum, colon, and
cecum were aseptically gathered in sterile cryopreservation tubes for
Additionally,
approximately 10 cm of jejunum and ileum (the same segment from

microbiological and biochemical evaluations.
each pig) were dissected longitudinally, rinsed with 0.9% ice-cold
saline to remove digesta, and gently scraped with a sterile microscope
slide to collect the mucosal layer. Care was taken to use a new slide for
each segment to reduce cross-contamination; all procedures were
carried out on ice. Mucosal samples were then placed in sterile frozen
storage tubes and preserved at —80 °C.

Serum antioxidant capacity was measured by determining T-AOC
(catalog No. A015-1-2), CAT activity (catalog No. A007-1-1), SOD
activity (catalog No. A001-1-2), GSH-Px activity (catalog No. A005-
1-2), and MDA concentration (catalog No. A003-1-2). These assays
followed the instructions provided by the kit manufacturer (Nanjing
Jiancheng Institute of Bioengineering, Jiangsu, China). Serum
concentrations of IgA (catalog No. 8101), IgG (catalog No. 528), and
IgM (catalog No. 521) were quantified using ELISA kits from Jiangsu
Meimian Industrial Co., Ltd. (Jiangsu, China). In parallel, intestinal
mucosal samples were analyzed for sIgA (catalog No. 9505), IL-2
(catalog No. 5010), IL-4 (catalog No. 5005), IL-10 (catalog No. 5026),
and IFN-y (catalog No. 23114) using an ELISA kit obtained from the
same supplier.

2.4 Analysis for microbial community by
16S rRNA sequences

Colonic digesta samples (n = 30) were collected from pigs assigned
to five dietary treatments: control, 100 mg/kg ICGA, 200 mg/kg ICGA,
400 mg/kg ICGA, and 800 mg/kg ICGA, with six animals per group. To
profile the resident microbiota, the V3-V4 hypervariable region of the
bacterial 16S rRNA gene was amplified and sequenced. Sample
preparation, DNA extraction and validation, PCR amplification,
product purification, library construction and quality assessment, as
well as high-throughput sequencing using the NovaSeq platform, were
performed by Beijing Novogene Biotechnology Co., Ltd.

Raw reads were preliminarily filtered and merged to remove
low-quality or chimeric sequences, resulting in a clean dataset
suitable for downstream analyses. DADA2 (Version 1.8) was then
used to denoise these reads, with sequences falling below a
minimum abundance threshold of 5 excluded according to Li et al
(19). The remaining ASVs served as the basis for taxonomic
classification and quantification of relative abundances.
Representative ASVs were annotated with species-level identifiers,
facilitating both compositional and alpha diversity assessments. To
further investigate potential group-specific microbial signatures,
pairwise t-tests were performed on the final dataset, and LEfSe was
employed to identify differentially enriched taxa among the

categorized samples.

2.5 Statistical analysis

We collated all experimental data using Microsoft Excel 2019. Prior
to statistical analysis, we assessed data normality with the Shapiro-Wilk
test. We then performed a one-way ANOVA using SAS 9.4 (SAS Inst.
Inc., Cary, NC). When the ANOVA indicated significant differences,
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we applied Duncan’s multiple range test for post hoc comparisons. To
evaluate dose-response relationships, we conducted linear and quadratic
regression analyses on the effects of dietary ICGA supplementation.
Results are expressed as mean + standard error (SE). We considered
differences statistically significant at p < 0.05 and indicative of a trend at
0.05 < p < 0.10. The statistical models are as follows:

Yij=p+7i+€;

Yj;: Observed value of the j-th replicate in the i-th treatment group.
4: Grand mean, the theoretical average of all observations. 7;: Fixed
effect of the i-th treatment, representing its deviation from z (}}7;=0).
€ij : Random error term, independently and identically distributed as

N (0,6%).
Yi=po+ fiXiteE

Y;: Response value of the i-th observation. f;: Regression
intercept, the predicted Y when X=0. f;: Regression slope, indicating
the average change in Y per 1-unit increase in X. X;: ICGA dose level
(continuous variable, values: 0, 100, 200, 400, 800 mg/kg). €;:
Random error term, following N (0, ¢°).

