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Introduction: Risk assessment (RA) frameworks are increasingly being applied
to improve the welfare of farmed animals. These frameworks have at their
core, a logic chain linking welfare hazards (risks) with one or more welfare
consequences which, in turn, are each measured by one or more welfare
indicators. Effective and efficient monitoring of animal welfare often involves
the selection of a subset of indicators from a large pool. Selecting ‘iceberg
indicators’ could be advantageous due to their association with multiple welfare
consequences. However, no standardised, data-driven method exists to select
optimal combinations under practical constraints. This study addresses this gap
by creating an algorithmic approach to optimise indicator selection.

Methods: The work was conducted in six phases: (1) construction of a structured
database of welfare indicators; (2) a proof-of-concept study; (3) design of a
greedy selection algorithm; (4) enhancement of the algorithm using branch-
and-bound and backtracking methods; (5) performance and sensitivity testing,
and (6) creation of two case studies. A dataset of 382 animal welfare indicators
across seven farm species was compiled from scientific opinions published by
the European Food Safety Authority (EFSA) and from other published literature.
The EFSA scientific opinions contain data acquired through a rigorous process
of literature reviews and expert elicitation and consensus panels to link welfare
indicators with their associated welfare hazards and welfare consequences. To
enable algorithm development, the Coverage of each welfare indicator was
first determined by calculating the number of unique welfare consequences
to which it was linked. Metadata such as the Impact of welfare consequence
[Low (1) or High (2)], Ease of hazard mitigation [Easy (1), Moderate (2) or
Difficult (3)], and Ease of indicator use [Easy (1), Moderate (2) or Difficult (3)] was
generated through an expert elicitation process. These data were standardised
using max—min normalisation across all criteria, and an objective function was
defined which enabled indicator subset selection according to various user-
defined criteria. Optimisation was performed using both a greedy algorithm
and an enhanced algorithm incorporating backtracking and branch-and-
bound solvers. Algorithm performance and robustness were evaluated through
sensitivity analyses, scenario testing, and computational benchmarking.
Results: The greedy algorithm offered computational efficiency but incorporated
suboptimal plateaus in Coverage as additional indicators were combined. The
enhanced algorithm identified globally optimal combinations within 0.2 s for
all species, regardless of problem size. In a broiler chicken case study, the
enhanced algorithm removed indicators that were moderately difficult to use. A
pig case study showed that the enhanced algorithm combined the same welfare
indicators as the greedy algorithm but validated the added value of multi-criteria
scoring by identifying high-impact, easy-to-implement indicators suitable for
welfare certification.
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Discussion: The enhanced algorithm was able to move beyond the selection
of iceberg indicators, by incorporating multiple selection criteria to inform
welfare indicator choice. The enhanced algorithm is data-agnostic and enables
users to optimise indicator selection with diverse datasets spanning research,
industry, and policy contexts. Its flexibility supports the development of tailored
applications for different stakeholders. Future work should explore processes
to determine weighting values, scenario testing, robustness, and stakeholder
engagement to maximise both relevance and practicality.

KEYWORDS

animal welfare, iceberg indicators, MCDA, optimisation, welfare assessment, welfare
indicator, welfare risk assessment

1 Introduction

The measurement of farm animal welfare has gained substantial
prominence in research, policy and practical applications related to
animal care and management. Historically, welfare has been assessed
according to the housing and resources that were provided for animals
(input- or resource-based measures, e.g., the size of an animal
enclosure) (1). However, over time, the focus has shifted to outcome-
or animal-based measures (e.g., lameness) because welfare is a
characteristic of the individual animal, not just the system in which
animals are kept (2). Furthermore, there has also been recognition
that management inputs (animal care) profoundly influence the level
of welfare achieved (3). Besides biological functioning and a focus on
resources, welfare assessments now also increasingly include welfare
outcomes in terms of animals experiences (i.e., their affective
states) (4).

Farm animal welfare is not only the responsibility of the
farmers who manage their day-to-day care. For example,
veterinarians collaborate with farmers to safeguard animal health
and welfare. Industry bodies and levy-funded organisations work
to promote animal welfare in their sectors. Third-party certification
schemes and animal welfare labels often necessitate additional
inspections that provide confidence to food businesses (processors,
retailers, restaurants and bars) and citizens (5). Investors and banks
both seek to ensure that standards of animal welfare do not pose
financial risks (6). Policy makers and national competent
authorities create and enforce legal frameworks for the protection
of animals (7). Despite their differing priorities, all these
stakeholders need objective and quantifiable indicators to monitor
the welfare of animals across diverse agricultural
production systems.

The European Union (EU) uses scientific and technical evidence
as a foundation for its legislation and policies on animal welfare (as a
component of feed and food safety). The European Commission has
mandated the European Food Safety Authority (EFSA) to provide this
scientific support. EFSA has developed a Risk Assessment (RA)
framework for animal welfare to facilitate effective, evidence-based
policy making. This framework includes several steps, namely hazard
identification, hazard characterisation, exposure assessment and risk
characterisation for a specified housing system, and is broadly based
on the methodology already established in human and animal health
(8). The RA framework has at its core, a logic chain linking welfare
hazards (risks) with one or more welfare consequences which, in turn,

are each measured by one or more welfare indicators (9, 10).
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A welfare hazard is an exposure variable causing a risk to animal
welfare. A welfare consequence is a consequence of a welfare hazard
and impairs the welfare of the animals. Welfare indicators are
observations and measures made during a welfare assessment.

The EFSA panel on Animal Health and Welfare (AHAW) has
published numerous scientific opinions which apply the RA
framework (11). Each scientific opinion was written by a suitably
qualified team of experts which acquired data using a rigorous and
systematic approach. This approach involves reviewing published
literature, conducting expert elicitation processes and discussion
through consensus groups. The most recent scientific opinions include
recommendations on which welfare indicators can be used to measure
the welfare of the main farmed animal species.

Given the extensive range of potential animal welfare indicators,
choosing the most appropriate ones to address specific assessment
objectives can be challenging. This choice is further complicated by
the existence of different scoring systems and weighting of welfare
indicators across systems/protocols. Therefore, the selection process
must carefully consider numerous factors such as the validity of the
indicators in reflecting actual animal welfare, their reliability and
consistency across differing contexts, the feasibility of measurement
across practical scenarios, and the associated resource and cost
implications (12). From a practical point of view, a comprehensive,
on-farm multi-criteria welfare assessment can also take a significant
amount of time (13). Therefore, it could also be beneficial to create a
decision support tool that reduces the number of animal welfare
indicators to be measured without losing valuable information on
animal welfare.

This concept of iceberg indicators was first defined as: “key welfare
indicators that can reflect, or are closely correlated with, a range of other
welfare indicators” (14). An iceberg indicator provides an overall
assessment of welfare, just as the protruding tip of an iceberg signals
its submerged bulk beneath the water’s surface (ibid.). FAWC used the
presence of an intact pig tail at slaughter as a simple example. The
intact tail indicates the absence of both tail docking and tail biting.
This can be taken to infer that the animal’s husbandry and
management were managed to a sufficient level to avoid tail biting.

The definition of what constitutes an iceberg indicator in the
context of the EFSA risk-based framework is stated in the latest
scientific opinions from the AHAW panel. For example, the scientific
opinion on broiler welfare stated: “Some of the ABMs are relevant to
more than one welfare consequence (iceberg indicators) and can be used
for general welfare screening purposes, often used to get an impression
of the welfare status of a flock” (15). The scientific opinion on laying
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hen welfare stated: “Animal-based measures that are relevant to more
than one welfare consequence are referred to as ‘iceberg indicators™ (16).
The opinion on pig welfare stated: “The animal-based measures that
help to identify more than one welfare consequence are preferred. These
indicators are commonly referred to as ‘iceberg indicators” (10).

These definitions highlight the important question of how closely
different welfare indicators are correlated. In the development of a
decision support tool, it is essential to visualise how welfare measures
interact, particularly the connections between animal-based indicators
and the environmental factors that influence them (12). Knowledge of
such interactions could facilitate the identification of the optimum
combination of measures. For example, if a large set of indicators
possesses overlapping information (such as related welfare hazards or
welfare consequences), it may be possible to identify a smaller set of
measures that have the same explanatory power. The RA framework
for animal welfare presents an ideal basis on which to analyse and
visualise the interactions between welfare hazards, welfare
consequences and welfare indicators.

