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Environmental drivers of rabies in 
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Introduction: Understanding the dynamics of rabies virus spread in wild 
populations is essential for experts working to developing strategies to that 
protect ecosystems and prevent conflicts between wild and domestic animals. 
This is particularly important in the context of increasing human-wildlife 
interactions. Predictive modeling serves as a valuable tool for understanding and 
managing rabies in a given region. Such models not only aid in the prevention 
of outbreaks but also help optimize resource allocation for disease control and 
surveillance. Investigating abiotic factors that influence the incidence of rabies 
can further enhance the effectiveness of management strategies and reduce 
the associated risks to humans, livestock, and wildlife.
Materials and methods: The aim of this study was to model rabies outbreaks 
and predict areas at high risk of new outbreaks among wild animals, based on 
climatic, landscape, and socio-demographic risk factors. To identify high-risk 
areas for rabies in wild animals using the ecological niche modeling approach, 
a dataset was compiled that included records of rabies outbreaks, as well as 
climatic and socio-demographic variables, including fox population density in 
the Volga region of the Russian Federation.
Results: As a result, an ecological niche model for rabies outbreaks among wild 
animals was developed, incorporating the most significant variables for the 
region, with an accuracy of AUC = 0.85. Among the analyzed factors, climatic 
and landscape variables were found to be the most influential in determining the 
spread of rabies in wild populations. The most significant predictors included 
average annual temperature, population density, temperature seasonality, soil 
type, isothermality, and vegetation type. The model predicts that regions such as 
Nizhny Novgorod Oblast, the Republic of Mordovia, the Republic of Chuvashia, 
Penza Oblast, Saratov Oblast, and Samara Oblast are at high risk of rabies spread 
among wild animals.
Conclusion: Thus, using ecological niche modeling, key risk factors for rabies were 
identified, and a geographical zoning of the Volga region was performed according 
to the level of risk of rabies transmission in wild animal populations. This spatial 
delineation has fundamentally transformed the approach to rabies management. 
Instead of applying uniform measures across the entire region, veterinary services 
can now implement a targeted strategy. This includes prioritizing intensifying 
wildlife surveillance in these areas, thereby optimizing the use of limited resources 
and enhancing the overall effectiveness of rabies control programs.
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1 Introduction

Rabies is a viral zoonosis and is a multifaceted disease or impacts 
both animals and humans, presenting a significant threat to global 
public health and welfare (1–3). Rabies control programmes have been 
implemented in various countries to manage the disease in domestic 
animals, and many of these have achieved notable success. However, 
there remains a recognized need to address rabies transmission by 
wild animals, a topic that is often overlooked and receives insufficient 
attention (4–6).

The rabies virus belongs to the genus Lyssavirus, family 
Rhabdoviridae (4, 5). Transmission typically occurs through bites, 
scratches, or exposure to saliva with mucous membranes. The genus 
includes multiple species that are classified according to genetic and 
antigenic differences, with limited cross-protection among different 
phylogroups following vaccination (6, 7). Therefore, the study of this 
disease and the implementation of control measures, such as 
vaccination, are of critical importance for both public and veterinary 
health (7–10).

Rabies control programmes have been implemented in various 
countries to manage the disease in domestic animals, and many of 
these have achieved notable success. Rabies exists in two main forms: 
urban areas and sylvatic pattern. Sylvatic pattern of rabies is 
maintained in wildlife reservoirs such as foxes, wolves, skunks, 
mongooses, bats, and wild felids. Transmission to humans and 
domestic animals occurs through contact with these species, often 
resulting in “spillover” events (11–13).

Key strategies for rabies prevention and control in endemic areas 
include vaccination of both wild and domestic animal populations, as 
well as targeted disease control measures among wildlife. Vaccination 
campaigns for wild animals are typically carried out seasonally, with 
the aim of achieving at least 70% population coverage (14, 15). In 
many endemic regions, rabies control efforts appropriately focus on 
domestic animals—particularly dogs—since the majority of human 
rabies deaths are dog-mediated and interventions targeting dogs are 
considered the most cost-effective (12).

Despite this, the role of wild animals as rabies reservoirs, even in 
urban areas, is often underestimated. Researchers around the 
worldwide study are investigating multi-host transmission 
mechanisms, which are essential for understanding the epidemiology 
and developing effective control strategies. However, many aspects—
such as cross-species transmission barriers and environmental 
drivers—remain poorly understood and require further systematic 
study (16, 17). A wide range of tools, from pattern analysis to next-
generation sequencing (NGS) technologies, is used in these studies. 
Mathematical modeling is a powerful tool for analyzing the dynamics 
of infectious disease spread and for developing and optimizing 
surveillance and control strategies (18–20).

