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Introduction: Risk assessment (RA) frameworks are increasingly being applied 
to improve the welfare of farmed animals. These frameworks have at their 
core, a logic chain linking welfare hazards (risks) with one or more welfare 
consequences which, in turn, are each measured by one or more welfare 
indicators. Effective and efficient monitoring of animal welfare often involves 
the selection of a subset of indicators from a large pool. Selecting ‘iceberg 
indicators’ could be advantageous due to their association with multiple welfare 
consequences. However, no standardised, data-driven method exists to select 
optimal combinations under practical constraints. This study addresses this gap 
by creating an algorithmic approach to optimise indicator selection.
Methods: The work was conducted in six phases: (1) construction of a structured 
database of welfare indicators; (2) a proof-of-concept study; (3) design of a 
greedy selection algorithm; (4) enhancement of the algorithm using branch-
and-bound and backtracking methods; (5) performance and sensitivity testing, 
and (6) creation of two case studies. A dataset of 382 animal welfare indicators 
across seven farm species was compiled from scientific opinions published by 
the European Food Safety Authority (EFSA) and from other published literature. 
The EFSA scientific opinions contain data acquired through a rigorous process 
of literature reviews and expert elicitation and consensus panels to link welfare 
indicators with their associated welfare hazards and welfare consequences. To 
enable algorithm development, the Coverage of each welfare indicator was 
first determined by calculating the number of unique welfare consequences 
to which it was linked. Metadata such as the Impact of welfare consequence 
[Low (1) or High (2)], Ease of hazard mitigation [Easy (1), Moderate (2) or 
Difficult (3)], and Ease of indicator use [Easy (1), Moderate (2) or Difficult (3)] was 
generated through an expert elicitation process. These data were standardised 
using max–min normalisation across all criteria, and an objective function was 
defined which enabled indicator subset selection according to various user-
defined criteria. Optimisation was performed using both a greedy algorithm 
and an enhanced algorithm incorporating backtracking and branch-and-
bound solvers. Algorithm performance and robustness were evaluated through 
sensitivity analyses, scenario testing, and computational benchmarking.
Results: The greedy algorithm offered computational efficiency but incorporated 
suboptimal plateaus in Coverage as additional indicators were combined. The 
enhanced algorithm identified globally optimal combinations within 0.2 s for 
all species, regardless of problem size. In a broiler chicken case study, the 
enhanced algorithm removed indicators that were moderately difficult to use. A 
pig case study showed that the enhanced algorithm combined the same welfare 
indicators as the greedy algorithm but validated the added value of multi-criteria 
scoring by identifying high-impact, easy-to-implement indicators suitable for 
welfare certification.
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Discussion: The enhanced algorithm was able to move beyond the selection 
of iceberg indicators, by incorporating multiple selection criteria to inform 
welfare indicator choice. The enhanced algorithm is data-agnostic and enables 
users to optimise indicator selection with diverse datasets spanning research, 
industry, and policy contexts. Its flexibility supports the development of tailored 
applications for different stakeholders. Future work should explore processes 
to determine weighting values, scenario testing, robustness, and stakeholder 
engagement to maximise both relevance and practicality.
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indicator, welfare risk assessment

1 Introduction

The measurement of farm animal welfare has gained substantial 
prominence in research, policy and practical applications related to 
animal care and management. Historically, welfare has been assessed 
according to the housing and resources that were provided for animals 
(input- or resource-based measures, e.g., the size of an animal 
enclosure) (1). However, over time, the focus has shifted to outcome- 
or animal-based measures (e.g., lameness) because welfare is a 
characteristic of the individual animal, not just the system in which 
animals are kept (2). Furthermore, there has also been recognition 
that management inputs (animal care) profoundly influence the level 
of welfare achieved (3). Besides biological functioning and a focus on 
resources, welfare assessments now also increasingly include welfare 
outcomes in terms of animals’ experiences (i.e., their affective 
states) (4).

Farm animal welfare is not only the responsibility of the 
farmers who manage their day-to-day care. For example, 
veterinarians collaborate with farmers to safeguard animal health 
and welfare. Industry bodies and levy-funded organisations work 
to promote animal welfare in their sectors. Third-party certification 
schemes and animal welfare labels often necessitate additional 
inspections that provide confidence to food businesses (processors, 
retailers, restaurants and bars) and citizens (5). Investors and banks 
both seek to ensure that standards of animal welfare do not pose 
financial risks (6). Policy makers and national competent 
authorities create and enforce legal frameworks for the protection 
of animals (7). Despite their differing priorities, all these 
stakeholders need objective and quantifiable indicators to monitor 
the welfare of animals across diverse agricultural 
production systems.

The European Union (EU) uses scientific and technical evidence 
as a foundation for its legislation and policies on animal welfare (as a 
component of feed and food safety). The European Commission has 
mandated the European Food Safety Authority (EFSA) to provide this 
scientific support. EFSA has developed a Risk Assessment (RA) 
framework for animal welfare to facilitate effective, evidence-based 
policy making. This framework includes several steps, namely hazard 
identification, hazard characterisation, exposure assessment and risk 
characterisation for a specified housing system, and is broadly based 
on the methodology already established in human and animal health 
(8). The RA framework has at its core, a logic chain linking welfare 
hazards (risks) with one or more welfare consequences which, in turn, 
are each measured by one or more welfare indicators (9, 10).

A welfare hazard is an exposure variable causing a risk to animal 
welfare. A welfare consequence is a consequence of a welfare hazard 
and impairs the welfare of the animals. Welfare indicators are 
observations and measures made during a welfare assessment.

The EFSA panel on Animal Health and Welfare (AHAW) has 
published numerous scientific opinions which apply the RA 
framework (11). Each scientific opinion was written by a suitably 
qualified team of experts which acquired data using a rigorous and 
systematic approach. This approach involves reviewing published 
literature, conducting expert elicitation processes and discussion 
through consensus groups. The most recent scientific opinions include 
recommendations on which welfare indicators can be used to measure 
the welfare of the main farmed animal species.

Given the extensive range of potential animal welfare indicators, 
choosing the most appropriate ones to address specific assessment 
objectives can be challenging. This choice is further complicated by 
the existence of different scoring systems and weighting of welfare 
indicators across systems/protocols. Therefore, the selection process 
must carefully consider numerous factors such as the validity of the 
indicators in reflecting actual animal welfare, their reliability and 
consistency across differing contexts, the feasibility of measurement 
across practical scenarios, and the associated resource and cost 
implications (12). From a practical point of view, a comprehensive, 
on-farm multi-criteria welfare assessment can also take a significant 
amount of time (13). Therefore, it could also be beneficial to create a 
decision support tool that reduces the number of animal welfare 
indicators to be measured without losing valuable information on 
animal welfare.

This concept of iceberg indicators was first defined as: “key welfare 
indicators that can reflect, or are closely correlated with, a range of other 
welfare indicators” (14). An iceberg indicator provides an overall 
assessment of welfare, just as the protruding tip of an iceberg signals 
its submerged bulk beneath the water’s surface (ibid.). FAWC used the 
presence of an intact pig tail at slaughter as a simple example. The 
intact tail indicates the absence of both tail docking and tail biting. 
This can be  taken to infer that the animal’s husbandry and 
management were managed to a sufficient level to avoid tail biting.

The definition of what constitutes an iceberg indicator in the 
context of the EFSA risk-based framework is stated in the latest 
scientific opinions from the AHAW panel. For example, the scientific 
opinion on broiler welfare stated: “Some of the ABMs are relevant to 
more than one welfare consequence (iceberg indicators) and can be used 
for general welfare screening purposes, often used to get an impression 
of the welfare status of a flock” (15). The scientific opinion on laying 
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hen welfare stated: “Animal-based measures that are relevant to more 
than one welfare consequence are referred to as ‘iceberg indicators’” (16). 
The opinion on pig welfare stated: “The animal-based measures that 
help to identify more than one welfare consequence are preferred. These 
indicators are commonly referred to as ‘iceberg indicators’” (10).

These definitions highlight the important question of how closely 
different welfare indicators are correlated. In the development of a 
decision support tool, it is essential to visualise how welfare measures 
interact, particularly the connections between animal-based indicators 
and the environmental factors that influence them (12). Knowledge of 
such interactions could facilitate the identification of the optimum 
combination of measures. For example, if a large set of indicators 
possesses overlapping information (such as related welfare hazards or 
welfare consequences), it may be possible to identify a smaller set of 
measures that have the same explanatory power. The RA framework 
for animal welfare presents an ideal basis on which to analyse and 
visualise the interactions between welfare hazards, welfare 
consequences and welfare indicators.