This study used an existing database that collated welfare
measurement data from multiple sources, including several EFSA
scientific opinions on the welfare of farmed animals. The database
included a list of welfare indicators and the associated welfare hazards
and welfare consequences. In the present paper, these data were
further enriched with categorical metadata on dimensions such as the
Impact of welfare consequences, Ease of hazard mitigation, and Ease of
indicator use.

The database was used to develop algorithms and compare
methods of discovering optimal combinations of welfare indicators
while maintaining the link with related hazards and consequences.
The objective of the work was to enable users to select combinations
of welfare indicators, subject to user-defined constraints/inputs, that
meet specific criteria such as reflecting multiple welfare consequences,
being easy to deploy, and having the potential to mitigate the most
severe impacts of certain welfare hazards.

2 Materials and methods

The research detailed in this paper was conducted in six phases:
(1) database building, (2) a proof-of-concept study, (3) development
of a greedy algorithm, (4) enhancement of the greedy algorithm using
backtracking and branch-and-bound methods and (5) assessment of
algorithm functionality and (6) generation of case studies to illustrate
how the algorithms could be used in practice. The following sections
provide further details on the methodology followed in each phase.

2.1 Database building

In 2022, MatPrat (the Norwegian Egg and Meat Council)
catalogued the indicators that are available to measure the welfare of
selected food-producing animals in Norwegian systems of production
(Table 1). The project aimed to gain insights to focus animal welfare
activities, for example, to use in dialogue with the Norwegian industry.

The main welfare hazards for each species within each housing
system were collated through scientific literature reviews. In the case
of the EFSA scientific opinions, these welfare hazards were often
explicitly listed and could be transcribed directly. For the other

Frontiers in Veterinary Science

10.3389/fvets.2025.1661470

TABLE 1 A description of the species and systems of production
represented in the test dataset.

Species Class (e.g., system of production /
life-stage)
Pigs Meat pigs

Pregnant sows - Groups

Lactating sows - Pens

Unweaned piglets

Boars

Broiler chickens Indoor (with or without veranda)

Laying hens Laying hens - Aviaries
Laying hens - Aviaries and free range
Dairy cattle Tie stalls
Cubicles
Dairy calves All
Beef cattle Adults - Cubicles
Adults - Tie stalls
Beef calves
Beef bulls
Sheep Adults - Outside year-round

Lambs from outside year-round

Adults - Outside/winter housed

Lambs from winter housed

For most species, there was more than one class (system of production or life-stage).

sources, these data were extracted through detailed review of the
published article. The resulting welfare hazards were then linked to
both welfare consequences and welfare indicators. In the case of the
EFSA scientific opinions, again, these linkages were often explicitly
specified. For the other sources, the linkages were made by two or
more welfare experts in the project team. Most data were extracted
from a series of EFSA reports (published from 2007 to 2012, and the
updated reports from 2022 to 2023) which described the welfare
aspects for the main European categories of farmed animals and
housing systems. The main data sources are summarised below:

o Dairy cattle (17-29)

o Pigs (10, 27,29-32)

o Beef cattle (17-22, 26-29, 33-36)
o Sheep (27, 29, 37, 38)

« Broiler chickens (15, 29, 33, 39)
Laying hens (16, 29)

The database was then supplemented with metadata generated
through an elicitation process involving five farm animal welfare
experts. This required rating the Impact of welfare consequence (Low
or High), Ease of hazard mitigation (Easy, Moderate or Difficult), and
Ease of indicator use (Easy, Moderate or Difficult). Where the expert
ratings differed, a consensus approach was used to determine the
final rating.

As an example, high stocking density was identified as a welfare
hazard for growing/finishing pigs. In the database, this welfare hazard
was associated with three unique welfare consequences (soft tissue
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lesions and integument damage; general disruption of behavior, and
resting problems). These welfare consequences were associated with
eight welfare indicators (body lesions; calluses and bursitis (pressure
injuries); ear lesions; impaired social behavior; leg injuries; pig
cleanliness; restlessness, and tail lesions). Soft tissue lesions and
integument damage was rated as a welfare consequence that has a
‘High’ impact. High stocking density was rated as a hazard that is
‘Easy’ to mitigate, and tail lesions was rated as a welfare indicator that
is ‘Easy’ to use.

2.2 Proof-of-concept study and data
preparation

2.2.1 Proof-of-concept study

Before proceeding to the creation of the two algorithms, a proof-
of-concept study was conducted. This involved exploring the effect of
different combinations of indicators on the number of linked welfare
consequences. The number of unique combinations of indicators
increases exponentially as more indicators are combined, therefore,
the approach was validated using a subset of six indicators for broiler
chickens and six for laying hens.

The six indicators for each species were selected from the top of a
list that was ranked by the number of unique associated welfare
consequences. This ranked list was obtained by creating a pivot table
in Microsoft Excel of the number of unique (i.e., deduplicated) welfare
consequences linked to each indicator. First, the maximal number of
unique welfare consequences associated with a combination of all six
indicators was calculated (i.e., the target). Then, to identify the
simplest (smallest) subset of indicators that were associated with the
maximal number of welfare consequences, the number of welfare
consequences that were associated with each unique combination of
indicators [n = (2°-1) = 63] was determined, again, by creating a pivot
table in Microsoft Excel.

2.2.2 Algorithm development

Following the proof-of-concept study, two types of algorithms
were created: (a) A simple greedy algorithm, which is a method to
combine indicators based purely on one or more dimensions, such as
the number of associated welfare consequences (e.g., selecting the best
iceberg indicators first), and (b) An enhancement of the greedy
algorithm using multi-criteria decision analysis (MCDA) involving
backtracking (a systematic way of exploring all combinations of
indicators to find one or more valid solutions) while employing
branch-and-bounds to identify intelligent ‘shortcuts, effectively
guiding the search towards the optimal solution and avoiding
unnecessary computations.

Greedy algorithms were first proposed as a method to determine
the shortest path or subtree to connect nodes within a network. Early
algorithms were used to solve the ‘minimum connector’ or ‘travelling
salesman’ problem (40, 41). Greedy algorithms make a locally optimal
choice to find a globally optimal solution (56). They are some of the
simplest algorithms in combinatorial optimisation and can determine
efficiently the solution to many problems (57). While their key
advantage is that they are easy to understand and implement, greedy
algorithms ignore the possibility that the solution identified may not
be the best (i.e., is not the global optimum).
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As greedy algorithms may converge on a locally optimal rather
than globally optimal solution, an algorithm using branch-and-
bound plus backtracking was developed to iteratively enumerate all
subsets of (S) indicators. The recursive nature of such algorithms
allows for exhaustive exploration of indicator subsets while using
pruning techniques to discard unfeasible solutions early.

Backtracking is a systematic method for exploring all variants of
a solution to find one or more valid solutions. The use of the term
backtracking was first attributed to Lehmer in the 1950s (42). Such
methods incrementally explore potential solutions and backtrack if a
suboptimal variant is discovered. While backtracking can identify the
globally optimum solution, the required number of iterations is
computationally intensive, and the required number of calculations
increases exponentially with the number of branches in the decision
tree. For example, the potential number of combinations of a single
factor increases from 31 when combining 5 items to 1,048,575 when
combining 20 items [n = (2"™) - 1]. However, the backtracking
method can be enhanced for combinations of a larger number of
items using branch-and-bound methods.

The development of branch-and-bound methods is widely
attributed to (43). While simple backtracking explores all paths in the
search space until a solution is found, branch-and-bound intelligently
cuts off (prunes) unproductive paths early in the search, making it
much more efficient for optimisation problems. Branch-and-bound
uses the power of backtracking to systematically explore solutions
while employing bounds to function as intelligent ‘shortcuts, guiding
the search towards the optimal solution and avoiding
unnecessary computations.

It was predicted that a greedy algorithm would provide a quick
and simple means of discovering and combining iceberg indicators
(based on the number of associated welfare consequences for each
indicator), but this would have a risk of false solutions (i.e., local
maxima). It was further predicted that refinement of the greedy
algorithm using backtracking would avoid the selection of false
solutions but may increase the compute time to potentially unfeasible
levels, so the use of branch-and-bound methods were investigated to
limit the required compute time.

