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tumors: a multicentre
retrospective study
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Prosencephalic brain tumors (PBTs) are frequently associated with epileptic seizure
in dogs, yet the incidence and characteristics of brain herniations (BHs) in this
context remain poorly described. This multicentre retrospective study aimed to
evaluate the incidence and distribution of BHs and other associated MRI findings
in 80 dogs presenting with epileptic seizures secondary to PBTs. MRI studies were
assessed for peritumoral edema, lateral ventricular compression, midline shift
(MS), subfalcine herniation (SH), caudal transtentorial herniation (CTH), foramen
magnum herniation (FMH), and displacement of the quadrigeminal lamina (DQL).
Peritumoral edema and lateral ventricular compression were observed in 85 and
77.5% of cases, respectively. MS was observed in 87.5% of cases. SH and CTH
were the most common BHs, present in over 75 and 31% of cases, respectively.
DQL was observed in 57% of cases, including dogs with tumors anatomically
distant from the midbrain. Although tumor volume did not significantly differ
between groups, larger lesions were positively correlated with the presence of
edema, lateral ventricular compression and laminar displacement. These findings
demonstrate that MRI features reflecting mass effect—particularly peritumoral
edema, MS, and specific types of BHs—are highly prevalent in dogs with seizure-
associated PBTs and may contribute to epileptic seizures generation. The MRI
features identified in this study may have prognostic value for potential epileptic
seizures development, and should therefore be considered during the clinical
evaluation of affected dogs.
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1 Introduction

Among mammalian species, humans and dogs are commonly reported to develop
brain tumors (BTs), with post-mortem observation rates in dogs ranging from 2 to 4.5%.
Although the distribution of specific primary BTs varies considerably between studies,
approximately 90% of clinically observed primary BTs in dogs are classified as
meningiomas (~50%), gliomas (~35%) and choroid plexus tumors (CPT; ~7%) (1-3). The
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presence of a BT causes various primary and secondary effects
leading to intracranial hypertension (ICH) and, ultimately,
herniation by a variety of mechanisms (4-6). Brain herniation
(BH) refers to shifting of brain structures from their normal
compartments within the calvarium (6, 7). The five main types of
recognized and commonly described BHs are subfalcine herniation
(SH), rostral transtentorial herniation (RTH), caudal transtentorial
herniation (CTH), herniation at the foramen magnum (FMH) and
herniation through a craniotomy defect (6-8). Among the various
types of BHs, SH and CTH have been identified as potential risk
factors for tumor-associated epileptic seizures (9). According to
Berendt et al., epileptic seizures are “manifestation(s) of excessive
synchronous, usually self-limiting epileptic activity of neurons in
the brain” that “results in a transient occurrence of signs which
may be characterized by short episodes with convulsions or focal
motor, autonomic or behavioral features and due to abnormal
excessive and/or synchronous epileptic neuronal activity in the
brain” (10). Epileptic seizures can be of genetic, idiopathic or
structural origin. Structural epilepsy is associated with a wide
range of conditions, including inflammatory, infectious, vascular
and traumatic diseases, as well as developmental abnormalities,
degenerative disorders and neoplastic diseases (11). Epileptic
seizures are the most common clinical manifestation of BTs,
occurring in approximately 50% of dogs with BTs (3, 9, 12-15). The
pathogenesis of tumor-associated seizures remains poorly
16-18). Nevertheless, BTs should always
be considered as a structural cause of epilepsy in dogs presenting

understood (9,

with a first epileptic seizure after 5 years of age, particularly in
predisposed breeds (3, 9). Although the association between BTs
and epileptic seizure has been frequently reported in dogs, only
one study to date has identified specific risk factors for epileptic
seizure development in this population (9). The incidence of BHs
associated with prosencephalic BTs (PBTs) in dogs is also poorly
documented (19). The aim of this multicentric retrospective study
was to describe the incidence and type of BHs in dogs with
structural epilepsy due to PBTs.

