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Bovine mastitis, a prevalent disease causing substantial economic losses in dairy 
production, requires accurate and robust detection methods. Traditional threshold-
based approaches using electrical conductivity (EC) are limited by low specificity 
and farm-specific variability. While somatic cell count (SCC) offers a more reliable 
biomarker for intramammary inflammation, current SCC sensors often yield imprecise 
data and are costly to implement, resulting in a lack of accurate, quantitative, 
and widely applicable models for mastitis monitoring. This study presents an 
machine learning-based diagnostic framework integrating logistic regression 
(LR), support vector machines (SVM), and feedforward neural networks (FNN) to 
evaluate mastitis detection performance with EC, SCC, and their combined inputs. 
Using data from 93 cows across four dairy farms, we demonstrate that SCC-based 
models consistently outperform EC-based approaches. The SVM model achieved 
95.6% accuracy and 100% sensitivity when utilizing SCC as input feature. The FNN 
model attained the highest AUC (0.981), highlighting neural networks’ capability 
to capture complex patterns. Although the addition of EC to SCC did not improve 
performance across all metrics, it showed potential to enhance robustness in 
contexts where accurate SCC data are limited. These findings underscore the 
diagnostic superiority of SCC and the potential of tailored machine learning solutions 
in modern dairy production settings. Future work should focus on expanding 
datasets across multiple regions and integrating high-precision SCC sensors for 
real-time deployment in automated detection systems.
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1 Introduction

Mastitis, an inflammation of the mammary gland typically caused by bacterial infection 
(1–3), is one of the most prevalent and economically devastating diseases in global dairy 
production (4, 5). Approximately 30–50% of the global dairy cows experience mastitis at some 
point in their lives, resulting in annual economic losses of up to $35 billion (6–9). Mastitis not 
only reduces milk production and significantly deteriorates milk quality through altered 
composition, but also severely compromises herd health. Therefore, developing reliable 

OPEN ACCESS

EDITED BY

Om P. Dhungyel,  
The University of Sydney, Australia

REVIEWED BY

Sultan Ali,  
University of Agriculture, Pakistan
Jake S. Thompson,  
University of Nottingham, United Kingdom

*CORRESPONDENCE

Junbo Wang  
 jbwang@mail.ie.ac.cn  

Jian Chen  
 chenjian@mail.ie.ac.cn  

Xiaoye Huo  
 huoxy@aircas.ac.cn

RECEIVED 22 July 2025
ACCEPTED 28 October 2025
PUBLISHED 14 November 2025

CITATION

Pan L, Chen X, Han D, Li N, Chen D, Wang J, 
Chen J and Huo X (2025) Machine 
learning-based clinical mastitis detection in 
dairy cows using milk electrical conductivity 
and somatic cell count.
Front. Vet. Sci. 12:1671186.
doi: 10.3389/fvets.2025.1671186

COPYRIGHT

© 2025 Pan, Chen, Han, Li, Chen, Wang, 
Chen and Huo. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  14 November 2025
DOI  10.3389/fvets.2025.1671186

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2025.1671186&domain=pdf&date_stamp=2025-11-14
https://www.frontiersin.org/articles/10.3389/fvets.2025.1671186/full
https://www.frontiersin.org/articles/10.3389/fvets.2025.1671186/full
https://www.frontiersin.org/articles/10.3389/fvets.2025.1671186/full
https://www.frontiersin.org/articles/10.3389/fvets.2025.1671186/full
mailto:jbwang@mail.ie.ac.cn
mailto:chenjian@mail.ie.ac.cn
mailto:huoxy@aircas.ac.cn
https://doi.org/10.3389/fvets.2025.1671186
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2025.1671186


Pan et al.� 10.3389/fvets.2025.1671186

Frontiers in Veterinary Science 02 frontiersin.org

mastitis detection methods is crucial for ensuring the safety of dairy 
product, improving the welfare of dairy cows, and minimizing 
economic losses in dairy farming (10, 11).