2.2.3 Data preprocessing and normalisation

Some data preprocessing and normalisation were necessary to
facilitate the development of the algorithms. For example, the dataset
contained several data structures containing categorical values (see
Table 2).

To enable the use of these data in the data analysis, selected
descriptors were first mapped to numerical values. These included
Impact of welfare consequence (Low = 1 & High = 2), Ease of hazard
mitigation (Easy = 1, Moderate = 2, Difficult = 3), and Ease of indicator
use (Easy = 1, Moderate = 2 & Difficult = 3).

For dimensions such as the Impact of welfare consequence, the
objective function should increase when its values are numerically
higher. In this case, the values were directly added to the objective
function. However, for factors such as Ease of indicator use and Ease
of hazard mitigation, the objective function should increase when their
values are numerically lower. To reflect this, it was necessary to either
specify those factors as being negative in the objective function, or
from the number of  levels

subtract values

transformed valued = ((number of levels + l) - value)) In the present
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TABLE 2 A description of the dimensions and levels of measurement in
the test dataset for each of the seven focal species of farm animal.

Type Dimensions Levels (where
applicable)

Hazards Welfare hazards

Consequences Welfare consequences

Metadata Impact of welfare Low | High

consequence

Metadata Ease of hazard mitigation Easy | Moderate |
Difficult

Indicators Welfare indicators

Metadata Ease of indicator use Easy | Moderate |
Difficult

exercise, the second option was selected (Equations 1-3), which
ensured that higher values are always treated as beneficial.

ImpactScore; :(Impact of welfare consequencei) (1)
MitigationScore; = ((4 +1)—Ease of hazard mitigation; ) (2)

EasinessScore; = ((4 + 1) —Ease of indicator use; ) 3)

As the primary objective was to optimise the number of unique
welfare hazards and/or unique welfare consequences that were linked
to a combination of indicators, the Coverage for each indicator (i) was
calculated (Equations 4, 5).

HazardCoverage; =

number of unique hazards that indicator covers (4)
ConsequenceCoverage; =
number of unique consequences that indicator covers (5)

To ensure that all data could be equitably weighted, each factor
was then subjected to a max-min normalisation to scale it within the
range {0,...,1}. This transformation also ensured that both
HazardCoverage; and ConsequenceCoverage; were expressed as a
proportion of the maximum number of hazards and consequences
respectively, which enabled them to be equitably weighted
(Equation 6).

Normalised factor = Xi"Xmin (6)

Xmax ~ *¥min

2.2.4 Definition of the objective function

Each of the algorithms had at its core an objective function that
incorporated all of the factors to be optimised. To enable the separate
and interactive  weighting of  HazardCoverage;, and
ConsequenceCoverage;,, a composite measure for Coverage was
calculated, which also incorporated weighting factors (a and f) to

adjust the balance as required (Equation 7).
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Coverage; = (a.HazardCovemgei ) + ( B.ConsequenceCoverage; ) (7)

Additionally, the other dimensions were incorporated into the
objective function (e.g., Ease of indicator use, Impact of welfare
consequence, and Ease of hazard mitigation). Each factor was separately
weighted to enable ‘tuning’ of the objective function in different
use-cases (phase 6), (Equation 8).

Objective; =

@Ocoverage (a.HazardCovemge + ,B.ConsequenceCovemge)
+Wegsiness (EasinessScore) + Oimpact (ImpactScore)

+Omitigation (MitigationScore) (8)

0, B Ocoverager Deasiness Dimpact AN Opiigaiion are user-defined weighting
factors that relate to the relative importance of each constraint. For
example, if a user wanted to optimise based only on the number of
welfare consequences linked to a combination of indicators, they
could set all other weighting factors to zero. This effectively removes
those factors from the calculation.

When
Sc {1,. . .,MAXindicators} the total objective function becomes

selecting a  combination  of  indicators

(Equation 9):

Objective (S)= ZObjectivei 9)

ieS

2.2.5 Development tools

Algorithms were developed using the Python programming
language (version 3.13) and Google’s OR-Tools Linear Solver (44).
OR-Tools is an open-source module which enables the deployment of
linear programming (LP), mixed-integer programming (MIP),
Solving Constraint Integer Programmes (SCIP), and other
optimisation techniques.

2.3 Development of a greedy algorithm

The greedy algorithm involved the selection of a pre-determined
number of welfare indicators from a list of indicators ranked by the
size of the objective function (Eqn. 9). For example, if no more than
six indicators should be combined, the greedy algorithm selected the
indicators with the top 6 highest objective; values. The user could
predefine the number of indicators to be combined according to their
specific use-case (e.g., desired number of indicators < 4).

2.4 Enhanced optimisation algorithm using
SCIP

The objective of the enhanced algorithm was to identify
combinations of indicators (up to a user-defined maximum number of
indicators) that maximise the value of the objective function (i.e., the
combination(s) with the largest sum of objective;). To achieve this, the
algorithm was created using the Solving Constraint Integer Programmes
(SCIP) component of the OR-Tools Linear Solver module (45).
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SCIP is one of the most powerful and versatile solvers for
mathematical optimisation, especially in the case of mixed-integer
programming (MIP). MIP is a type of mathematical optimisation
where some decision variables have categorical values, while others
may be continuous (i.e., real numbers). A MIP problem typically
involves optimising a linear objective function subject to a set of linear
constraints. The inclusion of integer variables allows MIP to model
discrete and decision analysis for problems that involve both
quantitative allocations and binary or categorical choices. The
recursive nature of the algorithm, combined with branch-and-bound
pruning and initialisation with a greedy solution, allows for an
exhaustive but efficient exploration of indicator subsets. The approach
ensures an optimal selection process within the defined constraints
while significantly reducing computational overhead.

SCIP solves integer programming problems by combining several
algorithms. It starts by solving the LP relaxation and, if the solution is
fractional, it applies branch-and-bound: branching on fractional
variables to create subproblems, solving relaxations at each node, and
using bounds to prune unpromising branches. Backtracking is used
to navigate the search tree when dead ends are reached. During its
iterations, SCIP employs greedy heuristics to quickly find good
feasible solutions, which helps improve pruning efficiency. This
intelligent combination of exploration and pruning leads SCIP to the
optimal integer solution efficiently.

In the present exercise, the algorithm operated by iterating
through a list of candidate indicators, where the ‘value’ of each
indicator was determined using the objective function (Eqn.9). At
each step, the algorithm evaluated whether an indicator (i) could
be included in the selection without exceeding the maximum
allowable number of indicators set by the user. It explored two
recursive branches: one that included the indicator (provided
constraints permit) and one that excluded it. The function then
backtracked by undoing previous selections to explore alternative
combinations. SCIP maintained a global dictionary to store the best
solution encountered during execution, updating it whenever a
higher-scoring subset was identified (Figure 1).

To avoid overly lengthy computation times for larger combinations
of indicators, an early stopping mechanism was incorporated by
introducing a time limit parameter. If the execution time exceeded
10 s, the algorithm halted, returning the best solution identified up to
that point. Additionally, progress logging was implemented at regular
intervals to facilitate tracking during execution. The early stopping
mechanism avoided the algorithm freezing if an overly complex set of
parameters were evaluated. Additionally, as the goal was to produce
an algorithm that provided solutions within practical time constraints,
the early stopping mechanism helped to identify when run times had
exceeded a defined threshold.

2.5 Assessment of algorithm functionality

Following the development of the enhanced optimisation
algorithm, basic assessments of its performance and behavior were
conducted under varying configurations.

First, the weighting applied to Coverage (®coerage) Was
systematically varied to assess how the objective function responded
to different configurations. For each level of weighting, the
optimisation problem was solved, and the resulting composite
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objective function score was recorded. This approach enabled the
decomposition of the objective function into interpretable elements,
allowing direct observation of how each criterion influenced the final
optimisation output.

Second, a univariate perturbation analysis was conducted to
evaluate the sensitivity of the algorithm to user-defined inputs. For
each weighting parameter, controlled shifts (e.g., +50%) were
introduced and the optimisation problem solved repeatedly to observe
changes in the selected subset of welfare indicators.

