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Introduction: As an indigenous Chinese breed, Wuhuang pigs are valued for 
their stress resistance, tolerance to coarse feed, and high lean meat yield, while 
Berkshire pigs serve as ideal sires due to superior meat quality and early maturity. 
To explore the microbial basis of hybrid vigor in these breeds, we compared the 
gut microbiota of purebred Wuhuang pigs and Wuhuang–Berkshire hybrids.
Methods: Microbial composition was assessed via 16S rDNA sequencing, and 
predictive functional profiling was performed using PICRUSt2 analysis.
Results: Hybrids exhibited significantly increased microbial α-diversity and 
altered β-diversity. Notably, hybrid ceca were enriched with probiotic genera 
involved in fiber degradation and short-chain fatty acid (SCFA) production—such 
as Prevotella, Ruminococcus, Lachnospiraceae, and Roseburia—accompanied 
by a higher Firmicutes-to-Bacteroidetes ratio and strengthened microbial 
network connectivity. Predictive functional profiling further revealed significantly 
elevated activity in hybrid pigs for key metabolic pathways including tryptophan 
synthesis, pyridoxal salvage, and galacturonic acid metabolism (FDR < 0.05).
Discussion: These results imply that hybrid animals leverage enriched probiotic 
consortia to augment nutrient metabolism and immune function, thereby supporting 
improved stress resilience and feed efficiency. This study provides potential microbial 
targets for the future genetic improvement of indigenous pig breeds.
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1 Introduction

The Wuhuang pig is a large, late-maturing indigenous breed originating from Sichuan 
Province, China. Identified by its elongated snout, this breed exhibits strong adaptive traits 
typical of Chinese local pigs, including overall robustness—encompassing stress and disease 
resistance—along with tolerance to coarse-feed diets, high lean meat yield, and superior 
reproductive performance. Historically, Wuhuang pigs faced severe population declines due 
to the proliferation of commercial breeds, nearly leading to extinction. Notably, it was only 
officially rediscovered and confirmed as a distinct genetic resource during China’s Third 
National Survey of Livestock and Poultry Genetic Resources, marking a critical milestone in 
its conservation—a process documented as the “Wuhuang Pig Rebirth” (1).
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Recognizing its unique advantages, the Wuhuang pig has been the 
focus of ongoing efforts in systematic evaluation, conservation, and 
breeding utilization. Previous research has established its value 
through combining ability tests and crossbreeding programs, leading 
to breeding systems that leverage its maternal strengths—such as 
prolificacy, robustness, and high lean yield—within structured 
hybridization schemes.

While the role of the gut microbiome in shaping host phenotypes 
is well-established in swine production, extensive research has 
predominantly focused on Western commercial breeds (2). Studies on 
indigenous Chinese breeds are accumulating, yet they remain 
disproportionately centered on a few renowned breeds such as 
Meishan and Tibetan pigs (3). Within this context, a comprehensive, 
deep-sequencing analysis of the Wuhuang pig’s gut microbiome—a 
crucial mediator of its noted physiological resilience and metabolic 
efficiency—is still lacking, representing a significant knowledge gap 
given its distinct genetic background and valuable trait portfolio. 
Through the fermentation of indigestible polysaccharides, the gut 
microbiota produces short-chain fatty acids (SCFAs) that serve as 
crucial energy sources and signaling molecules, regulating key 
metabolic processes including energy homeostasis, lipid metabolism, 
and appetite (4–7). Additionally, microbial metabolites such as SCFAs 
and neurotransmitters mediate neuro-immune crosstalk along the 
gut-brain axis through direct interactions with immune cell (8–10). 
Concurrently, commensal microbes like Faecalibacterium and 
Roseburia species reinforce intestinal barrier integrity and maintain 
immune homeostasis via anti-inflammatory mechanisms, notably 
IL-10 induction and suppression of the NF-κB pathway (11, 12). 
Critically, these functional roles exhibit spatial compartmentalization 
along the gastrointestinal tract: The ileum—functioning as a site for 
terminal nutrient absorption and immune surveillance—is 
predominantly colonized by facultative anaerobes such as Lactobacillus 
and Streptococcus species, which metabolize residual substrates while 
strengthening mucosal defenses (13, 14). In contrast, the cecum 
operates as a specialized fermentation bioreactor dominated by strict 

anaerobes including Bacteroides, Prevotella, and Clostridia clusters, 
which drive fiber digestion (15).

