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Bovine mastitis, a prevalent disease causing substantial economic losses in dairy
production, requires accurate and robust detection methods. Traditional threshold-
based approaches using electrical conductivity (EC) are limited by low specificity
and farm-specific variability. While somatic cell count (SCC) offers a more reliable
biomarker for intramammary inflammation, current SCC sensors often yield imprecise
data and are costly to implement, resulting in a lack of accurate, quantitative,
and widely applicable models for mastitis monitoring. This study presents an
machine learning-based diagnostic framework integrating logistic regression
(LR), support vector machines (SVM), and feedforward neural networks (FNN) to
evaluate mastitis detection performance with EC, SCC, and their combined inputs.
Using data from 93 cows across four dairy farms, we demonstrate that SCC-based
models consistently outperform EC-based approaches. The SVM model achieved
95.6% accuracy and 100% sensitivity when utilizing SCC as input feature. The FNN
model attained the highest AUC (0.981), highlighting neural networks’ capability
to capture complex patterns. Although the addition of EC to SCC did not improve
performance across all metrics, it showed potential to enhance robustness in
contexts where accurate SCC data are limited. These findings underscore the
diagnostic superiority of SCC and the potential of tailored machine learning solutions
in modern dairy production settings. Future work should focus on expanding
datasets across multiple regions and integrating high-precision SCC sensors for
real-time deployment in automated detection systems.

KEYWORDS

somatic cell count, electrical conductivity, mastitis detection, machine learning,
neural network, dairy cows

1 Introduction

Mastitis, an inflammation of the mammary gland typically caused by bacterial infection
(1-3), is one of the most prevalent and economically devastating diseases in global dairy
production (4, 5). Approximately 30-50% of the global dairy cows experience mastitis at some
point in their lives, resulting in annual economic losses of up to $35 billion (6-9). Mastitis not
only reduces milk production and significantly deteriorates milk quality through altered
composition, but also severely compromises herd health. Therefore, developing reliable
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mastitis detection methods is crucial for ensuring the safety of dairy
product, improving the welfare of dairy cows, and minimizing
economic losses in dairy farming (10, 11).

Various diagnostic approaches have been developed to assess
udder health, ranging from manual clinical examinations to
quantitative methods integrated into routine milking processes. With
increasing interest in precision dairy farming, there has been a
growing focus on developing tools capable of enabling timely and
accurate mastitis detection that support more efficient and consistent
monitoring (12, 13). These systems typically rely on various milk-
related detection indicators, such as pH (14), electrical conductivity
(EC) (6), color (15), somatic cell count (SCC) (16), milk yield (17),
clotting characteristics (18), and cow behavior (19).

Among these indicators, EC remains the most widely
implemented indicator in commercial mastitis detection systems,
including prominent platforms such as DeLaval (DeLaval
International AB, Sweden) and Lely (Lely Industries N.V,
Netherlands). Elevated EC values are generally associated with
mastitis, and diagnostic decisions are often made by comparing
measured EC values to predefined thresholds (20). However,
despite its widespread adoption, there is considerable inconsistency
in the reported EC thresholds. For example, Lazaro et al. (21)
reported that milk conductivity is typically below 4.9 mS/cm in
healthy cows, 4.9-5.15 mS/cm in subclinical cases, and above
5.15 mS/cm in clinical mastitis, whereas Yesil et al. (22) reported a
different broader range, suggesting that mastitis is suspected when
the EC value exceeds an average threshold of 5-5.5 mS/cm. This
lack of standardization reflects the fact that EC is influenced by a
variety of non-infectious factors, which compromises its diagnostic
reliability. Consequently, the sensitivity and specificity of EC-based
mastitis detection remain low. For instance, Bausewein’s cross-
sectional study (23) revealed that mastitis detection in DeLaval and
Lely milking systems, when based on EC measurements alone,
achieved only 61-78% sensitivity, highlighting the limitations of
relying solely on this parameter.