2.6 Creation of case studies

To demonstrate and validate the utility of the optimisation
framework, two illustrative hypothetical case studies were developed
which targeted distinct user needs: (a) a food business that sought
to measure six welfare indicators to demonstrate the year-on-year
impact of its activities on improving the welfare of broilers in its
supply chain, and (b) an animal welfare certification scheme
provider that sought to measure six welfare indicators to
demonstrate the welfare status of growing and finishing pigs across
certified farms.

Each case study deployed both the simple greedy algorithm and
the enhanced algorithm. The case studies were focused on a specific
animal species and stakeholder use-case and incorporated a defined
set of constraints and priorities. These included fixing the maximum
number of indicators to be selected (n = 6), pre-defining different
weighting configurations reflecting different prioritisation strategies
(e.g., differential emphasis placed on Coverage, Ease of indicator use,
Impact of welfare consequence, and Ease of hazard mitigation).

In each case study, the computational performance of the
enhanced algorithm was investigated by recording the total runtime
for increasingly complex optimisation tasks (increasing the desired
number of welfare indicators in the solution). Stability of the
optimisation process was further assessed by re-running the same
configuration multiple times. To achieve this, the desired number of
indicators was increased from 5 to 50 (in 10 steps of 5). At each step,
the optimisation was run 15 times, and the mean value and 95%
confidence intervals were calculated and plotted. A one-way analysis
of variance was used to detect any effect of the number of indicators
on computational performance, and linear regression was used to
determine the direction and strength of the association between the
two variables.

Scenario testing was used to explore how different weighting
(prioritisation) strategies influenced the selection of welfare indicators
in the enhanced algorithm. The four weighting factors were
systematically varied: Coverage, Ease of indicator use, Impact of welfare
consequence, and Ease of hazard mitigation. Differential weighting of
these factors enabled manipulation of their relative importance in
decision-making.

To ensure comparability across scenarios and maintain
consistency, the sum of the weights in each scenario was fixed. Several
prioritisation scenarios were designed to evaluate plausible real-world
use-cases. These included Priority on coverage, Balanced, Priority on
ease of indicator use, Priority on impact of welfare consequence, and
Priority on ease of hazard mitigation (Table 3). By systematically
varying the emphasis placed on each component, the scenario testing
provided insight into how different stakeholders might arrive at
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FIGURE 1

An overview of how the enhanced algorithm combined backtracking and branch-and-bound heuristics through SCIP.

distinct, yet justifiable, solutions depending on their operational goals
and constraints.

Robustness testing was used to introduce systematic
perturbations in the weighting values within the objective function.
This enabled investigations into the leverage that a factor exerted on
the objective function. For each species of farm animal, the
weighting of Coverage, Ease of indicator use, Impact of welfare
consequence and Ease of hazard mitigation was manipulated by a
factor of —50%, 0 or 50%, and the impact on the welfare indicators

selected was recorded. All weighting factors were initially set at 1.0,
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except for the one that was to be manipulated. The maximum
number of indicators was constrained to 10. Venn diagrams were
plotted with values representing the number of shared indicators in
each perturbation condition. Large variation in the welfare indicators
selected by the algorithm would suggest that the weighting value
(and underlying dimension) exerts a leverage on the solution
obtained. Conversely, little or no variation in the welfare indicators
selected by the algorithm would suggest that the weighting value
exerts no

(and underlying dimension) leverage on the

solution obtained.
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TABLE 3 The different scenarios used to evaluate algorithm performance.

Scenario Weight Comment

Ease of hazard
mitigation

Ease of
indicator use

Coverage

Impact of welfare
consequence

welfare consequence

Priority on coverage 8.0 0.0 0.0 0.0 Only optimising coverage

Balanced 2.0 2.0 2.0 2.0 Equal weighting to all factors
Priority on ease of 5.0 3.0 0.0 0.0 Favouring indicators that are easy to
indicator use use

Priority on impact of 5.0 0.0 3.0 0.0 Favouring consequences that have a

large impact on welfare

Priority on ease of 5.0 0.0

hazard mitigation

3.0 Favouring hazards that are easy to

mitigate

The weighting for both a. HazardCoverage and f. ConsequenceCoverage, as part of overall Coverage, was held constant at 0.5, providing an equitable balance between both measures

(Equation 8).

3 Results
3.1 Database

The data model was based on the RA framework developed by
the European Food Safety Authority (EFSA) to describe welfare
hazards, their linked welfare consequences, and the range of
available welfare indicators. Data were extracted for key farmed
animal species and relevant housing systems (published by EFSA
between 2007 and 2012, and from the updated reports in 2022-
2023). These data were supplemented with information from other
scientific sources.

After data capture, the database contained 382 unique welfare
indicators across a variety of farm animals dairy cows (n = 54); dairy
calves (n = 51); pigs (n = 92); beef cattle (n = 48); broiler chickens
(n = 53); laying hens (n = 42); and sheep (n = 42).

3.2 Proof-of -concept studies

3.2.1 Broiler chickens

The top 6 welfare indicators for broiler chickens (ranked by
the number of welfare consequences) were: (A) Injurious
pecking, (B) Plumage damage, (C) Lethargy, (D) Footpad
dermatitis, (E) Feather and body dirtiness, and (F) Walking
impairment.

A combination of all six indicators was linked to a maximum of
18 welfare hazards and 9 consequences for broiler chickens. It was
found that two combinations of four indicators explained the same
number of welfare hazards and consequences as a combination of all
six indicators (Table 4).

The proof-of-concept study for broiler chickens showed that
the same welfare hazards and consequences can be explained more
simply by measuring just four indicators: lethargy, feather and
body dirtiness, walking impairment (C, E, and F), and either
injurious pecking (A) or plumage damage (B) instead of using all
six indicators.

The solution identified for broiler chickens highlights an
important feature that may be relevant to other decision support
tools. It is possible to arrive at multiple, equally valid solutions.
This raises the possibility of selecting among them based on
additional factors such as ease of use, time required, or cost.
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TABLE 4 A matrix indicating all possible unique combinations of six
welfare indicators [n = (2°-1) = 63].

Number of indicators in combination

1 2 3 4 6 (all)
A ABCDEF
B
C
D AE ABF ABDE ABDEF
E AF ACD ABDF ACDEF
F BC ACE ABEF BCDEF
BD ACF ACDE
BE ADE ACDF
BF ADF
CD AEF ADEF
CE BCD BCDE
CF BCE BCDF
DE BCF
DF BDE BDEF
EF BDF CDEF
BEF
CDE
CDF
CEF
DEF

Shaded cells indicate the combinations that were linked to the same number of welfare
hazards and consequences as a combination of all six indicators for broiler chickens.

3.2.2 Laying hens

The top 6 indicators for laying hens (ranked by the number of
welfare consequences) were: (A) Plumage damage, (B) Injurious pecking,
(C) Bruises, (D) Beak shape and length, (E) Pecking wounds to the back,
vent and tail, and (F) Flock records (death due to pecking wounds).

Using all six indicators explained a maximum of 14 welfare
hazards and 6 consequences for laying hens. It was found that there
was one combination of three indicators that explained the same
number of welfare hazards and consequences as a combination of all
six indicators (Table 5).
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TABLE 5 A matrix indicating all possible unique combinations of six
welfare indicators [n = (2°-1) = 63].

Number of indicators in combination

6l

ABCDEF

ACE
BD ACF ACDE
BE ADE ACDF
BF ADF ACEF
CD AEF ADEF
CE BCD BCDE
CF BCE BCDF
DE BCF BCEF
DF BDE BDEF
EF BDF CDEF

BEF

CDE

CDF

CEF

DEF

Shaded cells indicate the combinations that were linked to the same number of welfare
hazards and consequences as a combination of all six indicators for laying hens.

The proof-of-concept study for laying hens showed that the same
welfare consequences can be explained more simply by measuring just
three indicators: plumage damage (A), injurious pecking (B) and flock
records (death due to pecking wounds) (F) instead of using all
six indicators.

3.3 Greedy algorithm

It was hypothesised that animal welfare indicators vary in their
Coverage, forming a continuum from ‘broad’ (those linked to a large
number of welfare hazards and consequences) to ‘narrow’ (those only
linked to a few welfare hazards and consequences). Consequently, it
was expected that efforts to maximise the number of unique welfare
hazards or consequences captured by combining multiple indicators
would exhibit diminishing returns. For example, the first few
indicators selected would contribute substantially to overall Coverage,
while each additional indicator would contribute progressively less.
As a result, when applying a greedy algorithm to optimise indicator
selection, it was predicted that a saturating exponential relationship
would exist between the number of indicators included and the
cumulative Coverage achieved.

