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Introduction: We evaluated the impact of follicular fluid-derived small
extracellular vesicles (FF-sEVs) supplementation during oocyte maturation in
vitro on bovine embryo outcomes, comparing group and individual culture
systems.

Methods: Follicular fluid was aspirated from dominant follicles of four nulliparous
Holstein heifers at 4.5 days post-ovulation. Small extracellular vesicles were
isolated, characterized, and pooled to ensure balanced donor contribution.
To confirm uptake, FF-sEVs were fluorescently labelled and co-cultured with
cumulus-oocyte complexes (COCs) during in vitro maturation. Fluorescent
labelling confirmed FF-sEVs internalization by oocytes and granulosa cells.
Next, COCs were matured in vitro with FF-sEVs at varying concentrations
(group system: 0, 5, 10, 25, 50 pg/mL; individual system: O, 6.5, 12.5, 25 pg/mL),
fertilized, and cultured. Blastocyst quality was assessed via differential-apoptotic
staining.

Results: In group culture, the control group exhibited higher day 8 blastocyst
rates compared to 10, 25, and 50 pg/mL FF-sEVs groups, while 5 pg/mL FF-sEVs
showed no difference. Blastocysts developed from oocytes matured in 25 and
50 pg/mL groups had reduced total cell numbers versus controls and groups
matured in lower FF-sEVs concentrations. Conversely, individual maturation
with 6.5 pg/mL FF-sEVs enhanced day 8 blastocyst rate, total cell counts, inner
cell mass, and reduced apoptotic ratios compared to all other groups.
Discussion and conclusion: We propose that intercellular communication in
group cultures, potentially mediated by endogenous embryotropins (including
sEVs), may mask FF-sEVs benefits. In individual systems, where such interactions
are absent (or minimal), FF-sEVs significantly improved embryo competence.
These findings underscore FF-sEVs as a promising tool to refine assisted
reproductive technologies, contingent on culture conditions.
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Introduction

In assisted reproductive technologies (ART), both embryo
production and quality are critical to enhancing pregnancy success
rates. As researchers and clinicians explore innovative strategies to
enhance in vitro embryo production (IVP), extracellular vesicles
(EVs) have emerged as key players in reproductive biology (1-8).
Extracellular vesicles are a diverse group of membrane-bound
particles, including exosomes, microvesicles, apoptotic bodies, and
ectosomes, which vary in size, origin, and surface markers (9-11).
Found in nearly all biological fluids, EVs carry a cargo of bioactive
molecules (e.g., proteins, lipids, and nucleic acids) that are delivered
to recipient cells, influencing cellular functions (12-14). These
properties make EV's essential regulators of key reproductive processes.

The follicular environment, rich in proteins, lipids, nucleic acids,
and hormones, plays a vital role in supporting oocyte maturation.
Furthermore, the follicular fluid (FF) has been identified as a
significant source of EVs (15-17). These FF-EVs are thought to
mediate oocyte maturation and early embryo development by
transferring bioactive molecules to target cells (18-20). However,
their effects may vary depending on the stage of follicular growth. For
instance, while EVs from preovulatory FF have shown some positive
effects, those from small follicles appear to enhance cumulus cell
expansion and embryo development more effectively than EVs from
larger follicles (21, 22). This suggests that the functional properties of
EVs are influenced by the follicular development stage (23),
highlighting the need for further research to optimize their
use in ART.

In vitro supplementation of FF-derived small EVs (sEVs) has been
shown to promote a plethora of events in cumulus oocyte complexes
(COCs) (20, 22, 24), however, these findings are based on group
culture production systems (25). In group culture, oocyte maturation,
fertilization, and embryo development are conducted with at least 25
oocytes or embryos, typically at a density of 1 zygote per 2 pL of
culture medium. Under serum-free conditions, this method yields
blastocyst rates of up to 40-50% by day 8 post-insemination (26). In
contrast, individually cultured embryos, even at a density of 1:20 (with
a minimum droplet volume of 20 pL), show reduced blastocyst rates
(30-40%) and greater variability, sometimes dropping below 30%
when maturation and fertilization are also performed individually (27,
28). Individually cultured blastocysts also exhibit lower hatching rates,
reduced total cell numbers, and higher apoptotic cell ratios compared
to group-cultured embryos (29, 30). These differences are attributed
to the absence of autocrine and paracrine signaling from neighboring
oocytes or embryos in individual culture systems (29). Despite these
challenges, developing a reliable single-oocyte culture system is
essential, as it enables individual monitoring of embryo viability and
quality, which is critical for optimizing ART outcomes (30).

