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Ginsenoside, as the pivotal bio-active constituents derived from ginseng, exhibit
multifunctional biological properties including antioxidant, anti-inflammatory,
immune regulation and stress-alleviating effects. Ginsenosides modulate immune
responses, enhance metabolic regulation, and exert antioxidant effects through
multiple pathways, improving animal health, meat quality and productivity.
The purpose of this article is to provide solutions for the development of new
feed additives under the premise of a complete ban on the use of antibiotics.
Consequently, ginsenosides represent a premium botanical resource for feed
additive applications in modern livestock and poultry production. This paper
reviews the structural classification, source, biological function and application
of ginsenoside in animals, in order to provide a reference for the rational use of
ginsenoside in animal husbandry.

KEYWORDS

ginsenoside, biological function, animal production, feed additives, application

1 Introduction

Ginseng, discovered in China more than 5,000 years ago, is a perennial herb which is
called the “king of the herb” (1, 2). In China, Changbai Mountain in Jilin Province is the area
where the natural growth yields is the highest (3). In recent years, with the continuous
optimization of the extraction and separation technology of Chinese herbal medicine,
ginsenoside, the main medicinal active ingredient in ginseng, has also attracted much attention
from researchers. Ginsenosides are a kind of natural steroid glycosides and triterpenoid
saponins, which are often used as markers to determine the medicinal value of ginseng (4, 5).
Ginsenosides have multiple biologically active functions, including immune regulation (6),
protection of the central nervous system and cardiovascular health (7, 8), anti-inflammatory
(9), antioxidant (10) and even anti-cancer (11), but suffer from drawbacks including poor
water solubility, short half-life, and low bioavailability. Currently, the specific mechanisms of
action for many ginsenosides remain were unclear, and many researchers are also working in
this area to solve these problems. At present, relevant research reports have been published on
the application of ginsenosides in animal production (12). Based on the research reports, this
article summarizes the chemical structure, classification and sources, biological functions, and
applications of ginsenosides in animal production, in order to develop a new natural green
feed additive in utilizing animal husbandry.
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2C h emical .St ructure and classification interaction with cellular receptors. Ginsenosides can activate Nrf2
of ginsenosi des signal pathway, promoting its nuclear translocation and binding to the
Antioxidant Response Element (ARE), leading to up-regulated
The basic structure of ginsenosides is similar, consisting of a  expression of antioxidant enzymes (HO-1, SOD, CAT, GSH-Px) (14).
17-carbon-atomic paeonol steroid nucleus, the structure of which was  Ginsenosides can also suppress pro-inflammatory cytokines (TNF-a,
first discovered by a Japanese researcher in the 1960s (1). According  IL-1f, IL-6) by inhibiting IkBa degradation and nuclear translocation
to their mobility on thin layer chromatography plates, they can  of NF-xB (15, 16). As well as modulate c-jun N-terminal kinase (JNK)
be divided into four major categories: 20(S)-Protopanaxadiol (PPD),  (17), ERK (18), and p38 signaling pathways (19), reducing
20(S)-Protopanaxatriol (PPT), C17 Side-chain Varied (C17SCV) and  inflammation and cellular stress responses. In the part of anti-stress,
oleanolic acid (OA). PPD, PPT and C17SCV are the main types of  ginsenosides can regulate unfolded protein response (UPR) sensors
ginsenosides, and their compositions vary significantly in different  and reducing excessive ER stress-induced apoptosis (20). The main
parts of ginseng (12). Sun et al. (13) identified a total of 408  biological functions of ginsenosides was shown as followed.
ginsenosides by ultra-high performance liquid chromatography-time-
of-flight mass spectrometry (UPLC-TOF-MS) qualitative analysis, of
which 8 common saponins were found in all parts of the whole 3.1 Antioxidant
ginseng plant (12), as shown in Figure 1, including 3 types of PPD
(ginsenoside Rb1, ginsenoside Rb2, ginsenoside Rc), 4 types of PPT Reactive Oxygen Species (ROS) are highly reactive molecules
(ginsenoside Re, ginsenoside Rg1, ginsenoside Rg2, Notoginsenoside ~ containing oxygen, generated through both normal cellular
R1), and 1 oleanolic acid type (ginsenoside Ro). metabolism and exposure to external factors. This complex interplay
of metabolic byproducts, enzymatic reactions, conversions, and
environmental exposures constitutes the major pathways of ROS
3 The blOlOg ical functions of formation within biological systems (21, 22). They are unstable
ginsenosi des compounds that mainly originate from the oxidative phosphorylation
process in the mitochondrial electron transport chain. They are
Ginsenosides exert multifaceted regulatory effects on animals  usually produced as a byproduct of cellular metabolism and always
primarily through modulation of critical signaling pathways and  play an important role in signal transduction. However, their excessive
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FIGURE 1
Molecular structures of 8 common ginsenosides. (A) Ginsenoside Ro. (B) Notoginsenoside R1. (C) Ginsenoside Rc. (D) Ginsenoside Re. (E) Ginsenoside
Rb1. (F) Ginsenoside Rgl. (G) Ginsenoside Rb2. (H) Ginsenoside Rg2.
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production can cause cellular oxidative damage (23). Under the
condition of intensive farming process in recent years, animals are
easily affected by external factors such as weaning, vaccination and
temperature, which cause ROS to accumulate in vivo, damaging
macro-molecules such as lipids and proteins (24, 25), leading to an
imbalance of oxidative and antioxidant homeostasis, finally ultimately
causing oxidative stress (26). A study has found that ginsenosides can
relieve oxidative stress by scavenging free radicals, inhibiting the
production of nitric oxide (NO), inducing catalase (CAT) and
superoxide dismutase (SOD) gene expression and reducing lipid
peroxidation (27). Similarly, ginsenoside Rb1 can exert antioxidant
effects in ischemic hippocampal neurons by increasing endogenous
antioxidant enzymes, thereby protecting the central nervous system
(28). Anti-NF-E2-related factor 2 (Nrf2) plays a key role in regulating
the expression of antioxidant-related genes (29). Under normal
physiological conditions, Nrf2 usually exists in the cytoplasm together
with Kelch-like epichlorohydrin-associated protein 1 (Keap1). When
animals are under oxidative stress, Nrf2 binds to the antioxidant
response element (ARE) to initiate the transcription of antioxidant
enzyme genes, up-regulating the expression of genes encoding the
second type of enzymes and antioxidant proteins, including NAD (P)
H: quinone oxidoreductase 1 (NQO1), glutamate-cysteine ligase
catalytic subunit (GCLc) and heme oxygenase-1 (HO-1), further
enhancing the antioxidant capacity of cells escaping from oxidative
damage (30). A study by Liu et al. (31) showed that 25 pM ginsenosides
can significantly activate the Nrf2/HO-1 antioxidant pathway, enhance
the activity of various antioxidant enzymes such as GSH-Px and SOD,
and effectively alleviate cellular oxidative stress damage. The above
studies showed that ginsenosides can exert antioxidant effects by
activating the Nrf2 antioxidant pathway in vivo and up-regulating the
gene expression of various antioxidant enzymes such as SOD, CAT,
HO-1,NQO1 and GCLc.