Various diagnostic approaches have been developed to assess 
udder health, ranging from manual clinical examinations to 
quantitative methods integrated into routine milking processes. With 
increasing interest in precision dairy farming, there has been a 
growing focus on developing tools capable of enabling timely and 
accurate mastitis detection that support more efficient and consistent 
monitoring (12, 13). These systems typically rely on various milk-
related detection indicators, such as pH (14), electrical conductivity 
(EC) (6), color (15), somatic cell count (SCC) (16), milk yield (17), 
clotting characteristics (18), and cow behavior (19).

Among these indicators, EC remains the most widely 
implemented indicator in commercial mastitis detection systems, 
including prominent platforms such as DeLaval (DeLaval 
International AB, Sweden) and Lely (Lely Industries N.V., 
Netherlands). Elevated EC values are generally associated with 
mastitis, and diagnostic decisions are often made by comparing 
measured EC values to predefined thresholds (20). However, 
despite its widespread adoption, there is considerable inconsistency 
in the reported EC thresholds. For example, Lazaro et  al. (21) 
reported that milk conductivity is typically below 4.9 mS/cm in 
healthy cows, 4.9–5.15 mS/cm in subclinical cases, and above 
5.15 mS/cm in clinical mastitis, whereas Yesil et al. (22) reported a 
different broader range, suggesting that mastitis is suspected when 
the EC value exceeds an average threshold of 5–5.5 mS/cm. This 
lack of standardization reflects the fact that EC is influenced by a 
variety of non-infectious factors, which compromises its diagnostic 
reliability. Consequently, the sensitivity and specificity of EC-based 
mastitis detection remain low. For instance, Bausewein’s cross-
sectional study (23) revealed that mastitis detection in DeLaval and 
Lely milking systems, when based on EC measurements alone, 
achieved only 61–78% sensitivity, highlighting the limitations of 
relying solely on this parameter.

In contrast to EC, SCC provides a more direct and reliable 
indication of udder health, reflecting the inflammatory response 
through increased leukocyte counts in milk (24–26). As a result, 
SCC is widely regarded as a key biomarker for mastitis detection. 
To ensure the quality and safety of dairy products, many countries 
have established regulatory limits for SCC in milk. At the same 
time, some researchers are also actively promoting the use of 
accurate SCC thresholds as diagnostic criteria for mastitis (22, 27). 
However, the thresholds for SCC vary significantly across different 
regions (28–30), reflecting discrepancies in mastitis 
management standards.

While SCC is a well-established indicator of mastitis, values 
obtained from automated in-line sensors often exhibit significant 
inherent variability, compromising their diagnostic reliability in 
practice. Consequently, although numerous studies have attempted to 
model the relationship between SCC and mastitis at both the 
individual cow (25) and herd level (31) using such online data, the 
performance of these models remains suboptimal. For instance, Nagy 
et al. (32) reported that a model based on online SCC data achieved 
only 54.0% sensitivity and 77.0% specificity. This fundamental issue of 
data inaccuracy inevitably constrains the performance of any 
diagnostic algorithm built upon it, leading to widely disparate and 
often unsatisfactory results across studies and hindering the 

development of robust, generalizable solutions. Building on this need 
for more robust and adaptable diagnostic strategies, machine learning 
(ML) techniques have been increasingly adopted in mastitis detection 
to overcome the limitations of threshold-based methods (33–35). 
Unlike traditional approaches that rely on fixed threshold values for 
single indicators, ML models can integrate heterogeneous features and 
learn nonlinear relationships between input variables and mastitis 
status. This multi-parameter capability enhances their adaptability and 
predictive accuracy across varying herd conditions and sensor 
performance (36–40). For instance, Tian et al. (14) implemented a 
k-nearest neighbor (KNN) model with EC and pH inputs. Similarly, 
Khan et al. (19) developed a support vector machine (SVM) classifier 
based on cow behavior data, while Bobbo et  al. (17) achieved an 
accuracy of 79.7% and sensitivity of 52.4% using a linear discriminant 
analysis (LDA) for mastitis diagnosis. Although model performance 
varied, these studies demonstrate that combining multiple indicators 
through ML-based methods offers a promising route toward more 
robust and accurate mastitis detection compared to single-
threshold systems.