Statistical models based on regression equations, stochastic 
processes, and other methods allow for the analysis of complex 
interactions between pathogens, host populations, and the 
environment, making them essential for informed decision-making 
in public health and veterinary medicine. The analysis of changes in 
the spatial distribution and transmission dynamics of pathogens is a 
highly effective method for predicting epizootic situations (17). In the 
case of transmissible and zoonotic diseases, the transmission and 
spread of pathogens are closely linked to the ecological niche of the 
vector species or animal reservoirs (18, 21, 22). Therefore, it is believed 

that the origin and foci of rabies are correlated with the distribution 
of wild animals (23). As a result, the geographic distribution of 
infectious animal diseases can be predicted using ecological niche 
models (21).

Maximum entropy modeling (Maxent) is considered one of the 
most effective non-ensemble methods for ecological niche modeling. 
It is particularly well-suited for studies using occurrence-only 
presence data (22). Recently, this method has been successfully 
applied to predict the spread and transmission trends of emerging 
infectious diseases (24, 25).

In the study by Escobar et al. (25), it was demonstrated that niche 
modeling can be used to predict the distribution of infection foci 
among both wild and domestic animals, taking into account biotic 
interactions between the pathogen and its host, as well as the influence 
of climatic factors. The authors emphasize the importance of 
incorporating biotic factors to improve the accuracy of predictive 
models and highlight the necessity of a multidisciplinary approach.

According to a systematic review by Lawrence et  al. (26), the 
ecological niche method has been successfully applied to predict the 
emergence and spread of diseases, including vector-borne and 
zoonotic infections, through the analysis of biotic and abiotic factors, 
as well as the study of changes in the distribution of vectors.

As a modeling and forecasting tool for disease occurrence, the 
ecological niche method is still evolving, addressing the limitations of 
traditional models by focusing on organism interactions and 
environmental changes. This makes it particularly valuable in the 
context of climate and landscape change.

In this study, we applied predictive modeling using the ecological 
niche method to rabies outbreaks in the Volga region of Russia. 
We identified significant natural, climatic, and socio-demographic 
factors influencing rabies in wild animals and ranked the regions 
according to their risk of rabies emergence in wildlife.

2 Materials and methods

2.1 Study area

The Volga Federal Region (VFR, or Privolzh’ye) is a macroregion 
that encompassing 14 federal subjects (first-level administrative 
divisions) located in the eastern part of the European territory of 
Russia. The administrative center of the region is the city of Nizhny 
Novgorod. The total area of the region is 1,036,975 square kilometers, 
which accounts for about 6.06% of Russia’s total territory. The 
population of the region is 28.6 million, with a density of 27.6 people 
per square kilometer. The urban population constitutes 73% of the 
total, and the region includes 191 cities, five of which have populations 
exceeding one million.

The Volga River serves as a natural boundary that conditionally 
divides the region into two parts: the right (western) bank, which 
is generally higher and more elevated, and the left (eastern) bank, 
which is lower and flatter. The main geographical feature of the 
Volga Federal Region is its location within the Russian Plain. The 
right bank of the Volga is more diverse in terms of topography, with 
the Volga Upland being a particularly notable feature. This upland 
reaches a maximum elevation of 384 meters and is deeply dissected 
by the valleys of numerous rivers. The left bank of the Volga 
consists of low-lying terrain with a general southern slope. In some 
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areas, this lowland contains hills and elevations reaching up to 
250–300 meters, with the highest point in the region reaching 
482 meters.

The climate of the Volga Region is generally moderately 
continental, becoming more strongly continental toward the interior, 
it is characterized by distinct seasonality with cold, snowy winters and 
warm to hot summers. The eastern parts of the region tend to 
be slightly colder than the western parts, where the climate is more 
continental in nature.

The region is ecologically diverse, with a range of ecological 
zones. In the southern part, the landscape is dominated by 
steppe and semi-desert zones. The northern part features a forest-
steppe zone, which covers nearly the entire right bank of the Volga. In 
the western part of the Volga Upland, there is a zone of broad-leaved 
and mixed forests, covering less than 25% of the region’s territory. 
Deciduous tree species are predominant in these forested areas. In 
contrast, coniferous species dominate in the European taiga zone, 
which is located further north (https://www.eea.europa.eu/en/datahub/
datahubitem-view/11db8d14-f167-4cd5-9205-95638dfd9618).