This study used an existing database that collated welfare 
measurement data from multiple sources, including several EFSA 
scientific opinions on the welfare of farmed animals. The database 
included a list of welfare indicators and the associated welfare hazards 
and welfare consequences. In the present paper, these data were 
further enriched with categorical metadata on dimensions such as the 
Impact of welfare consequences, Ease of hazard mitigation, and Ease of 
indicator use.

The database was used to develop algorithms and compare 
methods of discovering optimal combinations of welfare indicators 
while maintaining the link with related hazards and consequences. 
The objective of the work was to enable users to select combinations 
of welfare indicators, subject to user-defined constraints/inputs, that 
meet specific criteria such as reflecting multiple welfare consequences, 
being easy to deploy, and having the potential to mitigate the most 
severe impacts of certain welfare hazards.

2 Materials and methods

The research detailed in this paper was conducted in six phases: 
(1) database building, (2) a proof-of-concept study, (3) development 
of a greedy algorithm, (4) enhancement of the greedy algorithm using 
backtracking and branch-and-bound methods and (5) assessment of 
algorithm functionality and (6) generation of case studies to illustrate 
how the algorithms could be used in practice. The following sections 
provide further details on the methodology followed in each phase.

2.1 Database building

In 2022, MatPrat (the Norwegian Egg and Meat Council) 
catalogued the indicators that are available to measure the welfare of 
selected food-producing animals in Norwegian systems of production 
(Table 1). The project aimed to gain insights to focus animal welfare 
activities, for example, to use in dialogue with the Norwegian industry.

The main welfare hazards for each species within each housing 
system were collated through scientific literature reviews. In the case 
of the EFSA scientific opinions, these welfare hazards were often 
explicitly listed and could be  transcribed directly. For the other 

sources, these data were extracted through detailed review of the 
published article. The resulting welfare hazards were then linked to 
both welfare consequences and welfare indicators. In the case of the 
EFSA scientific opinions, again, these linkages were often explicitly 
specified. For the other sources, the linkages were made by two or 
more welfare experts in the project team. Most data were extracted 
from a series of EFSA reports (published from 2007 to 2012, and the 
updated reports from 2022 to 2023) which described the welfare 
aspects for the main European categories of farmed animals and 
housing systems. The main data sources are summarised below:

	•	 Dairy cattle (17–29)
	•	 Pigs (10, 27, 29–32)
	•	 Beef cattle (17–22, 26–29, 33–36)
	•	 Sheep (27, 29, 37, 38)
	•	 Broiler chickens (15, 29, 33, 39)
	•	 Laying hens (16, 29)

The database was then supplemented with metadata generated 
through an elicitation process involving five farm animal welfare 
experts. This required rating the Impact of welfare consequence (Low 
or High), Ease of hazard mitigation (Easy, Moderate or Difficult), and 
Ease of indicator use (Easy, Moderate or Difficult). Where the expert 
ratings differed, a consensus approach was used to determine the 
final rating.

As an example, high stocking density was identified as a welfare 
hazard for growing/finishing pigs. In the database, this welfare hazard 
was associated with three unique welfare consequences (soft tissue 

TABLE 1  A description of the species and systems of production 
represented in the test dataset.

Species Class (e.g., system of production / 
life-stage)

Pigs Meat pigs

Pregnant sows - Groups

Lactating sows - Pens

Unweaned piglets

Boars

Broiler chickens Indoor (with or without veranda)

Laying hens Laying hens - Aviaries

Laying hens - Aviaries and free range

Dairy cattle Tie stalls

Cubicles

Dairy calves All

Beef cattle Adults - Cubicles

Adults - Tie stalls

Beef calves

Beef bulls

Sheep Adults - Outside year-round

Lambs from outside year-round

Adults - Outside/winter housed

Lambs from winter housed

For most species, there was more than one class (system of production or life-stage).
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lesions and integument damage; general disruption of behavior, and 
resting problems). These welfare consequences were associated with 
eight welfare indicators (body lesions; calluses and bursitis (pressure 
injuries); ear lesions; impaired social behavior; leg injuries; pig 
cleanliness; restlessness, and tail lesions). Soft tissue lesions and 
integument damage was rated as a welfare consequence that has a 
‘High’ impact. High stocking density was rated as a hazard that is 
‘Easy’ to mitigate, and tail lesions was rated as a welfare indicator that 
is ‘Easy’ to use.

2.2 Proof-of-concept study and data 
preparation

2.2.1 Proof-of-concept study
Before proceeding to the creation of the two algorithms, a proof-

of-concept study was conducted. This involved exploring the effect of 
different combinations of indicators on the number of linked welfare 
consequences. The number of unique combinations of indicators 
increases exponentially as more indicators are combined, therefore, 
the approach was validated using a subset of six indicators for broiler 
chickens and six for laying hens.

The six indicators for each species were selected from the top of a 
list that was ranked by the number of unique associated welfare 
consequences. This ranked list was obtained by creating a pivot table 
in Microsoft Excel of the number of unique (i.e., deduplicated) welfare 
consequences linked to each indicator. First, the maximal number of 
unique welfare consequences associated with a combination of all six 
indicators was calculated (i.e., the target). Then, to identify the 
simplest (smallest) subset of indicators that were associated with the 
maximal number of welfare consequences, the number of welfare 
consequences that were associated with each unique combination of 
indicators [n = (26–1) = 63] was determined, again, by creating a pivot 
table in Microsoft Excel.

2.2.2 Algorithm development
Following the proof-of-concept study, two types of algorithms 

were created: (a) A simple greedy algorithm, which is a method to 
combine indicators based purely on one or more dimensions, such as 
the number of associated welfare consequences (e.g., selecting the best 
iceberg indicators first), and (b) An enhancement of the greedy 
algorithm using multi-criteria decision analysis (MCDA) involving 
backtracking (a systematic way of exploring all combinations of 
indicators to find one or more valid solutions) while employing 
branch-and-bounds to identify intelligent ‘shortcuts’, effectively 
guiding the search towards the optimal solution and avoiding 
unnecessary computations.

Greedy algorithms were first proposed as a method to determine 
the shortest path or subtree to connect nodes within a network. Early 
algorithms were used to solve the ‘minimum connector’ or ‘travelling 
salesman’ problem (40, 41). Greedy algorithms make a locally optimal 
choice to find a globally optimal solution (56). They are some of the 
simplest algorithms in combinatorial optimisation and can determine 
efficiently the solution to many problems (57). While their key 
advantage is that they are easy to understand and implement, greedy 
algorithms ignore the possibility that the solution identified may not 
be the best (i.e., is not the global optimum).

As greedy algorithms may converge on a locally optimal rather 
than globally optimal solution, an algorithm using branch-and-
bound plus backtracking was developed to iteratively enumerate all 
subsets of (S) indicators. The recursive nature of such algorithms 
allows for exhaustive exploration of indicator subsets while using 
pruning techniques to discard unfeasible solutions early.

Backtracking is a systematic method for exploring all variants of 
a solution to find one or more valid solutions. The use of the term 
backtracking was first attributed to Lehmer in the 1950s (42). Such 
methods incrementally explore potential solutions and backtrack if a 
suboptimal variant is discovered. While backtracking can identify the 
globally optimum solution, the required number of iterations is 
computationally intensive, and the required number of calculations 
increases exponentially with the number of branches in the decision 
tree. For example, the potential number of combinations of a single 
factor increases from 31 when combining 5 items to 1,048,575 when 
combining 20 items [n = (2items)  – 1]. However, the backtracking 
method can be enhanced for combinations of a larger number of 
items using branch-and-bound methods.

The development of branch-and-bound methods is widely 
attributed to (43). While simple backtracking explores all paths in the 
search space until a solution is found, branch-and-bound intelligently 
cuts off (prunes) unproductive paths early in the search, making it 
much more efficient for optimisation problems. Branch-and-bound 
uses the power of backtracking to systematically explore solutions 
while employing bounds to function as intelligent ‘shortcuts’, guiding 
the search towards the optimal solution and avoiding 
unnecessary computations.

It was predicted that a greedy algorithm would provide a quick 
and simple means of discovering and combining iceberg indicators 
(based on the number of associated welfare consequences for each 
indicator), but this would have a risk of false solutions (i.e., local 
maxima). It was further predicted that refinement of the greedy 
algorithm using backtracking would avoid the selection of false 
solutions but may increase the compute time to potentially unfeasible 
levels, so the use of branch-and-bound methods were investigated to 
limit the required compute time.

2.2.3 Data preprocessing and normalisation
Some data preprocessing and normalisation were necessary to 

facilitate the development of the algorithms. For example, the dataset 
contained several data structures containing categorical values (see 
Table 2).