To investigate this prediction, the relationship between the number
of indicators included and the cumulative Coverage (expressed as a
percentage of the total) achieved was plotted. Three dimensions of
Coverage were considered: (1) welfare consequences, (2) welfare
hazards, and (3) welfare hazards x welfare consequences (‘combination
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space’) for each species of farm animal (Figures 2A-G). The result
showed that for each of the three dimensions, the cumulative
percentage Coverage exhibited a saturating exponential function as
more indicators were combined. Each plot also contained distinctive
‘plateaus’ where the ‘greedy’ addition of the next-best welfare indicator
did not add any new Coverage to the existing combination.

The existence of ‘plateaus’ in the cumulative plots illustrates where
greedy algorithms can select a false optimum. To further elaborate, the
case of a user who seeks to find the combination of 10 welfare
indicators that maximises the number of associated welfare
consequences for dairy calves was considered (Figure 3A). A greedy
algorithm would select the top 10 welfare indicators ranked by the
number of linked welfare consequences (in this example, explaining
approximately 56% of all potential welfare consequences). In contrast,
an algorithm using branch-and-bound and backtracking methods
would only select the next welfare indicator in the ranked list if it
added additional (new) welfare consequences to the solution (in this
example, explaining approximately 83% of all potential welfare
consequences; Figure 3B). Therefore, to ensure that the final tool
developed avoided falsely selecting indicators that did not expand
Coverage, the project progressed immediately to develop a full
algorithm using branch-and-bound methods and backtracking
because such algorithms can efficiently identify the true
optimum combination.

3.4 Enhanced optimisation algorithm using
SCIP

3.4.1 Objective function performance

The objective function exhibited a saturating exponential function
as the number of selected indicators increased (Supplementary
material 1), consistent with diminishing marginal gains in the
objective value. In contrast to the stepwise pattern characteristic of the
greedy algorithm, the optimisation-based approach yielded a
continuous, monotonic increase because indicators were only added
when they increased the objective function (i.e., there were no
‘plateaus’).

The shape of this relationship varied by species. For example,
the curve for pigs had a higher asymptotic value, resulting from the
greater number and diversity of available indicators for this species.
The curvature of the function resulted from the relative proportion
of ‘broad’ versus ‘narrow’ indicators. A higher proportion of
‘broad’ indicators produced a steeper initial gradient, which is
indicative of rapid gains from broadly applicable measures,
whereas a predominance of ‘narrow’ indicators led to a more
gradual approach to the asymptote due to small incremental
improvements from narrowly targeted measures at higher
indicator counts.

3.4.2 Solution stability and sensitivity

The composition of the objective function shifted predictably in
response to increases in the weighting of Coverage (®coverage)> With
increased contribution from the amplified dimension and a
corresponding reduction from others (Supplementary material 2).

These shifts did not destabilise the optimisation process or yield
spurious results (e.g., selection collapse or invalid solutions),
indicating that the enhanced algorithm tolerated moderate tuning of
user-defined priorities without losing solution quality.
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FIGURE 3

The illustrated use-case only seeks to maximise the number of unique welfare consequences associated with the selection of 10 welfare indicators for
dairy calves. (A) The greedy algorithm erroneously selects indicators that add no additional coverage (plateaus) whereas (B) an algorithm using branch-
and-bound methods with backtracking finds the optimum solution.

3.4.3 Computational efficiency {mean values (ms) across 15 runs: 75.27 [95% CI (74.54, 76.00)] for
Tests of computation efficiency were conducted to ensure that the ~ Beef cattle, 85.97 [95% CI (84.91, 87.03)] for Broilers, 83.27 [95% CI
tools would find optimal solutions within a short time limit. For all ~ (81.50, 85.03)] for Dairy calves, 87.50 [95% CI (85.49, 89.50)] for
species of farm animal, it was found that even solutions involving  Dairy cows, 70.11 [95% CI (68.68, 71.54)] for Laying hens, 132.82
combinations of up to 50 indicators were calculated in less than 200  [95% CI (129.97, 135.66)] for Pigs, and 73.04 [95% CI (72.05, 74.04)]
milliseconds. The early stopping mechanism was not activated inany  for Sheep}.
runs of the algorithm. The longer runtimes observed for pigs arose because of the
Increasing the desired number of indicators in the solution from  larger number of indicators identified for this species (92
5 to 50 (in 10 steps of 5) had no detectible significant effect on the  indicators for pigs vs. a range of 42-54 indicators for the
runtime required to obtain a solution for any farm animal species  other species).
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3.5 Case study: broilers

The hypothetical user was a food business that wanted to measure
six welfare indicators to demonstrate the year-on-year impact of its
management of the welfare of broilers in its supply chain. The
sustainability team of the business sought to work on welfare hazards
that had the largest impact on bird welfare and that were easy to
mitigate. Furthermore, they only wanted to adopt welfare indicators
that were easy to use.

3.5.1 Application of the greedy algorithm

The simple greedy algorithm operating on a ranked list of welfare
hazard Coverage enabled the selection of six welfare indicators that
were linked to 17 of the 26 unique welfare hazards (65.4%) and 8 of
the 20 unique welfare consequences (40.0%) in Coverage space
(Supplementary material 3).

However, it was evident that while injurious pecking and bruises
were associated with a relatively large number of welfare hazards and
welfare consequences, they did not contribute any new hazards to the
cumulative pool if plumage damage were to be selected first.

Consequently, the sustainability team applied the enhanced
algorithm to identify the actual optimum (and avoid the selection of
duplicate hazards and consequences).

3.5.2 Enhanced algorithm using SCIP

The enhanced algorithm was applied with weighting factors
prioritising Coverage but also optimising Ease of indicator use, and
Impact of welfare consequence, and Ease of hazard mitigation.

The enhanced algorithm selected a different set of six welfare
indicators. These were linked to 17 of the 26 unique welfare
hazards (65.4%) and 8 of the 20 unique welfare consequences
(40.0%) in Coverage space (Table 6). While the number of
associated welfare hazards and welfare consequences did not
change from the greedy solution, the enhanced algorithm
substituted two of the originally selected indicators (injurious

10.3389/fvets.2025.1661470

pecking and bruises) for alternatives (wounds and hockburn).
These replacements offered equivalent or greater overall utility
when all weighted criteria were considered.

3.5.3 Computational efficiency

The mean computation time for the enhanced algorithm remained
consistently low for all combinations of indicators evaluated. There was
no detectible significant effect on the runtime to obtain a solution as the
desired number of indicators was increased from 5 to 50 [Fy 149 = 0.7061;
NS]. The mean runtime was 91.71 ms [95% CI (89.85, 93.57)]. Although
there was some variability, especially at lower indicator numbers, the
95% confidence intervals were narrow and overlapped, indicating no
significant change in compute time. The linear trend line had a slight
positive gradient, but the slope was minimal, and the confidence band
was narrow, suggesting that the algorithm scaled efficiently with
increasing problem size (Supplementary material 4).

3.5.4 Scenario analysis

For broilers, the degree to which the elements of the objective
function were weighted was important. For example, was it more
important to maximise the breadth of hazard and consequence
Coverage, or to favour indicators that were easier to implement
on-farm and target welfare issues that are both impactful and
readily mitigated? Adjusting these weights altered the optimisation
landscape and shifted the selected indicator set significantly
(Figure 4).

3.5.5 Robustness testing

Substantial perturbations in weighting factors did not result in
any major changes in the selection of welfare indicators for broilers
(Supplemental material 4). This suggests that the solution space is
stable across a range of input preferences, and that small or even
moderate deviations in how indicators are weighted do not result in
radically different outcomes. This provides confidence in the
reliability and predictive consistency of the model.

TABLE 6 The six welfare indicators for broilers that optimise the combination of: (1) Coverage (welfare hazards and consequences), (2) Impact of
welfare consequence, (3) Ease of hazard mitigation, and (4) Ease of indicator use.