Yi=fo+ BiXi + fXi+e

Y;: Response value of the i-th observation. f;: Regression
intercept, the predicted Y when X=0. f;: Regression slope, indicating
the average change in Y per 1-unit increase in X. X;: ICGA dose level
(continuous variable, values: 0, 100, 200, 400, 800 mg/kg). &;:
Random error term, following N (0,6%). B: Quadratic term coefficient,
reflecting nonlinear (curvilinear) effects. If £,#0, a quadratic
relationship exists.

3 Results
3.1 Growth performance and diarrhea rate

The effects of ICGA supplementation in the diets on growth
performance, diarrhea rate and diarrhea index are presented in
Table 2. From days 15 to 28, dietary supplementation with 200 mg/kg
ICGA significantly increased the average daily gain (ADG) by 3.49%
compared with the CON group (p < 0.05). The ICGA dosage also
showed a quadratic regression relationship (p <0.05). ICGA
supplementation linearly reduced diarrhea rate of weaning piglets
during days 0-14 and 0-28 (p < 0.05).

3.2 Nutrient digestibility

As shown in Table 3, Relative to the CON group, pigs receiving
200 or 400 mg/kg ICGA exhibited significantly improved apparent
total tract digestibility (ATTD; p < 0.01) of dry matter (1.84 and
1.54%, respectively), crude protein (4.48 and 4.39%), gross energy
(3.01 and 2.99%), ether extract (23.18 and 17.49%), and ash (8.80
and 5.13%).
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TABLE 2 Effects of isochlorogenic acid (ICGA) supplementation on growth performance, diarrhea rate and diarrhea index in weaned piglets.

ICGA (mg/kg) p-value
200 400 ANOVA Linear Quadratic
Initial BW, kg 6.78 6.77 6.78 6.77 6.77 0.175 1.000 0.991 1.000
Final BW, kg 12.73 12.95 13.79 13.49 12.86 0.284 0.756 0.700 0.469
0-14d
ADFI (g) 179.41 174.30 169.93 184.85 181.62 4.070 0.814 0.612 0.709
ADG (g) 100.04 98.32 93.92 123.94 97.33 4.081 0.128 0.509 0.740
F: G ratio 1.80 1.80 1.83 1.50 1.99 0.058 0.104 0.846 0.471
Diarrhea rate,
o 17.66 17.26 16.87 14.48 8.53 1.361 0.175 0.025 0.040
0
Diarrhea
0.37 0.37 0.36 0.31 0.19 0.027 0.198 0.125 0.296
index
15-28d
ADFI (g) 490.96 510.93 563.70 548.46 500.28 12.121 0.249 0.522 0.103
ADG (g) 323.50° 342.73 411.53° 358.33% 334.79° 10.347 0.049 0.611 0.043
F: G ratio 1.54 1.49 1.37 1.54 1.50 0.024 0.150 0.846 0.311
Diarrhea rate,
o 16.07 11.71 11.90 10.12 10.12 1.233 0.565 0.124 0.251
0
Diarrhea
0.35 0.26 0.26 0.22 0.22 0.026 0.484 0.089 0.193
index
0-28d
ADFI (g) 335.19 342.61 366.81 366.65 340.95 7.426 0.532 0.508 0.283
ADG (g) 212.98 220.53 251.24 241.06 216.23 5.813 0.147 0.520 0.071
F: G ratio 1.58 1.56 1.46 1.53 1.59 0.021 0.317 0.867 0.159
Diarrhea rate,
o 16.87 14.48 14.38 12.30 9.33 1.138 0.304 0.029 0.091
0
Diarrhea
0.36 0.32 0.31 0.21 0.26 0.021 0.295 0.064 0.155
index

ADFI, average daily feed intake; ADG, average daily gain; F: G ratio, feed-to-gain ratio. **Within a row, means without a common superscript letter differ at p < 0.05.