To address the knowledge gap surrounding this indigenous breed, 
we present one of the first in-depth characterizations of the Wuhuang 
pig gut microbiota, with a focus on region-specific (ileum vs. cecum) 
community structure and functional potential using 16S rRNA gene 
profiling. This study not only provides foundational data on the 
microbial ecology of a conserved Chinese genetic resource but also 
advances strategies for exploiting its unique advantages in sustainable 
swine production.

2 Materials and methods

2.1 Sample collection and animal 
characteristics

In this study, we used six purebred Wuhuang castrated male pigs 
(barrows) and six crossbred castrated male pigs (with Wuhuang sows 
as the maternal line and Berkshire boars as the paternal line). All 
animals were raised in a commercial farm under the same controlled 
environmental conditions, including temperature, humidity, and 
feeding regimen, to ensure consistent growth conditions. All animals 
were raised in the same controlled-environment building on a 
commercial farm to ensure consistent growth conditions. The 
temperature was maintained at 22 ± 2 °C, and relative humidity was 
controlled at 65 ± 5%. Pigs were fed a standard corn-soybean meal-
based diet (formulated to contain 16% crude protein and 3,100 kcal/
kg digestible energy), with free access to water. All environmental and 
nutritional conditions were applied uniformly across both groups 
throughout the study period. All experimental procedures involving 
animals were approved by the Institutional Animal Welfare and Ethics 
Committee of Sichuan Agricultural University (Approval No. 
20240511) and were conducted in strict compliance with national 
guidelines and the ARRIVE guidelines 2.0. The slaughter procedure 

GRAPHICAL ABSTRACT

In this experiment, six purebred Wuhuang sows and six crossbred pigs (with purebred Wuhuang sows as the maternal parent and purebred Berkshire 
boars as the paternal parent) were selected. Samples of the contents from their ileum and cecum were collected. High-throughput sequencing on the 
Illumina platform was performed to generate metagenomic data, which was then used to construct differential microbial expression matrices. The 
results demonstrated that the abundance of probiotics in the intestines of the crossbred pigs was significantly higher than that in the purebred 
Wuhuang pigs.
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strictly adhered to humane slaughter standards and routine 
operational protocols to ensure animal welfare, sample integrity, and 
procedural standardization. The process was performed by certified 
personnel in a professional slaughterhouse to minimize distress. Six 
purebred Wuhuang pigs and six Wuhuang-Berkshire crossbred pigs 
(n = 6 per group) were slaughtered. All animals originated from a 
registered breeding farm and were confirmed as sexually mature, 
having reached standard slaughter weight. Prior to slaughter, pigs had 
free access to water and feed but were fasted for 24 h with water 
available ad libitum. Ileal and cecal content samples were collected 
within 10 min post-slaughter, immediately snap-frozen in liquid 
nitrogen, and stored at −80 °C.

2.2 16S rDNA sequencing of intestinal 
contents

Collected intestinal content samples were sent to Novogene Co., 
Ltd. (Beijing, China) for total genomic DNA extraction, DNA quality 
assessment, library preparation, and sequencing. The V3-V4 
hypervariable region of the bacterial 16S rRNA gene was amplified 
with primers 515F (5′-GTGYCAGCMGCCGCGGTAA-3′) and 806R 
(5′-GGACTACNVGGGTWTCTAAT-3′) and sequenced for each 
sample. Paired-end sequencing (2 × 250 bp) was performed on the 
Illumina NovaSeq 6,000 platform.

2.3 Bioinformatic analysis of 16S rDNA 
sequencing data

16S rDNA gene sequencing data were analyzed using QIIME 2 
(version 2022.8.3). Raw paired-end reads were imported via qiime 
tools import. Denoising, error correction, and chimera removal were 
performed with qiime dada2 denoise-paired --p-trunc-len-f 230 
--p-trunc-len-r 220, generating amplicon sequence variants (ASVs). 
Low-abundance features (frequency < 10) were filtered using qiime 
feature-table filter-features. A phylogenetic tree was constructed via 
qiime phylogeny align-to-tree-mafft-fasttree. Alpha diversity (Chao1, 
Shannon) and beta diversity (weighted UniFrac, Bray-Curtis) metrics 
were calculated using qiime diversity core-metrics-phylogenetic 
--p-sampling-depth 4,000. Taxonomic assignment to the genus level 
was performed with qiime feature-classifier classify-sklearn against 
the SILVA 138 reference database. ASVs were converted to Greengenes 
13_5 IDs using PICRUSt2_pipeline.py. Functional potential prediction 
was subsequently conducted using PICRUSt2 (version 2.5.2) with 
default parameters.