2 Materials and methods

The medical records of epileptic dogs referred to the San
Francesco Veterinary Hospital and the San Giorgio Veterinary Clinic
between January 2022 and December 2024 were retrospectively
reviewed. Informed consent was obtained from all owners prior to
diagnostic procedures. Dogs were included if they presented with
epileptic seizures. Signalment (age, sex, and breed) was collected for
each patient. All dogs underwent an MRI of the brain using either a
0.4 Tesla scanner (Hitachi Aperto Lucent, Fujifilm Italia SpA) or a
0.3 Tesla scanner (Hitachi Airis Vento III, Fujifilm Italia SpA). The
MRI protocol was performed in accordance with the guidelines
proposed by the International Veterinary Epilepsy Task Force
(IVETF) for canine brain MRI (20). Each patient was positioned in
dorsal recumbency with the head and neck extended. MRI was
performed in transverse, sagittal, and dorsal planes using
T2-weighted (T2W), fluid-attenuated inversion recovery (FLAIR),
T2*-weighted gradient echo (T2* GRE), and T1-weighted (T1W)
sequences before and after contrast administration. Gadodiamide
(Omniscan®, GE Healthcare) was administered intravenously at a
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dose of 0.015 mmol/kg for post-contrast TIW sequences. All
sequences were acquired with a minimum matrix size of 512.
T2-weighted 2D images were acquired with slice thicknesses ranging
from 2 to 5 mm, repetition times (TR) between 2,952 and 5,500 ms,
and echo times (TE) between 90 and 120 ms. FLAIR images were
acquired with slice thicknesses ranging from 3 to 5 mm, a TR of
7,000-13,000 ms, and an inversion time of 1800-2,100 ms.
Pre-contrast 2D T1W sequences were acquired with slice thicknesses
of 2-5 mm, TR of 400-900 ms and TE of 14-26 ms. Post-contrast
TIW 3D images were acquired with a slice thickness of 1.2 mm, TR
of 30 ms and TE of 12.1 ms. MRIs were interpreted by either a
European College of Veterinary Neurology (ECVN) Diplomate or
an ECVN Resident under the direct supervision of an ECVN
Diplomate. Tumors were classified as intra-axial or extra-axial as
previously described (21). Intraventricular tumors were classified as
intra-axial, as previously described (22). Tumor location and the
following MRI findings were assessed: the presence of midline shift
(MS), SH, CTH, FMH, displacement of the quadrigeminal lamina
(DQL), lateral ventricular compression (LVC) and peritumoral
edema (PE). MS was defined as the displacement of forebrain
midline structures on transverse T2W fast spin-echo images. This
was assessed by digitally drawing a vertical line from the dorsal
sagittal sinus extending along the midline and ending at the midline
of the mammillary bodies, as previously described by Oliphant et al.
(23). SH was defined as a shift of the cingulate gyrus below the falx
cerebri toward the contralateral hemisphere. CTH was defined as
unilateral or bilateral caudal displacement of the occipital cortex
relative to the osseous cerebellar tentorium. FMH was defined as
displacement of the caudal cerebellar vermis into or through the
foramen magnum. DQL was defined as a caudal displacement of the
caudal colliculus relative to a line between the cerebellar tentorium
and the rostral border of the pons. LVC was assessed on T2 FLAIR
transverse sequences by comparing the width and symmetry of the
lateral ventricles and noting any focal narrowing or collapse. SH,
CTH, FMH, DQL and LVC were assessed as previously reported by
Bitterman et al. (24). PE was assessed on T2 FLAIR sequences as
previously described by Poirier et al. (25).

Volumetric measurements of the tumor (excluding PE) were
performed using the planimetry method, as previously described by
Thomson et al. (26). The gadolinium-enhanced portion of the tumor
mass was manually traced and segmented on each individual slice
using designated software, which automatically calculated the area
from the traced perimeter. The area measurements were summed and
multiplied by the slice thickness and intersection gap to determine the
tumor volume (cm’) in each of the three anatomical planes. A
quantitative analysis of the parametric data was performed on the total
number of dogs included regarding tumor location (intra-axial/extra-
axial) and the frequency distribution for sex, breed, MS and BHs (MS,
SH, CTH and FMH).