To enable the use of these data in the data analysis, selected 
descriptors were first mapped to numerical values. These included 
Impact of welfare consequence (Low = 1 & High = 2), Ease of hazard 
mitigation (Easy = 1, Moderate = 2, Difficult = 3), and Ease of indicator 
use (Easy = 1, Moderate = 2 & Difficult = 3).

For dimensions such as the Impact of welfare consequence, the 
objective function should increase when its values are numerically 
higher. In this case, the values were directly added to the objective 
function. However, for factors such as Ease of indicator use and Ease 
of hazard mitigation, the objective function should increase when their 
values are numerically lower. To reflect this, it was necessary to either 
specify those factors as being negative in the objective function, or 
subtract values from the number of levels 

( )( )= + −   1 )transformed valued number of levels value . In the present 
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exercise, the second option was selected (Equations 1–3), which 
ensured that higher values are always treated as beneficial.

	 ( )=    i iImpactScore Impact of welfare consequence 	 (1)

	 ( )( )= + −4 1    i iMitigationScore Ease of hazard mitigation 	 (2)

	 ( )( )= + −4 1   i iEasinessScore Ease of indicator use 	 (3)

As the primary objective was to optimise the number of unique 
welfare hazards and/or unique welfare consequences that were linked 
to a combination of indicators, the Coverage for each indicator (i) was 
calculated (Equations 4, 5).

	

=
      

iHazardCoverage
number of unique hazards that indicator covers 	 (4)

	

=
      

iConsequenceCoverage
number of unique consequences that indicator covers 	 (5)

To ensure that all data could be equitably weighted, each factor 
was then subjected to a max-min normalisation to scale it within the 
range {0,…,1}. This transformation also ensured that both 
HazardCoveragei and ConsequenceCoveragei were expressed as a 
proportion of the maximum number of hazards and consequences 
respectively, which enabled them to be  equitably weighted 
(Equation 6).

	

−
=

−
min

max min
 ix xNormalised factor

x x 	
(6)

2.2.4 Definition of the objective function
Each of the algorithms had at its core an objective function that 

incorporated all of the factors to be optimised. To enable the separate 
and interactive weighting of HazardCoveragei and 
ConsequenceCoveragei, a composite measure for Coverage was 
calculated, which also incorporated weighting factors (α and β) to 
adjust the balance as required (Equation 7).

	 ( ) ( )α β= +. .i i iCoverage HazardCoverage ConsequenceCoverage 	 (7)

Additionally, the other dimensions were incorporated into the 
objective function (e.g., Ease of indicator use, Impact of welfare 
consequence, and Ease of hazard mitigation). Each factor was separately 
weighted to enable ‘tuning’ of the objective function in different 
use-cases (phase 6), (Equation 8).

	

( )
( ) ( )
( )

ω α β
ω ω
ω

=
+

+ +
+

. .
i

coverage

easiness impact

mitigation

Objective
HazardCoverage ConsequenceCoverage

EasinessScore ImpactScore
MitigationScore 	 (8)

α, β, ωcoverage, ωeasiness, ωimpact and ωmitigation are user-defined weighting 
factors that relate to the relative importance of each constraint. For 
example, if a user wanted to optimise based only on the number of 
welfare consequences linked to a combination of indicators, they 
could set all other weighting factors to zero. This effectively removes 
those factors from the calculation.

When selecting a combination of indicators 
{ }⊆ …S 1, ,MAXindicators the total objective function becomes 

(Equation 9):

	
( )

∈
=∑ i

i S
Objective S objective

	
(9)

2.2.5 Development tools
Algorithms were developed using the Python programming 

language (version 3.13) and Google’s OR-Tools Linear Solver (44). 
OR-Tools is an open-source module which enables the deployment of 
linear programming (LP), mixed-integer programming (MIP), 
Solving Constraint Integer Programmes (SCIP), and other 
optimisation techniques.

2.3 Development of a greedy algorithm

The greedy algorithm involved the selection of a pre-determined 
number of welfare indicators from a list of indicators ranked by the 
size of the objective function (Eqn. 9). For example, if no more than 
six indicators should be combined, the greedy algorithm selected the 
indicators with the top 6 highest iobjective  values. The user could 
predefine the number of indicators to be combined according to their 
specific use-case (e.g., desired number of indicators ≤ 4).

2.4 Enhanced optimisation algorithm using 
SCIP

The objective of the enhanced algorithm was to identify 
combinations of indicators (up to a user-defined maximum number of 
indicators) that maximise the value of the objective function (i.e., the 
combination(s) with the largest sum of iobjective ). To achieve this, the 
algorithm was created using the Solving Constraint Integer Programmes 
(SCIP) component of the OR-Tools Linear Solver module (45).

TABLE 2  A description of the dimensions and levels of measurement in 
the test dataset for each of the seven focal species of farm animal.

Type Dimensions Levels (where 
applicable)

Hazards Welfare hazards

Consequences Welfare consequences

Metadata Impact of welfare 

consequence

Low | High

Metadata Ease of hazard mitigation Easy | Moderate | 

Difficult

Indicators Welfare indicators

Metadata Ease of indicator use Easy | Moderate | 

Difficult
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SCIP is one of the most powerful and versatile solvers for 
mathematical optimisation, especially in the case of mixed-integer 
programming (MIP). MIP is a type of mathematical optimisation 
where some decision variables have categorical values, while others 
may be  continuous (i.e., real numbers). A MIP problem typically 
involves optimising a linear objective function subject to a set of linear 
constraints. The inclusion of integer variables allows MIP to model 
discrete and decision analysis for problems that involve both 
quantitative allocations and binary or categorical choices. The 
recursive nature of the algorithm, combined with branch-and-bound 
pruning and initialisation with a greedy solution, allows for an 
exhaustive but efficient exploration of indicator subsets. The approach 
ensures an optimal selection process within the defined constraints 
while significantly reducing computational overhead.

SCIP solves integer programming problems by combining several 
algorithms. It starts by solving the LP relaxation and, if the solution is 
fractional, it applies branch-and-bound: branching on fractional 
variables to create subproblems, solving relaxations at each node, and 
using bounds to prune unpromising branches. Backtracking is used 
to navigate the search tree when dead ends are reached. During its 
iterations, SCIP employs greedy heuristics to quickly find good 
feasible solutions, which helps improve pruning efficiency. This 
intelligent combination of exploration and pruning leads SCIP to the 
optimal integer solution efficiently.

In the present exercise, the algorithm operated by iterating 
through a list of candidate indicators, where the ‘value’ of each 
indicator was determined using the objective function (Eqn.9). At 
each step, the algorithm evaluated whether an indicator (i) could 
be  included in the selection without exceeding the maximum 
allowable number of indicators set by the user. It explored two 
recursive branches: one that included the indicator (provided 
constraints permit) and one that excluded it. The function then 
backtracked by undoing previous selections to explore alternative 
combinations. SCIP maintained a global dictionary to store the best 
solution encountered during execution, updating it whenever a 
higher-scoring subset was identified (Figure 1).

To avoid overly lengthy computation times for larger combinations 
of indicators, an early stopping mechanism was incorporated by 
introducing a time limit parameter. If the execution time exceeded 
10 s, the algorithm halted, returning the best solution identified up to 
that point. Additionally, progress logging was implemented at regular 
intervals to facilitate tracking during execution. The early stopping 
mechanism avoided the algorithm freezing if an overly complex set of 
parameters were evaluated. Additionally, as the goal was to produce 
an algorithm that provided solutions within practical time constraints, 
the early stopping mechanism helped to identify when run times had 
exceeded a defined threshold.

2.5 Assessment of algorithm functionality

Following the development of the enhanced optimisation 
algorithm, basic assessments of its performance and behavior were 
conducted under varying configurations.

First, the weighting applied to Coverage (ωcoverage) was 
systematically varied to assess how the objective function responded 
to different configurations. For each level of weighting, the 
optimisation problem was solved, and the resulting composite 

objective function score was recorded. This approach enabled the 
decomposition of the objective function into interpretable elements, 
allowing direct observation of how each criterion influenced the final 
optimisation output.

Second, a univariate perturbation analysis was conducted to 
evaluate the sensitivity of the algorithm to user-defined inputs. For 
each weighting parameter, controlled shifts (e.g., ±50%) were 
introduced and the optimisation problem solved repeatedly to observe 
changes in the selected subset of welfare indicators.

2.6 Creation of case studies

To demonstrate and validate the utility of the optimisation 
framework, two illustrative hypothetical case studies were developed 
which targeted distinct user needs: (a) a food business that sought 
to measure six welfare indicators to demonstrate the year-on-year 
impact of its activities on improving the welfare of broilers in its 
supply chain, and (b) an animal welfare certification scheme 
provider that sought to measure six welfare indicators to 
demonstrate the welfare status of growing and finishing pigs across 
certified farms.