Welfare Hazard coverage Consequence Impact of welfare Ease of hazard Ease of
indicator (% of total) coverage (% total) consequence (n)  mitigation (n) indicator use
Retained from the original greedy algorithm

Plumage damage 38.5% 15.0% Low (2) & High (9) Easy (5), Moderate (4) & Difficult (2) | Easy
Lethargy 30.8% 15.0% Low (7) & High (2) Easy (3) & Difficult (6) Easy
Footpad dermatitis 23.1% 15.0% High (6) Easy (2), Moderate (2) & Difficult (2) | Easy
Feather and body 19.2% 15.0% Low (4) & High (1) Easy (2), Moderate (2) & Difficult (1) | Easy
dirtiness

Removed

Injurious pecking 34.6% 15.0% Low (2) & High (9) Easy (5), Moderate (4) & Difficult (2) | Moderate
Bruises 34.6% 5.0% High (9) Easy (4), Moderate (3) & Difficult (2) | Moderate
Added

Wounds 19.2% 10.0% High (7) Easy (4), Moderate (1) & Difficult (2) | Easy
Hockburn 15.4% 10.0% High (4) Easy (2), Moderate (1) & Difficult (1) | Easy

Weighting factors were set to favour coverage and equally balance the other three factors in the decision set (Wcoverage = 5 (. HazardCoverage = 0.5 + p. ConsequenceCoverage = 0.5), caginess = 1
Dimpace = 1 and Opigaion = 1). The welfare indicators listed under ‘Removed” are excluded from the greedy solution and are replaced by those listed under ‘Added.
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FIGURE 4
Objective function performance across different weighting scenarios for broilers. Bars represent the final objective score (S) achieved under each
scenario, reflecting the combined value of selected indicators based on their contribution to coverage, impact, and feasibility dimensions. The
“Balanced” scenario applies equal weighting to all criteria, while the others apply increased weighting to a specific aspect of interest.

3.6 Case study: growing/finishing pigs

The user is an animal welfare certification scheme provider
that wants to measure six welfare indicators to demonstrate the
welfare status of growing and finishing pigs across third-party
certified farms. Their goal is to ensure that selected indicators are
both scientifically robust and feasible to implement during
periodic assessments. Specifically, they seek indicators that are
able to cover a broad range of welfare hazards and consequences;
address high-impact risks to animal welfare; are practical to assess
during on-farm audits and focus on hazards that are
realistically mitigable.

3.6.1 Application of the greedy algorithm

A simple greedy algorithm operating on a ranked list of welfare
hazard Coverage enabled the selection of six welfare indicators that
were linked to 27 of the 58 unique welfare hazards (46.6%) and 7 of
the 16 unique welfare consequences (43.8%) in Coverage space
(Supplementary material 5).

3.6.2 Enhanced algorithm

In contrast to the broiler case study, the enhanced optimisation
method using branch-and-bound with backtracking produced the
same indicator set, confirming that the greedy solution was, in this
case, also globally optimal given the input criteria and weights.

The algorithm suggested the selection of six welfare indicators that
were also linked to 27 of the 58 unique welfare hazards (46.6%) and 7
of the 16 unique welfare consequences (43.8%) in Coverage space
(Table 7). While these indicators were the same as the set determined
by the greedy algorithm (i.e., none were added or removed), the use
of the enhanced algorithm still added value because it validated the
result under a multi-dimensional objective function and provided
insight into why each indicator was selected as it also quantified its
contribution to Coverage, Ease of indicator use, Impact of welfare
consequence, and Ease of hazard mitigation.

Furthermore, analysis of the solution space revealed that each
selected indicator contributed uniquely to the objective function. No
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indicator was redundant, and no alternative set achieved a higher
composite score under the defined constraints. This reinforced
confidence in the selection and demonstrated the algorithm’s
robustness for applications where audit efficiency, Coverage, and
welfare relevance must all be balanced.

3.6.3 Computational efficiency

The mean computation time for the enhanced algorithm
remained consistently low for all combinations of indicators
evaluated. There was no detectible significant effect on the runtime
to obtain a solution as the desired number of indicators was
increased from 5 to 50 [Fy 14 = 0.7648; NS]. The mean runtime was
82.51 ms [95% CI (81.34, 83.69)]. The linear trend is flat, with an
almost negligible slope and a tightly bounded confidence band,
confirming that computational load does not appreciably increase
with problem size. Compared to broilers, the computation times for
meat pigs are slightly more consistent and show less variability
across indicator counts, suggesting even more uniform performance
of the algorithm in this context (Supplementary material 6).

3.6.4 Scenario analysis

For meat pigs, the degree to which the elements of the objective
function were weighted was again important. Adjusting these weights
altered the optimisation landscape and modified the selected indicator
set significantly (Figure 5). The “Priority on ease of indicator use”
scenario produced the highest objective score, whereas “Priority on
ease of hazard mitigation” resulted in the lowest, indicating trade-offs
between dimensions when emphasising specific priorities.

3.6.5 Robustness testing

Substantial perturbations in weighting factors did not result in any
major changes in the selection of welfare indicators for meat pigs
(Supplementary material 6). This again suggested that the solution
space was stable across a range of input preferences, and that small or
even moderate deviations in how indicators are weighted did not
result in radically different outcomes. This provided further confidence
in the reliability and predictive consistency of the algorithm’s output.
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TABLE 7 The six welfare indicators that optimise the combination of: (1) Coverage, (2) Impact of welfare consequence, (3) Ease of hazard mitigation,

and (4) Ease of indicator use for meat pigs.

Welfare Hazard Consequence

Impact of welfare

Ease of

Ease of hazard mitigation

indicator coverage coverage consequence indicator use
Retained from the original greedy algorithm

Calluses and bursitis 31.0% 25.0% High (22) Easy (7), Moderate (11) & Difficult (4) Easy

(pressure injuries)

Body condition 24.1% 12.5% Low (9) & High (5) Easy (6), Moderate (7) & Difficult (1) Moderate

Ear lesions 22.4% 12.5% Low (1) & High (13) Easy (6), Moderate (7) & Difficult (1) Easy

Tail lesions 22.4% 12.5% Low (1) & High (13) Easy (6), Moderate (7) & Difficult (1) Easy

Body lesions 20.7% 6.3% High (12) Easy (4), Moderate (7) & Difficult (1) Easy

Leg injuries 20.7% 6.3% High (14) Easy (5), Moderate (6) & Difficult (1) Easy

Weighting factors were set to favour coverage and equally balance the other three factors in the decision set (@coverage = 5 (. HazardCoverage = 0.5 + . ConsequenceCoverage = 0.5), casiness = 1,

Dimpace = 1 and Opiigaion = 1). No welfare indicators were added or removed from the greedy solution.
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FIGURE 5
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Objective function performance across different weighting scenarios for meat pigs. Bars represent the final objective score (S) achieved under each
scenario, reflecting the combined value of selected indicators based on their contribution to coverage, impact, and feasibility dimensions. The
“Balanced” scenario applies equal weighting to all criteria, while the others apply increased weighting to a specific aspect of interest.

Objective (S)

This case study illustrated how the optimisation framework can
support certification bodies in defining concise, evidence-based
indicator sets that are aligned with both scientific principles and
operational feasibility.

4 Discussion

The study presented in this paper aimed to develop and compare
tools to discover optimal combinations of welfare indicators using
multi-criteria decision analysis (MCDA). Two algorithms were
developed: (a) a simple greedy algorithm, (b) an enhancement of the
greedy algorithm using SCIP, which identified the global optimum
using branch-and-bound methods and backtracking. Both algorithms
were evaluated using a database that was populated with information
from the European Food Safety Authority AHAW panel’s risk-based
assessments of animal welfare and other published literature for
multiple species of farm animals. The ultimate objective was to enable
users to select combinations of welfare indicators that are both
effective in detecting the most serious welfare hazards, measure their
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consequences, and mitigate the impact of such consequences using
indicators that are straightforward to implement in real-world
monitoring programmes.