In summary, although EC and SCC are widely used for mastitis 
detection (41), their diagnostic reliability is limited by inconsistent 
thresholds, inherent sensor inaccuracies, and farm variability. At the 
same time, farmers face increasing demands for more accurate and 
reliable mastitis detection, as current threshold-based methods often 
lead to delayed interventions, higher treatment costs, and reduced 
milk quality. Machine learning offers the potential to transform 
mastitis management by integrating multiple parameters into flexible, 
data-driven models that improve diagnostic accuracy and provide 
farm-adaptable solutions. Thus, evaluating and comparing machine 
learning algorithms using accurate and reliable EC and SCC data 
remains a research need with substantial potential to advance mastitis 
management practices.

2 Materials and methods

2.1 Working principle

As shown in Figure  1, the study took a systematic approach 
designed to ensure robustness across diverse dairy farms and 
environmental conditions. The workflow begins with the collection of 
raw milk samples from dairy farms. Following acquisition, each 
sample underwent dual-parameter measurement, including EC and 
SCC. The EC was measured with temperature compensation to 
account for environmental variability. The SCC was determined 
through fluorescence microscopy. The curated data served as input for 
two machine learning models (LR, SVM) and one neural network 
(FNN), with performance validation followed.

2.2 Sample collection

From January to December 2024, milk samples were collected 
from cows that were randomly selected from four dairy farms in 
Beijing. The study consisted of 47 healthy cows and 46 cows with 
mastitis, as determined by veterinary clinical diagnosis with the signs 
of inflammation in the udder. To ensure sample independence, all 
samples were collected from different cows. Cows within the first 
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4–5 days postpartum and those in the late lactation stage were 
excluded from sampling, as physiological elevations in SCC commonly 
occur during these periods and are unrelated to mastitis. During each 
milking session, the first three streams of milk were discarded, and the 
subsequent 30–50 mL of milk was collected for analysis.

2.3 EC measurement

The electrical conductivity of each milk sample was measured 
using a conductivity meter (HANNA HI8733 Multi-range EC Meter, 
Italy). Prior to each measurement, the electrode tip was thoroughly 
cleaned to prevent contamination and ensure accuracy. Each sample 
was measured three times, and the average value was used to enhance 
measurement reliability and consistency. Given the strong influence 
of temperature on conductivity, temperature compensation was 
applied during each measurement to eliminate temperature-
induced variation.

2.4 SCC measurement

To ensure the accuracy of the dataset used for model development, 
microscopic examination for somatic cell counting was employed in 
this study. To reduce the cell loss associated with centrifugation and 
washing, direct fluorescence staining was performed on raw milk 
samples without a washing step. Fluorescent dyes were used instead 
of traditional stains such as trypan blue to enhance image contrast in 
low-transparency milk. Specifically, 100 μL of fresh raw milk was 
mixed with 2 μL of 1 mg/mL acridine orange staining solution 
(Thermo Fisher Scientific, USA). The stained samples were then 

applied to cell counting slides (Bio-Rad Laboratories, USA). 
Observations were performed using a fluorescence microscope 
(Olympus IX73, Japan) equipped with a 10 × objective lens, and 
images were captured using a Prime BSI Express sCMOS camera 
(USA). For each sample, multiple random fields of view were selected 
for counting, and the average value was calculated to enhance 
accuracy and reliability. For samples with extremely high somatic cell 
counts, dilution was performed accordingly.

2.5 Data processing and algorithms

The collected EC and SCC data were normalized using Z-score 
standardization, where each value was transformed by subtracting the 
mean and dividing by the standard deviation. This eliminated 
dimensional differences and facilitated subsequent analysis. Cow 
health status was numerically encoded, with healthy cows labeled as 0 
and mastitic cows as 1, enabling binary classification.