To date, no studies have investigated the effects of supplementing
FF-sEVs into the maturation medium in a fully individual culture
system. Additionally, the dose-specific impact of FF-sEVs
supplementation in a complete serum-free IVP process under group
culture conditions remains unclear. We hypothesized that adding
FF-sEVs to the in vitro maturation (IVM) medium could improve
embryo development and quality in both group and individual culture
systems. The objective of this study was to evaluate the effects of
supplementing FF-sEVs at varying concentrations in group and
individual culture under serum-free conditions, with the aim of
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assessing their influence on subsequent embryo development
and quality.

Materials and methods
Media and reagents

Tissue culture medium (TCM)-199, gentamycin, and phosphate-
buffered saline (PBS) were purchased from Life Technologies Europe
(Ghent, Belgium). All other chemicals, unless otherwise specified,
were obtained from Sigma-Aldrich (Overijse, Belgium). Prior to use,
all media were filtered using a 0.22 pm filter (GE Healthcare-
Whatman, Diegem, Belgium).

Adherence to MISEV2023 guidelines

Follicular fluid-sEVs collection, pre-processing, storage, isolation,
characterization, internalization assay, and functional analysis were
performed in accordance with the Minimal Information for Studies of
Extracellular Vesicles 2023 guidelines (31).

Follicular fluid collection

All animal procedures were approved by the Ethical Committee
of Animal Testing of the University of Antwerp (Antwerp, Belgium)
and the Flemish Government (ECD-dossier 2019-44). Four healthy
Holstein heifers (12-14 months old) from a single herd were selected,
with cyclicity confirmed via transrectal ultrasonography based on the
presence of a corpus luteum. To synchronize oestrus for FF collection,
a double Ovsynch protocol was administered: heifers received 0.02 mg
GnRH (Receptal®, MSD Animal Health) on day —26, 500 pg
cloprostenol (Estrumate®, MSD Animal Health) on day —19, and a
second GnRH dose on day —17. The protocol was repeated 7 days later
(GnRH on day —10, cloprostenol on day —3, and GnRH on day —1),
with ovulation designated as day 0.

On day 4.5 post-ovulation, the dominant follicle (~8 mm
diameter) of the first follicular wave was aspirated via transvaginal
ultrasonography. Briefly, heifers were restrained, and the perineum
was cleaned with iodide soap, ethanol (70%), and dried. After epidural
anaesthesia (2 mL of 4% Procain HCl, VMD, Belgium), a 7.5-MHz
ultrasound transducer (Pie Medical Imaging, Netherlands) guided
follicle puncture. Follicular fluid was aspirated using a 5 mL syringe
connected via a stainless-steel and silicone line. Blood-free FF samples
were transferred to microcentrifuge tubes, transported at 4°C within
1 h, centrifuged (10,000 x g, 10 min, 4°C), filtered (0.22 pm, GE
Healthcare-Whatman, Belgium), and stored at —80°C.

Isolation and characterization of small
extracellular vesicles

Small EVs were isolated from FF using an OptiPrep™ density
gradient ultracentrifugation (ODG UC) protocol adapted from Van
Deun et al. (32) and by Asaadi et al. (16) for bovine FF samples.
Briefly, iodixanol gradients (5, 10, 20, and 40%) were prepared by
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mixing OptiPrep™ (60% w/v iodixanol) with homogenization buffer
(10 mM Tris-HCI, 1 mM EDTA, 0.25 M sucrose, pH 7.4). Gradients
were layered in a 16.8 mL polyallomer tube (Beckman Coulter, Brea,
CA, USA) as follows: 4 mL 40%, 4 mL 20%, 4 mL 10%, and 3.5 mL 5%
iodixanol solutions. One mL of FF was overlaid onto the gradient and
centrifuged at 100,000 x g for 18 h at 4°C (SW 32.1 Ti rotor, Beckman
Coulter). Small-EVs were collected from fractions 8-10 of 16 gradient
layers, pooled, diluted in 13 mL PBS, and centrifuged (100,000 x g,
3 h, 4°C). The pellet was resuspended in 100 pL PBS and stored at
—80°C for downstream analysis.