3.2 Anti-inflammatory

Inflammation is an immune response to infection in animals.
When animals are infected by pathogens, cell surface receptors (such
as TLRs) activate the nuclear factor kB (NF-kB) and activator protein
1 (AP-1) signaling pathways, releasing pro-inflammatory cytokines
and inducing inflammatory responses (32, 33). Studies have shown
that ginsenoside Rb1 can inhibit the Toll-like receptor 4 (TLR4)
pathway and protect mice from LPS induced liver damage (34), it
alleviated  hypoxia-induced cardiomyocyte apoptosis and
inflammatory response in rats (35). Ginsenosides significantly inhibits
LPS-induced NO release in RAW264.7 macrophages in a dose-
dependent manner (0-100 pmol/L), achieving near-complete
suppression at 100 pmol/L, while downregulating mRNA expression
of pro-inflammatory mediators (36). Similarly, 20 mg/kg ginsenoside
reduces chronic inflammatory pain in mice by suppressing TLR4/
NE-kB signaling, decreasing spinal expression of IL-18, TLR4, and
NF-kB by 40-50%, while elevating mechanical pain thresholds by
2.5-fold and prolonging rotarod endurance by 80% (37). Ginsenoside
Rkl can also inhibit NF-xB and Janus kinase 2 (Jak2) signal
transduction, meanwhile inhibit the production of NO, tumor
(IL-6), MCP-1, and
interleukin-1p (IL-1B) induced by LPS in the mouse mononuclear