All data processing, model construction, and result 
visualization of three classification algorithms were performed 
using MATLAB (The MathWorks, USA). The three models were 
selected for this study based on their complementary 
characteristics. LR was chosen for its interpretability and efficiency, 
SVM for its robustness in high-dimensional spaces, and FNN for 
its ability to model complex nonlinear relationships. Furthermore, 
the models span a range of complexity, from simple to advanced, 
making them effective representatives of machine learning and 
neural network to evaluate and compare their mastitis 
detection performance.

EC, SCC, and their combination were used as input features. 
To make full use of the limited data and enhance generalization, 

FIGURE 1

Workflow for mastitis diagnosis using AI classification models. The process begins with raw milk sample collection from dairy farms, followed by 
measurement of electrical conductivity (with temperature compensation) and somatic cell count. After data preprocessing, the processed features 
serve as input for binary classification models to predict mastitis status.
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five-fold cross-validation was applied instead of a single train–test 
split. The data were shuffled before training to eliminate order bias 
and improve model stability. Hyperparameter tuning was 
conducted for LR, SVM, and FNN to optimize performance and 
obtain the best configurations. For the LR, we  adjusted the 
regularization strength (Lambda, 1–1,024) and classification 
threshold (0–1); for the SVM, we optimized the kernel function 
(linear/RBF/polynomial), kernel scale (0.001–10), and box 
constraint (1–1,024); and for the FNN, we varied the hidden layer 
size (5–50 neurons), learning rate (0.01–0.2), and regularization 
(0–0.5). The best model for each classifier was selected based on 
the highest test accuracy, with AUC as a secondary criterion.

2.6 Evaluation of the algorithms

In this study, the performance of each classifier was 
comprehensively evaluated using various feature inputs on the test 
dataset. Receiver operating characteristic (ROC) curves were 
generated for all combinations of classifiers and input features to 
visually assess the trade-off between true positive rate (sensitivity) and 
false positive rate (1—specificity) across different thresholds, thereby 
illustrating the classifier’s discriminatory power. Quantitative 
evaluation was further conducted using accuracy, sensitivity, 
specificity, and the area under the curve (AUC). Accuracy was defined 
as the proportion of correctly classified instances out of the total 
number of instances, providing an overall effectiveness measure of the 
classifier. Sensitivity, also known as the true positive rate, was 
measured to evaluate the classifier’s ability to correctly identify 
positive instances. Sensitivity is particularly important in scenarios 
where accurately identifying positive cases is critical. Specificity, or 
true negative rate, was assessed to determine the classifier’s ability to 
correctly identify negative instances. Specificity is important where 

false positives are costly or undesirable. These metrics were 
expressed as:

	
+

=
+ + +

ccuracy TP TNA
TP TN FP FN

	
=

+
Sensitivity TP

TP FN

	
=

+
TNSpecificity

TN FP

where TP, TN, FP, and FN represent true positives, true negatives, 
false positives, and false negatives, respectively.

AUC, derived from the ROC curve, provides a scalar summary of 
classifier performance across all thresholds. A value of 1 indicates 
perfect classification, while 0.5 suggests random guessing. AUC is 
particularly informative for comparing classifiers and evaluating 
models under class imbalance. Together, these metrics enabled a 
robust evaluation of each classifier across different feature sets, 
supporting optimal strategy selection for mastitis detection.

3 Results and discussions

In this study, the performance of multiple ML models was 
evaluated by using different feature input configurations, including EC 
alone, SCC alone, and their combination. Figure  2 illustrates the 
comprehensive analysis of EC data of milk across four dairy farms. To 
eliminate interference of temperature on EC, the original EC data of 
each dairy farm were temperature-compensated as shown in 
Figure 2A. The compensation was performed using the linear model: 
EC2 = EC1 + α (T2 – T1), where EC1 represents the original measured 
conductivity, EC2 is the temperature-compensated value (standardized 