2.4 Downstream statistical and visual 
analyses

Following functional prediction, downstream statistical analyses 
and visualizations were performed in R (version 4.3.1). Microbial 
taxonomic biomarkers were identified using LEfSe (Linear 
Discriminant Analysis Effect Size) analysis implemented via the 
microbiomeMarker package (version 1.8.0). Features with an LDA 
score > 3.0 and a significance threshold of p < 0.05 (Kruskal-Wallis 
test) were considered discriminative. The LEfSe results were visualized 

as bar plots depicting LDA scores and cladograms illustrating 
phylogenetic distributions of significant features across groups. 
Phylum-level taxonomic composition was analyzed by aggregating 
SILVA-classified ASVs, with the top 20 most abundant phyla visualized 
as stacked bar plots using ggplot2 (version 3.4.2). For genus-level 
analysis, a hierarchically clustered heatmap (Euclidean distance, Ward.
D2 linkage) of relative abundances was generated using the pheatmap 
package (version 1.0.12). Co-occurrence networks for genera shared 
among groups ZC (purebred ileum), CC (purebred cecum), ZI (hybrid 
ileum), and CI (hybrid cecum) were constructed with SpiecEasi 
(version 1.1.5), retaining edges with Spearman |p| > 0.6 and a 
significance cutoff of p < 0.001 (FDR-corrected), and visualized using 
igraph (version 1.5.1). KEGG pathway enrichment was assessed at 
Levels 1 and 2; significantly enriched pathways were visualized as a 
heatmap (pheatmap). Differential metabolic pathway analysis for 
specific comparisons—CC vs. CI, ZC vs. ZI, CC vs. CI (validation), 
and CC vs. ZC—was performed using DESeq2 (version 1.40.2) with 
a negative binomial model. Log₂ fold changes were estimated using 
the apeglm shrinkage estimator to improve the accuracy and reliability 
of effect sizes. Differential abundance was assessed using an 
FDR-adjusted p < 0.05.

3 Results

3.1 Overview of trait statistics and data 
quality

According to measurements of body weight and dimensions, adult 
Wuhuang pigs demonstrate significantly lower body weight and 
smaller physique compared to Wuhuang-Berkshire Hybrid Pigs, 
highlighting a considerable contrast between these two breeds 
(Figures 1A–F). To investigate whether the phenotypic differences are 
associated with variations in the intestinal microbiota characteristics 
of the ileum and cecum, 16S rDNA sequencing was performed on the 
ileal and cecal contents of the two pig breeds. The rank-abundance 
curve (Figure 2A) delineates species distribution hierarchies across 
experimental groups (CC, CI, ZC, ZI), revealing community structure 
through logarithmic relative abundance patterns (10−1–10−5) where 
curve architecture identifies dominant taxa while the extended tail 
signifies rare biosphere contributions, with annotated diversity indices 
quantifying heterogeneity. Complementing this, the species 
accumulation curve (Figure 2B) demonstrates asymptotic saturation 
of observed species richness with increasing sampling effort, where 
plateau formation validates sampling adequacy by indicating 
diminishing returns in new species discovery. Concurrently, the 
Shannon diversity progression (Figure  2C) tracks α-diversity 
stabilization across sequencing depths (0-500 k reads), with sample-
specific trajectories transitioning from nonlinear increases to plateaus 
that confirm sufficient sequencing depth for reliable diversity 
quantification, as the Shannon index integrates both species richness 
and evenness. Collectively, these orthogonal analyses establish 
methodological rigor: the rank-abundance curve characterizes 
fundamental community organization, the accumulation curve 
verifies comprehensive species capture, and the depth-dependent 
diversity profiles ensure robust measurement validity, thereby 
providing integrated quality assessment for subsequent comparative 
ecological analyses of microbial community dynamics.
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3.2 Significant differences in cecal 
microbiota diversity between purebred 
Wuhuang and Wuhuang-Berkshire hybrid 
pigs