2.2 Rabies data

Animal rabies data were obtained from two official sources. The first 
source consisted of reports from regional veterinary services, which 
documented rabies cases in various animal species, including wild, 
domestic, and farm animals. These data were collected based on the 
identification of bite marks, abnormal behavior, or the discovery of dead 
or captured animals exhibiting clinical signs of rabies, followed by 
laboratory confirmation of the rabies virus. The second source included 
statistical veterinary reports from the Federal Service for Veterinary and 
Phytosanitary Surveillance, detailing the imposition of quarantine and 
other restrictive measures in areas where rabies foci were officially 
confirmed. Laboratory confirmation of rabies in animals was conducted 
in accordance with the national standard “GOST 26075–13 Animals. 
Methods of laboratory diagnosis of rabies” (GOST 26075–2013, 2014), 
using the direct fluorescent antibody test (dFAT) (27).

A positive result was defined as the presence of yellow-green 
fluorescence in granules observed under a fluorescence microscope. 
In this study, a rabies outbreak was defined as the confirmation of at 
least one rabid animal, within a geographically defined area (e.g., the 
boundaries of an outbreak, hunting farm, herd, individual animal, 
farm, or village) (28).

For each rabies focus, key attributes relevant to further modeling 
were extracted, including geographic coordinates, the species and 
number of infected animals, the start and end dates of quarantine 
measures. The geographic data were converted into shapefile format 
for visualization and further spatial modeling (Figure 1).

2.3 Climatic, environmental and landscape 
factors

A total of 27 variables of various types were used in simulations 
with the ecological niche model. Bioclimatic variables were obtained 
from the WorldClim database for the period 1970–2000, representing 
the “modern climate” (29). These variables are summarized in Table 1. 
Specifically, 11 bioclimatic variables were related to temperature 

(Bio01–Bio11), and eight were related to precipitation (Bio12–Bio19) 
(30). One variable represented altitude above sea level. In addition, 
two categorical variables represented vegetation and soil types (31).

Socio-demographic variables included population density, 
settlement density, and fox population density.

Socio-economic data, including population density and settlement 
density, were obtained from the Federal State Statistics Service 
(Rosstat) (32).

Information on fox population distribution was retrieved from the 
Global Biodiversity Information Facility (GBIF) (https://www.gbif.
org/). The dataset was preprocessed and formatted into an ASCII 
raster format for further analysis.

Soil-related variables were sourced from the Unified State Register 
of Soil Resources of Russia, which includes 255 soil units and is 
aligned with the globally harmonized soil database. The original 
vector data were converted into a raster format for compatibility with 
the modeling framework (33).

Distances to water bodies and settlements were calculated using a 
vegetation cover dataset and the Euclidean Distance tool in the 
ArcMap  10.8.2 geographic information system (ESRI, Redlands, 
CA, USA).

Land cover data were derived from a digital map based on satellite 
imagery from the Proba-V system, covering the period from 2000 to 
2018. The original spatial resolution of the dataset was 100 × 100 
meters (32).

Since the variables had different spatial resolutions, they were 
aggregated and resampled to a uniform spatial resolution of ~7 km2.

To avoid redundancy and ensure model reliability, an analysis of 
raster variables for multicollinearity was conducted. The analysis was 
performed using the **usdm** package in R, version 4.4.2 (33). Only 
variables with a Variance Inflation Factor (VIF) value of 10 or less 
were retained for further modeling. The workflow for multicollinearity 
testing included data preparation in ASCII (asc) format, followed by 
variable selection and the application of key functions from the usdm 
package: `vifcor`, `vifstep`, and `vif`. The process also involved setting 
threshold values, creating a reduced set of raster data, and performing 
validation. Upon inspection, we confirmed that all variables included 
in the VIF analysis had the same spatial resolution and extent. Thus, 
the usdm package enables the identification and removal of raster 
variables that exhibit strong multicollinearity based on VIF values. 
This process enhances the quality of subsequent ecological models and 
helps prevent biased or misleading results.