In contrast to EC, SCC provides a more direct and reliable
indication of udder health, reflecting the inflammatory response
through increased leukocyte counts in milk (24-26). As a result,
SCC is widely regarded as a key biomarker for mastitis detection.
To ensure the quality and safety of dairy products, many countries
have established regulatory limits for SCC in milk. At the same
time, some researchers are also actively promoting the use of
accurate SCC thresholds as diagnostic criteria for mastitis (22, 27).
However, the thresholds for SCC vary significantly across different
(28-30),
management standards.

regions reflecting  discrepancies in  mastitis

While SCC is a well-established indicator of mastitis, values
obtained from automated in-line sensors often exhibit significant
inherent variability, compromising their diagnostic reliability in
practice. Consequently, although numerous studies have attempted to
model the relationship between SCC and mastitis at both the
individual cow (25) and herd level (31) using such online data, the
performance of these models remains suboptimal. For instance, Nagy
etal. (32) reported that a model based on online SCC data achieved
only 54.0% sensitivity and 77.0% specificity. This fundamental issue of
data inaccuracy inevitably constrains the performance of any
diagnostic algorithm built upon it, leading to widely disparate and

often unsatisfactory results across studies and hindering the
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development of robust, generalizable solutions. Building on this need
for more robust and adaptable diagnostic strategies, machine learning
(ML) techniques have been increasingly adopted in mastitis detection
to overcome the limitations of threshold-based methods (33-35).
Unlike traditional approaches that rely on fixed threshold values for
single indicators, ML models can integrate heterogeneous features and
learn nonlinear relationships between input variables and mastitis
status. This multi-parameter capability enhances their adaptability and
predictive accuracy across varying herd conditions and sensor
performance (36-40). For instance, Tian et al. (14) implemented a
k-nearest neighbor (KNN) model with EC and pH inputs. Similarly,
Khan et al. (19) developed a support vector machine (SVM) classifier
based on cow behavior data, while Bobbo et al. (17) achieved an
accuracy of 79.7% and sensitivity of 52.4% using a linear discriminant
analysis (LDA) for mastitis diagnosis. Although model performance
varied, these studies demonstrate that combining multiple indicators
through ML-based methods offers a promising route toward more
robust and accurate mastitis detection compared to single-
threshold systems.

In summary, although EC and SCC are widely used for mastitis
detection (41), their diagnostic reliability is limited by inconsistent
thresholds, inherent sensor inaccuracies, and farm variability. At the
same time, farmers face increasing demands for more accurate and
reliable mastitis detection, as current threshold-based methods often
lead to delayed interventions, higher treatment costs, and reduced
milk quality. Machine learning offers the potential to transform
mastitis management by integrating multiple parameters into flexible,
data-driven models that improve diagnostic accuracy and provide
farm-adaptable solutions. Thus, evaluating and comparing machine
learning algorithms using accurate and reliable EC and SCC data
remains a research need with substantial potential to advance mastitis
management practices.

2 Materials and methods
2.1 Working principle

As shown in Figure 1, the study took a systematic approach
designed to ensure robustness across diverse dairy farms and
environmental conditions. The workflow begins with the collection of
raw milk samples from dairy farms. Following acquisition, each
sample underwent dual-parameter measurement, including EC and
SCC. The EC was measured with temperature compensation to
account for environmental variability. The SCC was determined
through fluorescence microscopy. The curated data served as input for
two machine learning models (LR, SVM) and one neural network
(FNN), with performance validation followed.

2.2 Sample collection

From January to December 2024, milk samples were collected
from cows that were randomly selected from four dairy farms in
Beijing. The study consisted of 47 healthy cows and 46 cows with
mastitis, as determined by veterinary clinical diagnosis with the signs
of inflammation in the udder. To ensure sample independence, all
samples were collected from different cows. Cows within the first
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FIGURE 1
Workflow for mastitis diagnosis using Al classification models. The process begins with raw milk sample collection from dairy farms, followed by
measurement of electrical conductivity (with temperature compensation) and somatic cell count. After data preprocessing, the processed features
serve as input for binary classification models to predict mastitis status.

4-5 days postpartum and those in the late lactation stage were
excluded from sampling, as physiological elevations in SCC commonly
occur during these periods and are unrelated to mastitis. During each
milking session, the first three streams of milk were discarded, and the
subsequent 30-50 mL of milk was collected for analysis.