4.1 Moving beyond iceberg indicators

The approaches developed in the present study build on the
concept of iceberg indicators because of their ability to serve as proxy
measures for multiple underlying welfare consequences and welfare
hazards. The Coverage construct was used to quantify the number of
welfare hazards and/or welfare consequences that were associated
with each indicator. Consistent with the concept of iceberg indicators,
it was found that some indicators were linked to only a few welfare
hazards and/or consequences (i.e., were ‘narrow’ in Coverage and had
alow level of ‘icebergyness’), whereas others were linked to more (i.e.,
were ‘broad’ in Coverage and had a higher level of ‘icebergyness’).
This is consistent with EFSAs methodological guidance for
developing welfare opinions, where the term specificity of an ABM
refers to its ability to identify animals that are not experiencing a
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particular welfare consequence and, by extension, those that are (46).
In this context, iceberg indicators can be viewed as being analogous
to ‘broad’ indicators. It is noted, however, that without reference to
metadata such as sensitivity the use of Coverage alone may lead to the
omission of ‘narrow’ indicators that are linked to a welfare
consequence that has a large impact on the welfare of the animals.

It was found that some indicators shared a large number of
common welfare hazards and welfare consequences. This observation
is not new. The Welfare Quality® project commented that some
measures may be linked to several welfare dimensions (47). To make
an overall assessment of animal welfare, they proposed to select
measures (indicators) using weighted sums and comparison with
minimal requirements and further evaluation of the precision with
which they could be deployed. In later studies, attempts to reduce the
number of indicators to focus on certain iceberg indicators for
welfare assessment explored techniques such as partial least square
structural equation modelling, where measurable indicators that
explain the highest variance in the latent variables (e.g., animal
welfare) are included in the models (48). The present research is also
based on the assertion that welfare indicators share Coverage to
varying degrees. However, the ways in which indicators with common
(shared) welfare hazards and welfare consequences are treated are
managed differently by the two algorithms. When operating only on
Coverage, the greedy algorithm merely selects indicators in ranked
order and, in doing so, it potentially suggests combinations that have
overlapping welfare hazards and/or welfare consequences (i.e., it does
not account for marginal gains in Coverage). In contrast, the
enhanced algorithm only adds a welfare indicator to the solution
when there is a demonstrable increase in the full objective function,
thereby avoiding duplications in Coverage.

During the development of the greedy algorithm, the notion of
‘combination space’ was explored briefly as both a conceptual and
computational construct. This construct mapped the unique pairings
of welfare hazards and consequences linked to each indicator. In plots
of cumulative Coverage of ‘combination space’ using the greedy
algorithm, greater resolution was observed than in approaches that
consider hazards or consequences independently (fewer plateaus
arose from duplications in Coverage). Analysis within ‘combination
space’ makes it possible to assess each indicator’s unique contribution,
including whether it captures novel hazard-consequence associations
that would otherwise remain undetected. This possibility was not
pursued further within the present exercise, as the goal of the
enhanced algorithm was to enable welfare hazards and consequences
to be weighted differentially by the user. However, the selection of
combinations of indicators within ‘combination space’ using the
enhanced algorithm remains potentially worthy of further
investigation. In doing so, the method could enable finer
differentiation between indicators and provide a more accurate
reflection of the integrated risk model proposed by EFSA, which
considers both the nature of the hazard and the most relevant welfare
consequences for each species.

4.2 Method development

The proof-of-concept study applied to datasets for broiler chickens
and laying hens demonstrated that small, strategically chosen subsets
of indicators could match or exceed the explanatory power of much
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larger combinations of indicators. This outcome has practical
significance, suggesting that welfare monitoring protocols can
be streamlined without compromising scientific integrity. This could
be especially valuable in resource-constrained settings. It should
be noted however, that the definition of success will depend on the
desired/target level of Coverage.

While the greedy algorithm was fast and transparent in its
operation, it was prone to include indicators that added no additional
explanatory power to the existing combination. In contrast, the
enhanced algorithm permits users to prioritise attributes such as
Coverage, Ease of indicator use, Impact of welfare consequence, and Ease
of hazard mitigation independently. This enabled the tailoring of
indicator selection to specific use-cases. As these weights could
be ‘tuned’ by the user, the algorithm did not impose a fixed hierarchy.
This could allow decision-makers to explore trade-offs and impose
different priorities in the optimisation process. For example, it is well
known that some indicators require a significant amount of time to
measure. In practice, this may make them unfeasible to use within a
time-bound farm visit (49) and the ability to adapt priorities will help
to reconcile such trade-offs between scientific precision and practical
feasibility. For example, indicators offering broad levels of Coverage
may be expensive or complex to apply routinely, while simpler
indicators may fail to capture important welfare hazards and
welfare consequences.

The broiler chicken case study provided a clear illustration of this
issue. The greedy algorithm selected indicators with strong individual
Coverage but limited incremental value, as many covered overlapping
risks. In contrast, the enhanced algorithm selected sets that replaced
redundant indicators with those offering better trade-offs between
Coverage, Ease of indicator use, Impact of welfare consequence, and Ease
of hazard mitigation potential. This supports the increasing recognition
that multi-criteria decision analysis (MCDA) could be a valuable tool
in animal welfare science, as highlighted in recent literature advocating
for structured decision support in ethically and logistically complex
contexts (50-52).

4.3 Determining weighting values

Selecting appropriate weights remains a complex task. The present
paper highlights similarities with weighting challenges experienced in
other sectors employing MCDA tools (53). Without systematic
methods for weight assignment, such as stakeholder elicitation or
performance-based calibration, there is a risk that choices may appear
arbitrary. For real-world implementation, it may be necessary to
engage stakeholders in structured processes to derive weightings in a
transparent and reproducible way. In doing so, it must
be acknowledged that stakeholders may assign different weighting
values for their particular use-case. For example, the competent
authority in an individual Member State of the European Union may
weight ease of indicator use differently to the policymakers who
formulate the underlying legislation against which farming practices
are regulated. Further dialogue and research may be necessary to
define a suitable process for weighting the selection of welfare
indicators. However, several methods have been documented in
relation to human healthcare which may provide further insights
when developing a process. A review can be found in a report
published by the MCDA Emerging Good Practices Task Force of the
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International Society for Pharmacoeconomics and Outcomes
Research (54).

In this study, several hypothetical weighting scenarios were
evaluated to model different decision-making contexts, including
Best-case, Severity- and Mitigation-focused strategies. These were
useful for demonstrating the sensitivity of the optimisation output to
changes in user priorities. While the choice of weights influenced
which indicators were selected, the number of indicators requested
proved to be the most significant driver of overall Coverage which
increased rapidly with the first few indicators, but then slowly
plateaued. This implies that adding indicators beyond a certain
number offer diminishing returns in terms of added
welfare information.

While univariate analyses illustrate which single criteria are most
influential, examining one weight at a time masks interactive effects
that may exist between selection criteria (e.g., Coverage x Ease of use).
For example, simultaneously increasing ®coyerage and decreasing @eqsiness
could lead to quite different outcomes compared with when altering a
single weight in isolation. As a result, univariate assessments may
underestimate instability if the objective function only shows
sensitivity when multiple weights are perturbed together.

Multivariate analyses could provide a more realistic assessment of
stability. Decision making rarely involves modifying the weight of a
single selection criterion in isolation. The exploration of combined
weight changes would allow for the identification of threshold effects
or nonlinearities that may not be apparent with univariate approaches.
For example, a set of indicators might remain stable under adjustments
to individual weights but alter substantially when two or more weights
are perturbed together. Such behavior signals potential instability in
the optimisation, and small but coordinated changes in stakeholder
priorities could yield markedly different solutions. Recognising and
quantifying these regions of instability is important, both for gauging
the reliability of the indicator set and for ensuring that the optimisation
is not unduly sensitive to subjective weight assignments.

Although a full multivariate sensitivity analysis lies outside of the
scope of the present study, the univariate analyses reported offers a
first step to illustrate how shifts in weighting values affect outcomes of
the optimisation. Future work should extend this approach to explore
robustness under simultaneous

nonlinear interactions and

perturbations of multiple weights.