2.4 Modelling rabies suitability

The maximum entropy niche modeling (MaxEnt) method was 
applied to assess the relationship between rabies cases in wild animals 
and environmental variables. This approach, first described by Phillips 
and Dudík (22), is currently one of the most widely used methods for 
modeling the spatial distribution of a phenomenon based on presence-
only data and risk factors. The underlying principle of the MaxEnt 
method is to find the probability distribution across sites that best 
matches the constraints imposed by the presence data—i.e., the 
distribution that maximizes information entropy (34). The resulting 
model provides a map showing the probability that the combination 
of environmental variables in each cell of the study area is suitable for 
the occurrence of the studied phenomenon.
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In constructing the habitat suitability model for rabies outbreaks 
in the Volga region, we used 27 environmental variables, 19 of which 
described current climatic conditions. Two variables—soil type and 
land cover—were categorical. Presence data for the model inputs were 
represented as point occurrences of rabies outbreaks in wild animals. 
In total, the model evaluated 340 presence records, − of which 98.8% 
were in foxes, and 1.2% in raccoon dogs, wolves, and badgers. The 
number of pseudo-absences randomly selected for the model was 
10,077. Model predictions were interpreted as habitat suitability 
indices (HSI), where 0 indicates completely unsuitable areas and 1 
indicates completely suitable areas (35).

To assess the contribution of each variable to the prediction of 
habitat suitability and presence probability, we  applied both the 
jackknife method and the heuristic variable contribution analysis 
provided by MaxEnt. The jackknife method evaluates the increase in 
AUC when a variable is used in isolation and the decrease in AUC 
when it is excluded from the full set of predictors. The heuristic 
method calculates the percentage contribution of each variable to the 
overall prediction of the distribution. These techniques enabled us to 
identify the most significant biological factors influencing rabies 
occurrence in the Volga region (36).

Model validation in MaxEnt was performed using dividing the 
presence data into 10 subsets (folds) without replacement. Each subset 
was used in turn for testing, and the final model results were based on 
the average values across the 10 replicates, along with standard 
deviation ranges. In each replication, 5,000 iterations were performed 
to achieve maximum gain with a convergence threshold of 0.00001.

To account for potential sampling bias associated with the 
overrepresentation of data near human settlements, we included a 
“bias” parameter expressed as populated places density. This reflects 
the likelihood that rabies cases are more frequently recorded in or near 
urban, town, and village areas. The density was calculated using the 
Kernel Density tool in GIS.

The predictive power of the model was assessed based on its 
ability to distinguish between presence and pseudo-absence data, and 
was quantified using the area under the receiver operating 
characteristic (ROC) curve (AUC). This metric reflects the probability 
that a randomly selected presence point has a higher predicted value 
than a randomly selected pseudo-absence point.

Using zonal statistics, the territory of each federal subject within 
the Volga region was classified into one of three risk zones based on 
the proportion of cells exhibiting maximum habitat suitability:

	•	 Low risk (Zone 1): up to 10% of cells with high suitability
	•	 Medium risk (Zone 2): 10–50% of cells with high suitability
	•	 High risk (Zone 3): more than 50% of cells with high suitability

The resulting habitat suitability map was classified into low, 
medium, and high-risk zones using the quantile method, which divides 
the range of predicted values into three classes of equal frequency.

The risk of rabies occurrence at the level of administrative 
territories was ranked based on the proportion of spatial cells with a 
suitability score above 50% (i.e., “high-risk cells”) for each territory, 
taking into account environmental variables. These territories were 

FIGURE 1

The Volga Region of Russia and animal rabies foci, 2012–2022 – 2024.
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subsequently categorized into three risk classes based on the 
proportion of high-risk cells (37, 38).

2.5 Software

Statistical data processing was performed in the MS Office Excel 
package (Microsoft, Redmond, WA, USA). Data preparation for 
analysis was performed the statistically oriented R software version 
4.4.2. (39). Preprocessing of raster files and visualization of results was 
done in Geographic Information Systems ArcMap 10.8.2 and ArcGIS 
Pro 2.0.0. (ESRI, Redlands, CA, USA). Maximum entropy modeling 
was performed by means of MaxEnt software (35).

3 Results

3.1 Descriptive analysis

Between 2022 and 2024, a total of 345 rabies cases in animals were 
recorded in the Volga region. Of these, 340 cases were included in the 

epidemiological analysis, as five records were exluded due to missing 
data. The average annual number of confirmed rabies cases among 
wild animals was 47 (95% CI: 26–67), domestic animals 12 (95% CI: 
8–37), and farm animals 6 (95% CI: 5–17).