2.3 EC measurement

The electrical conductivity of each milk sample was measured
using a conductivity meter (HANNA HI8733 Multi-range EC Meter,
Italy). Prior to each measurement, the electrode tip was thoroughly
cleaned to prevent contamination and ensure accuracy. Each sample
was measured three times, and the average value was used to enhance
measurement reliability and consistency. Given the strong influence
of temperature on conductivity, temperature compensation was
applied during each measurement to eliminate temperature-
induced variation.

2.4 SCC measurement

To ensure the accuracy of the dataset used for model development,
microscopic examination for somatic cell counting was employed in
this study. To reduce the cell loss associated with centrifugation and
washing, direct fluorescence staining was performed on raw milk
samples without a washing step. Fluorescent dyes were used instead
of traditional stains such as trypan blue to enhance image contrast in
low-transparency milk. Specifically, 100 puL of fresh raw milk was
mixed with 2 pL of 1 mg/mL acridine orange staining solution
(Thermo Fisher Scientific, USA). The stained samples were then
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applied to cell counting slides (Bio-Rad Laboratories, USA).
Observations were performed using a fluorescence microscope
(Olympus IX73, Japan) equipped with a 10 x objective lens, and
images were captured using a Prime BSI Express sCMOS camera
(USA). For each sample, multiple random fields of view were selected
for counting, and the average value was calculated to enhance
accuracy and reliability. For samples with extremely high somatic cell
counts, dilution was performed accordingly.

2.5 Data processing and algorithms

The collected EC and SCC data were normalized using Z-score
standardization, where each value was transformed by subtracting the
mean and dividing by the standard deviation. This eliminated
dimensional differences and facilitated subsequent analysis. Cow
health status was numerically encoded, with healthy cows labeled as 0
and mastitic cows as 1, enabling binary classification.

All data processing, model construction, and result
visualization of three classification algorithms were performed
using MATLAB (The MathWorks, USA). The three models were
selected for this

characteristics. LR was chosen for its interpretability and efficiency,

study based on their complementary

SVM for its robustness in high-dimensional spaces, and FNN for
its ability to model complex nonlinear relationships. Furthermore,
the models span a range of complexity, from simple to advanced,
making them effective representatives of machine learning and
neural network to evaluate and compare their mastitis
detection performance.

EC, SCC, and their combination were used as input features.
To make full use of the limited data and enhance generalization,
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five-fold cross-validation was applied instead of a single train-test
split. The data were shuffled before training to eliminate order bias
and improve model stability. Hyperparameter tuning was
conducted for LR, SVM, and FNN to optimize performance and
obtain the best configurations. For the LR, we adjusted the
regularization strength (Lambda, 1-1,024) and classification
threshold (0-1); for the SVM, we optimized the kernel function
(linear/RBF/polynomial), kernel scale (0.001-10), and box
constraint (1-1,024); and for the FNN, we varied the hidden layer
size (5-50 neurons), learning rate (0.01-0.2), and regularization
(0-0.5). The best model for each classifier was selected based on
the highest test accuracy, with AUC as a secondary criterion.

2.6 Evaluation of the algorithms

In this study, the performance of each classifier was
comprehensively evaluated using various feature inputs on the test
dataset. Receiver operating characteristic (ROC) curves were
generated for all combinations of classifiers and input features to
visually assess the trade-off between true positive rate (sensitivity) and
false positive rate (1—specificity) across different thresholds, thereby
illustrating the classifier’s discriminatory power. Quantitative
evaluation was further conducted using accuracy, sensitivity,
specificity, and the area under the curve (AUC). Accuracy was defined
as the proportion of correctly classified instances out of the total
number of instances, providing an overall effectiveness measure of the
classifier. Sensitivity, also known as the true positive rate, was
measured to evaluate the classifier’s ability to correctly identify
positive instances. Sensitivity is particularly important in scenarios
where accurately identifying positive cases is critical. Specificity, or
true negative rate, was assessed to determine the classifier’s ability to
correctly identify negative instances. Specificity is important where

10.3389/fvets.2025.1671186

false positives are costly or undesirable. These metrics were
expressed as:

TP+TN
Accuracy =—————————
TP+TN+FP+FN
o TP
Sensitivity = ————
TP +FN
N

Specificity = IN-FP
+

where TP, TN, FP, and FN represent true positives, true negatives,
false positives, and false negatives, respectively.