necrosis factor (TNF-a), interleukin-6

macrophage cell line RAW264.7, thereby alleviating the inflammatory
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response (38). NF-kB is a transcription factor associated with
inflammatory response (30). It interacts with the Nrf2 pathway. Nrf2
up-regulation can inhibit NF-kB activation, at the same time NF-kB
mediated transcription can also inhibit Nrf2 activation and reduce
antioxidant capacity (39). As an exogenous regulatory factor,
ginsenosides can activate the Nrf2 antioxidant defense system through
the PI3K/Akt pathway and inhibit the NF-xB inflammatory signaling
pathway, thereby alleviating LPS induced blood-brain barrier (BBB)
damage (40). Ginsenoside Ro can increase the expression of HO-1 in
macrophages, activate the Nrf2 signaling pathway, and reduce the
expression of LPS induced cyclooxygenase-2 (COX-2), thereby
improving the antioxidant capacity (41). In summary, ginsenosides
can exert anti-inflammatory effects by activating the antioxidant
defense system to inhibit inflammatory responses or directly acting
on inflammatory signaling pathways.

3.3 Immune regulation

Ginsenosides play an important role in enhancing humoral
immunity and cellular immunity. Immunoglobulin is the main
mediator of humoral immunity. Immunoglobulin is the main
mediator of humoral immunity. Ginsenosides can promote the
production of serum immunoglobulin G (IgG) and immunoglobulin
M (IgM) in mice. When the feeding dose was 60 mg/kg, 120 mg/kg
and 240 mg/kg, the serum IgG content was significantly increased by
23.39, 24.29 and 26.39%, respectively, compared with the control
group, and the IgM content was increased by 32.47, 33.17 and 38.33%,
respectively, compared with the control group (42). In addition,
ginsenosides are also widely used in vaccine adjuvants. Oral
administration of ginseng stem and leaf saponins (GSLS) can
significantly enhance the immune efficacy of infectious bursal disease
virus (IBDV) vaccines and Newcastle disease virus (NDV) vaccines in
chickens (43). A study by Su et al. (44) showed that ginsenoside Re, as
a vaccine adjuvant, can enhance the immune response of mice to
inactivated rabies vaccine (RV) by enhancing cellular and humoral
immune responses, thereby increasing the serum antibody level after
vaccination. Yuan et al. (45) found that ginsenoside Rg1 had adjuvant
properties in stimulating IgG, splenocyte proliferation, and mRNA
expression of cytokines IFN-y and IL-4, as well as the expression of
cell surface marker TLR4 in the HBsAg-immunized mice. Therefore,
ginsenosides can improve immune function by increasing serum
immunoglobulin levels and related cytokine production.

3.4 Anti-stress

In large-scale farming environments, stress often occurs in early
weaning piglets, heat stress in dairy cows and immune stress in broiler
chicken. These stress from the external environment can cause an
increase in ROS produced by the mitochondrial respiratory chain in
animals, leading to imbalance between the oxidative and antioxidant
systems (46). Therefore, whether weaning stress or heat stress, it is
ultimately cellular oxidative stress. Li et al. (47) showed that
ginsenoside Rgl can protect H9c2 cells from Hypoxia/Re-oxygenation
induced apoptosis by alleviating oxidative stress injury, which
depended largely on subsequent Nrf2 nuclear translocation and
up-regulation of HO-1. Similarly, ginsenoside Rb1 can also reduce
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oxidative stress and cell apoptosis caused by Staphylococcus aureus by
activating the Nrf2 signaling pathway and inhibiting the
mitochondria-mediated apoptosis pathway (48). Immune stress can
also have adverse effects on the health of livestock and poultry (49),
the mechanism is that immune stress induced by adrenocorticotropic
hormone (ACTH) increased directly. When animals are under stress,
the hypothalamic-pituitary-adrenal axis (HPA) is activated, the
hypothalamus can secrete corticotropin-releasing hormone (CRH)
and ACTH (50). A study has shown that ginsenoside Rg3 can reduce
serum ACTH levels in broiler chickens under immune stress (51). The
mechanism of action may be that ginsenoside Rg3 acts on the HPA
axis, stimulating the hypothalamic thermoregulatory center to lower
the body temperature of broilers, shorten the fever period, and inhibit
the release of pro-inflammatory factors such as IL-6 and TNF-a (39),
thereby alleviating the immune stress caused by LPS. The biological
functions of ginsenosides was shown in Figure 2.