Among the recorded cases, 60% were in red foxes, 26% in dogs, 
and 8% in cats. Rabies foci in livestock, rabies cases were observed in 
cattle, accounting for 4% of the total number of cases. In wildlife, 
rabies was also reported in raccoon dogs, wolves, and badgers, each 
representing 0.4% of the total cases, but these occurrences were 
sporadic (Figure 2).

Analysis of rabies foci in the Volga region revealed, it became 
evident that the occurrence of the disease varied regionally, with local 
conditions influencing its distribution. A notable characteristic was 
the higher prevalence of rabies in areas with greater population density.

The average annual number of rabies outbreaks among wild 
animals varied across regions: 45 (95% CI: 8–65) in Nizhny Novgorod 
Oblast, 28 (95% CI: 6–34) in Samara Oblast, and 14 (95% CI: 3–20) in 
Saratov Oblast.

In regions of the Volga Federal District with lower population 
density, rabies foci in wild animals were predominantly sporadic, 
although a seasonal pattern was still evident.

TABLE 1  Variables, description and code used in the ecological niche model.

Variable/Code Variable description Data type

Alt Altitude Continuous

Bio01 Annual mean temperature − Continuous

Bio02 Mean diurnal range [Mean of monthly (max temp − min temp)] Continuous

Bio03 Isothermality (BIO2/BIO7) (×100) Continuous

Bio04 Temperature seasonality (standard deviation ×100) Continuous

Bio05 Max temperature of warmest month Continuous

Bio06 Min temperature of coldest month Continuous

Bio07 Temperature annual range (BIO5-BIO6) Continuous

Bio08 Mean temperature of wettest quarter Continuous

Bio09 Mean temperature of driest quarter Continuous

Bio10 Mean temperature of warmest quarter Continuous

Bio11 Mean temperature of coldest quarter Continuous

Bio12 Annual precipitation Continuous

Bio13 Precipitation of wettest month Continuous

Bio14 Precipitation of driest month Continuous

Bio15 Precipitation seasonality (Coefficient of variation) Continuous

Bio16 Precipitation of wettest quarter Continuous

Bio17 Precipitation of driest quarter Continuous

Bio18 Precipitation of warmest quarter Continuous

Bio19 Precipitation of coldest quarter Continuous

Veg_bart Vegetation map based on the use of daily S01 TOC Proba-V satellite data Categorical

Wat_dist Distance to main water bodies, m Continuous

Soils World soil information with a spatial resolution of 250 m Categorical

Settl_dens Density of settlements, units/km2 Continuous

Pop_dist Distance to settlements, m Continuous

Pop_dens Population density, persons/km2 Continuous

Fox_dens Fox population density, individuals/km2 Continuous
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In the Republics of Mordovia, Chuvashia, and Mari El, as well as 
in Kirov Oblast, rabies cases were reported sporadically throughout 
the 2022–2024 period.

In Penza Oblast, Orenburg Oblast, the Republic of Bashkortostan, 
and the Udmurt Republic, the average annual number of rabies foci 
among wild animals ranged from 8 to 25 (95% CI: 7–36).

The seasonality of rabies outbreaks in both wild and domestic 
animals is illustrated in Figures 3a,b.

A tendency toward an increase in the registration of rabies 
outbreaks in wild animals increased in spring (median 9, IQR: 8–12) 
and autumn (median 10, IQR: 8–13).

During the winter and summer seasons, a decrease in the number 
of rabies cases was observed, with an average of 5 to 6 foci among wild 
animals, respectively (IQR: 4–6 for winter and IQR: 5–7 for summer).

Rabies cases in domestic animals also exhibited seasonal patterns, 
though without the sharp peaks or pronounced surges observed in 
wildlife. However, the analysis revealed a slight increase in the number 
of rabies foci in domestic in spring - 6 cases on average (IQR: 4–8) – 
compared with winter (5, IQR: 4–7), summer (4, IQR: 3–5) and 
autumn (5, IQR: 4–6) in the summer and autumn, respectively.

3.2 Modeled rabies suitability

The ecological niche model, implemented using the maximum 
entropy method via the MaxEnt software, demonstrated strong 
discriminatory power in distinguishing between true presence and 
pseudo-absence data, with an AUC value of 0.851 ± 0.018. This 
indicates a high level of model performance in predicting the spatial 
distribution of rabies foci.

The main variables that significantly contributed to the model fit 
for rabies foci in wild animals in the Volga region are presented in 
Figures 4a–h. The importance of these predictors was confirmed by 

the Jackknife test, which assessed the relative contribution of each 
variable to the model.