Small EVs characterization included transmission electron
microscopy (TEM), nanoparticle tracking analysis (NTA), and
Western blotting, following validated protocols established by previous
publications (28, 33). For TEM, thawed FF-sEV's were adsorbed onto
Formvar/carbon-coated copper grids (Aurion, Leiden, Netherlands),
stained with 1% uranyl acetate, and imaged using a JEM 1400 Plus
microscope (JEOL, Benelux). Nanoparticle tracking analysis was
performed using a NanoSight LM10 (Malvern Instruments, UK):
FF-sEVs were diluted in PBS (3 x 10°-1 x 10° particles/mL), injected
into the chamber, and analyzed with NTA Software 3.2 (three 60 s
videos per sample; detection threshold 3, camera level 13). For
Western blotting, FF-sEV's lysates were denatured in reducing buffer
(0.005% bromophenol blue, 3% 2-mercaptoethanol, 9.2% SDS, 40%
glycerol, 0.5 M Tris-HCI, pH 6.8) at 95°C for 5 min, separated by
SDS-PAGE, and transferred to nitrocellulose membranes (Bio-Rad,
Hercules, CA, USA). Membranes were blocked with 5% bovine serum
albumin (BSA)/0.5% Tween-20, incubated overnight at 4°C with
primary antibodies against CD63 (Abcam ab68418, 1:250), TSG101
(Santa Cruz sc-7964, 1:1000), and CD9 (CST-D3H4P, 1:1000), washed
with 0.5% Tween-20/PBS, AGO-2 (Abcam ab32381, 1:1000), and
incubated with HRP-conjugated anti-mouse (1:3000) or anti-rabbit
(1:4000) IgG (GE  Healthcare).
Chemiluminescence (Western Bright Sirius, Advansta) was detected

secondary  antibodies

using a Proxima 2,850 imager (IsoGen Life Sciences, Netherlands).

Assessment of small extracellular vesicles
intake during in vitro maturation

Follicular fluid-sEVs were labelled using the ExoGlow-Protein EV
Labelling Kit (System Biosciences, Palo Alto, CA) according to the
manufacturer’s instructions, and as previously described for FF-sEV's
in the equine species (34). Briefly, FF-sEVs were incubated with a
1:500 dilution of the 500X fluorescent labelling dye in PBS for 20 min
at 37°C under gentle agitation. Unbound dye was removed by adding
ExoQuick-TC solution, incubating for 4 h at 4°C, and centrifuging at
10,000 x g for 10 min. The supernatant was discarded, and the
FF-sEVs pellet was resuspended in 100 pL of filtered PBS and
kept on ice.

For maturation, labelled FF-sEVs were added to 500 pL of
pre-equilibrated maturation medium (38.5°C, 5% CO,) containing 60
COCs. A negative control was prepared by incubating PBS with
labelling dye (omitting FF-sEVs), following the same protocol, and
adding the solution to maturation medium with 60 COCs. After 22 h
of IVM (38.5°C, 5% CO,), COCs were fixated in 4% paraformaldehyde
at 4°C overnight. Samples were stained with 0.1% Hoechst 33342
(pan-nuclear fluorescent dye) for 10 min, mounted on glass slides
(<10 COCs per slide) in DABCO-based antifade mounting medium,
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and cover slipped. Imaging was performed within the same day using
a confocal microscope (Leica Microsystems GmbH, Wetzlar,
Germany). Image overlays were generated using Image] software
v1.52d (Wayne Rasband, National Institutes of Health, USA).

Experimental design and in vitro embryo
production

This study comprised two experiments evaluating FF-sEVs
supplementation during IVM. Experiment 1 examined group-
cultured oocytes supplemented with 0 (control), 5, 10, 25, or 50 pg
FF-sEVs protein/mL, while Experiment 2 assessed individually
cultured oocytes supplemented with 0 (control), 6.5, 12.5, or 25 pg
FF-sEVs protein/mL. To do so, FF-sEVs protein concentrations from
each heifer were quantified using a NanoDrop ND-1000
spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA)
at 280 nm. Individual FF-sEVs stock solutions were prepared by
diluting FF-sEVs in PBS containing 0.1% BSA (Sigma A8806). To
ensure equal contributions from all heifers, stock solutions were
pooled proportionally and stored as 0.5 mL aliquots at —80°C. Pooled
FF-sEVs aliquots were thawed and serially diluted in pre-equilibrated
maturation media (38.5°C, 5% CO,) to achieve target concentrations.