4.4 Assessing performance

To assess performance, results from the greedy algorithm were
compared with those from the enhanced algorithm. In many cases,
the greedy method plateaued early because the most informative
indicators were selected first. Thereafter, newly added indicators failed
to expand Coverage due to redundancy. This behavior revealed the
non-additive nature of information across indicators and highlighted
inherent inefficiencies in naive selection strategies. The enhanced
algorithm was better able to consider duplication in Coverage between
indicators to overcome this limitation. It was able to identify indicator
sets where the combined contribution was maximised, even when
individual indicators had modest standalone scores. Crucially, this
improved accuracy was not associated with a large increase in
computational overhead. All optimisation tasks were completed in less
than 0.2 s, even with real-world data, suggesting that the method is
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suitable for immediate deployment in interactive decision

support tools.
While the

computational performance for the current dataset, further work is

enhanced algorithm demonstrated strong
required to explore how runtime will scale with larger or more
complex sets of indicators and selection criteria (e.g., creating trade-off
curves for runtime vs. complexity). It is likely that runtimes will not
be directly proportional to complexity because of the potential for
‘computational thresholds’ where compute time could rise
disproportionately. Investigating such scaling effects is important if
the approach is to be applied to larger databases or refined by
incorporating more selection criteria. Furthermore, performance is
also of relevance to decision-making because the algorithms will
require alignment with the priorities of different stakeholder groups
(such as veterinarians, auditors, or policymakers). The degree to
which algorithms respond to this diversity is therefore an important
dimension of performance in its own right. Systematic scenario testing
can help ensure that results remain credible and interpretable across
multiple stakeholder use-cases. More in-depth scenario testing would
also help to further refine the algorithms (where necessary) and
support the deployment of the method in practice.

4.5 Strengths and weaknesses of the
approach(es)

A key strength of the enhanced algorithm is its flexibility to balance
the evidence-based categorisation of welfare indicators with their
operational feasibility. A further strength is its ability to generate stable
solutions across a wide range of use-cases. This stability is valuable, as it
enhances trust in the optimisation results and reduces the likelihood
that small variations in stakeholder priorities will produce radically
different outputs. However, excessive stability could be a weakness if it
prevents the optimisation from capturing the expected diversity in
perspectives. Finding an appropriate balance between robustness and
flexibility remains a key consideration for future applications,
particularly in participatory settings where stakeholders may wish to
explore how their priorities translate into different indicator sets.

In the present paper, certain indicators continue to be selected
regardless of substantial changes in weighting. This may imply that
these indicators offer intrinsically high utility across multidimensions
and either reflect strong underlying linkages to key welfare hazards
and consequences, or a combination of feasibility and explanatory
power that makes them consistently optimal. However, the limited
impact of weight perturbations may also reflect redundancy among
candidate indicators, where several alternatives offer similar levels of
utility. In such cases, the enhanced algorithm may converge on a
subset of equally acceptable solutions that differ little in Coverage or
score, even under varying conditions (as observed in the broiler
chicken proof-of-concept study).

If optimisation outcomes are not overly sensitive to changes in
the weighting inputs, this can facilitate consensus-building among
stakeholders with differing priorities. It suggests that diverse
viewpoints may still lead to convergent solutions, supporting broader
adoption of welfare monitoring tools. Moreover, it implies that
implementation decisions can be made with less risk of error from
minor misjudgements or variations in assigned priorities.
Alternatively, the absence of observable differences may indicate
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limited sensitivity in the weighting system, especially if weights are
applied to ordinal metadata (e.g., ‘Easy, ‘Moderate, ‘Difficult’). In
such cases, large changes in weight values may still result in minimal
shifts in the objective function because of discrete scoring steps. This
points to a methodological limitation, where finer granularity in
input data or a more continuous scoring system might be needed to
detect more subtle trade-offs.

The approach aligns with discussions about the trade-offs
between accuracy and ability to implement welfare indicators in
animal welfare science (1). For instance, high-Coverage indicators
may be too complex or costly to assess routinely, while easier-to-use
indicators may miss critical welfare dimensions. However, one
notable constraint in this study was the use of categorical metadata
to describe attributes such as Ease of indicator use or Ease of hazard
mitigation. These were expressed using ordinal scales (such as Easy,
Moderate or Difficult), which, while easy to interpret, reduce the
resolution of the objective function. In practice, this meant that
many indicators received the same weighted contribution and
became indistinguishable in optimisation outputs. This often
resulted in the identification of multiple equivalently optimal
indicator sets, where several combinations achieved the same
overall score.

While this ambiguity does not reduce the total welfare information
captured, it highlights a methodological limitation. Specifically,
ordinal data can reduce the discriminatory power of the model, which
may in turn limit the precision of the final output. Future applications
would benefit from a more standardised scoring system across expert
panels or finer-grained input values derived from empirical evidence.
The use of visual analogue scales also holds great potential in this
regard, as they generate continuous data and provide an objective
means of identifying disagreement between experts during an
elicitation exercise (e.g., when the inter-expert variability exceeds a
predefined threshold).

Another issue concerns the interpretability of the output.
Sensitivity and scenario analyses may help to improve transparency
by revealing how the selection of indicators depends on the weighting
of the selection criteria. However, if too many use-cases are
investigated, the resulting complexity risks overwhelming end-users
who may not be familiar with optimisation methods. The challenge
is to ensure that the analysis remains sufficiently transparent to
inspire confidence, while avoiding excessive technical detail that
could mask the main messages for decision-makers. Clear
communication of optimisation outcomes will be of central
importance. One strategy is to use ‘envelopes, where results are
reported as the proportion of scenarios in which a given indicator is
selected (e.g., “Indicator X appeared in >80% of runs”). This
communication strategy avoids the presentation of multiple optimal
solutions and presents a single measure of consistency across
potential scenarios. This may help to strengthen stakeholder
confidence, facilitate policy uptake, and provide a more intuitive
picture of where consensus is likely to emerge.

The algorithms could also be criticised in that they assume
welfare hazards are mutually exclusive and do not interact. This may
not be the case. Different hazards may jointly lead to more severe
welfare consequences, as may be the case with a multifactorial
problem such as tail biting in pigs (58). Further research is required
to better understand such interactions as they are likely to differ on a
case-by-case basis.
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4.6 Next, steps

The approaches outlined in the present paper are interoperable
in that they are data agnostic. While the dataset used was based
on the EFSA scientific opinions and other published information,
the algorithms can be applied easily to other datasets. It should
also be noted that the results presented are derived from data
applicable to Norwegian farming systems, which differ in some
respects from more conventional European systems (the use of
sow farrowing crates is not allowed, and tie stalls are still
commonly used in cattle housing). However, the expansion of the
dataset to encompass other European or global farming systems
remains an important next step. The EFSA scientific opinions
predominantly reflect farming systems and priorities within the
European Union and can be applied (to some extent) to systems
of production in other regions (e.g., North America). As such, the
indicators and their relative importance may not be directly
transferable to other geographies where production systems,
resource availability, and societal expectations differ. It must also
be recognised that societal values and the scientific understanding
of animal welfare evolve over time. Therefore, weighting and the
relevance of particular indicators may shift. This underscores the
importance of viewing optimisation not as a one-off solution, but
as a dynamic tool that can be updated as knowledge, stakeholder
priorities, and welfare expectations develop. Far from being a
weakness, this adaptability may help ensure that welfare
assessment frameworks remain aligned with both emerging
science and shifting societal values.

The enhanced algorithm can be further developed in several ways.
First, the approach has not yet been extended into ‘combination space’
to consider the varying associations that exist between welfare hazards
and welfare consequences (8). Second, animal welfare science
currently does not yet contribute much information on positive
welfare (55). As this field develops, the objective function could
be adapted to incorporate metrics with positive valence (e.g.,
indicators associated with positive welfare consequences).

5 Conclusion

In conclusion, this work provides a novel and flexible optimisation
framework for selecting animal welfare indicators that balances
scientific rigour with operational feasibility. By formalising the notion
of Coverage and enabling user-defined prioritisation, the method
supports more targeted, efficient, and context-appropriate monitoring
strategies across species and production systems. The ability to
identify small, high Coverage indicator sets has the potential to reduce
resource demands while maintaining diagnostic power, thereby
enhancing the scalability and adoption of welfare assessment
programmes. As such, the approach offers practical value to industry,
regulators, and researchers aiming to implement welfare monitoring
systems that are both evidence-based and adaptable to real-world
constraints. The findings reinforce the value of iceberg indicators,
demonstrate the analytical advantages of welfare hazard and
consequence Coverage, and point to the potential of optimisation
frameworks to advance the practical implementation of welfare
assessment in animal production systems, supporting the quantitative
risk assessment on animal welfare.
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