Each case study deployed both the simple greedy algorithm and 
the enhanced algorithm. The case studies were focused on a specific 
animal species and stakeholder use-case and incorporated a defined 
set of constraints and priorities. These included fixing the maximum 
number of indicators to be selected (n = 6), pre-defining different 
weighting configurations reflecting different prioritisation strategies 
(e.g., differential emphasis placed on Coverage, Ease of indicator use, 
Impact of welfare consequence, and Ease of hazard mitigation).

In each case study, the computational performance of the 
enhanced algorithm was investigated by recording the total runtime 
for increasingly complex optimisation tasks (increasing the desired 
number of welfare indicators in the solution). Stability of the 
optimisation process was further assessed by re-running the same 
configuration multiple times. To achieve this, the desired number of 
indicators was increased from 5 to 50 (in 10 steps of 5). At each step, 
the optimisation was run 15 times, and the mean value and 95% 
confidence intervals were calculated and plotted. A one-way analysis 
of variance was used to detect any effect of the number of indicators 
on computational performance, and linear regression was used to 
determine the direction and strength of the association between the 
two variables.

Scenario testing was used to explore how different weighting 
(prioritisation) strategies influenced the selection of welfare indicators 
in the enhanced algorithm. The four weighting factors were 
systematically varied: Coverage, Ease of indicator use, Impact of welfare 
consequence, and Ease of hazard mitigation. Differential weighting of 
these factors enabled manipulation of their relative importance in 
decision-making.

To ensure comparability across scenarios and maintain 
consistency, the sum of the weights in each scenario was fixed. Several 
prioritisation scenarios were designed to evaluate plausible real-world 
use-cases. These included Priority on coverage, Balanced, Priority on 
ease of indicator use, Priority on impact of welfare consequence, and 
Priority on ease of hazard mitigation (Table  3). By systematically 
varying the emphasis placed on each component, the scenario testing 
provided insight into how different stakeholders might arrive at 
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distinct, yet justifiable, solutions depending on their operational goals 
and constraints.

Robustness testing was used to introduce systematic 
perturbations in the weighting values within the objective function. 
This enabled investigations into the leverage that a factor exerted on 
the objective function. For each species of farm animal, the 
weighting of Coverage, Ease of indicator use, Impact of welfare 
consequence and Ease of hazard mitigation was manipulated by a 
factor of −50%, 0 or 50%, and the impact on the welfare indicators 
selected was recorded. All weighting factors were initially set at 1.0, 

except for the one that was to be  manipulated. The maximum 
number of indicators was constrained to 10. Venn diagrams were 
plotted with values representing the number of shared indicators in 
each perturbation condition. Large variation in the welfare indicators 
selected by the algorithm would suggest that the weighting value 
(and underlying dimension) exerts a leverage on the solution 
obtained. Conversely, little or no variation in the welfare indicators 
selected by the algorithm would suggest that the weighting value 
(and underlying dimension) exerts no leverage on the 
solution obtained.

FIGURE 1

An overview of how the enhanced algorithm combined backtracking and branch-and-bound heuristics through SCIP.
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3 Results

3.1 Database

The data model was based on the RA framework developed by 
the European Food Safety Authority (EFSA) to describe welfare 
hazards, their linked welfare consequences, and the range of 
available welfare indicators. Data were extracted for key farmed 
animal species and relevant housing systems (published by EFSA 
between 2007 and 2012, and from the updated reports in 2022–
2023). These data were supplemented with information from other 
scientific sources.

After data capture, the database contained 382 unique welfare 
indicators across a variety of farm animals dairy cows (n = 54); dairy 
calves (n = 51); pigs (n = 92); beef cattle (n = 48); broiler chickens 
(n = 53); laying hens (n = 42); and sheep (n = 42).

3.2 Proof-of -concept studies

3.2.1 Broiler chickens
The top 6 welfare indicators for broiler chickens (ranked by 

the number of welfare consequences) were: (A) Injurious 
pecking, (B) Plumage damage, (C) Lethargy, (D) Footpad 
dermatitis, (E) Feather and body dirtiness, and (F) Walking  
impairment.

A combination of all six indicators was linked to a maximum of 
18 welfare hazards and 9 consequences for broiler chickens. It was 
found that two combinations of four indicators explained the same 
number of welfare hazards and consequences as a combination of all 
six indicators (Table 4).

The proof-of-concept study for broiler chickens showed that 
the same welfare hazards and consequences can be explained more 
simply by measuring just four indicators: lethargy, feather and 
body dirtiness, walking impairment (C, E, and F), and either 
injurious pecking (A) or plumage damage (B) instead of using all 
six indicators.

The solution identified for broiler chickens highlights an 
important feature that may be relevant to other decision support 
tools. It is possible to arrive at multiple, equally valid solutions. 
This raises the possibility of selecting among them based on 
additional factors such as ease of use, time required, or cost.

3.2.2 Laying hens
The top  6 indicators for laying hens (ranked by the number of 

welfare consequences) were: (A) Plumage damage, (B) Injurious pecking, 
(C) Bruises, (D) Beak shape and length, (E) Pecking wounds to the back, 
vent and tail, and (F) Flock records (death due to pecking wounds).

Using all six indicators explained a maximum of 14 welfare 
hazards and 6 consequences for laying hens. It was found that there 
was one combination of three indicators that explained the same 
number of welfare hazards and consequences as a combination of all 
six indicators (Table 5).

TABLE 3  The different scenarios used to evaluate algorithm performance.

Scenario Weight Comment

Coverage Ease of 
indicator use

Impact of welfare 
consequence

Ease of hazard 
mitigation

Priority on coverage 8.0 0.0 0.0 0.0 Only optimising coverage

Balanced 2.0 2.0 2.0 2.0 Equal weighting to all factors

Priority on ease of 

indicator use

5.0 3.0 0.0 0.0 Favouring indicators that are easy to 

use

Priority on impact of 

welfare consequence

5.0 0.0 3.0 0.0 Favouring consequences that have a 

large impact on welfare

Priority on ease of 

hazard mitigation

5.0 0.0 0.0 3.0 Favouring hazards that are easy to 

mitigate

The weighting for both α. HazardCoverage and β. ConsequenceCoverage, as part of overall Coverage, was held constant at 0.5, providing an equitable balance between both measures 
(Equation 8).

TABLE 4  A matrix indicating all possible unique combinations of six 
welfare indicators [n = (26–1) = 63].

Number of indicators in combination

1 2 3 4 5 6 (all)

A AB ABC ABCD ABCDE ABCDEF

B AC ABD ABCE ABCDF

C AD ABE ABCF ABCEF

D AE ABF ABDE ABDEF

E AF ACD ABDF ACDEF

F BC ACE ABEF BCDEF

BD ACF ACDE

BE ADE ACDF

BF ADF ACEF

CD AEF ADEF

CE BCD BCDE

CF BCE BCDF

DE BCF BCEF

DF BDE BDEF

EF BDF CDEF

BEF

CDE

CDF

CEF

DEF

Shaded cells indicate the combinations that were linked to the same number of welfare 
hazards and consequences as a combination of all six indicators for broiler chickens.
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The proof-of-concept study for laying hens showed that the same 
welfare consequences can be explained more simply by measuring just 
three indicators: plumage damage (A), injurious pecking (B) and flock 
records (death due to pecking wounds) (F) instead of using all 
six indicators.

3.3 Greedy algorithm

It was hypothesised that animal welfare indicators vary in their 
Coverage, forming a continuum from ‘broad’ (those linked to a large 
number of welfare hazards and consequences) to ‘narrow’ (those only 
linked to a few welfare hazards and consequences). Consequently, it 
was expected that efforts to maximise the number of unique welfare 
hazards or consequences captured by combining multiple indicators 
would exhibit diminishing returns. For example, the first few 
indicators selected would contribute substantially to overall Coverage, 
while each additional indicator would contribute progressively less. 
As a result, when applying a greedy algorithm to optimise indicator 
selection, it was predicted that a saturating exponential relationship 
would exist between the number of indicators included and the 
cumulative Coverage achieved.

To investigate this prediction, the relationship between the number 
of indicators included and the cumulative Coverage (expressed as a 
percentage of the total) achieved was plotted. Three dimensions of 
Coverage were considered: (1) welfare consequences, (2) welfare 
hazards, and (3) welfare hazards x welfare consequences (‘combination 

space’) for each species of farm animal (Figures 2A–G). The result 
showed that for each of the three dimensions, the cumulative 
percentage Coverage exhibited a saturating exponential function as 
more indicators were combined. Each plot also contained distinctive 
‘plateaus’ where the ‘greedy’ addition of the next-best welfare indicator 
did not add any new Coverage to the existing combination.