AUC, derived from the ROC curve, provides a scalar summary of
classifier performance across all thresholds. A value of 1 indicates
perfect classification, while 0.5 suggests random guessing. AUC is
particularly informative for comparing classifiers and evaluating
models under class imbalance. Together, these metrics enabled a
robust evaluation of each classifier across different feature sets,
supporting optimal strategy selection for mastitis detection.

3 Results and discussions

In this study, the performance of multiple ML models was
evaluated by using different feature input configurations, including EC
alone, SCC alone, and their combination. Figure 2 illustrates the
comprehensive analysis of EC data of milk across four dairy farms. To
eliminate interference of temperature on EC, the original EC data of
each dairy farm were temperature-compensated as shown in
Figure 2A. The compensation was performed using the linear model:
EC,=EC, + a (T, - T,), where EC, represents the original measured
conductivity, EC, is the temperature-compensated value (standardized
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Temperature compensation and comparative analysis of electrical conductivity data. (A) Raw EC data from four dairy farms were temperature-
compensated to 25 °C using a temperature coefficient (a) of 2.83% °C-%. EC, and EC, represent the original and temperature-compensated
conductivity values, respectively. (B) Distribution of temperature-compensated EC values for healthy and mastitic milk. While mastitic milk exhibited
higher average conductivity compared to healthy milk, substantial overlap between distributions limits the reliability of EC as a standalone diagnostic
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to 25 °C), a is the temperature coefficient, and T, and T, denote the
sample and reference temperatures, respectively. The temperature
coefficient (a) was determined to be 2.83% °C~'. This value was
derived from a calibration experiment, wherein a raw milk sample was
subjected to controlled temperature variations across a range from
15 °C to 40 °C using a water bath. The electrical conductivity was
measured in triplicate. A linear regression model was then fitted to the
dataset, and the coefficient from this regression was adopted as a.
While this coefficient was determined using a single milk sample,
we acknowledge that inter-sample and inter-farm variations in milk
composition could influence this coefficient, and future work should
aim to establish a more generalized coeflicient based on a larger and
more diverse set of samples.

The EC values revealed distinct distributions between healthy
. The results showed that
the average conductivity of the mastitic milk was 7.03 mS/cm, which

milk and mastitic milk, as shown in

was significantly higher than that of healthy cows (5.04 mS/cm).
However, although conductivity serves as a valuable indicator for
mastitis, it manifests substantial limitations. The conductivity
distributions of healthy and mastitic milk exhibits significant overlap,
compromising its reliability as a standalone indicator for mastitis
diagnosis. In practice, no clear threshold can reliably separate healthy
and infected cases across diverse farm conditions. Moreover, milk
conductivity demonstrates notable farm-to-farm variability and is
influenced by multiple physiological and management factors
unrelated to mastitis, such as milking frequency, dietary composition,
and water consumption patterns. These findings highlight both the
potential value and practical limitations of EC in mastitis detection,
supporting the need for its integration with other indicators and
advanced data-processing methods, such as machine learning, to
enhance diagnostic accuracy.
illustrates the diagnostic characteristics of SCC, which
demonstrated superior diagnostic performance compared to EC in
distinguishing mastitic from healthy milk. Fluorescent microscope
images of somatic cells in healthy milk and mastitic milk are shown in
. Since a nucleic acid fluorescent dye staining both DNA and
RNA  was all
polymorphonuclear neutrophils (PMNs), macrophages and other cell

used, somatic cells including lymphocytes,

10.3389/fvets.2025.1671186

types were effectively stained. The fluorescence microscope images
clearly demonstrate a significantly higher somatic cell count in
mastitic milk compared to healthy milk.

This visual distinction was validated in quantitative analysis, with

showing the distribution of SCC data for healthy and
mastitic milk, and SCC values spanning four orders of magnitude
(10*-107 cells/mL). Notably, the overlap in SCC data between healthy
milk and mastitic milk is less pronounced than that in EC data, with
only 4.3% of samples fell within the overlap range, a marked
improvement over the 18.3% overlap of EC data. The results indicate
that the classification method based on SCC can better distinguish
between healthy and mastitic milk, and SCC was a more reliable and
specific indicator of mastitis compared to EC.