Alpha diversity analysis revealed no significant differences in 
the Chao1 Index (Figure 3A) and Observed Features (Figure 3B) 
between the two groups, with p-values of 0.13 and 0.13 respectively, 
suggesting similar species richness. However, Faith’s PD (Figure 3C) 
indicated a trend toward higher phylogenetic diversity in the 
Purebred group (p = 0.81), though not statistically significant. 
Further, Shannon Entropy (Figure  3D) and Simpson Index 
(Figure  3E) showed greater diversity in the Purebred group 
(p = 0.17 and p = 0.17 respectively), highlighting differences in 
community evenness. Beta diversity analysis via Bray-Curtis PCoA 
(Figure  3F) demonstrated distinct clustering patterns, with 
significant separation between the groups, underscoring differences 
in microbial community structure. Collectively, these results 
indicate that while species richness was comparable, the Purebred 
Wuhuang group exhibited greater diversity and evenness, alongside 

distinct microbial community composition compared to the Hybrid 
group, particularly within the cecal microbiota.

3.3 Significant differences in ileal 
microbiota diversity between purebred 
Wuhuang and Wuhuang-Berkshire hybrid 
pigs

Similar analyses were conducted on the ileal microbiota. Alpha 
diversity metrics, including the Chao1 Index, Observed Features, 
Faith’s PD, Shannon Entropy, and Simpson Index, revealed comparable 
species richness between the two groups, with no significant 
differences in Chao1 Index (p = 1) and Observed Features (p = 1) 
(Figures  4A–C). However, the Shannon Entropy (p = 0.58) and 
Simpson Index (p = 0.17) indicated greater diversity and evenness in 
the Purebred Wuhuang group (Figures 4D,E). Beta diversity analysis 
through Bray-Curtis PCoA also demonstrated distinct clustering and 
significant separation between the groups, reflecting differences in 
microbial community structure (Figure  4F). Collectively, these 

FIGURE 1

(A) Live weight, (B) Half-carcass weight, (C) Carcass straight length, (D) Carcass oblique length, (E) Whole-body weight, (F) Body length. Data represent 
mean ± SEM (n = 6). Statistical significance denoted by *p < 0.05, **p < 0.01, ***p < 0.001 (two-tailed t-test). WHZ hybrids demonstrate significantly 
enhanced growth metrics and carcass yields compared to WHC purebreds, particularly in weight-related parameters (A,B,E) and dimensional traits 
(C,D,F), indicating heterosis effects on economically important production characteristics.
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findings suggest that the Purebred Wuhuang pigs exhibit a more 
diverse and even ileal microbiota compared to the Hybrid group, 
consistent with the cecal microbiota analysis.

3.4 Integrated analysis of cecal microbiota 
composition and functional biomarkers

The cecal microbiota exhibited significant compositional 
divergence between purebred Wuhuang and Wuhuang-Berkshire 
hybrid pigs, with core microbiome analysis revealing 139 shared 
OTUs alongside 23 and 59 unique operational taxonomic units in CC 
and ZC, respectively, (Figure 5A), indicating substantial breed-specific 

microbial signatures. Taxonomic profiling demonstrated Firmicutes 
and Bacteroidetes dominance at the phylum level (Figure 5B), though 
ZC displayed a 1.8-fold higher Firmicutes-to-Bacteroidetes ratio 
driven primarily by enriched Lactobacillaceae populations. At genus 
resolution (Figure 5C), ZC harbored significantly elevated proportions 
of butyrate-producing Megasphaera and starch-metabolizing 
Prevotella_9, while CC showed exclusive enrichment of cellulose-
degrading Ruminococcaceae_UCG-005. The genus-level analysis also 
revealed that ZC had significantly higher relative abundance of 
Megasphaera and Prevotella_9, which are associated with butyrate 
production and starch metabolism respectively, while CC showed 
exclusive enrichment of Ruminococcaceae_UCG-005, which is linked 
to cellulose degradation. LEfSe biomarker analysis (Figure  5G) 

FIGURE 3

Alpha and beta diversity analysis of cecal microbiota in purebred Wuhuang vs. Wuhuang-Berkshire hybrid pigs. (A-E) Alpha diversity indices: Chao1 
Index, Observed Features, Faith’s PD, Shannon Entropy, and Simpson Index. (F) Principal Coordinates Analysis (PCoA) of beta diversity based on Bray–
Curtis dissimilarity (T-test, p < 0.001). Ellipses represent 99% confidence intervals.