TABLE 3 Effects of isochlorogenic acid (ICGA) supplementation on nutrient digestibility in weaned piglets (%).

ICGA (mg/kg) P-value
100 200 ANOVA Linear Quadratic
DM 92.93¢ 93574 94.64° 94.36" 93.32¢ 0172 0.002 1.000 0.010
cp 77.22° 76.36" 80.68° 80.61° 81.34° 0.502 <0.001 0.271 0.520
GE 84.72° 84.25" 87.27° 87.25° 87.78° 0.320 <0.001 0.150 0.334
EE 74.09° 70.07¢ 80.61° 77.89° 77.92* 0.832 <0.001 0.980 0.771
Ash 45.68" 47.300 56.27° 53.67° 5495 0.929 <0.001 0.064 0.050

DM, dry matter; CP, crude protein; GE, gross energy; EE, ether extract. *“Within a row, means without a common superscript letter differ at P < 0.05.

3.3 Serum anti-oxidative properties

The effects of dietary ICGA supplementation on serum anti-
oxidation are shown in Table 4. On day 14, the 400 mg/kg ICGA
group showed a 47.78% increase in serum catalase (CAT) activity
compared with the CON group (p < 0.05), which further increased to
77.65% by day 28 (p <0.05). Meanwhile, supplementation with
200 mg/kg ICGA elevated serum total antioxidant capacity (T-AOC)
by 75.78% on day 28 (p < 0.05), demonstrating a significant quadratic
dose-response relationship (p < 0.05).
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3.4 Immunoglobulins in serum, cytokines
in intestinal mucosa and slgA

The effects of dietary ICGA supplementation on immunoglobulins
in serum are shown in Table 5. At day 14, serum immunoglobulin A
(IgA) levels increased by 23.77 and 33.42%, and immunoglobulin M
(IgM) by 18.81 and 30.86%, in the 200 and 400 mg/kg ICGA groups,
respectively (p < 0.01). Immunoglobulin levels exhibited a significant
quadratic relationship with ICGA dose (p < 0.01), peaking at 400 mg/
kg. The effects of dietary ICGA supplementation on cytokines in
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TABLE 4 Effects of isochlorogenic acid (ICGA) supplementation on antioxidant index in serum of piglets.

ICGA (mg/kg) P-value
200 400 ANOVA Linear Quadratic

Day 14
T-AOC, U/

: 0.83 1.28 1.50 115 1.24 0.103 0.338 0.587 0.460
m
CAT, U/ml 10.63 11.34° 11.27° 15.71° 11.07° 0.616 0.042 0.244 0.467
SOD, U/ml 190.05 189.64 180.57 190.17 191.65 2.468 0.655 0.884 0.947
GSH-Px, U/

| 44428 433.61 490.83 454,66 438.81 9.047 0.287 0.833 0.425
m.
MDA, nmol/

. 4.59 4.68 4.04 3.80 3.65 0.219 0.496 0.221 0.413
m.
Day 28
T-AOC, U/

' 1.28° 1.74% 2.25° 1.65" 1.22° 0.121 0.020 0.438 0.040
m
CAT, U/ml 10.38 10.15° 11.23° 18.44° 7.59 0.989 0.003 0.960 0.576
SOD, U/ml 213.18 198.88 209.25 203.04 204.70 2.654 0.504 0.831 0.507
GSH-Px, U/

| 336.85 351.59 303.78 320.49 327.25 8.290 0.492 0.974 0.955
m.
MDA, nmol/

. 5.39 4.86 4.74 448 4.77 0.186 0.634 0.347 0.326
m.