4 The application of ginsenosides in
animal production

Ginsenosides, primarily administered as feed additives or oral
supplements, demonstrate species-specific benefits across livestock: in
poultry, doses of 15 mg/kg body weight enhance mucosal immunity,
boost antioxidant capacity and improve vaccine efficacy against
pathogens (52). In aquatic species such as large yellow croaker,
inclusion at 500 mg/kg feed reduces winter mortality by 80%,
accelerates post-cold weight gain, and strengthens disease resilience
(53). While ruminant applications remain emerging, early evidence
suggests potential for metabolic modulation and stress mitigation
(54). Conversely, swine research is sparse but proposes roles in gut

10.3389/fvets.2025.1648629

microbiota optimization and inflammation control (55). Critically,
core effects such as immune regulation, antioxidant, anti-
inflammatory, underpin these benefits across all species, though
ruminant and swine models urgently require targeted validation. The
summary of ginsenosides were used in animals was shown in Table 1.

4.1 The application of ginsenosides in
swine industry

Ginsenosides, mainly administered as oral supplements or feed
additives, demonstrate emerging potential in swine production
through multifaceted biological actions, they enhance gut health by
modulating microbiota composition (56), strengthen intestinal barrier
integrity via up-regulation of tight junction proteins such as ZO-1 and
occludin (57), and boost systemic and mucosal immunity by elevating
serum IgG/IgA levels and activating TLR4/NF-xB pathways (58),
thereby improving vaccine efficacy against pathogens like PRRSV (59)
and PEDV (60). Concurrently, they mitigate oxidative stress by
elevating antioxidant enzymes (SOD, GSH-Px) via Nrf2 activation
while suppressing pro-inflammatory cytokines and preliminary
evidence suggests roles in improving growth performance by
optimizing nutrient metabolism (61). The intestinal microbiota of
early-weaned piglets is easily disturbed, resulting in reduce the
abilities of digestion and absorption. Yin et al. (62) added ginsenoside
extract to the diet of weaned piglets, they found that the feed
digestibility of weaned piglets was significantly improved compared
with the control group, and the number of Escherichia coli in feces was
significantly reduced. Ginsenoside Rbl can inhibit porcine
reproductive and respiratory syndrome virus (PRRSV) and exert its
antiviral effect by interfering with RNA replication. This indicates that
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FIGURE 2
The the biological functions and mechanism action of ginsenosides.
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TABLE 1 The summary of ginsenosides were used in animal production.

Species  Dosage ‘ Effects
Swine 10-100 mg/kg Gut microbiota modulation
(SCFA producers like Blautia for enteric
virus defenset)
Increase the reproductive performance
Poultry 15-300 mg/kg BW Enhanced mucosal immunity (1 sIgA,
orally IELs)
6 mg/kg in water (for | Improved antioxidant capacity (1 SOD,
ducks) CAT, GSH-Px; | MDA)
Reduced oxidative stress induced by
cyclophosphamide
Growth performance
Ruminants 2.5-10 mg/kg BW Potential immunomodulation and stress
resilience
metabolic benefits
Milk quality; Growth performance
Aquatic 500 g/ton feed Increase growth performance
4g/kg

ginsenoside Rb1 can protect the health of sows through antiviral
effects to increase the reproductive performance because PRRSV was
mainly have negative effect on fertility. Kim et al. (63) found that
20 pg/mL ginsenosides Rgl treatment improved embryo quality by
culturing porcine embryo cells in vitro. The main mechanism is to
promote the increase of glucose uptake by blastocysts through
ginsenosides Rg1, and reduces the apoptosis of embryonic cells under
oxidative stress conditions. This indicates that ginsenoside Rgl can
improve the survival rate of pig embryonic cells by stimulating
metabolic pathways and thus indirectly improve the reproductive
performance of sows. Therefore, ginsenosides can be used as a
potential feed additive to improve the reproductive performance
of sows.

4.2 The application in poultry

Adding 10, 15, and 20 mg/kg ginsenosides to the basal diet of
broiler chickens aged 0-7 weeks, respectively. The results showed that
ginsenosides can significantly improve the survival rate and feed
utilization rate, and the best effect was achieved when 15 mg/kg
ginsenosides was added (52). Another study showed that adding
300 mg/kg ginsenoside Rgl to the diet can significantly increase the
average daily gain (ADG) of yellow-feathered broilers in the late
growth period and significantly reduce the feed conversion ratio
(FCR) (64, 65). Adding Panax notoginseng saponins (PNS) to laying
hen diets can improve egg quality. As the amount of PNS added
increases, the egg white weight increases and the eggshell hardness
improved. Song et al. (65) found that adding 300 mg/kg ginsenoside
Rgl to the diet could significantly increase the final body weight of
broilers, reduce feed conversion rate, and improve the growth
performance of broilers in the later stages. Tajudeen et al. (66)
reported that adding 0.5% ginsenosides to the diet can increase the
yolk content of laying hens, reduce feed conversion rate (FCR) and
improve egg production performance. The reason may be that
ginsenosides have a stimulating effect on oocyte meiosis and
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proliferation. In summary, ginsenosides can be used in poultry feed
formula to improve their productive performance.