FIGURE 2

(A) Rank-abundance curve: The x-axis represents the species rank (ordered by decreasing relative abundance), and the y-axis shows the relative 
abundance on a logarithmic scale. (B) Species accumulation curve: This panel displays the species accumulation curve, indicating the number of 
observed species as a function of the number of samples. The x-axis denotes the number of samples, while the y-axis represents the count of 
observed species. (C) Shannon diversity index curve: This panel presents the Shannon diversity index plotted against sequencing depth. The x-axis 
shows the sequencing depth, and the y-axis indicates the Shannon index value.
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FIGURE 4

Alpha and beta diversity analysis of ileal microbiota in purebred Wuhuang vs. Wuhuang-Berkshire hybrid pigs. (A-E) Alpha diversity indices: Chao1 
Index, Observed Features, Faith’s PD, Shannon Entropy, and Simpson Index. (F) Principal Coordinates Analysis (PCoA) of beta diversity based on Bray–
Curtis dissimilarity (T-test, p < 0.001). Ellipses represent 99% confidence intervals.

FIGURE 5

(A) Core microbiome Venn diagram comparing purebred (CC) and hybrid (CI) cecal communities. (B) Phylum-level taxonomic distribution showing 
dominant bacterial lineages. (C) Genus-level composition of the top 20 taxa, highlighting differential abundance patterns. (D) Shared and unique OTUs 
between purebred (ZC) and hybrid (ZI) ileal microbiomes. (E) Phylum-level community structure in ileal niches. (F) Genus-resolution taxonomic profile 
of predominant ileal microorganisms. (G) LEfSe biomarker identification: Significantly enriched taxa between intestinal sites (LDA score > 3.0, p < 0.05) 
visualized through bar plot (left) and cladogram (right), with Lakkoeff test kit validation confirming metabolic functional differences. Group 
designations: CC, purebred cecum; CI, hybrid cecum; ZC, purebred ileum; ZI, hybrid ileum.
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identified distinct microbial taxa as biomarkers across different 
groups. The analysis showed that certain taxa were enriched in specific 
groups, with some displaying higher LDA scores. For instance, taxa 
such as c_Clostridia, p_Firmicutes, and g_Terrisporobacter were 
enriched in the CC group, while o_Bacteroidales, p_Bacteroidota, and 
f_Prevotellaceae were enriched in the ZC group. These results highlight 
the differences in microbial composition between the groups.

3.5 Comparative analysis of ileal microbiota 
composition and biomarkers

Ileal microbial communities demonstrated pronounced structural 
and functional distinctions between purebred and hybrid pigs, 
beginning with core microbiome analysis that identified 146 
conserved OTUs while revealing 25 and 81 unique operational 
taxonomic units in CI and ZI, respectively, (Figure 5D), indicating 
greater microbial niche specialization in the hybrid ileum. Taxonomic 
stratification revealed Proteobacteria dominance in both groups 
(Figure 5E), but ZI exhibited a 2.3-fold enrichment in Actinobacteria 
concomitant with reduced Bacteroidetes prevalence. At genus 
resolution (Figure 5F), ZI harbored significantly elevated Lactobacillus 
populations and Streptococcus proportions, whereas CI maintained 
higher Clostridium_sensu_stricto_1 abundance. LEfSe biomarker 
mapping (Figure 5G) confirmed Lactobacillus and Bifidobacterium as 
signature ZI taxa (LDA > 4.2).

Comparative analysis at the genus level revealed significant 
enrichment of putative probiotic taxa—including Muribaculaceae, 
Pyramidobacter, Prevotella, Rikenellaceae_RC9_gut_group, Roseburia, 
Ruminococcus, Bacteroidales_RF16_group, Eubacterium_siraeum_
group, Lachnospiraceae_NK4B4_group and among others (16–20)—
in the cecum of hybrid pigs compared to purebred Wuhuang pigs.