FIGURE 2

Temperature compensation and comparative analysis of electrical conductivity data. (A) Raw EC data from four dairy farms were temperature-
compensated to 25 °C using a temperature coefficient (α) of 2.83% °C−1. EC1 and EC2 represent the original and temperature-compensated 
conductivity values, respectively. (B) Distribution of temperature-compensated EC values for healthy and mastitic milk. While mastitic milk exhibited 
higher average conductivity compared to healthy milk, substantial overlap between distributions limits the reliability of EC as a standalone diagnostic 
indicator for mastitis.
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to 25 °C), α is the temperature coefficient, and T1 and T2 denote the 
sample and reference temperatures, respectively. The temperature 
coefficient (α) was determined to be  2.83% °C−1. This value was 
derived from a calibration experiment, wherein a raw milk sample was 
subjected to controlled temperature variations across a range from 
15 °C to 40 °C using a water bath. The electrical conductivity was 
measured in triplicate. A linear regression model was then fitted to the 
dataset, and the coefficient from this regression was adopted as α. 
While this coefficient was determined using a single milk sample, 
we acknowledge that inter-sample and inter-farm variations in milk 
composition could influence this coefficient, and future work should 
aim to establish a more generalized coefficient based on a larger and 
more diverse set of samples.

The EC values revealed distinct distributions between healthy 
milk and mastitic milk, as shown in Figure 2B. The results showed that 
the average conductivity of the mastitic milk was 7.03 mS/cm, which 
was significantly higher than that of healthy cows (5.04 mS/cm). 
However, although conductivity serves as a valuable indicator for 
mastitis, it manifests substantial limitations. The conductivity 
distributions of healthy and mastitic milk exhibits significant overlap, 
compromising its reliability as a standalone indicator for mastitis 
diagnosis. In practice, no clear threshold can reliably separate healthy 
and infected cases across diverse farm conditions. Moreover, milk 
conductivity demonstrates notable farm-to-farm variability and is 
influenced by multiple physiological and management factors 
unrelated to mastitis, such as milking frequency, dietary composition, 
and water consumption patterns. These findings highlight both the 
potential value and practical limitations of EC in mastitis detection, 
supporting the need for its integration with other indicators and 
advanced data-processing methods, such as machine learning, to 
enhance diagnostic accuracy.

Figure 3 illustrates the diagnostic characteristics of SCC, which 
demonstrated superior diagnostic performance compared to EC in 
distinguishing mastitic from healthy milk. Fluorescent microscope 
images of somatic cells in healthy milk and mastitic milk are shown in 
Figure 3A. Since a nucleic acid fluorescent dye staining both DNA and 
RNA was used, all somatic cells including lymphocytes, 
polymorphonuclear neutrophils (PMNs), macrophages and other cell 

types were effectively stained. The fluorescence microscope images 
clearly demonstrate a significantly higher somatic cell count in 
mastitic milk compared to healthy milk.

This visual distinction was validated in quantitative analysis, with 
Figure  3B showing the distribution of SCC data for healthy and 
mastitic milk, and SCC values spanning four orders of magnitude 
(104–107 cells/mL). Notably, the overlap in SCC data between healthy 
milk and mastitic milk is less pronounced than that in EC data, with 
only 4.3% of samples fell within the overlap range, a marked 
improvement over the 18.3% overlap of EC data. The results indicate 
that the classification method based on SCC can better distinguish 
between healthy and mastitic milk, and SCC was a more reliable and 
specific indicator of mastitis compared to EC.

With the EC and SCC data from different samples, binary 
classifications were performed using various classification models and 
different input features, including EC, SCC and their combination. 
The diagnostic performance of three classifiers (LR, SVM, FNN) was 
then characterized thoroughly. As shown in Figure  4, the ROC 
analysis provides a visual assessment of each model’s ability to 
distinguish between healthy and mastitic milk at different thresholds. 
Figures 4A–C show the ROC curves for LR, SVM, and FNN models, 
respectively.

Different models exhibit varying performance and sensitivity-
specificity trade-offs, suggesting that it is particularly important for 
farmers to choose the right model for their needs—whether to 
prioritize high sensitivity for early detection of mastitis, or high 
specificity to avoid false alarms. Notably, all models consistently 
showed higher AUC with SCC input compared to EC alone, further 
validating the reliability of SCC as a primary indicator in 
mastitis detection.