With the EC and SCC data from different samples, binary
classifications were performed using various classification models and
different input features, including EC, SCC and their combination.
The diagnostic performance of three classifiers (LR, SVM, FNN) was
, the ROC
analysis provides a visual assessment of each models ability to

then characterized thoroughly. As shown in

distinguish between healthy and mastitic milk at different thresholds.
—C show the ROC curves for LR, SVM, and FNN models,
respectively.

Different models exhibit varying performance and sensitivity-
specificity trade-offs, suggesting that it is particularly important for
farmers to choose the right model for their needs—whether to
prioritize high sensitivity for early detection of mastitis, or high
specificity to avoid false alarms. Notably, all models consistently
showed higher AUC with SCC input compared to EC alone, further
validating the reliability of SCC as a primary indicator in
mastitis detection.

The performance metrics of different models (LR, SVM, FNN)
and input features (EC, SCC, EC + SCC) were systematically analyzed
and presented in
classification using the SCC thresholds specified in the American
National Standards (
(14,17, 19, 32) are presented in the table. The results demonstrated
that models utilizing SCC consistently outperformed those relying

. For comparison, performance indicators for

) and recently reported models from literature

solely on EC. Interestingly, when SCC was used as an input feature, the
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milk (lower), stained with a nucleic acid-specific fluorescent dye. (B) Distribution of SCC data for healthy and mastitic milk, with less overlap compared
to EC data. Statistical analysis confirmed that SCC as a more reliable and specific indicator of mastitis.
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ROC curves comparing diagnostic performance of different models using distinct input features (EC, SCC and their combination). (A) Logistic
regression model. (B) Support vector machine model. (C) Feedforward neural network model.

TABLE 1 Performance evaluation and comparison of different models.

Model Input Accuracy Sensitivity Specificity AUC
LR EC 0.797 0.653 0.936 0.850
scc 0.946 0.978 0.913 0.976
EC+SCC 0.936 0.978 0.896 0.973
SVM EC 0.797 0.631 0.960 0.843
scc 0.956 1.000 0913 0.952
EC+SCC 0.925 0.933 0918 0.941
FNN EC 0.806 0.673 0.936 0.865
scc 0.947 0.978 0916 0.981
EC +SCC 0.925 0911 0.936 0.941
Threshold = 750,000 cells/mL [30] scc 0.914 0.870 0.957 -
kNN [14] EC, pH, etc. 0.946 0.870 - -
LDA [17] Milk yield, composition, etc. 0.797 0.524 0.909 -
SVM [19] Cow behavior 0.892 0.878 0.901 -
ENN [32] scc - 0.540 0.770 -

addition of EC input feature did not improve the classification
performance as expected, but instead, it led to slight decreases in most
metrics, as shown in Table 1. This may be attributed to the variability
and weaker discriminative power of EC, which introduced noise rather
than complementary information to the SCC-based classification.
Among all evaluated models, SVM model performed best in terms
of accuracy and sensitivity with the input of SCC feature, with an
accuracy of 95.6% and a perfect sensitivity of 100%. The FNN with SCC
input showed the highest AUC value (98.1%) by effectively capturing
non-linear relationships in the data, indicating that the comprehensive
performance of the classifier is better. These metrics not only surpassed
those using the current SCC threshold of the US national standard, but
also exceeded the results reported in other relevant literature for
comparable models in recent years. Notably, utilizing SCC values from
online sensors (32) resulted in a 54.0% sensitivity and 77.0% specificity
for diagnosing mastitis. In contrast, by employing high-accuracy SCC
measurements and optimized ML models, our approach achieved
better performance with 97.8% sensitivity and 91.6% specificity. These
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results suggest that with accurate SCC data, ML-based models have the
potential to deliver significantly improved diagnostic outcomes
compared to currently deployed methods.