A one-way analysis of variance (ANOVA) was then applied to
tumor volume, grouping tumors according to the presence of PE only
(Group I—G1), LVC only (Group II—G2), PE and LVC (Group III—
G3), and neither PE nor LVC (Group IV—G4). Pearson’s correlation
and linear regression were used to verify the correlation between
tumor volume and animal age. Finally, a point-biserial correlation was
used to find the correlation between lamina displacement and tumor
volume. The data were analyzed with Statistica 7 (StatSofts, Inc.,
United States). A p-value <0.05 was considered statistically significant.
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3 Results

Eighty dogs (n = 80) with intracranial tumors met the inclusion
criteria. Tumors were located in the parietal lobe (n = 17; 21.25%),
piriform lobe (n = 17; 21.25%), frontal lobe (1 = 16; 20%), olfactory
lobe (n = 15; 18.75%), occipital lobe (1 = 5; 6.25%), lateral ventricles
(n =5; 6.25%), cerebral falx (n =3; 3.75%), temporal lobe (n=1;
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1.25%), and third ventricle (n = 1; 1.25%) (Figure 1). In 43 (53.75%)
dogs, the cerebral lesion was intra-axial, while in 37 (46.25%) dogs the
lesion was extra-axial. Among parietal lobe lesions, 11 (64.71%) were
intra-axial and 6 (35.29%) were extra-axial. Of the piriform lobe
lesions, 13 (76.47%) were intra-axial and 4 (23.53%) extra-axial. Of
the frontal lobe lesions, 7 (43.75%) were intra-axial and 9 (56.25%)
extra-axial. All lesions in the olfactory lobe and cerebral falx were
extra-axial. All lesions in the occipital lobe, lateral ventricles, temporal
lobe, and third ventricle were intra-axial (Figure 2). For extra-axial
lesions, 18 (48.65%) were male and 19 (51.35%) female. For intra-axial
lesions, 25 (58.1%) were male and 18 (41.9%) were female. Breed
distribution among dogs with intra-axial lesions was: Bichon Frisé (13;
30.23%), mixed breeds (8; 18.6%), Boxer (6; 13.95%), Labrador (3;
6.98%), American Staffordshire Terrier (3; 6.98%), Cane Corso (2;
4.65%), and other breeds (8; 18.61%, each 2.33%). For extra-axial
lesions, breeds included: mixed breed (14; 37.84%), German Shepherd
(3; 8.11%), Chihuahua (3; 8.11%), Poodle (2; 5.41%), Labrador (2;
5.41%), and other breeds (13; 35.12%, each 2.7%).

Overall, 70 dogs (87.50%) had MS, 62 (77.50%) had SH, 33
(41.25%) had CTH and 21 (26.25%) had FMH (Figure 3A).
Additionally, 46 dogs (57.50%) showed DQL, 62 (77.5%) showed LVC
and 68 (85.0%) showed PE (Figure 3B). Of the dogs included in the
study, 13 (16.25%) had PE only (G1), 7 (8.75%) had LVC only (G2),
55 (68.75%) had both PE and LVC (G3) and 5 (6.25%) had neither PE
nor LVC (G4) (Figure 3C). Tumor location according to the presence
of PE only (G1), LVC only (G2), PE and LVC (G3), and neither PE nor
LVC (G4) are summarized in Figure 4.

Lesions causing only PE (Gl) had a mean volume of
4.08 +3.18 cm’ (Table 1). Lesions causing only LVC (G2) had a mean
volume of 3.93 + 1.86 cm’ (Table 2). Lesions causing both PE and LVC

FIGURE 1
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Pie chart of the locations of the prosencephalic brain tumor included (G3) had a mean volume of 4.14 £ 2.82 cm’ (Table 3). Lesions causing
in the study. neither PE nor LVC (G4) had a mean volume of 2.32 + 0.87 cm?®
(Table 4). One-way ANOVA showed no statistical differences in tumor
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FIGURE 3

(A) Incidence of midline shift (MS) and brain herniations (BHs): subfalcine herniation (SH), caudal transtentorial herniation (CTH), foramen magnum
herniation (FMH); (B) Incidence of displacement of the quadrigeminal lamina (DQL), lateral ventricular compression (LVC) and peritumoral edema (PE);
(C) Distribution of tumors according to the presence of PE only (Group I—G1), LVC only (Group II—G2), PE and LVC (Group IlI—G3), and neither PE nor

LVC (Group IV—G4).
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FIGURE 4
Tumor location according to the presence of peritumoral edema (PE) only (Group I—G1), lateral ventricular compression (LVC) only (Group II—G2), PE
and LVC (Group Ill—G3), and neither PE nor LVC (Group IV—G4).