The performance metrics of different models (LR, SVM, FNN) 
and input features (EC, SCC, EC + SCC) were systematically analyzed 
and presented in Table 1. For comparison, performance indicators for 
classification using the SCC thresholds specified in the American 
National Standards (30) and recently reported models from literature 
(14, 17, 19, 32) are presented in the table. The results demonstrated 
that models utilizing SCC consistently outperformed those relying 
solely on EC. Interestingly, when SCC was used as an input feature, the 

FIGURE 3

Diagnostic value of somatic cell count for mastitis detection. (A) Fluorescent microscope images of somatic cells in healthy milk (upper) and mastitic 
milk (lower), stained with a nucleic acid-specific fluorescent dye. (B) Distribution of SCC data for healthy and mastitic milk, with less overlap compared 
to EC data. Statistical analysis confirmed that SCC as a more reliable and specific indicator of mastitis.
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addition of EC input feature did not improve the classification 
performance as expected, but instead, it led to slight decreases in most 
metrics, as shown in Table 1. This may be attributed to the variability 
and weaker discriminative power of EC, which introduced noise rather 
than complementary information to the SCC-based classification.

Among all evaluated models, SVM model performed best in terms 
of accuracy and sensitivity with the input of SCC feature, with an 
accuracy of 95.6% and a perfect sensitivity of 100%. The FNN with SCC 
input showed the highest AUC value (98.1%) by effectively capturing 
non-linear relationships in the data, indicating that the comprehensive 
performance of the classifier is better. These metrics not only surpassed 
those using the current SCC threshold of the US national standard, but 
also exceeded the results reported in other relevant literature for 
comparable models in recent years. Notably, utilizing SCC values from 
online sensors (32) resulted in a 54.0% sensitivity and 77.0% specificity 
for diagnosing mastitis. In contrast, by employing high-accuracy SCC 
measurements and optimized ML models, our approach achieved 
better performance with 97.8% sensitivity and 91.6% specificity. These 

results suggest that with accurate SCC data, ML-based models have the 
potential to deliver significantly improved diagnostic outcomes 
compared to currently deployed methods.

The results demonstrate distinct performance characteristics 
between SCC and EC as mastitis indicators, with important 
implications for practical implementation. SCC consistently 
outperformed EC in classification accuracy and diagnostic reliability 
across all tested models. This superiority stems from SCC’s direct 
correlation with mammary gland inflammation, compared to EC’s 
susceptibility to non-infectious factors. Particularly noteworthy was 
the SVM model’s perfect sensitivity (100%) with SCC input, making 
it ideal for detection, albeit with increased false positives that may 
necessitate additional confirmatory tests. In contrast, the FNN model 
showed more balanced performance (AUC = 0.96), suggesting its 
suitability for operations where false alarms carry significant economic 
consequences. These findings highlight that optimal model selection 
should consider farm-specific factors including herd size, mastitis 
prevalence, and available resources for follow-up testing.

FIGURE 4

ROC curves comparing diagnostic performance of different models using distinct input features (EC, SCC and their combination). (A) Logistic 
regression model. (B) Support vector machine model. (C) Feedforward neural network model.

TABLE 1  Performance evaluation and comparison of different models.