Ovaries were collected from a local slaughterhouse, externally
disinfected with 96% ethanol, and rinsed in warm (37°C) physiological
saline containing kanamycin (50 pg/mL). Cumulus-oocyte complexes
were aspirated from antral follicles (4-8 mm diameter) using an
18-gauge needle and 10 mL syringe. Cumulus oocyte complexes with
uniformly granulated cytoplasm and >3 compact cumulus cell layers
were selected for IVM, in vitro fertilization (IVF), and in vitro culture
(IVC) under group and individual conditions, as previously described
(26) with minor modifications.

Group culture system

For IVM, batches of 60 COCs were cultured in 500 pL. TCM-199
supplemented with 20 ng/mL epidermal growth factor, 50 pg/mL
gentamycin, and FF-sEVs at specified concentrations (0, 5, 10, 25, or
50 pg FF-sEVs protein/mL). After 22 h (38.5°C, 5% CO,), matured
oocytes were fertilized with frozen-thawed bull spermatozoa purified
via Percoll gradient (45%/90%). Sperm concentration was adjusted to
1 x 10%mL in IVF-TALP (bicarbonate-buffered Tyrode’s medium with
6 mg/mL BSA [Sigma A8806] and 20 pg/mL heparin). Fertilization
occurred in 500 pL IVF-TALP for 21 h (38.5°C, 5% CO,). Excess
sperm and cumulus cells were removed by vortexing, and zygotes were
transferred to 50 pL droplets of synthetic oviductal fluid (SOF)
containing 0.4% BSA (Sigma A9647) and ITS (5 pg/mL insulin, 5 pg/
mL transferrin, 5 ng/mL selenium). Groups of 25 zygotes were
cultured under paraffin oil (SAGE, Cooper Surgical) at 38.5°C for
8 days (5% CO,, 5% O,, 90% N»).

Individual culture system

Media compositions mirrored group culture conditions, but all
steps (IVM, IVE IVC) were performed in single-COC/zygote droplets
(35, 36). For IVM, individual COCs were matured in 20 puL droplets
of TCM-199 (supplemented with 0, 6.5, 12.5, or 25 ug FF-sEVs
protein/mL) under paraffin oil (7.5 mL in 60 x 15 mm Petri dishes).
Post-IVM, fertilization was conducted in 20 pL IVE-TALP droplets
(1 x 10° sperm/mL) for 21 h. Cumulus-free zygotes were transferred
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to 20 pL SOF droplets and cultured individually for 8 days under
identical gas and temperature conditions as group culture.

Cleavage rate was calculated at 45 h post-insemination as the
percentage of cleaved embryos relative to presumed zygotes. Blastocyst
rates were determined on days 7 and 8 post-insemination as the
percentage of blastocysts relative to presumed zygotes.

Differential apoptotic staining of
blastocysts

In vitro-produced day 8 blastocysts were fixated in 4%
paraformaldehyde for 20 min at room temperature (RT) and stored at
4°C until further processing. Differential staining was performed
using the protocol adapted from Wydooghe et al. (37). Blastocysts
were permeabilized in 0.5% Triton X-100 and 0.05% Tween-20 in PBS
for 1 h at RT. DNA denaturation was achieved by treating samples
with 2 N HCI (Tritipur®, Merck, Germany; Cat. 1.09063.1000, Lot
HC98019763) for 20 min at RT, followed by neutralization in 100 mM
Tris-HCl (pH 8.5) for 10 min. Embryos were then incubated
overnight at 4°C in blocking solution (10% goat serum, 0.5% BSA in
PBS; Gibco®, UK; Cat. 0000333482).

For lineage-specific staining, blastocysts were incubated overnight
at 4°C with a ready-to-use mouse anti-CDX2 monoclonal antibody
(Biogenex, San Ramon, CA, USA) to label the inner cell mass (ICM).
After washing, samples were incubated overnight at 4°C with rabbit
anti-active caspase-3 antibody (0.768 pg/mL in blocking solution; Cell
Signaling Technology, Leiden, Netherlands; Cat. 9,664) to detect
apoptotic cells. Negative controls omitted primary antibodies.
Secondary staining involved sequential incubation with goat anti-
mouse Texas Red-conjugated antibody (20 pg/mL; Molecular Probes,
Merelbeke, Belgium; Cat. T-862) and goat anti-rabbit FITC-
conjugated antibody (10 pg/mL; Molecular Probes; Cat. F-2765), each
for 1 h at RT. Blastocysts were counterstained with Hoechst 33342
(50 pg/mL in PBS/0.1% BSA; Molecular Probes; Cat. H3570) for
20 min at RT to label all nuclei and mounted in DABCO antifade
medium (<10 blastocysts per slide).