TABLE 1 Location, mean and median tumor volume in cases with magnetic resonance imaging (MRI) signs of peritumoral edema (PE) only (G1).

Extra-axial vs. Tumor quantity/  Prosencephalic location Tumor volume

intra-axial numbers (and total numbers)

Extra-axial 10/13 Frontal lobe (n = 2) 1 1 2.15+1.25
Piriform lobe (n = 1) 0 1 2.49
Olfactory lobe (n = 5) 3 2 5.02+3.97
Parietal lobe (n =1) - - 429
Olfactory-frontal lobe (n = 1) - - 2.71

Intra-axial 3/13 Piriform lobe (n = 2) 0 2 5+ 4.66
Occipital lobe (n = 1) 1 0 4.26

volume across the groups (G1-G4). Pearson correlation and linear ~ was found between tumor volume and caudal displacement of the
regression analysis revealed no significant correlation between tumor ~ quadrigeminal lamina (p = 0.02; r = 0.28), particularly in groups G1
volume and animal age (p > 0.05; r = —0.18). A positive correlation  (p =0.03; r=0.58) and G2 (p = 0.02; r = 0.80).

Frontiers in Veterinary Science 04 frontiersin.org


https://doi.org/10.3389/fvets.2025.1661131
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Tabbi et al. 10.3389/fvets.2025.1661131

TABLE 2 Location, mean and median tumor volume in cases with magnetic resonance imaging (MRI) signs of lateral ventricular compression (LVC) only
(G2).

Extra-axial vs.

Tumor quantity/

Prosencephalic location

Tumor volume

intra-axial numbers (and total numbers)

Extra-axial 1/7 Parietal lobe (n = 2) 0 1 2.04

Intra-axial 6/7 Frontal lobe (n = 2) 1 1 2.65+0.93
Piriform lobe (n=1) 0 1 437
Parietal lobe (n = 1) - - 7.21
Lateral ventricle (n = 1) - - 5.00
Occipital lobe (n = 1) 0 1 3.59

TABLE 3 Location, mean and median tumor volume in cases with magnetic resonance imaging (MRI) signs of both peritumoral edema (PE) and lateral

ventricular compression (LVC) (G3).

Extra-axial vs.
intra-axial

Tumor quantity/

numbers (and total numbers)

Prosencephalic location

Tumor volume

Extra-axial 26/55 Frontal lobe (n = 7) 4 3 2.04
Piriform lobe (n = 3) 0 3 3.60 £2.27
Olfactory lobe (n =9) 8 1 3.80+1.57
Parietal lobe (n = 4) 2 2 2.34+231
Cerebral falx (n = 3) - - 3.08 +0.43

Intra-axial 29/55 Frontal lobe (n = 4) 1 3 4.22£293
Piriform lobe (n =7) 1 6 444 +2.85
Parietal lobe (n =9) 8 1 5.09 + 3.09
Lateral ventricle (n = 3) - - 0.55 + 0.45
Occipital lobe (n = 3) 1 2 3.59
Temporal lobe (n = 1) - - 1.89
Parietal-occipital lobes (n = 1) 1 0 12.50

TABLE 4 Location, mean and median tumor volume in cases with no magnetic resonance imaging (MRI) signs of peritumoral edema (PE) or lateral

ventricular compression (LVC) (G4).