T-AOC, total antioxidant capacity; CAT, catalase; SOD, total superoxide. Dismutase; GSH-Px, glutathione peroxidase; MDA, malondialdehyde. **Within a row, means without a common

superscript letter differ at P < 0.05.

TABLE 5 Effects of isochlorogenic acid (ICGA) supplementation on immunoglobulins in serum of piglets.

ICGA (mg/kg) P-value
200 400 ANOVA Linear Quadratic

Day 14

IgA, pg/ml 25.58° 29.39 31.66™ 34.13 32.67° 0.727 <0.001 <0.001 <0.001
1gG, pg/ml 299.07 33829 356.55 361.14 343.80 7.810 0.082 0.040 0.014
IgM, pg/ml 33.34° 36.87" 39,61 43.63* 40.87 1.052 0.013 0.002 0.003
Day 28

IgA, pg/ml 29.88 29.07 36.14 32.18 30.73 0.892 0.086 0.455 0.195
IgG, pg/ml 295.78 330.06 333.23 325.28 294.36 7.210 0.233 0.884 0.058
IgM, pg/ml 35.47" 37.29% 34.60° 39.63" 47.48° 1.033 <0.001 <0.001 <0.001

IgA, immunoglobulin A; IgG, immunoglobulin G; IgM, immunoglobulin M. *“Within a row, means without a common superscript letter differ at P < 0.05.

intestinal mucosa are shown in Table 6. Obviously, no differences
were observed for sIgA, IL-2, IL-4, IL-10, and IFN-y in ileal and
jejunal mucosa of weaned piglets among the 5 dietary treatments
(p > 0.05).

3.5 Microflora community

The change in bacterial diversity was investigated using the 16 s
rRNA sequencing. The alpha diversity analysis index (observed_otus,
shannon, simpson, chaol, and goods_coverage) of each sample is
counted. As shown in Table 7, there were no statistical differences in
the alpha diversity of colonic digesta microbial communities among
the 5 treatments.
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The histogram of relative abundance of species can not only display
the dominant species and composition of each sample, but also clearly
observe the change trend of the abundance of dominant species in
different species. At the phylum level, Firmicutes, Bacteroidota,
Actinobacteriota and Proteobacteria were the dominant microbial
(Figure 1A). At
Methanobrevibacter, Prevotella, Streptococcus, Muribaculaceae, Sarcina,
Clostridia_UCG-014, Clostridium_sensu_stricto_1, Terrisporobacter,
Blautia, Faecalibacterium, and Eubacterium_coprostanoligenes_group

divisions the genus level, Lactobacillus,

were predominant (Figure 1B). The heatmap plot (according to the
top 35, the most different genera) showed the relative abundance of
genera in different groups (Figure 2). The color gradient and similarity
degree on the heatmap plot reflected the similarity and difference of
community composition among multiple samples.
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TABLE 6 Effects of isochlorogenic acid (ICGA) supplementation on slgA and cytokines levels in intestinal mucosa of piglets.

ICGA (mg/kg) P-value
200 ANOVA Linear Quadratic

lleum
sIgA, pg/ml 36.01 35.57 38.04 42.25 40.03 2.064 0.853 0.322 0.615
IL-2, pg/ml 446.93 451.53 469.45 485.46 499.45 14.812 0.797 0.189 0.425
IL-4, ng/L 92.62 100.39 92.18 94.27 109.59 6.727 0.929 0.568 0.774
IL-10, ng/
o 177.00 170.40 171.74 171.65 196.63 8.536 0.875 0.512 0.566
TFN-y, pg/
. 2975.04 2975.49 2843.91 2949.33 3063.89 250.768 0.999 0.934 0.974
Jejunum
sIgA, pg/ml 40.88 43.14 44.40 37.69 42.92 2.083 0.879 0.569 0.850
IL-2, pg/ml 541.50 525.49 526.12 490.86 538.12 15.572 0.857 0.931 0.919
IL-4, ng/L 155.39 140.18 157.50 141.27 150.83 8.409 0.960 0.660 0.693
1L-10, ng/
. 222.07 205.70 235.10 176.54 214.89 11.322 0.561 0.798 0.916
:IN-Y’ re/ 4943.55 4892.39 4882.52 3920.02 4784.37 388.362 0.915 0.831 0.916

sIgA, secretory immunoglobulin A; IL-2, interleukin-2; IL-4, interleukin-4; IL-10, interleukin-10; IFN-y, interferon-y.