The results demonstrate distinct performance characteristics
between SCC and EC as mastitis indicators, with important
implications for practical implementation. SCC consistently
outperformed EC in classification accuracy and diagnostic reliability
across all tested models. This superiority stems from SCC’s direct
correlation with mammary gland inflammation, compared to EC’s
susceptibility to non-infectious factors. Particularly noteworthy was
the SVM model’s perfect sensitivity (100%) with SCC input, making
it ideal for detection, albeit with increased false positives that may
necessitate additional confirmatory tests. In contrast, the FNN model
showed more balanced performance (AUC = 0.96), suggesting its
suitability for operations where false alarms carry significant economic
consequences. These findings highlight that optimal model selection
should consider farm-specific factors including herd size, mastitis
prevalence, and available resources for follow-up testing.
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While SCC alone demonstrated superior diagnostic performance
in this study, it is important to note that real-time, high-precision SCC
measurement remains a technical challenge in many on-farm settings.
In such cases, combining SCC with EC may enhance the model’s
robustness by introducing complementary physiological information,
particularly when SCC measurements are noisy, delayed, or
intermittently unavailable. Notably, the combined input of EC and
SCC yielded improved specificity in some models (e.g., SVM and
FNN), which could be advantageous in reducing false positives in
practical deployments. Therefore, multi-indicator fusion remains a
valuable strategy, especially for scenarios where sensor limitations
preclude consistent access to accurate SCC data.

The findings of this study underscore the necessity for advanced
sensor technologies capable of accurately quantifying SCC. Although
SCC measurements in this study were obtained under laboratory
conditions, the findings provide valuable insights and benchmark
references for the integration of accurate SCC data into automated
detection systems. This work contributes to the ongoing development
of reliable, Al-assisted diagnostic tools that can be embedded in future
sensor platforms to improve mastitis management on modern
dairy farms.

Moreover, the study demonstrates the adaptability of machine
learning models, which can be tailored to various farm conditions and
requirements to provide customized mastitis detection solutions. The
classification of mastitis cases should be based on temporal urgency
for intervention, rather than solely on their comparability to
traditional non-sensor indicators of udder health.

However, it must be acknowledged that this study is an exploratory
investigation with several limitations. First, the sample size was
relatively small, with cows collected from a limited number of farms
and from a single Holstein breed, which restricts the diversity of the
dataset. Second, the classification relied solely on single timepoint
samples based on veterinary clinical diagnosis, resulting in a cross-
sectional dataset that does not capture the dynamic progression of the
disease. These factors constrain the generalization capability of the
models. Future research is recommended to utilize more extensive
datasets collected under field conditions to comprehensively assess the
model’s performance and practical applicability.

In light of these observations, the development of an innovative
sensor-based mastitis detection and management system appears both
necessary and promising. Currently, our ongoing work focuses on the
development of high-precision SCC sensor technologies, and the
optimization of machine learning models for integration into future
automated diagnostic workflows in the context of smart agriculture.
This dual approach aims to further reduce subjective misdiagnosis
while improving the detection accuracy and robustness of mastitis in
dairy cows, ultimately enabling more proactive herd health management.

4 Conclusion

In conclusion, this study shows that the use of accurate and
reliable time-specific SCC or EC data enables machine learning
algorithms to effectively classify milk samples into healthy and
clinical mastitis categories. Furthermore, by systematically
comparing LR, SVM, and FNN using EC, SCC, and their
combination as inputs, we found that models based on SCC
consistently outperformed those relying on EC. The SVM model
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achieved the highest accuracy (95.6%) and sensitivity (100%) with
SCC as the primary input, while the FNN model delivered the best
overall performance with an AUC of 0.981, highlighting its ability
to capture complex patterns. These results underscore the value of
SCC as a more reliable and specific indicator of mastitis, being less
affected by non-infectious factors than EC.

Furthermore, although SCC alone yielded the best overall
performance in this study, combining it with EC may still offer
practical advantages in real-world applications where accurate real-
time SCC acquisition is challenging. The incorporation of EC can
enhance model robustness and diagnostic stability, particularly in
settings lacking high-precision SCC sensors or where SCC
measurements are intermittently unreliable.

While these ML models show great promise, their practical
application requires further development in two key areas. First, large-
scale validation across diverse herds and geographical regions will
be essential to verify model robustness. Second, the development of
high-precision SCC sensors integrated with edge computing-
optimized algorithms could enable widespread deployment in
automated detection systems. Such technological advancements would
facilitate timely interventions, improve herd health management, and
ultimately enhance milk quality and farm profitability.
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