The existence of ‘plateaus’ in the cumulative plots illustrates where 
greedy algorithms can select a false optimum. To further elaborate, the 
case of a user who seeks to find the combination of 10 welfare 
indicators that maximises the number of associated welfare 
consequences for dairy calves was considered (Figure 3A). A greedy 
algorithm would select the top 10 welfare indicators ranked by the 
number of linked welfare consequences (in this example, explaining 
approximately 56% of all potential welfare consequences). In contrast, 
an algorithm using branch-and-bound and backtracking methods 
would only select the next welfare indicator in the ranked list if it 
added additional (new) welfare consequences to the solution (in this 
example, explaining approximately 83% of all potential welfare 
consequences; Figure  3B). Therefore, to ensure that the final tool 
developed avoided falsely selecting indicators that did not expand 
Coverage, the project progressed immediately to develop a full 
algorithm using branch-and-bound methods and backtracking 
because such algorithms can efficiently identify the true 
optimum combination.

3.4 Enhanced optimisation algorithm using 
SCIP

3.4.1 Objective function performance
The objective function exhibited a saturating exponential function 

as the number of selected indicators increased (Supplementary 
material 1), consistent with diminishing marginal gains in the 
objective value. In contrast to the stepwise pattern characteristic of the 
greedy algorithm, the optimisation-based approach yielded a 
continuous, monotonic increase because indicators were only added 
when they increased the objective function (i.e., there were no 
‘plateaus’).

The shape of this relationship varied by species. For example, 
the curve for pigs had a higher asymptotic value, resulting from the 
greater number and diversity of available indicators for this species. 
The curvature of the function resulted from the relative proportion 
of ‘broad’ versus ‘narrow’ indicators. A higher proportion of 
‘broad’ indicators produced a steeper initial gradient, which is 
indicative of rapid gains from broadly applicable measures, 
whereas a predominance of ‘narrow’ indicators led to a more 
gradual approach to the asymptote due to small incremental 
improvements from narrowly targeted measures at higher 
indicator counts.

3.4.2 Solution stability and sensitivity
The composition of the objective function shifted predictably in 

response to increases in the weighting of Coverage (ωcoverage), with 
increased contribution from the amplified dimension and a 
corresponding reduction from others (Supplementary material 2).

These shifts did not destabilise the optimisation process or yield 
spurious results (e.g., selection collapse or invalid solutions), 
indicating that the enhanced algorithm tolerated moderate tuning of 
user-defined priorities without losing solution quality.

TABLE 5  A matrix indicating all possible unique combinations of six 
welfare indicators [n = (26–1) = 63].

Number of indicators in combination

1 2 3 4 5 6 (all)

A AB ABC ABCD ABCDE ABCDEF

B AC ABD ABCE ABCDF

C AD ABE ABCF ABCEF

D AE ABF ABDE ABDEF

E AF ACD ABDF ACDEF

F BC ACE ABEF BCDEF

BD ACF ACDE

BE ADE ACDF

BF ADF ACEF

CD AEF ADEF

CE BCD BCDE

CF BCE BCDF

DE BCF BCEF

DF BDE BDEF

EF BDF CDEF

BEF

CDE

CDF

CEF

DEF

Shaded cells indicate the combinations that were linked to the same number of welfare 
hazards and consequences as a combination of all six indicators for laying hens.
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FIGURE 2

The relationships between the number of indicators combined and cumulative percentage of: a. welfare hazards, b. welfare consequences, and c. 
welfare hazards x welfare consequences (combination space) explained for: (A) Beef cattle, (B) Broiler chickens, (C) Dairy calves, (D) Dairy cows, 
(E) Laying hens, (F) Pigs, and (G) Sheep. Indicators were added using greedy heuristics.
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3.4.3 Computational efficiency
Tests of computation efficiency were conducted to ensure that the 

tools would find optimal solutions within a short time limit. For all 
species of farm animal, it was found that even solutions involving 
combinations of up to 50 indicators were calculated in less than 200 
milliseconds. The early stopping mechanism was not activated in any 
runs of the algorithm.

Increasing the desired number of indicators in the solution from 
5 to 50 (in 10 steps of 5) had no detectible significant effect on the 
runtime required to obtain a solution for any farm animal species 

{mean values (ms) across 15 runs: 75.27 [95% CI (74.54, 76.00)] for 
Beef cattle, 85.97 [95% CI (84.91, 87.03)] for Broilers, 83.27 [95% CI 
(81.50, 85.03)] for Dairy calves, 87.50 [95% CI (85.49, 89.50)] for 
Dairy cows, 70.11 [95% CI (68.68, 71.54)] for Laying hens, 132.82 
[95% CI (129.97, 135.66)] for Pigs, and 73.04 [95% CI (72.05, 74.04)] 
for Sheep}.

The longer runtimes observed for pigs arose because of the 
larger number of indicators identified for this species (92 
indicators for pigs vs. a range of 42–54 indicators for the 
other species).

FIGURE 3

The illustrated use-case only seeks to maximise the number of unique welfare consequences associated with the selection of 10 welfare indicators for 
dairy calves. (A) The greedy algorithm erroneously selects indicators that add no additional coverage (plateaus) whereas (B) an algorithm using branch-
and-bound methods with backtracking finds the optimum solution.
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3.5 Case study: broilers

The hypothetical user was a food business that wanted to measure 
six welfare indicators to demonstrate the year-on-year impact of its 
management of the welfare of broilers in its supply chain. The 
sustainability team of the business sought to work on welfare hazards 
that had the largest impact on bird welfare and that were easy to 
mitigate. Furthermore, they only wanted to adopt welfare indicators 
that were easy to use.

3.5.1 Application of the greedy algorithm
The simple greedy algorithm operating on a ranked list of welfare 

hazard Coverage enabled the selection of six welfare indicators that 
were linked to 17 of the 26 unique welfare hazards (65.4%) and 8 of 
the 20 unique welfare consequences (40.0%) in Coverage space 
(Supplementary material 3).

However, it was evident that while injurious pecking and bruises 
were associated with a relatively large number of welfare hazards and 
welfare consequences, they did not contribute any new hazards to the 
cumulative pool if plumage damage were to be selected first.

Consequently, the sustainability team applied the enhanced 
algorithm to identify the actual optimum (and avoid the selection of 
duplicate hazards and consequences).

3.5.2 Enhanced algorithm using SCIP
The enhanced algorithm was applied with weighting factors 

prioritising Coverage but also optimising Ease of indicator use, and 
Impact of welfare consequence, and Ease of hazard mitigation.

The enhanced algorithm selected a different set of six welfare 
indicators. These were linked to 17 of the 26 unique welfare 
hazards (65.4%) and 8 of the 20 unique welfare consequences 
(40.0%) in Coverage space (Table  6). While the number of 
associated welfare hazards and welfare consequences did not 
change from the greedy solution, the enhanced algorithm 
substituted two of the originally selected indicators (injurious 

pecking and bruises) for alternatives (wounds and hockburn). 
These replacements offered equivalent or greater overall utility 
when all weighted criteria were considered.

3.5.3 Computational efficiency
The mean computation time for the enhanced algorithm remained 

consistently low for all combinations of indicators evaluated. There was 
no detectible significant effect on the runtime to obtain a solution as the 
desired number of indicators was increased from 5 to 50 [F(9,140) = 0.7061; 
NS]. The mean runtime was 91.71 ms [95% CI (89.85, 93.57)]. Although 
there was some variability, especially at lower indicator numbers, the 
95% confidence intervals were narrow and overlapped, indicating no 
significant change in compute time. The linear trend line had a slight 
positive gradient, but the slope was minimal, and the confidence band 
was narrow, suggesting that the algorithm scaled efficiently with 
increasing problem size (Supplementary material 4).

3.5.4 Scenario analysis
For broilers, the degree to which the elements of the objective 

function were weighted was important. For example, was it more 
important to maximise the breadth of hazard and consequence 
Coverage, or to favour indicators that were easier to implement 
on-farm and target welfare issues that are both impactful and 
readily mitigated? Adjusting these weights altered the optimisation 
landscape and shifted the selected indicator set significantly 
(Figure 4).

3.5.5 Robustness testing
Substantial perturbations in weighting factors did not result in 

any major changes in the selection of welfare indicators for broilers 
(Supplemental material 4). This suggests that the solution space is 
stable across a range of input preferences, and that small or even 
moderate deviations in how indicators are weighted do not result in 
radically different outcomes. This provides confidence in the 
reliability and predictive consistency of the model.