TABLE 7 Effects of isochlorogenic acid (ICGA) supplementation on the a-diversity* of microbial communities of weaning piglets in colonic digesta.

ICGA (mg/kg) P-value
100 200 400 ANOVA Linear Quadratic
Observed_otus 798.25 686.00 629.33 691.60 568.67 26.130 0.081 0.016 0.053
Chao' 826.34 703.34 657.97 718.66 598.61 27531 0.132 0.029 0.087
Shannon 7.55 7.63 7.15 7.42 6.80 0.106 0.078 0.020 0.055
Simpson 0.98 0.99 0.97 0.98 0.97 0.003 0.366 0272 0523
Goods_coverage 0.99 0.99 0.99 0.99 0.99 0.001 0.890 0.996 0.957

' Alpha-diversity analysis for bacterial community determined by 16S rRNA gene sequencing.
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FIGURE 1

The relative abundance of top 10 microbial community bar plot on the phylum and genus level. Values are the means (n = 6 replicates per treatment).
(A) The relative abundance of top 10 microbial community bar plot on the phylum level. (B) The relative abundance of top 30 microbial community bar
plot on the genus level.

LEfSe analysis was used to study the influence degree of  distribution histogram. (Figure 3). We found that Bacteroidota,
species that were significantly different (LDA score > 4.0) from  Prevotella, and Muribaculaceae were the dominant species in the
phylum to genus level, and results included LDA value ICGA400 group. Peptostreptococcaceae, Actinobacteriota, and
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FIGURE 2

Heatmap of top 35 genera (relative abundances) among the groups. Values are the means (n = 6 replicates per treatment).
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1 Alloprevotella

Catenibacterium
Rikenellaceae_RC9_gut_group

008VODI

Proteobacteria were the main components of gut microbiota in
the CON group.

T-test can be used to find species with significant differences
between groups at each taxonomic level. (Figures 4A,B). ICGA400
treatments enhanced the Bacteroides (p < 0.05) in contrast to the CON
group, while Proteobacteria (p < 0.01), Actinobacteriota (p < 0.05),
Acidobacteriota (p <0.05), Gemmatimonadota (p<0.01), and
Verrucomicrobiata (p < 0.05) decreased notably. Compared with the
CON group, Terrisporobacter (p <0.05), Romboutsia (p <0.05),
Ruegeria (p < 0.05), Turicibacter (p < 0.05), Cutibacterium (p < 0.05),
and Staphylococcus (p < 0.05) showed a dramatic reduction in the
ICGA400 group, while the Megasphaera (p < 0.01), Catenibacterium
(p <0.05), Rikenellaceae_RC9_gut_group (p <0.05), Selenomonas

Frontiers in Veterinary Science

(p<0.05), Lachnospiraceae_AC2044_group  (p<0.05), and
Prevotellaceae_UCG-003 (p < 0.05) increased significantly.