3.6 Functional and ecological dynamics in 
cecal microbiota

The cecal functional landscape revealed fundamental metabolic 
distinctions between genotypes. KEGG pathway analysis at level 2 
(Figure 6A) demonstrated significant enrichment of carbohydrate 
metabolism pathways in hybrid pigs (ZC). Metabolic reconstruction 
(Figure  6C) identified distinct pathway abundance profiles, with 
hybrid pigs (ZC) exhibiting enhanced representation of pyridine 
nucleotide salvage pathways (PYRIDNUCSAL-PWY) and 
galacturonate catabolism (GALACTUROCAT-PWY), while 
purebreds (CC) showed predominant expression of tryptophan 
biosynthesis (TRPSYN-PWY) and colanic acid building blocks 
biosynthesis (COLANSYN-PWY). Ecological network analysis 
(Figure 6F) revealed distinct topological organizations in the cecal 
microbiota, with hybrid pigs (ZC) exhibiting a modular architecture 
centered on Prevotella as a primary hub, demonstrating strong 
co-occurrence linkages with Prevotellaceae_UCG_001 and 
Lachnospiraceae_NK4A126. This core consortium showed 
complementary functional associations with Roseburia and 
Anaerovibrio, forming a putative polysaccharide-degrading guild. 
Conversely, purebreds (CC) displayed Bacteroides-centric clustering 
with Parabacteroides and Rikenellaceae_RC9_gut, indicative of 
protein-centric metabolic strategies.

3.7 Ileal functional adaptations and host 
phenotype integration

Ileal functional profiling revealed compartment-specific 
adaptations in metabolic priorities, where hybrid pigs (ZI) exhibited 
significant enrichment in carbohydrate metabolism and lipid 
metabolism pathways (Figure 6B), contrasting with purebred (CI) 
dominance of amino acid metabolism and drug resistance pathways. 
This metabolic divergence was particularly evident in the enhanced 
representation of glycan biosynthesis and energy metabolism modules 
in hybrids, while purebreds showed preferential expression of 
nucleotide metabolism and xenobiotics biodegradation pathways. 
Metabolic pathway analysis (Figure  6D) identified distinct ileal 
functional profiles, with hybrid pigs (ZI) exhibiting enhanced 
representation of fucose and rhamnose degradation pathways 
(FUCCAT-PWY and P562-PWY), alongside polyamine biosynthesis 
modules (PWV-7196 and PWV-7184). Conversely, purebreds (CI) 
showed predominant expression of aromatic compound degradation 
pathways (PWY-6151 and PWY-7228) and cofactor salvage systems 
(PWY0-162). Phenotype-microbiota integration (Figure 6E) revealed 
significant correlations across various microbial taxa and host traits. 
Notably, ileal Lactobacillus abundance showed a strong positive 
correlation with slaughter rate, while Bifidobacterium levels were 
significantly associated with body length. Additionally, several other 
microbial taxa exhibited significant correlations with different host 
phenotypic traits, indicating a complex interplay between the gut 
microbiota and host characteristics. Co-occurrence networks 
(Figure 6G) revealed distinct architectural differences, with hybrids 
exhibiting simplified networks characterized by Lactobacillus-
Streptococcus mutualism and a reduced average path length. These 
features suggest enhanced metabolic efficiency, potentially facilitating 
nutrient absorption. This is supported by positive correlations between 
network density and weight gain metrics, indicating that the 
streamlined network architecture in hybrids may contribute to 
improved growth performance.

4 Discussion

The Wuhuang pig, an indigenous Chinese breed, exhibits robust 
stress resistance and remarkable tolerance to coarse-feed diets. 
Compared to purebred Wuhuang pigs, Wuhuang-Berkshire hybrids 
(with Berkshire sires and Wuhuang dams) demonstrate enhanced 
environmental adaptability and higher lean meat yield (21). Our 
comparative analysis of ileal and cecal microbiota reveals significant 
hybridization effects on gut microbial architecture and metabolic 
potential, with hybrids exhibiting elevated α-diversity and restructured 
β-diversity in both intestinal segments—particularly pronounced in 
the cecum. These findings align with the well-documented heterosis 
phenomenon in swine crossbreeding (22), wherein enhanced host 
genetic diversity (e.g., MHC polymorphism) remodels gut ecosystems 
through immune-microbe crosstalk (23). The enrichment of fiber-
degrading genera like Prevotella and Roseburia in hybrid ceca (24) 
provides a microbiological basis for improved fiber utilization, while 
proliferation of probiotics including Muribaculaceae and 
Lachnospiraceae underpins intestinal homeostasis through butyrate-
mediated barrier fortification (25) and Prevotella-driven Th17/Treg 
balance regulation (26). Notably, the altered Firmicutes/Bacteroidetes 
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ratio in hybrid cecum resonates with Backhed’s “energy harvest” 
theory (27), potentially explaining superior feed conversion efficiency 
via increased SCFA production. Conversely, abnormal Cyanobacteria 
enrichment in purebred ileum—reported in stressed swine (28)—may 
indicate heightened environmental sensitivity.