4.3 The application in ruminant

Studies that provide comprehensive insights into the interplay
between host metabolism, gut microbiota, and feed efficiency are
highly relevant to the potential applications of ginsenosides in
improving livestock performance (67), especially in ruminants. There
were very few literature reported the application of ginsenosides in
cattle. When 1% ginsenosides were added to cattle diets, it was found
that the growth performance and meat quality were improved, and
there was no negative effect on other tissues or organs. The possible
reason is that ginsenosides have a wide range of pharmacological
activities, which can significantly improve the function of rumen
fermentation, increase protein utilization and thus promote cattle
growth (54). Ginsenosides Rgl and Rg3 can inhibit bacterial
reproduction by enhancing immune response and inhibiting bacterial
protein signal transduction pathways, ultimately alleviating cow
mastitis caused by bacterial infection (68). Ginsenosides can increase
the relative abundance of beneficial bacteria in the rumen
microorganisms, thereby improving the utilization of nutrients and
thus increasing body weight (69). In the study on goats, intravenous
injection of ginsenoside Rgl at a dose of 1.9-2.5 mg/kg body weight
into the breast can treat LPS induced mastitis. The possible mechanism
is that ginsenoside Rgl promotes binding to TLR4 and inhibits the
activation of TLR4 signaling pathway by LPS, thereby exerting anti-
inflammatory effects and protective effects on the mammary gland
(70). Therefore, the application of ginsenosides in ruminants can
enhance growth performance and also improve the quality of
dairy products.

4.4 The application in aquaculture

There are few reports on the application of ginsenosides in
aquaculture. Sun et al. (71) found that the addition of ginsenosides
to the diet significantly improved the growth performance and feed
utilization of fish, including weight gain rate (WGR), feed
efficiency ratio (FER), protein efficiency ratio (PER) and protein
deposition rate (PDR). Microbial fermentation can transform
ginsenosides in ginseng stems and leaves into rare saponins
through deglycosylation, making them more pharmacologically
active. The extract obtained by fermenting ginseng stems and
leaves with Lactobacillus casei was added to Carassius auratus feed
to increase the activity of GSH-Px, SOD and CAT, reduce the MDA
content, and increase the gene expression levels of serum anti-
inflammatory factors such as IL-10 and transforming growth
factor-f (TGF-f) in various tissues (72). This indicated that
ginsenosides can enhance the antioxidant capacity and immune-
related gene expression of Carassius auratus. Gao et al. (73) added
ginsenosides to the diet of Silurus asotus to explore the effect of
ginseng on lipid metabolism in Silurus asotus. The results showed
that adding 4 g/kg ginsenosides to the feed could effectively
promote the growth and significantly reduce the total cholesterol
and triglyceride levels in serum. The reason may be that
ginsenosides can regulate the transcription level of the gene
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FIGURE 3
The application of ginsenosides in animal husbandry.

encoding iodothyronine deiodinase 2 (DIO2), reduce the synthesis
of triglycerides and thyroxine, finally reduce liver fat deposition in
catfish by regulating lipid metabolism (74). The above studies show
that adding ginsenosides to fish diet can improve growth
performance, therefore ginsenosides be used as a potential feed
additive in aquaculture. The application of ginsenosides in animals
was shown in Figure 3.

5 Conclusions and perspectives

Ginsenosides have multiple biological activities including
antioxidant, anti-inflammatory, immune regulation and anti-stress.
Therefore, it can be used as feed additives to improve animal growth
performance and address urgent issues in the animal husbandry such
as cow mastitis and piglet weaning stress. However, there are
significant differences in the effects of ginsenosides on different
animals, and the appropriate dosage for addition has not yet been
clearly explored. The extraction process of ginsenosides is still very
complicated, thus its manufacturing cost is very high. Therefore, it is
very important to optimize the extraction process of ginsenosides, in
order to provide theoretical support for exploring the most suitable
dosage of ginsenosides in different animals and its application in
aquaculture as a feed additive.
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