TABLE 6  The six welfare indicators for broilers that optimise the combination of: (1) Coverage (welfare hazards and consequences), (2) Impact of 
welfare consequence, (3) Ease of hazard mitigation, and (4) Ease of indicator use.

Welfare 
indicator

Hazard coverage 
(% of total)

Consequence 
coverage (% total)

Impact of welfare 
consequence (n)

Ease of hazard 
mitigation (n)

Ease of 
indicator use

Retained from the original greedy algorithm

Plumage damage 38.5% 15.0% Low (2) & High (9) Easy (5), Moderate (4) & Difficult (2) Easy

Lethargy 30.8% 15.0% Low (7) & High (2) Easy (3) & Difficult (6) Easy

Footpad dermatitis 23.1% 15.0% High (6) Easy (2), Moderate (2) & Difficult (2) Easy

Feather and body 

dirtiness

19.2% 15.0% Low (4) & High (1) Easy (2), Moderate (2) & Difficult (1) Easy

Removed

Injurious pecking 34.6% 15.0% Low (2) & High (9) Easy (5), Moderate (4) & Difficult (2) Moderate

Bruises 34.6% 5.0% High (9) Easy (4), Moderate (3) & Difficult (2) Moderate

Added

Wounds 19.2% 10.0% High (7) Easy (4), Moderate (1) & Difficult (2) Easy

Hockburn 15.4% 10.0% High (4) Easy (2), Moderate (1) & Difficult (1) Easy

Weighting factors were set to favour coverage and equally balance the other three factors in the decision set (ωcoverage = 5 (α. HazardCoverage = 0.5 + β. ConsequenceCoverage = 0.5), ωeasiness = 1, 
ωimpact = 1 and ωmitigation = 1). The welfare indicators listed under ‘Removed’ are excluded from the greedy solution and are replaced by those listed under ‘Added’.
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3.6 Case study: growing/finishing pigs

The user is an animal welfare certification scheme provider 
that wants to measure six welfare indicators to demonstrate the 
welfare status of growing and finishing pigs across third-party 
certified farms. Their goal is to ensure that selected indicators are 
both scientifically robust and feasible to implement during 
periodic assessments. Specifically, they seek indicators that are 
able to cover a broad range of welfare hazards and consequences; 
address high-impact risks to animal welfare; are practical to assess 
during on-farm audits and focus on hazards that are 
realistically mitigable.

3.6.1 Application of the greedy algorithm
A simple greedy algorithm operating on a ranked list of welfare 

hazard Coverage enabled the selection of six welfare indicators that 
were linked to 27 of the 58 unique welfare hazards (46.6%) and 7 of 
the 16 unique welfare consequences (43.8%) in Coverage space 
(Supplementary material 5).

3.6.2 Enhanced algorithm
In contrast to the broiler case study, the enhanced optimisation 

method using branch-and-bound with backtracking produced the 
same indicator set, confirming that the greedy solution was, in this 
case, also globally optimal given the input criteria and weights.

The algorithm suggested the selection of six welfare indicators that 
were also linked to 27 of the 58 unique welfare hazards (46.6%) and 7 
of the 16 unique welfare consequences (43.8%) in Coverage space 
(Table 7). While these indicators were the same as the set determined 
by the greedy algorithm (i.e., none were added or removed), the use 
of the enhanced algorithm still added value because it validated the 
result under a multi-dimensional objective function and provided 
insight into why each indicator was selected as it also quantified its 
contribution to Coverage, Ease of indicator use, Impact of welfare 
consequence, and Ease of hazard mitigation.

Furthermore, analysis of the solution space revealed that each 
selected indicator contributed uniquely to the objective function. No 

indicator was redundant, and no alternative set achieved a higher 
composite score under the defined constraints. This reinforced 
confidence in the selection and demonstrated the algorithm’s 
robustness for applications where audit efficiency, Coverage, and 
welfare relevance must all be balanced.

3.6.3 Computational efficiency
The mean computation time for the enhanced algorithm 

remained consistently low for all combinations of indicators 
evaluated. There was no detectible significant effect on the runtime 
to obtain a solution as the desired number of indicators was 
increased from 5 to 50 [F(9,140) = 0.7648; NS]. The mean runtime was 
82.51 ms [95% CI (81.34, 83.69)]. The linear trend is flat, with an 
almost negligible slope and a tightly bounded confidence band, 
confirming that computational load does not appreciably increase 
with problem size. Compared to broilers, the computation times for 
meat pigs are slightly more consistent and show less variability 
across indicator counts, suggesting even more uniform performance 
of the algorithm in this context (Supplementary material 6).

3.6.4 Scenario analysis
For meat pigs, the degree to which the elements of the objective 

function were weighted was again important. Adjusting these weights 
altered the optimisation landscape and modified the selected indicator 
set significantly (Figure 5). The “Priority on ease of indicator use” 
scenario produced the highest objective score, whereas “Priority on 
ease of hazard mitigation” resulted in the lowest, indicating trade-offs 
between dimensions when emphasising specific priorities.

3.6.5 Robustness testing
Substantial perturbations in weighting factors did not result in any 

major changes in the selection of welfare indicators for meat pigs 
(Supplementary material 6). This again suggested that the solution 
space was stable across a range of input preferences, and that small or 
even moderate deviations in how indicators are weighted did not 
result in radically different outcomes. This provided further confidence 
in the reliability and predictive consistency of the algorithm’s output.

FIGURE 4

Objective function performance across different weighting scenarios for broilers. Bars represent the final objective score (S) achieved under each 
scenario, reflecting the combined value of selected indicators based on their contribution to coverage, impact, and feasibility dimensions. The 
“Balanced” scenario applies equal weighting to all criteria, while the others apply increased weighting to a specific aspect of interest.
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This case study illustrated how the optimisation framework can 
support certification bodies in defining concise, evidence-based 
indicator sets that are aligned with both scientific principles and 
operational feasibility.

4 Discussion

The study presented in this paper aimed to develop and compare 
tools to discover optimal combinations of welfare indicators using 
multi-criteria decision analysis (MCDA). Two algorithms were 
developed: (a) a simple greedy algorithm, (b) an enhancement of the 
greedy algorithm using SCIP, which identified the global optimum 
using branch-and-bound methods and backtracking. Both algorithms 
were evaluated using a database that was populated with information 
from the European Food Safety Authority AHAW panel’s risk-based 
assessments of animal welfare and other published literature for 
multiple species of farm animals. The ultimate objective was to enable 
users to select combinations of welfare indicators that are both 
effective in detecting the most serious welfare hazards, measure their 

consequences, and mitigate the impact of such consequences using 
indicators that are straightforward to implement in real-world 
monitoring programmes.

4.1 Moving beyond iceberg indicators

The approaches developed in the present study build on the 
concept of iceberg indicators because of their ability to serve as proxy 
measures for multiple underlying welfare consequences and welfare 
hazards. The Coverage construct was used to quantify the number of 
welfare hazards and/or welfare consequences that were associated 
with each indicator. Consistent with the concept of iceberg indicators, 
it was found that some indicators were linked to only a few welfare 
hazards and/or consequences (i.e., were ‘narrow’ in Coverage and had 
a low level of ‘icebergyness’), whereas others were linked to more (i.e., 
were ‘broad’ in Coverage and had a higher level of ‘icebergyness’). 
This is consistent with EFSA’s methodological guidance for 
developing welfare opinions, where the term specificity of an ABM 
refers to its ability to identify animals that are not experiencing a 

TABLE 7  The six welfare indicators that optimise the combination of: (1) Coverage, (2) Impact of welfare consequence, (3) Ease of hazard mitigation, 
and (4) Ease of indicator use for meat pigs.

Welfare 
indicator

Hazard 
coverage

Consequence 
coverage

Impact of welfare 
consequence

Ease of hazard mitigation Ease of 
indicator use

Retained from the original greedy algorithm

Calluses and bursitis 

(pressure injuries)

31.0% 25.0% High (22) Easy (7), Moderate (11) & Difficult (4) Easy

Body condition 24.1% 12.5% Low (9) & High (5) Easy (6), Moderate (7) & Difficult (1) Moderate

Ear lesions 22.4% 12.5% Low (1) & High (13) Easy (6), Moderate (7) & Difficult (1) Easy

Tail lesions 22.4% 12.5% Low (1) & High (13) Easy (6), Moderate (7) & Difficult (1) Easy

Body lesions 20.7% 6.3% High (12) Easy (4), Moderate (7) & Difficult (1) Easy

Leg injuries 20.7% 6.3% High (14) Easy (5), Moderate (6) & Difficult (1) Easy

Weighting factors were set to favour coverage and equally balance the other three factors in the decision set (ωcoverage = 5 (α. HazardCoverage = 0.5 + β. ConsequenceCoverage = 0.5), ωeasiness = 1, 
ωimpact = 1 and ωmitigation = 1). No welfare indicators were added or removed from the greedy solution.