Model Input Accuracy Sensitivity Specificity AUC

LR EC 0.797 0.653 0.936 0.850

SCC 0.946 0.978 0.913 0.976

EC + SCC 0.936 0.978 0.896 0.973

SVM EC 0.797 0.631 0.960 0.843

SCC 0.956 1.000 0.913 0.952

EC + SCC 0.925 0.933 0.918 0.941

FNN EC 0.806 0.673 0.936 0.865

SCC 0.947 0.978 0.916 0.981

EC + SCC 0.925 0.911 0.936 0.941

Threshold = 750,000 cells/mL [30] SCC 0.914 0.870 0.957 –

kNN [14] EC, pH, etc. 0.946 0.870 – –

LDA [17] Milk yield, composition, etc. 0.797 0.524 0.909 –

SVM [19] Cow behavior 0.892 0.878 0.901 –

FNN [32] SCC – 0.540 0.770 –
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While SCC alone demonstrated superior diagnostic performance 
in this study, it is important to note that real-time, high-precision SCC 
measurement remains a technical challenge in many on-farm settings. 
In such cases, combining SCC with EC may enhance the model’s 
robustness by introducing complementary physiological information, 
particularly when SCC measurements are noisy, delayed, or 
intermittently unavailable. Notably, the combined input of EC and 
SCC yielded improved specificity in some models (e.g., SVM and 
FNN), which could be advantageous in reducing false positives in 
practical deployments. Therefore, multi-indicator fusion remains a 
valuable strategy, especially for scenarios where sensor limitations 
preclude consistent access to accurate SCC data.

The findings of this study underscore the necessity for advanced 
sensor technologies capable of accurately quantifying SCC. Although 
SCC measurements in this study were obtained under laboratory 
conditions, the findings provide valuable insights and benchmark 
references for the integration of accurate SCC data into automated 
detection systems. This work contributes to the ongoing development 
of reliable, AI-assisted diagnostic tools that can be embedded in future 
sensor platforms to improve mastitis management on modern 
dairy farms.

Moreover, the study demonstrates the adaptability of machine 
learning models, which can be tailored to various farm conditions and 
requirements to provide customized mastitis detection solutions. The 
classification of mastitis cases should be based on temporal urgency 
for intervention, rather than solely on their comparability to 
traditional non-sensor indicators of udder health.

However, it must be acknowledged that this study is an exploratory 
investigation with several limitations. First, the sample size was 
relatively small, with cows collected from a limited number of farms 
and from a single Holstein breed, which restricts the diversity of the 
dataset. Second, the classification relied solely on single timepoint 
samples based on veterinary clinical diagnosis, resulting in a cross-
sectional dataset that does not capture the dynamic progression of the 
disease. These factors constrain the generalization capability of the 
models. Future research is recommended to utilize more extensive 
datasets collected under field conditions to comprehensively assess the 
model’s performance and practical applicability.

In light of these observations, the development of an innovative 
sensor-based mastitis detection and management system appears both 
necessary and promising. Currently, our ongoing work focuses on the 
development of high-precision SCC sensor technologies, and the 
optimization of machine learning models for integration into future 
automated diagnostic workflows in the context of smart agriculture. 
This dual approach aims to further reduce subjective misdiagnosis 
while improving the detection accuracy and robustness of mastitis in 
dairy cows, ultimately enabling more proactive herd health management.

4 Conclusion

In conclusion, this study shows that the use of accurate and 
reliable time-specific SCC or EC data enables machine learning 
algorithms to effectively classify milk samples into healthy and 
clinical mastitis categories. Furthermore, by systematically 
comparing LR, SVM, and FNN using EC, SCC, and their 
combination as inputs, we  found that models based on SCC 
consistently outperformed those relying on EC. The SVM model 

achieved the highest accuracy (95.6%) and sensitivity (100%) with 
SCC as the primary input, while the FNN model delivered the best 
overall performance with an AUC of 0.981, highlighting its ability 
to capture complex patterns. These results underscore the value of 
SCC as a more reliable and specific indicator of mastitis, being less 
affected by non-infectious factors than EC.

Furthermore, although SCC alone yielded the best overall 
performance in this study, combining it with EC may still offer 
practical advantages in real-world applications where accurate real-
time SCC acquisition is challenging. The incorporation of EC can 
enhance model robustness and diagnostic stability, particularly in 
settings lacking high-precision SCC sensors or where SCC 
measurements are intermittently unreliable.

While these ML models show great promise, their practical 
application requires further development in two key areas. First, large-
scale validation across diverse herds and geographical regions will 
be essential to verify model robustness. Second, the development of 
high-precision SCC sensors integrated with edge computing-
optimized algorithms could enable widespread deployment in 
automated detection systems. Such technological advancements would 
facilitate timely interventions, improve herd health management, and 
ultimately enhance milk quality and farm profitability.
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