4 Discussion

CGA and ICGA are natural phenolic compounds abundantly
present in coffee, fruits, and vegetables. ICGA, also known as
dicaffeoylquinic acids, predominantly include 3,5-dicaffeoylquinic
acid (isochlorogenic acid A), 3,4-dicaffeoylquinic acid (isochlorogenic
acid B), and 4,5-dicaffeoylquinic acid (isochlorogenic acid C) (20-22).
Owing to their dietary prevalence and favorable biological functions,
these compounds have attracted considerable interest and are

frontiersin.org


https://doi.org/10.3389/fvets.2025.1672217
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Wang et al. 10.3389/fvets.2025.1672217

B CON [ ICGA400
! ! ! ! !
o__Bacteroidales
¢ | Bacterondla
p Bacterondota
f: Prevotellaceae

g_ Prevotella
f. MunbaCuIaceae
g.:l .MunbaCu|aceae
t Negatnvncutes

_f Peptostreptococcaceae

0 Pept‘ostreptotoccales TlSSlerellaIes

I < _Actirobacteria

C AIphSproteoBacteria

I > ctinobacteriota

: p_ Proteobacteria
| | | | | |

| | |
-6.0-4.8-3.6-2.4-1.2 0.0 1.2 2.4 3.6 48 6.0
LDA SCORE (log 10)

FIGURE 3

Linear discriminant analysis (LDA) scores (>4.0) computed for features at the ASV level. Letters represented the taxonomy of the bacteria:

p, phylum, ¢, class; o, order; f, family; g, genus. All the values contained 6 repetitions. ICGA400 = 400 mg/kg isochlorogenic acid. Values are the
means (n = 6 replicates per treatment).
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FIGURE 4
The t-test bar plot between groups. (A) The t-test bar plot with significantly different phylum between groups. (B) The t-test bar plot with significantly
different genera between groups. Values are the means (n = 6 replicates per treatment).

extensively utilized in pharmaceuticals, food additives, and related
fields (23, 24). However, research focusing on the use of ICGA in
livestock and poultry production remains relatively limited compared
to other disciplines, highlighting the need for further investigation
into their potential applications in animal nutrition.

As natural bioactive compounds, chlorogenic acids (CGA) are
known to exert antidiarrheal and growth-promoting effects when
incorporated into animal diets. Numerous studies in broilers have
reported that dietary CGA supplementation enhances growth
performance, improves meat quality, and reduces the feed/gain ratio
(F/G) (25-28). Similar benefits have been observed in monogastric
animals, where CGA has been associated with improved growth and
intestinal function (29-31). Notably, both CGA and isochlorogenic
acids (ICGA) possess structurally similar phenolic profiles and exhibit
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comparable antioxidant, antibacterial, and anti-inflammatory
activities. In the present study, dietary ICGA supplementation
significantly increased the average daily gain (ADG) of weaned piglets,
which is consistent with earlier findings on CGA. However, differences
in absorption and metabolic pathways between CGA and ICGA may
lead to distinct in vivo effects. We found that piglets receiving 200 or
400 mg/kg ICGA exhibited higher apparent digestibility of crude
protein, gross energy, ether extract, and ash. This result aligns with
previous reports that ICGAs can inhibit a-glucosidase and a-amylase
(32, 33), suggesting a modulation of nutrient hydrolysis and
absorption. In particular, the improved digestibility of ether extract
(crude fat) may indicate enhanced lipid utilization, a phenomenon
also reported in other models where bioactive compounds such as

pectic polysaccharides inhibited intestinal lipid absorption and
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promoted fecal lipid excretion (34). Although the numerical reduction
in diarrhea incidence did not reach statistical significance, factors
including ICGA dosage, animal health, and environmental conditions
may have influenced these outcomes. Further studies employing
higher dosages or different delivery strategies may help clarify the
antidiarrheal potential of ICGA in weaned piglets.

Weaning is widely recognized as a critical period for piglets,
often leading to oxidative stress caused by an imbalance in
pro-oxidant and antioxidant systems (35). Antioxidant indicators,
including T-AOC, SOD, CAT, GSH-Px, and MDA, provide insights
into an animal’s endogenous defenses against reactive oxygen
species (ROS). Enhancing these antioxidant defenses can help
alleviate oxidative stress (36). ICGA, a polyphenolic compound
abundant in various food sources, has been reported to exhibit
potent antioxidant effects (23, 37). Structural features, such as the
multiple hydroxyl groups found in caffeoylquinic acid moieties, are
thought to underlie ICGA’ capacity to scavenge ROS (38). Previous
work suggests that the antioxidant activity of ICGA surpasses that
of CGA, possibly due to a greater number of hydroxyl functional
(22). Our indicate that dietary ICGA
supplementation boosted serum T-AOC and CAT activities,