FIGURE 5

Objective function performance across different weighting scenarios for meat pigs. Bars represent the final objective score (S) achieved under each 
scenario, reflecting the combined value of selected indicators based on their contribution to coverage, impact, and feasibility dimensions. The 
“Balanced” scenario applies equal weighting to all criteria, while the others apply increased weighting to a specific aspect of interest.
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particular welfare consequence and, by extension, those that are (46). 
In this context, iceberg indicators can be viewed as being analogous 
to ‘broad’ indicators. It is noted, however, that without reference to 
metadata such as sensitivity the use of Coverage alone may lead to the 
omission of ‘narrow’ indicators that are linked to a welfare 
consequence that has a large impact on the welfare of the animals.

It was found that some indicators shared a large number of 
common welfare hazards and welfare consequences. This observation 
is not new. The Welfare Quality® project commented that some 
measures may be linked to several welfare dimensions (47). To make 
an overall assessment of animal welfare, they proposed to select 
measures (indicators) using weighted sums and comparison with 
minimal requirements and further evaluation of the precision with 
which they could be deployed. In later studies, attempts to reduce the 
number of indicators to focus on certain iceberg indicators for 
welfare assessment explored techniques such as partial least square 
structural equation modelling, where measurable indicators that 
explain the highest variance in the latent variables (e.g., animal 
welfare) are included in the models (48). The present research is also 
based on the assertion that welfare indicators share Coverage to 
varying degrees. However, the ways in which indicators with common 
(shared) welfare hazards and welfare consequences are treated are 
managed differently by the two algorithms. When operating only on 
Coverage, the greedy algorithm merely selects indicators in ranked 
order and, in doing so, it potentially suggests combinations that have 
overlapping welfare hazards and/or welfare consequences (i.e., it does 
not account for marginal gains in Coverage). In contrast, the 
enhanced algorithm only adds a welfare indicator to the solution 
when there is a demonstrable increase in the full objective function, 
thereby avoiding duplications in Coverage.

During the development of the greedy algorithm, the notion of 
‘combination space’ was explored briefly as both a conceptual and 
computational construct. This construct mapped the unique pairings 
of welfare hazards and consequences linked to each indicator. In plots 
of cumulative Coverage of ‘combination space’ using the greedy 
algorithm, greater resolution was observed than in approaches that 
consider hazards or consequences independently (fewer plateaus 
arose from duplications in Coverage). Analysis within ‘combination 
space’ makes it possible to assess each indicator’s unique contribution, 
including whether it captures novel hazard-consequence associations 
that would otherwise remain undetected. This possibility was not 
pursued further within the present exercise, as the goal of the 
enhanced algorithm was to enable welfare hazards and consequences 
to be weighted differentially by the user. However, the selection of 
combinations of indicators within ‘combination space’ using the 
enhanced algorithm remains potentially worthy of further 
investigation. In doing so, the method could enable finer 
differentiation between indicators and provide a more accurate 
reflection of the integrated risk model proposed by EFSA, which 
considers both the nature of the hazard and the most relevant welfare 
consequences for each species.

4.2 Method development

The proof-of-concept study applied to datasets for broiler chickens 
and laying hens demonstrated that small, strategically chosen subsets 
of indicators could match or exceed the explanatory power of much 

larger combinations of indicators. This outcome has practical 
significance, suggesting that welfare monitoring protocols can 
be streamlined without compromising scientific integrity. This could 
be  especially valuable in resource-constrained settings. It should 
be noted however, that the definition of success will depend on the 
desired/target level of Coverage.

While the greedy algorithm was fast and transparent in its 
operation, it was prone to include indicators that added no additional 
explanatory power to the existing combination. In contrast, the 
enhanced algorithm permits users to prioritise attributes such as 
Coverage, Ease of indicator use, Impact of welfare consequence, and Ease 
of hazard mitigation independently. This enabled the tailoring of 
indicator selection to specific use-cases. As these weights could 
be ‘tuned’ by the user, the algorithm did not impose a fixed hierarchy. 
This could allow decision-makers to explore trade-offs and impose 
different priorities in the optimisation process. For example, it is well 
known that some indicators require a significant amount of time to 
measure. In practice, this may make them unfeasible to use within a 
time-bound farm visit (49) and the ability to adapt priorities will help 
to reconcile such trade-offs between scientific precision and practical 
feasibility. For example, indicators offering broad levels of Coverage 
may be  expensive or complex to apply routinely, while simpler 
indicators may fail to capture important welfare hazards and 
welfare consequences.

The broiler chicken case study provided a clear illustration of this 
issue. The greedy algorithm selected indicators with strong individual 
Coverage but limited incremental value, as many covered overlapping 
risks. In contrast, the enhanced algorithm selected sets that replaced 
redundant indicators with those offering better trade-offs between 
Coverage, Ease of indicator use, Impact of welfare consequence, and Ease 
of hazard mitigation potential. This supports the increasing recognition 
that multi-criteria decision analysis (MCDA) could be a valuable tool 
in animal welfare science, as highlighted in recent literature advocating 
for structured decision support in ethically and logistically complex 
contexts (50–52).

4.3 Determining weighting values

Selecting appropriate weights remains a complex task. The present 
paper highlights similarities with weighting challenges experienced in 
other sectors employing MCDA tools (53). Without systematic 
methods for weight assignment, such as stakeholder elicitation or 
performance-based calibration, there is a risk that choices may appear 
arbitrary. For real-world implementation, it may be  necessary to 
engage stakeholders in structured processes to derive weightings in a 
transparent and reproducible way. In doing so, it must 
be acknowledged that stakeholders may assign different weighting 
values for their particular use-case. For example, the competent 
authority in an individual Member State of the European Union may 
weight ease of indicator use differently to the policymakers who 
formulate the underlying legislation against which farming practices 
are regulated. Further dialogue and research may be necessary to 
define a suitable process for weighting the selection of welfare 
indicators. However, several methods have been documented in 
relation to human healthcare which may provide further insights 
when developing a process. A review can be  found in a report 
published by the MCDA Emerging Good Practices Task Force of the 
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International Society for Pharmacoeconomics and Outcomes 
Research (54).

In this study, several hypothetical weighting scenarios were 
evaluated to model different decision-making contexts, including 
Best-case, Severity- and Mitigation-focused strategies. These were 
useful for demonstrating the sensitivity of the optimisation output to 
changes in user priorities. While the choice of weights influenced 
which indicators were selected, the number of indicators requested 
proved to be the most significant driver of overall Coverage which 
increased rapidly with the first few indicators, but then slowly 
plateaued. This implies that adding indicators beyond a certain 
number offer diminishing returns in terms of added 
welfare information.

While univariate analyses illustrate which single criteria are most 
influential, examining one weight at a time masks interactive effects 
that may exist between selection criteria (e.g., Coverage × Ease of use). 
For example, simultaneously increasing ωcoverage and decreasing ωeasiness 
could lead to quite different outcomes compared with when altering a 
single weight in isolation. As a result, univariate assessments may 
underestimate instability if the objective function only shows 
sensitivity when multiple weights are perturbed together.

Multivariate analyses could provide a more realistic assessment of 
stability. Decision making rarely involves modifying the weight of a 
single selection criterion in isolation. The exploration of combined 
weight changes would allow for the identification of threshold effects 
or nonlinearities that may not be apparent with univariate approaches. 
For example, a set of indicators might remain stable under adjustments 
to individual weights but alter substantially when two or more weights 
are perturbed together. Such behavior signals potential instability in 
the optimisation, and small but coordinated changes in stakeholder 
priorities could yield markedly different solutions. Recognising and 
quantifying these regions of instability is important, both for gauging 
the reliability of the indicator set and for ensuring that the optimisation 
is not unduly sensitive to subjective weight assignments.

Although a full multivariate sensitivity analysis lies outside of the 
scope of the present study, the univariate analyses reported offers a 
first step to illustrate how shifts in weighting values affect outcomes of 
the optimisation. Future work should extend this approach to explore 
nonlinear interactions and robustness under simultaneous 
perturbations of multiple weights.

4.4 Assessing performance

To assess performance, results from the greedy algorithm were 
compared with those from the enhanced algorithm. In many cases, 
the greedy method plateaued early because the most informative 
indicators were selected first. Thereafter, newly added indicators failed 
to expand Coverage due to redundancy. This behavior revealed the 
non-additive nature of information across indicators and highlighted 
inherent inefficiencies in naïve selection strategies. The enhanced 
algorithm was better able to consider duplication in Coverage between 
indicators to overcome this limitation. It was able to identify indicator 
sets where the combined contribution was maximised, even when 
individual indicators had modest standalone scores. Crucially, this 
improved accuracy was not associated with a large increase in 
computational overhead. All optimisation tasks were completed in less 
than 0.2 s, even with real-world data, suggesting that the method is 

suitable for immediate deployment in interactive decision 
support tools.