Extra-axial vs. Tumor quantity/

numbers

intra-axial

Prosencephalic location

Tumor volume

(and total numbers)

Intra-axial 5/5

‘ ‘ 111 ventricle (n = 3)

‘ ‘ Lateral ventricle (n = 9)

Piriform lobe 0 3 191+ 1.72
- - 2.19
- - 1.47

4 Discussion

Since the adoption of MRI in veterinary practice, the imaging
characteristics of BT in dogs have been extensively documented.
Histopathological examination remains the only method that provides
a definitive antemortem diagnosis of intracranial tumors. However,
brain biopsy is technically challenging, carries inherent risks, and is
therefore rarely performed as a routine diagnostic procedure (27-29).
Consequently, MRI is often employed as a primary technique for the
presumptive or preliminary diagnosis of intracranial disease (30, 31).
The data obtained from MRI (mass number, origin within the
neuroaxis and intrinsic signal appearance) can provide characteristic
patterns and support a presumptive diagnosis of the most common
BT or at least refine the differential diagnoses. MRI demonstrates a
specificity of over 90% for detecting canine BT and a sensitivity of
70-90% for identifying specific tumor types (3, 21, 31, 32). Advances

Frontiers in Veterinary Science 05

in MRI and quantitative imaging have led to several reviews outlining
both common and emerging MRI features of canine BT (30, 33-36).
However, the incidence of BHs associated with PBT in dogs is poorly
described, especially in epileptic patients (19). Therefore, in this
multicentric retrospective study, we described the incidence and type
of BHs in epileptic dogs with PBT.

Intracranial tumors can be classified by anatomical location
(supratentorial, subtentorial, basilar, etc.) or by their origin within the
neuroaxis (extra-axial, intra-axial or intraventricular). Extra-axial
tumors originate from structures outside the neural axis (e.g.,
meninges), whereas intra-axial tumors arise from within the neural
parenchyma (30). Although often included in a separate category or
described as extra-axial, in our study we classified six intraventricular
tumors (6/80) as intra-axial, as previously described (22). Our study
found a slightly higher prevalence of intra-axial tumors (43/80,
53.75%) compared to extra-axial tumors (37/80, 46.25%), which is
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consistent with the findings reported by Snyder et al. (1). However,
other studies have reported a predominance of extra-axial tumors (2,
3,9). This discrepancy may reflect differences in breed representation,
the exclusive inclusion of epileptic dogs, or the classification of
intraventricular tumors within either category. In human medicine,
the occurrence of epileptic seizures associated with BT is strongly
correlated with tumor type and has been suggested to be more
frequent in intra-axial tumors such as oligodendrogliomas and
astrocytomas, according to one study (37). Although a statistically
significant relationship between tumor type and epileptic seizure
development has not yet been demonstrated in veterinary medicine,
oligodendrogliomas have been shown to more frequently predispose
dogs to epileptic seizures compared to other BT (1). The inclusion in
our study of dogs presenting epileptic seizures secondary to PBT may
therefore explain the slight predominance of intra-axial neoplasms
over extra-axial ones. A statistically significant correlation between
breed, body weight, age and incidence of brain tumors has been
reported, with a higher prevalence of extra-axial tumors (mostly
meningiomas) in Golden Retrievers, mixed-breed dogs, Miniature
Schnauzers and Rat Terriers, and intra-axial tumors (astrocytomas,
oligodendrogliomas and unspecified gliomas) in Boston Terriers,
Bullmastiffs, English and French Bulldogs and other brachycephalic
breeds (1, 2, 38). In our study, Bichon Frises were the breed most
affected by intra-axial tumors (13/43, 30.23%), while mixed-breed
dogs had the highest incidence of extra-axial tumors (14/37, 37.84%).
Our results are consistent with previous reports suggesting a breed
predisposition to specific tumor types (2, 3). Regarding sex
distribution, 25 of the 43 dogs (58.1%) with intra-axial tumors (43/80)
were male, while 18 (41.9%) were female. In the group with extra-axial
tumors (37/80), 18 dogs (48.65%) were male and 19 (51.35%) were
female. These findings suggest a mild male predominance in intra-
axial tumors, while extra-axial lesions appeared to be slightly more
frequent in females, although no statistically significant association
was assessed in this study.