groups findings
consistent with earlier studies (39, 40). In the study of (20) revealed
that ICGA isoforms can counter oxidative stress by scavenging
ROS in Caco-2 cells treated with pro-inflammatory proteins,
potentially through activation of the Nrf2-Keap1-ARE signaling
pathway. While the present results underscore ICGA’s beneficial
impact on antioxidant capacity in weaned piglets, knowledge
remains limited regarding its exact molecular mechanisms in
swine. Factors such as dosage, synergy with other dietary
antioxidants, and variations in immune status may all contribute
to the observed antioxidant response.

Recent research has highlighted that ICGA, a prominent
dietary polyphenolic compound, exhibits diverse biological
functions, notably immunomodulatory capabilities (21, 41). The
immune system encompasses an intricate network of tissues,
organs, specialized immune cells, and bioactive immune
molecules (42). Immunoglobulins, as pivotal immune effectors,
play essential roles within the humoral immune response,
mediating the host’s defense against pathogenic invasion (43). In
the present study, supplementation of ICGA significantly elevated
serum IgA and IgM concentrations in weaned piglets at day 14
compared to the control (CON) group, reaching peak values at
the dietary inclusion level of 400 mg/kg. Furthermore, on day 28,
a significant enhancement in IgM concentration was observed in
the serum of piglets receiving the highest dietary dose (800 mg/
kg ICGA), relative to the CON group. The balance and interaction
between pro-inflammatory and anti-inflammatory cytokines are
crucial determinants of effective immune protection against
pathogens (44). Numerous studies indicate that ICGA possesses
marked anti-inflammatory, antimicrobial, and antiviral
properties (5). However, in this investigation, dietary ICGA
supplementation did not affect mucosal concentrations of sIgA
or the cytokines IL-2, IL-4, IL-10, and IFN-y in the jejunum and
ileum of weaned piglets. It is important to note the scarcity of
existing data specifically addressing the immunomodulatory
effects of ICGA in piglets, and the current experimental
conditions may not have presented a sufficient pathogenic or
environmental challenge. Further exploration is therefore
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necessary to comprehensively evaluate the potential of ICGA to
modulate immune function and confer protection against
pathogenic threats in piglets.

The gut microbiota fundamentally regulates host metabolism,
gastrointestinal function, and immune development (45), and
serves as a key biomarker of intestinal health (46). Among external
factors, diet exerts a dominant influence on the structure and
function of the gut microbial community (47). Specific dietary
components—including functional ingredients and feed additives—
may improve growth performance and gastrointestinal health by
modulating microbial composition and stability (48). In this study,
however, ICGA supplementation did not significantly alter the
a-diversity of colonic microbiota—as measured by observed_otus,
Shannon, Simpson, Chaol, and Goods_coverage indices—across
treatment groups. Notably, this absence of alpha-diversity
modulation contrasts with reports in low-birth-weight (LBW)
piglets, where a hydrolyzed protein formula significantly reduced
microbial diversity indices (e.g., Chaol, ACE, Shannon, Simpson),
yet enhanced barrier function and immune outcomes (49). This
discrepancy may arise from differences in basal health status
between normal and LBW models, or from distinct bioactivities of
the supplements. Nevertheless, our results imply that ICGA may
promote gastrointestinal homeostasis without disrupting microbial
diversity, potentially sustaining a stable colonization niche that
facilitates immune maturation—a particularly desirable effect in
vulnerable populations such as LBW neonates.