While the enhanced algorithm demonstrated strong 
computational performance for the current dataset, further work is 
required to explore how runtime will scale with larger or more 
complex sets of indicators and selection criteria (e.g., creating trade-off 
curves for runtime vs. complexity). It is likely that runtimes will not 
be directly proportional to complexity because of the potential for 
‘computational thresholds’ where compute time could rise 
disproportionately. Investigating such scaling effects is important if 
the approach is to be  applied to larger databases or refined by 
incorporating more selection criteria. Furthermore, performance is 
also of relevance to decision-making because the algorithms will 
require alignment with the priorities of different stakeholder groups 
(such as veterinarians, auditors, or policymakers). The degree to 
which algorithms respond to this diversity is therefore an important 
dimension of performance in its own right. Systematic scenario testing 
can help ensure that results remain credible and interpretable across 
multiple stakeholder use-cases. More in-depth scenario testing would 
also help to further refine the algorithms (where necessary) and 
support the deployment of the method in practice.

4.5 Strengths and weaknesses of the 
approach(es)

A key strength of the enhanced algorithm is its flexibility to balance 
the evidence-based categorisation of welfare indicators with their 
operational feasibility. A further strength is its ability to generate stable 
solutions across a wide range of use-cases. This stability is valuable, as it 
enhances trust in the optimisation results and reduces the likelihood 
that small variations in stakeholder priorities will produce radically 
different outputs. However, excessive stability could be a weakness if it 
prevents the optimisation from capturing the expected diversity in 
perspectives. Finding an appropriate balance between robustness and 
flexibility remains a key consideration for future applications, 
particularly in participatory settings where stakeholders may wish to 
explore how their priorities translate into different indicator sets.

In the present paper, certain indicators continue to be selected 
regardless of substantial changes in weighting. This may imply that 
these indicators offer intrinsically high utility across multidimensions 
and either reflect strong underlying linkages to key welfare hazards 
and consequences, or a combination of feasibility and explanatory 
power that makes them consistently optimal. However, the limited 
impact of weight perturbations may also reflect redundancy among 
candidate indicators, where several alternatives offer similar levels of 
utility. In such cases, the enhanced algorithm may converge on a 
subset of equally acceptable solutions that differ little in Coverage or 
score, even under varying conditions (as observed in the broiler 
chicken proof-of-concept study).

If optimisation outcomes are not overly sensitive to changes in 
the weighting inputs, this can facilitate consensus-building among 
stakeholders with differing priorities. It suggests that diverse 
viewpoints may still lead to convergent solutions, supporting broader 
adoption of welfare monitoring tools. Moreover, it implies that 
implementation decisions can be made with less risk of error from 
minor misjudgements or variations in assigned priorities. 
Alternatively, the absence of observable differences may indicate 
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limited sensitivity in the weighting system, especially if weights are 
applied to ordinal metadata (e.g., ‘Easy’, ‘Moderate’, ‘Difficult’). In 
such cases, large changes in weight values may still result in minimal 
shifts in the objective function because of discrete scoring steps. This 
points to a methodological limitation, where finer granularity in 
input data or a more continuous scoring system might be needed to 
detect more subtle trade-offs.

The approach aligns with discussions about the trade-offs 
between accuracy and ability to implement welfare indicators in 
animal welfare science (1). For instance, high-Coverage indicators 
may be too complex or costly to assess routinely, while easier-to-use 
indicators may miss critical welfare dimensions. However, one 
notable constraint in this study was the use of categorical metadata 
to describe attributes such as Ease of indicator use or Ease of hazard 
mitigation. These were expressed using ordinal scales (such as Easy, 
Moderate or Difficult), which, while easy to interpret, reduce the 
resolution of the objective function. In practice, this meant that 
many indicators received the same weighted contribution and 
became indistinguishable in optimisation outputs. This often 
resulted in the identification of multiple equivalently optimal 
indicator sets, where several combinations achieved the same 
overall score.

While this ambiguity does not reduce the total welfare information 
captured, it highlights a methodological limitation. Specifically, 
ordinal data can reduce the discriminatory power of the model, which 
may in turn limit the precision of the final output. Future applications 
would benefit from a more standardised scoring system across expert 
panels or finer-grained input values derived from empirical evidence. 
The use of visual analogue scales also holds great potential in this 
regard, as they generate continuous data and provide an objective 
means of identifying disagreement between experts during an 
elicitation exercise (e.g., when the inter-expert variability exceeds a 
predefined threshold).

Another issue concerns the interpretability of the output. 
Sensitivity and scenario analyses may help to improve transparency 
by revealing how the selection of indicators depends on the weighting 
of the selection criteria. However, if too many use-cases are 
investigated, the resulting complexity risks overwhelming end-users 
who may not be familiar with optimisation methods. The challenge 
is to ensure that the analysis remains sufficiently transparent to 
inspire confidence, while avoiding excessive technical detail that 
could mask the main messages for decision-makers. Clear 
communication of optimisation outcomes will be  of central 
importance. One strategy is to use ‘envelopes’, where results are 
reported as the proportion of scenarios in which a given indicator is 
selected (e.g., “Indicator X appeared in >80% of runs”). This 
communication strategy avoids the presentation of multiple optimal 
solutions and presents a single measure of consistency across 
potential scenarios. This may help to strengthen stakeholder 
confidence, facilitate policy uptake, and provide a more intuitive 
picture of where consensus is likely to emerge.

The algorithms could also be  criticised in that they assume 
welfare hazards are mutually exclusive and do not interact. This may 
not be the case. Different hazards may jointly lead to more severe 
welfare consequences, as may be  the case with a multifactorial 
problem such as tail biting in pigs (58). Further research is required 
to better understand such interactions as they are likely to differ on a 
case-by-case basis.

4.6 Next, steps

The approaches outlined in the present paper are interoperable 
in that they are data agnostic. While the dataset used was based 
on the EFSA scientific opinions and other published information, 
the algorithms can be applied easily to other datasets. It should 
also be  noted that the results presented are derived from data 
applicable to Norwegian farming systems, which differ in some 
respects from more conventional European systems (the use of 
sow farrowing crates is not allowed, and tie stalls are still 
commonly used in cattle housing). However, the expansion of the 
dataset to encompass other European or global farming systems 
remains an important next step. The EFSA scientific opinions 
predominantly reflect farming systems and priorities within the 
European Union and can be applied (to some extent) to systems 
of production in other regions (e.g., North America). As such, the 
indicators and their relative importance may not be  directly 
transferable to other geographies where production systems, 
resource availability, and societal expectations differ. It must also 
be recognised that societal values and the scientific understanding 
of animal welfare evolve over time. Therefore, weighting and the 
relevance of particular indicators may shift. This underscores the 
importance of viewing optimisation not as a one-off solution, but 
as a dynamic tool that can be updated as knowledge, stakeholder 
priorities, and welfare expectations develop. Far from being a 
weakness, this adaptability may help ensure that welfare 
assessment frameworks remain aligned with both emerging 
science and shifting societal values.

The enhanced algorithm can be further developed in several ways. 
First, the approach has not yet been extended into ‘combination space’ 
to consider the varying associations that exist between welfare hazards 
and welfare consequences (8). Second, animal welfare science 
currently does not yet contribute much information on positive 
welfare (55). As this field develops, the objective function could 
be  adapted to incorporate metrics with positive valence (e.g., 
indicators associated with positive welfare consequences).

5 Conclusion

In conclusion, this work provides a novel and flexible optimisation 
framework for selecting animal welfare indicators that balances 
scientific rigour with operational feasibility. By formalising the notion 
of Coverage and enabling user-defined prioritisation, the method 
supports more targeted, efficient, and context-appropriate monitoring 
strategies across species and production systems. The ability to 
identify small, high Coverage indicator sets has the potential to reduce 
resource demands while maintaining diagnostic power, thereby 
enhancing the scalability and adoption of welfare assessment 
programmes. As such, the approach offers practical value to industry, 
regulators, and researchers aiming to implement welfare monitoring 
systems that are both evidence-based and adaptable to real-world 
constraints. The findings reinforce the value of iceberg indicators, 
demonstrate the analytical advantages of welfare hazard and 
consequence Coverage, and point to the potential of optimisation 
frameworks to advance the practical implementation of welfare 
assessment in animal production systems, supporting the quantitative 
risk assessment on animal welfare.
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