The causal relationship between intracranial neoplasms and
epileptic seizure has been widely reported in dogs (1, 9, 18). Lesion
localization has been identified as an important risk factor for the
development of epileptic seizures in dogs, particularly in regions with
lower epileptogenic threshold due to their connections with cortical
and subcortical structures involved in the initiation and propagation
of epileptic seizures (9). Therefore, analyzing the distribution of
different PBT in epileptic dogs could provide supplementary
information, aiding the identification of potential risk factors. In our
study, the tumor distribution was higher in the parietal (21.25%),
piriform (21.25%), and frontal (20%) lobes. In dogs with PBT, both
primary localization and secondary invasion of the frontal, piriform
and temporal lobes have been associated with a higher epileptic
seizure risk, even in the absence of PE or marked mass effect (9, 31).
The high incidence of PBT in the parietal lobe observed in our study
may suggest a primary epileptogenic role for this area in dogs, similar
to what has been reported for other forebrain regions (9).

Acute clinical deterioration observed in animals with BT and ICH
is often the result of a combination of various mechanisms including
direct mass effect, PE, obstructive hydrocephalus, cerebral ischemia
or hemorrhage, and finally BH (5, 6). MS is a recognized indicator of
mass effect and increased intracranial pressure, and has been
correlated with an increased mortality rate and a worsening of the
neurological condition in dogs with BT (24, 39). A previous study
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observed an MS rate of at least 20% in 40% of dogs with extra-axial
tumors (particularly meningiomas) and 36% of dogs with intra-axial
tumors (particularly gliomas) (40). More recently, another study
reported an MS prevalence of 51.95% in a cohort of 77 dogs (39). In
our study MS was observed in 87.5%% of cases, confirming the high
prevalence of this sign. Brain herniation is a major complication of
PBT and an important risk factor for the development of epileptic
seizures in dogs (9, 19). SH was frequently observed (77.5%),
suggesting a potential role in the pathogenesis of epileptic seizures.
Along with CTH, SH is a significant risk factor for tumor-associated
structural epilepsy that can be identified on MRI scans. Higher rates
of epileptic seizures in cases of SH and CTH may be explained by
ischemia due to increased intracranial pressure and reduced cerebral
perfusion (6, 9). SH can be epileptogenic also due to its effect on the
cingulate gyrus, which lies immediately adjacent to the falx cerebri
and is therefore particularly vulnerable to compression or
displacement in this type of BHs (41). Evidence from veterinary
neuroimaging further supports the cingulate region’s role in canine
epilepsy (42). Structural MRI studies have also shown a significant
reduction in cingulate gyrus volume in affected dogs, reinforcing its
role in seizure generation. These findings help explain why
compression of the cingulate during SH could lower the seizure
threshold (43). Experimental and clinical studies in dogs have further
shown that structural or functional alterations of the cingulate cortex,
including cortical atrophy, gliosis, and astrocytosis, are associated with
spontaneous seizures and drug-resistant epilepsy (44, 45). In our
study, CTH and FMH were observed in 41.25 and 26.25% of cases,
respectively. These percentages are higher than those reported in a
previous study, in which CTH and FMH were observed in 20 and
4.4% of cases, respectively (19). Conversely, SH was the most common
BH in that study (62%), a finding consistent with our data. In another
study among 88 dogs, 40.91% had CTH alone, 19.32% had FMH
alone, and 39.77% had both with Mixed-breed dogs, Boxers, Boston
Terriers and Golden Retrievers being the most frequently affected
breeds (7). Mixed breeds were also the most affected by CTH in our
population (54.5%), while Bichon Frises had a higher incidence of
FMH (28.6%). These data aligned with previous studies that have
associated these BHs with a poor prognosis, especially in cases where
brainstem compression occurs (7, 19).