The most significant variables associated with the locations of 
rabies outbreaks in the Volga region included mean annual 
temperature, soil type, population density, temperature seasonality, 
vegetation type, mean temperature of the wettest quarter, and 
isothermality. The contribution percentages and permutation 
importance of these variables are presented in Table 2.

The response curves of the variables indicate that certain areas 
within the study region are most suitable for the occurrence of rabies 
cases in wild animals. These areas are characterized by a mean annual 
temperature of 20 °C or higher, relatively high population densities 
(greater than 1,000 people/km2), and a temperature seasonality of 
about ±11.5 °C. The potential suitability of an area for rabies decreases 
as the deviation from these values increases. Additionally, suitable 
conditions were observed at a mean temperature of the wettest quarter 
of approximately 15 °C or higher, and at an isothermality of 
around 20%.

The land cover types most closely associated with the risk of rabies 
spread, as identified by the model, included urban and built-up areas, 
broadleaf forests, dark evergreen coniferous forests, open land and 
rocky outcrops, permanent wetlands, steppes, and cropland 
and pasture.

The soils in areas favorable for the habitation of red foxes—
identified as the primary rabies virus carriers in the Volga region—
were diverse. These included dark gray forest soils, podzolic soils with 
a second humus horizon, and deep gleyic soils. Additionally, the area 
included chestnut floury-carbonate soils without clear differentiation, 
as well as raised and degrading peat bogs. Solonetz (automorphic) 
soils, along with light chestnut solonetzic and solonchakous soils, 
were also present.

The remaining variables contribution less to the model but still 
affected the probability of rabies foci (Figure 4).

FIGURE 2

Distribution of rabies foci among different animal species in the Volga region of Russia from 2022 to 2024.
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Figure  5 presents a habitat suitability map for the red fox, 
incorporating environmental, demographic risk factors, and current 
climatic conditions. The map clearly illustrates that the most suitable 
habitats are concentrated in the southwestern and southern parts of 
the Volga region—areas that also correspond to the most densely 
populated regions within the study area.

3.3 Risk map for rabies cases in wild 
animals

A conditional risk-level ranking was conducted based on the 
percentage of cells exhibiting the highest suitability (>50%) for the 
observed event—rabies foci in wild animals (Figure 6).

The low-risk zone included the northern federal subjects of the 
modeled region, such as Kirov Oblast, Perm Krai, and the Republics 
of Mari El, Udmurtia, and Bashkortostan. A medium risk of rabies 
foci was identified in the territories of Ulyanovsk Oblast, Orenburg 
Oblast, and the Republic of Tatarstan. The high-risk zone encompassed 
six federal subjects: Nizhny Novgorod Oblast, Penza Oblast, Samara 
Oblast, Saratov Oblast, and the Republics of Mordovia and Chuvashia.

4 Discussion

Rabies is a particularly dangerous disease because it serious threat 
to both animal and human health (6, 7).

Understanding the risk factors associated with rabies in animals 
is essential for comprehending the ecology and spatial dynamics of 
this disease. Comprehensive data on rabies outbreaks, along with 
detailed analyses and modeling, are crucial for developing effective 
strategies for disease control and prevention in wildlife. The 
elimination of rabies in wildlife is a complex and time-consuming 

process that requires an integrated approach, including vaccination 
programs, population monitoring, and public awareness campaigns. 
Therefore, a thorough understanding of rabies is the foundation for 
effective control of this disease (9, 40, 41).

The epidemiology of rabies in wildlife encompasses several key 
aspects that are essential for understanding the spread of the infection. 
It is important to identify factors that contribute to the transmission 
of the disease, such as host population density, migration patterns, and 
interspecies interactions (40, 42).

A descriptive analysis of rabies cases among animals in the Volga 
region revealed that the red fox is the primary species involved in the 
transmission of the rabies virus,

in 60.0 ± 5.0% of all cases. Domestic animals, particularly dogs 
and cats, followed in second and third place, with 26 ± 4.0% and 
8 ± 2.0% of cases, respectively. Other wild animals accounted for less 
than 1% of all rabies cases.

The study of the seasonality of rabies foci is also a critical 
component, as the incidence of the disease varies according to 
environmental conditions that influence the behavior and activity of 
animals throughout the year. As a zoonotic disease, rabies in wild 
animals in the Volga region display clear seasonal patterns. For 
example, the highest number of rabies cases in foxes across all federal 
subjects of the Volga region was recorded during the spring and 
autumn seasons.