Mounted blastocysts were imaged using a confocal microscope
(Leica Microsystems GmbH, Wetzlar, Germany). Trophectoderm
(TE) cells were identified by Texas Red fluorescence, while ICM cells
were demarcated by CDX2 labelling. Total cell number (TCN) was
calculated as the sum of TE and ICM nuclei stained with Hoechst
33342. Apoptotic cells (AC) were quantified based on FITC-positive
caspase-3 signal. Ratios of ICM/TCN and apoptotic cell ratio (ACR;
AC/TCN) were derived from these counts. Image overlays were
generated using Image] software v1.52d (National Institutes of
Health, USA).

Statistical analyses

All statistical analyses were conducted in RStudio (v4.2.1; R Core
Team, Vienna, Austria) with the zygote/embryo as the experimental
unit. Generalized linear mixed-effects models were fitted to evaluate
the impact of FF-sEVs supplementation at varying concentrations
(group culture: 0, 5, 10, 25, and 50 pg protein/mL; individual culture:
0,6.5,12.5, and 25 pg protein/mL) on embryo development outcomes,
including cleavage rate and blastocyst formation (days 7 and 8
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post-insemination). Similarly, mixed linear regression models were
used to assess the effects of FF-sEV's supplementation on blastocyst
differential staining parameters (TE, ICM, TCN, ICM/TCN ratio, AC,
and ACR). Replicate was included as a random effect in all models.
Assumptions of homoscedasticity, linearity, and normality were
verified via scatterplots of studentized residuals, linear predictor
diagnostics, and Shapiro-Wilk tests, respectively. Continuous
variables violating normality assumptions (p < 0.05) were transformed
using square root-, log2-, or logl0-transformations, after which
residuals met normality criteria (Shapiro-Wilk p > 0.05). Pairwise
comparisons between FF-sEVs treatment groups were performed
using Tukey’s post hoc test, with results reported as least squares means
+ standard errors. Analyses utilized the R packages Ime4, multcomp,
and multcompView, and statistical significance was defined as
p<0.05.

Results

Characterization of FF-sEVs revealed bilayer, spherical particles
consistent with EV morphology, as observed by TEM (Figure 1A).
Nanoparticle tracking analysis indicated mean + SD particle sizes of
160.6 + 55.1 nm (heifer 1), 164.6 + 73.8 nm (heifer 2), 170.1 + 80.4 nm
(heifer 3), and 157.0 + 61.4 nm (heifer 4) (Figure 1B). The protein
concentrations of these samples measured 30.34, 28.13, 23.81, and
20.93 pg/mL, respectively. Western blot, performed on a FF-sEV's pool
from the four heifers, confirmed the presence of EV-specific markers
(CDY, CD63, and TSG101) (Figure 1C). The uptake of fluorescently
labelled FF-sEVs by COCs was evaluated following 22h of
co-incubation in maturation medium. Confocal microscopy images
acquired after the maturation period revealed the presence of labelled
FF-sEVs within both the ooplasm of the oocyte and the cytoplasm of
surrounding cumulus cells (Figure 2).

Embryo development parameters for oocytes/zygotes cultured in
groups (n = 2,062 COCs in 8 replicates) are summarized in Table 1.
Cleavage rate and day 7 blastocyst formation did not differ among
groups (p > 0.38). However, the day 8 blastocyst rate in the control
group was higher compared to COCs supplemented with FF-sEV's at
10, 25, or 50 pg/mL (p < 0.02), while no difference was observed
between the control and the 5 pg/mL FF-sEV's group (p > 0.79).

Embryo development parameters (n = 540 COCs in 8 replicates)
of individually cultured oocytes/zygotes are presented in Table 2.
Cleavage rates and day 7 blastocyst production did not differ (p > 0.19)
between FF-sEVs-supplemented groups (6.5, 12.5, or 25 pg/mL) and
the control. However, supplementation with 6.5 pg/mL FF-sEVs in
individual cultures improved day 8 blastocyst rates compared to all
other groups (p < 0.02). No differences in day 8 blastocyst production
were observed between the 12.5 pg/mL, 25 pg/mL, and control groups
(p > 0.95).