The relative abundance histogram indicated that Firmicutes
and Bacteroidetes were predominant bacterial phyla, aligning with
prior findings (50). Bacteroidetes are recognized as highly
competitive commensal organisms within the gut microbiota,
significantly contributing to essential metabolic processes in the
colon, particularly the fermentation of carbohydrates and
metabolism of nitrogenous substrates (51). Major metabolic
by-products generated by anaerobic fermentation in Bacteroidetes
include acetic acid, succinic acid, and isovaleric acid, which serve
as energy sources for the host (52). Additionally, these bacteria
play a protective role by suppressing the colonization of pathogenic
microorganisms in the gut ecosystem (53). In the present study,
we observed that dietary ICGA significantly increased the
abundance of the Bacteroidetes in the colonic digesta of piglets. A
similar outcome was described before (54), who observed
increased cecal Bacteroidetes abundance in piglets fed chlorogenic
acid. The LEfSe, designed to detect biomarkers with significant
differential abundance within microbial communities (55),
indicated Bacteroides, Prevotella, and Muribaculaceae as dominant
taxa in piglets from the ICGA400 treatment, whereas
Peptostreptococcus, Actinomycetes, and Proteobacteria prevailed in
the CON group. Prevotella possesses the ability to degrade plant-
derived polysaccharides and host-derived mucins, generating
beneficial metabolites such as short-chain fatty acids, including
propionate (56). Muribaculaceae, a recently reclassified bacterial
family formerly known as S24-7, belongs to Bacteroidetes and
responds variably to dietary modifications and host physiological
conditions, though its precise functional roles require further
clarification (57). Alterations in the abundance of Muribaculaceae
appear closely related to dietary interventions and host-specific
physiological conditions; however, the precise functional roles and
mechanisms of these bacteria remain poorly defined, necessitating
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further detailed investigations. Another notable observation from
this study was the marked decrease in Proteobacteria abundance
within cecal microbiota samples following ICGA supplementation.
Proteobacteria, characterized as Gram-negative organisms
possessing an outer membrane rich in lipopolysaccharides,
represent a diverse and clinically significant bacterial phylum
encompassing well-known pathogenic genera, such as Escherichia
and Helicobacter (58). Elevated proportions of Proteobacteria are
typically indicative of intestinal dysbiosis or host pathology,
underscoring its potential as a microbial biomarker of
compromised gut health (59). The beneficial effects of ICGA on
growth performance and gut health in piglets may be attributed to
its ability to modulate intestinal microbiota through probiotic-
driven competitive exclusion. Probiotics potentially inhibit
pathogen proliferation by competing for essential nutrients,
colonization sites, and secreting antimicrobial metabolites (60).
At the genus level, compared with the CON group, Terrisporobacter,
Romboutsia, Ruegeria, Turicibacter, Cutibacterium, and
Staphylococcus were significantly reduced in the ICGA400 group,
while the Megasphaera, Catenibacterium, Rikenellaceae_RC9_gut_
group, Lachnospiraceae_AC2044_group,

Prevotellaceae_UCG-003 increased significantly. These beneficial

Selenomonas, and
microbes are recognized producers of short-chain fatty acids,
known to strengthen the antioxidant defense system and activate
anti-inflammatory signaling pathways, thus maintaining intestinal
ICGA
supplementation can modulate the intestinal microbial ecosystem

homeostasis and overall health (61). Furthermore,
by effectively suppressing the proliferation of potential pathogens,
thus promoting a balanced gut microbiota and enhancing overall
intestinal health. Maintaining this microbial equilibrium is crucial
in preventing dysbiosis-associated disorders and contributes to
improved physiological resilience in animals.

5 Conclusion

Taken together, the present study demonstrated that dietary
ICGA supplementation could modestly reduce post-weaning
diarrhea, while effectively improve nutrient digestibility,
antioxidant activity and humoral immune status of weaned
piglets. ICGA modulated intestinal microbiota composition by
increasing the abundance of beneficial microbiota and reducing
the abundance of harmful bacteria in weaned pigs.
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