Although the pathogenesis of tumor-associated epileptic seizures
is poorly understood (16, 17, 46), the majority of BT originate from
non-neuronal cells that lack intrinsic epileptogenic properties.
Therefore, the development of epileptic seizures may depend on the
effects on the surrounding neuronal tissue. Several pathophysiological
mechanisms have been proposed for tumor-associated epileptogenesis.
These include local cerebral ischemia, isolation and denervation of
cortical areas, neuronal, axonal and synaptic plasticity, and others (9,
46). Increased brain excitability is primarily caused by PE and related
ionic, pH and extracellular osmolarity alterations (5, 9, 17). Despite
that the pathophysiology of PE is still not fully understood, vasogenic
edema is widely accepted as the predominant form, resulting from
blood-brain barrier disruption and increased vascular permeability
(3, 25, 30, 47-50). In both human and veterinary medicine, vascular
endothelial growth factor (VEGF) has been implicated in the
development of vasogenic edema, particularly in meningiomas (25,
50-54). In our study, PE was observed in 85% of dogs, supporting
findings from Cherubini et al. who reported an 82% incidence in
extra-axial BT (49) and from Sturges et al., who observed 94%
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incidence (50). Therefore, the high prevalence of PE in our population
likely reflects the underlying vasogenic mechanisms commonly
associated with both intra- and extra-axial PBT. The location of peri-
lesional T2 hyperintensity, used to assess PE, was found to be more
predictive of epileptic seizure onset than the actual degree of edema
(9). This is consistent with the idea that different brain regions have
different thresholds of excitability (46).

In humans, displacement of deep structures such as the
quadrigeminal lamina is associated with altered consciousness, visual
symptoms and poor prognosis (55). In dogs, compression of these
areas may explain behavioral, visual and motor changes, particularly
in cases of expansive parieto-occipital tumors. DQL can result from
several conditions, including increased intracranial pressure (ICP),
vascular abnormalities, quadrigeminal cistern arachnoid cysts and
PBT (24, 56-58). Arachnoid cysts of the quadrigeminal cistern can
compress the lamina, and an association with epileptic seizures in
dogs has been reported (57-60). In our study, DQL was identified in
57.5% of cases and could therefore be considered both a prognostic
sign of disease and an additional risk factor for the development of
epilepsy associated with PBTs, similar to other BHs. We also found a
positive correlation between tumor volume and DQL (p = 0.02;
r=10.28), particularly in lesions causing PE only (G1) (p =0.03;
r=0.58) and LVC only (G2) (p = 0.02; = 0.80), both of which may
contribute to DQL. Although tumor location is known to influence
epileptic seizure onset (37), many of the PBT in our study were not in
direct proximity to the quadrigeminal lamina. Therefore, our data
suggest that larger lesions associated with PE and LVC may cause DQL
even when distant from the quadrigeminal lamina, potentially
contributing to epileptic seizure generation.

This study has several limitations related to its retrospective
nature. Although MRI features were carefully evaluated and classified
according to current standards, the absence of histopathological
confirmation prevented definitive tumor classification and grading,
which would have provided valuable information for correlating
imaging findings with tumor type and biological behavior. Secondly,
the MRI scans were acquired using low-field equipment (0.25 T),
which, although commonly used in veterinary practice, may have
lower sensitivity than high-field MR in detecting less extensive
parenchymal or structural alterations. Furthermore, the 2-5 mm slice
thickness may have been too large. Thinner slices would have allowed
for more precise evaluations. Finally, an increased sample size would
provide further validation of the results.

5 Conclusion

This multicenter retrospective study describes the prevalence and
distribution of MR features associated with PBT in epileptic dogs.
Tumor affecting the parietal lobe were particularly frequent, suggesting
a primary epileptogenic role for this area due to its connections with
cortical and subcortical networks, similar to other forebrain structures.
Peritumoral alterations—including PE, LVC, DQL, MS, and SH—were
commonly observed and appear to contribute to lowering the seizure
threshold. Despite the absence of significant differences in tumor
volumes between the groups, a positive correlation was found between
tumor volume and the presence of PE, LVC, and DQL, indicating that
larger lesions may cause DQL even when distant from the quadrigeminal
lamina, potentially contributing to seizure generation. These findings
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emphasize the interplay between tumor location, volume, and
secondary structural effects, and suggest that specific peritumoral MRI
features mayserve as a valuable clinical and prognostic markers for dogs
with seizures associated to PBT. Despite these insights, the study has
limitations, including its retrospective design, the lack of
histopathological confirmation, the use of low-field MRI (0.25 T) with
2-5 mm slice thickness, and a relatively limited sample size. Nonetheless,
these results provide important information for risk stratification and
clinical management. Future prospective studies with larger cohorts and
higher-resolution imaging are needed to validate these associations and
further clarify how peritumoral changes contribute to seizure generation.
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