Differential apoptotic staining of day 8 blastocysts (Table 3)
demonstrated that supplementation of group-cultured oocytes/
zygotes with 25 or 50 pg/mL FF-sEVs yielded blastocysts with lower
TCN compared to those supplemented with 5 or 10 pg/mL FF-sEV's
or the control group (p < 0.001). Notably, COCs supplemented with
50 pg/mL FF-sEV's produced blastocysts with reduced ICM counts
and lower ICM/TCN ratios compared to all other groups (p < 0.001).
Supplementation with 5 pg/mL FF-sEVs yielded blastocysts with the
highest ICM/TCN ratio compared to all other groups (p < 0.01). No
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FIGURE 1

Characterization of follicular fluid-derived small extracellular vesicles (FF-sEVs) from nulliparous heifers isolated by OptiPrep™ density gradient
ultracentrifugation. (A) Transmission electron microscopy image of FF-sEVs, showing vesicles with diameters ranging from 80 to 120 nm. The black
arrow indicates an intact, spherical FF-sEV with a visible bilayer membrane. (B) Nanoparticle tracking analysis line plots displaying the particle
concentration and size distribution of FF-sEVs from each heifer, demonstrating similar size profiles among samples. The mean particle size of 165 nm is
consistent with the characteristics of small EVs. (C) Western blot analysis of FF-sEVs, showing positive expression of EV-specific markers CD63

(42 kDa), CD9 (25 kDa), and TSG101 (49 kDa), and negative expression of AGO2 (87 kDa), confirming EV enrichment.
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differences were observed in the ACR across experimental groups
(p>0.14).

Differential apoptotic staining of day 8 blastocysts (Table 4 and
Figure 3) revealed that individual culture with 6.5 pg/mL FF-sEV's
produced blastocysts with higher TCN and ICM counts compared to
all other groups (p < 0.001). The ICM/TCN ratio was also greater in
the 6.5 pg/mL FF-sEV's group (p < 0.001). In contrast, TE cell counts
and AC numbers showed no differences across groups (p > 0.34).
Notably, the ACR was lower in the 6.5 pg/mL FF-sEV's group than in
all other groups (p < 0.001).

Discussion

We investigated the role of FF-sEVs in optimizing in vitro embryo
development, specifically examining their dose-dependent effects in
group and individual culture systems. We successfully isolated
FF-sEVs from dominant follicles of the first follicular wave and
demonstrated their internalization by oocytes and granulosa cells
during IVM. Intriguingly, while group-cultured COCs and zygotes
with  FF-sEVs
supplementation, adverse outcomes emerged at higher concentrations
(blastocyst yield and TCN were reduced at FF-sEVs doses >25 pg/
mL). This inhibitory effect may reflect competitive interference

showed no developmental improvement
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between exogenous FF-sEVs and endogenous embryokines actively
released during group culture within the maturation medium.
Individual COC cultures supplemented with a low FF-sEVs
concentration (6.5 pg/mL) exhibited enhanced developmental
competence, achieving day 8 blastocyst production rates comparable
to group-cultured counterparts. However, increasing FF-sEV's doses
in individual systems yielded no further benefit, underscoring the
existence of a narrow therapeutic window. These results suggest that
calibrated FF-sEVs supplementation can compensate for the absence
of paracrine signaling in individual COC cultures. By replicating cell-
to-cell communication pathways, FF-sEVs offer a novel strategy to
refine ART, particularly in single-embryo culture formats where
physiological interactions are limited.

Characterization of FF-sEVs via NTA revealed a mean size of
160-170 nm, aligning with the typical size range of exosomes and
microvesicles as reported in bovine FF (16, 38) and in the FF other
domestic species (19, 20, 39). While exosomes originate from endocytic
pathways and are constitutively secreted, microvesicles form via plasma
membrane budding during cellular activation (40). Current
nomenclature classifies vesicles within this size range as “small EVs”
(31) and, regardless of biogenesis, we focused on their embryotropic
effects. Protein concentrations measured using Nanodrop (20-30 pg/
mL) were also consistent with prior studies (16, 41). Asaadi et al. (16)
found that FF-sEVs isolated via ODG UC exhibited lower protein
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ExoGlow-Protein EV Merge

FIGURE 2

Confocal microscopy images revealed the presence of labeled follicular fluid-derived small extracellular vesicles (FF-sEVs) within both the ooplasm of
the oocyte and the cytoplasm of surrounding granulosa cells. The uptake of fluorescently FF-sEVs by cumulus-oocytes compexes (COCs) was
evaluated following 22 h of co-incubation in maturation medium. Follicular fluid-sEVs were labeled using the ExoGlow-Protein EV Labeling Kit and
COCs were counterstained using Hoechst 33342.