We confirm distinct metabolic compartmentalization along the 
gut: the ileum (primary nutrient absorption site) shows enhanced 
tryptophan biosynthesis (TRPSYN-PWY) and galacturonate 
metabolism (GALACTUROCAT-PWY) in hybrids, aligning with its 
facultative anaerobe-dominated microbiota. Tryptophan metabolites 
like kynurenine activate aryl hydrocarbon receptor (AhR) pathways 
to regulate gut immunity (29), potentially boosting disease resistance 
(30). Meanwhile, the cecum (fiber fermentation hub) exhibits 
upregulated collagen biosynthesis (COLANSYN-PWY) in purebreds, 
indicating heightened mucosal repair demands consistent with lower 
α-diversity—a functional specialization echoing Deschasaux’s “gut 
microbial biogeography” concept (31). Co-occurrence networks 
further revealed Prevotella and Lachnospiraceae as highly connected 

hubs in hybrids versus peripherally positioned Epulopiscium, 
suggesting enhanced ecological stability (32) that may confer 
resilience to environmental perturbations. The Berkshire genetic 
contribution likely influences microbiota through early-maturity traits 
modulating insulin-like growth factors (33) and intramuscular 
fat-associated genes (e.g., FABP4) altering bile acid profiles (34).

Functional profiling via KEGG pathway enrichment revealed a 
predominance of core metabolic processes within the porcine gut 
microbiome, most notably Carbohydrate Metabolism, Amino Acid 
Metabolism, and Energy Metabolism, reflecting the microbial 
community’s fundamental role in energy harvesting and nutrient 
assimilation. Concurrently, significant enrichment was observed for 
pathways governing microbial cellular maintenance and environmental 
adaptation, including Genetic Information Processing (Replication 
and repair, Transcription, Translation), Cellular Processes (Transport 
and catabolism, Folding/sorting/degradation), and Biosynthesis of 
Glycans, Vitamins, Cofactors, Terpenoids and Polyketides. The 
prominence of Membrane Transport and Signal Transduction 

FIGURE 6

(A) KEGG pathway heatmap of cecal microbiota functions in purebred (CC) vs. hybrid (ZC) pigs. (B) KEGG pathway heatmap of ileal microbiota 
functions in purebred (CI) vs. hybrid (ZI) pigs. (C) Metabolic pathway enrichment analysis of cecal microbiota (ZC vs. CC). (D) Metabolic pathway 
enrichment analysis of ileal microbiota (ZI vs. CI). (E) Spearman correlation matrix between microbial genera and growth/carcass traits: weight, body 
length, carcass straight length, carcass oblique length, body weight, half body weight, slaughter rate. (F) Cecal microbial co-occurrence network 
topology. (G) Ileal microbial co-occurrence network architecture.
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pathways underscores sophisticated mechanisms for environmental 
sensing and substrate acquisition essential for microbial survival in the 
dynamic intestinal niche. Critically, pathways implicated in host–
microbe interactions were robustly represented, encompassing 
Signaling Molecules and Interaction, Immune System functions, and 
multiple Infectious Disease modules (bacterial, viral, parasitic), 
indicating active microbiota-host dialogue influencing immunity and 
barrier homeostasis. The co-enrichment of Xenobiotics Biodegradation 
and Metabolism with Drug Resistance pathways (antimicrobial and 
antineoplastic) further suggests adaptive detoxification capabilities, 
potentially responsive to dietary or xenobiotic challenges. The 
detection of Global and Overview Maps—which represent integrated 
metabolic networks—confirms system-level coordination of these 
processes, collectively depicting a functionally synergistic microbiome 
optimized for nutrient metabolism, environmental resilience, and host 
crosstalk within the porcine gastrointestinal ecosystem.

5 Conclusion

This study revealed that hybrid pigs exhibit an altered gut 
microbiota structure with probiotic enrichment and enhanced 
metabolic functions—including amino acid, vitamin, and 
carbohydrate metabolism—which collectively contribute to improved 
nutrient utilization, immune modulation, and stress resistance. These 
findings elucidate key microbial mechanisms underlying hybrid 
advantages in swine. However, the inferred metabolic functions 
require further validation via metagenomic or metabolomic 
approaches. Future work will focus on causal validation of these 
microbial functions and their application in optimizing feed efficiency 
and health in pig breeding.
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