The seasonality of rabies incidence is closely related to the 
biological cycles of wild animals, including the breeding and dispersal 
of young. These processes increase the likelihood of encounters 
between wild and domestic animals, thereby facilitating the spread of 
the virus (43, 44).

Many wild species, such as foxes and raccoon dogs, have specific 
breeding seasons, which typically occur in the spring. During this 
period, animal activity is at its peak. In late spring and summer, 
following the birth and feeding of young, the dispersal of newly 

FIGURE 3

Distribution of rabies foci among wild animals (A) and domestic animals (B) by seasons of the year in the Volga region of Russia.

https://doi.org/10.3389/fvets.2025.1650834
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Zakharova et al.� 10.3389/fvets.2025.1650834

Frontiers in Veterinary Science 08 frontiersin.org

FIGURE 4

Response curves for the 8 variables that contribute the most: (A) Bio_1 - Mean annual temperature; (B) Population density; (C) Soils; (D) Bio_4 - 
Temperature seasonality; (E) Land cover type; (F) Bio_8 - Mean temperature of wettest quarter; (G) Bio_3 - isothermality; (H) Bio_9 - Mean 
temperature of driest quarter. Red lines represent average trends across 10 model replications and blue areas represent standard deviation limits. Y-axis 
is relative suitability calculated using the specific variable only. Units for x-axis variables are provided in the footnote of each graph.
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formed groups of wild animals occurs. Young individuals may move 
to new territories in search of food and shelter, increasing the 
likelihood of contact with infected animals (45).

In our study of rabies in the Volga region, we aimed to determine 
the relationship between rabies incidence and environmental 
variables and to construct predictive maps illustrating the suitability 
of the territory for the emergence of rabies among wild animals. To 
achieve this, we employed the ecological niche modeling approach 
using the maximum entropy method (MaxEnt) (46).

As a result, we  identified several environmental and socio-
economic factors associated with the geographic distribution of rabies. 
Environmental factors by high importance to development of natural 
focal diseases, as they directly affect pathogens or influence the 
number and distribution of hosts and vectors, thereby creating 
favorable conditions for the persistence and transmission of diseases 
(47, 48).

Among the most correlated environmental factors with of rabies 
outbreaks among wild animals in the Volga region establishing were 
mean annual temperature, mean temperature of the wettest quarter, 
temperature seasonality, and soil types. Mean annual temperature is 
a related shaping the ecosystem conditions in which wild foxes live. 
Changes in these conditions can significantly affect fox populations 
and behavior. Red foxes (Vulpes vulpes) are adaptable to a wide range 
of climates, but their distribution is limited by extreme temperatures. 
In our study, a mean annual temperature of 20 °C was identified as 
optimal for rabies occurrence in wild animals, particularly red foxes. 
A decrease in this temperature range may reduce the availability of 
suitable habitats. For example, warming trends may allow foxes to 
expand their range northward into previously inaccessible areas due 
to cold climates. Mean annual temperature also influences the 
availability of food for foxes. Warmer climates may alter the 
populations of rodents and other prey species that foxes rely on. 
Warm winters may increase pest populations, while cold winters may 
reduce food availability. Temperature changes can also affect nesting 
and shelter selection, with foxes potentially favoring warmer, 
sheltered locations during periods of suboptimal temperatures 
(49, 50).

While soils do not directly cause rabies, their characteristics can 
indirectly affect the likelihood of rabies occurrence and transmission 
through ecosystem interactions. Soils influence vegetation and food 
availability for wild animals. More productive soils support greater 
plant diversity and, consequently, larger animal populations. This, in 
turn, can affect predator populations. For example, an increase in 
rodent populations—potential carriers of the rabies virus—can raise 
the risk of rabies transmission among predators (51–53).

Urbanization, which involves the development of new areas and 
the transformation of natural habitats, as well as agricultural practices 
that alter soil properties, can influence animal behavior and migration 
patterns. When animals move into new regions with different, this can 
create new opportunities for rabies virus transmission (54).

From a socio-economic perspective, our study incorporated 
factors such as population density, settlement density, and distance to 
settlements. The model identified population density as a statistically 
significant factor associated with reported rabies foci (55).

High population density correlated to an increase in the number 
of stray companion animals, particularly in urban areas with 
inadequate animal control systems. Stray dogs and cats can act as 
vectors for rabies. In densely populated areas, rabies vaccination 
campaigns are more challenging to implement due to the logistical 
difficulties of reaching and vaccinating all animals, requiring strict 
monitoring of both owned and stray animals (56).