TABLE 1 Embryo development rate in group maturation in the presence of follicular fluid-derived small extracellular vesicles (FF-sEVs).

Control 80.3+2.6 18.0 £2.0 35.8 +2.6°
sEVs 5 pg/mL 400 77.1+£2.9 18.7+£2.0 32.0 £2.5®
sEVs 10 pg/mL 417 77.2+2.8 170+ 1.9 26.0 +2.3%
sEVs 25 pg/mL 416 75.0 £ 3.0 17519 252 +2.3%
sEVs 50 pg/mL 419 75.6 £2.9 148+ 1.8 229 +£2.2¢

Cleavage, day 7, and day 8 blastocyst rates expressed as a percentage of presumed zygotes. Within 8 replicates, maturation media of group cultured oocytes (1 = 60 oocytes) were supplemented
with FF-sEVs to 0 (control), 5, 10, 25, and 50 pg/mL sEV-protein. Results are expressed as least square means + standard errors. Within a column, different superscripts **< indicate significant
differences (p < 0.05).

TABLE 2 Embryo development rate in individual maturation in the presence of follicular fluid-derived small extracellular vesicles (FF-sEVs).

Control 80.1+£3.4 147 £3.0 23.5+3.6
sEVs 6.5 pg/mL 136 882+27 243+3.6 42,6 +4.2°
sEVs 12.5 pg/mL 135 77.0 £ 3.6 14.8 £3.0 222 +3.5°
sEVs 25 pg/mL 133 77.4+3.6 16.5+3.2 26.3 +£3.8°

Cleavage, day 7, and day 8 blastocyst rates expressed as a percentage of presumed zygotes. Within 8 replicates, maturation media of individually cultured oocytes were supplemented with
FF-sEVs to 6.5, 12.5, and 25 pg/mL sEV-protein. Results are expressed as least square means + standard errors. Within a column, different superscripts ** indicate significant differences
(p < 0.05).

concentrations than those isolated by size-exclusion chromatography  sEVs integrity due to high gravitational forces, leading to sEVs loss (32,
(SEC), as ODG UC minimizes contaminating proteins (e.g., ). Despite this limitation, ODG UC better preserves sEVs functional
lipoproteins). However, ultracentrifugation may partially compromise  cargo (e.g., proteins, lipids, and RNAs) compared to alternative methods
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TABLE 3 Effect of supplementation of different concentrations of follicular fluid-derived small extracellular vesicles (FF-sEVs) during in vitro group
oocyte maturation on embryo quality.

No. of Cell numbers Ratios (%)
blastocysts ICM TE ICM/TCN  AC/TCN
Control 143 143 + 1.7* 72.8 +1.2° 70.5 + 1.1® 4,0+0.12* 50.5 + 5.4* 2.7 +0.06
sEVs 5 pg/mL 128 140 £ 1.8° 74.8 +1.2° 65.2 +1.2¢ 4.1+0.13° 53.5+5.7° 2.8+£0.07
sEVs 10 p.g/mL 109 140 +2.0* 65.2 + 1.4¢ 74.4 +1.2° 4.1 +0.14* 46.4 + 6.2¢ 2.8+0.07
sEVs 25 pg/mL 105 123 +£2.0° 553 +1.4¢ 67.9 + 1.3 3.7 +0.15% 442 + 6.3° 2.9+0.08
sEVs 50 pg/mL 96 119 +1.2° 442 +1.4° 74.4 +1.3° 33+ 1.15° 36.8 + 6.6 2.7+0.08

Total cell numbers (TCN), trophectoderm cells (TE), inner cell mass (ICM), apoptotic cells (AC), and their respective ratios of day 8 blastocysts subjected to a differential/apoptotic fluorescent
staining. Within 8 replicates, maturation media of group cultured oocytes (1 = 60) were supplemented with FE-sEVs to 0 (control), 5, 10, 25, and 50 pg/mL sEV-protein. Results are expressed
as least square means + standard errors. Within a column, different superscripts **¢ indicate significant differences (p < 0.05).

TABLE 4 Effect of supplementation of different concentrations of follicular fluid-derived extracellular vesicles (FF-sEVs) during in vitro individual
oocyte maturation on embryo quality.