Areas with high population density may experience an increase in 
rabies cases due to the proximity of human settlements to wildlife, which 
increases the likelihood of contact between wild and domestic animals. 
In urban environments, high population density may encourage wildlife 
such as foxes or raccoon dogs to move into residential areas in search of 
food and shelter. This can lead to an increase in rabies incidence among 
domestic animals and, in turn, among humans (57, 58).

The modeling of rabies foci in wildlife using the maximum 
entropy method enabled us to identify the main risk factors 
associated with the occurrence of rabies in the Volga region of Russia. 
Based on these findings, we  developed a risk map that classifies 
territories into high, medium, and low-risk zones for predicted 
rabies outbreaks.

TABLE 2  Variable importance in ecological niche model of rabies in the Volga region of Russia.

Variable Percent contribution Permutation importance

Annual mean temperature, °C × 10 29.2 12.3

Soils of categorical 21.6 17.6

Population density, person/km2 13.1 12.9

Temperature seasonality (standard deviation ×100) 11.1 10.2

Vegetation of categorical 8.3 5.3

Mean temperature of wettest quarter 5.4 4.3

Isothermality (BIO2/BIO7) (×100) 2.7 10.5

Mean temperature of driest quarter 2.1 7.2

Altitude above sea level, m 2.0 7.3

Distance to populated areas, m 1.8 3.4

Precipitation of driest month 1.3 4.9

Precipitation seasonality (Coefficient of variation) 1.0 3.3

Distance to water bodies, m 0.6 0.9
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Six federal subjects—Nizhny Novgorod Oblast, Penza Oblast, 
Samara Oblast, Saratov Oblast, and the Republics of Mordovia and 
Chuvashia—were identified as high-risk areas (59). The medium-risk 
zone included the territories of Ulyanovsk Oblast, Orenburg Oblast, 
and the Republic of Tatarstan.

While the MaxEnt model provides valuable probabilistic 
outputs for identifying areas at potential high risk of rabies 
outbreaks in the Volga region, it is crucial to acknowledge the 
inherent uncertainty in these predictions. The model’s performance 
is contingent on the quality and spatial completeness of the available 
data on reported cases and environmental variables. In areas with 
sparse surveillance data, the model may extrapolate beyond the 
conditions represented in the training data, leading to predictions 
with lower reliability. Furthermore, regions classified as “high risk” 
based on probability values might, in fact, have a wide confidence 
interval around that estimate, indicating a lower degree of certainty. 
To strengthen the interpretation of our risk maps, we incorporated 
measures of uncertainty, such as the standard deviation of model 
replicates. This analysis reveals that while the overall spatial pattern 
of risk is robust, predictive certainty is higher in central parts of the 
Volga region with more comprehensive data. In contrast, some 
peripheral areas identified as high-risk exhibit greater uncertainty, 
highlighting them as priorities for targeted surveillance to validate 
model projections and improve future forecasts. Therefore, the 
presented risk maps should be interpreted as hypotheses guiding 
proactive measures rather than definitive boundaries, with the 

understanding that uncertainty is an integral part of the spatial 
forecasting process for infectious diseases like rabies.

Ecological niche modeling identified key rabies risk factors, 
allowing for a geographical zoning of the Volga region. It facilitates 
a targeted approach where veterinary services can intensify 
wildlife surveillance in specific risk zones, leading to more 
efficient resource allocation and a more effective rabies 
control program.

5 Conclusion

We applied the maximum entropy method to the Volga region, a 
macroregion of Russia, to investigate the role of environmental 
determinants in the spread of rabies in wild animals. This modeling 
approach enabled us to assess the significance of various environmental 
variables and identify them as potential risk factors for rabies in wildlife.

The method of conditional zoning by risk level has been 
recommended to the veterinary services of the Volga region as a 
foundation for targeted surveillance of rabies outbreaks in wildlife. It 
also provides a framework for effective management through 
preventive measures directed at the primary animal hosts of the virus 
in the environment.

The findings of this study can contribute to the improvement of 
disease surveillance and control in wildlife by identifying high-risk 
areas. This approach offers a valuable tool for further research on the 

FIGURE 5

Suitability map for the red foxes niche habitats of ecological and demographic risk factors and current climate.
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ecology of rabies in Russia and supports evidence-based decision-
making in rabies prevention and control strategies.
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