No. of Cell numbers Ratios (%)
blastocysts ICM TE ICM/TCN  AC/TCN
Control 31 100.6 +1.2* 27.3+0.8° 732+ 1.7 3.9+0.16 272+ 1.0° 3.9+0.13°
SEVs 6.5 ug/mL 51 1253 + 1.1° 51.9+0.7° 73317 37+0.15 416 +0.9° 2.9+0.12°
sEVs 12.5 pg/mL 25 99.6+1.2¢ 26.0+0.8 735417 3.8+0.17 262+ 1.0° 3.8+0.14°
sEVs 25 pg/mL 27 99.8+1.2° 27.4+0.8° 724+ 1.7 3.8+0.17 274+ 1.0° 3.8+0.13°

Total cell numbers (TCN), trophectoderm cells (TE), inner cell mass (ICM), apoptotic cells (AC), and their respective ratios of day 8 blastocysts subjected to a differential/apoptotic fluorescent
staining. Within 8 replicates, maturation media of individually cultured oocytes were supplemented with FF-sEVs to 6.5, 12.5, and 25 pg/mL sEV-protein. Results are expressed as least square
means + standard errors. Within a column, different superscripts ** indicate significant differences (p < 0.05).

(e.g., multistep ultracentrifugation or SEC) (28, 33). Supporting this, our
previous work (16) demonstrated that ODG UC-isolated FF-sEV's from
preovulatory follicles enhanced embryo production, whereas
SEC-isolated FF-sEVs showed no effect. These findings confirm the
superior integrity and functionality of ODG UC-isolated sEVs, likely
attributable to reduced contamination and preserved bioactive cargo.

The biological activity of sEVs depends on their internalization by
recipient cells. In domestic species such as cattle, horses, and cats,
FF-sEVs have been shown to interact with COCs, with uptake
documented in cumulus cells during IVM (20, 23, 41). More recently,
in an equine IVM model it was also demonstrated that supplementing
FF-sEVs to maturation media for 38 h resulted in SEV's absorption by
granulosa cells as well as oocytes per se (34). Similarly, in the present
study, internalization of FF-sEV's was confirmed by their localization
within the ooplasm, delineated by the distinct circular boundary of the
oolemma, and within granulosa cells, as evidenced by labelled FF-sEV's
clustered in the cytoplasm. While these findings highlight the capacity
of COC:s to internalize FF-sEVs, the precise physiological mechanisms
governing this process remain unclear. In this regard, emerging
evidence suggests that FF-sEVs may enhance oocyte maturation
through dual pathways: (1) modulating granulosa cell function by
delivering bioactive molecules (e.g., miRNAs, proteins) that regulate
steroidogenesis, apoptosis, and cell-cycle progression (42, 43) and (2)
directly influencing oocyte competence by transferring metabolic
regulators (e.g., ATP-generating enzymes) and anti-apoptotic factors
(44). These mechanisms collectively suggest that FF-sEV's act as critical
mediators of cell-cell communication, bridging cell support and direct
oocyte programming to optimize maturation outcomes.

Building on the findings of Asaadi et al. (16), who demonstrated
with  12.5 ug/mL  FF-sEVs

improved embryo development
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supplementation during group oocyte maturation, the present study
tested concentrations around that benchmark (0, 5, 10, 25, and 50 pg
protein/mL) to assess responses below, near, and above this reference,
while acknowledging that dose-response relationships may not
be linear. In contrast, for the individual culture system, no prior study
had supplemented FF-sEVs during maturation. However, our previous
work showed that supplementing FF at 5 and 10% (v/v) in the
maturation medium of group-cultured COCs improved several
blastocyst quality parameters compared with controls (35). While in
individually cultured COCs, only 5% FF improved blastocyst quality
parameters as well as blastocyst production (35). Assuming that lower
FF volumes contain proportionally fewer FE-sEVs, concentrations for
the individual culture system were chosen within and below Asaadi
et al’s (16) therapeutic window (6.5, 12.5, and 25 pg/mL). This
approach was also considered logical because IVM in the group culture
system involves 60 COCs per well, making higher supplementation
concentrations more appropriate than in the individual culture setting,
where a single COC is present. Interestingly, because improvements in
IVP systems often arise from mimicking in vivo conditions,
we conducted a preliminary study (data not shown) in which we tested
higher FF-sEV's concentrations in the maturation medium (12.5, 125,
and 1,250 pg protein/mL) to more closely approximate those present
within follicles. However, concentrations >125 pg protein/mL led to a
marked reduction in blastocyst production (<10%).

The observed discrepancies between our findings and earlier
studies, such as the developmental benefits of 12.5 pg/mL FF-sEVs in
group cultures reported by Asaadi et al. (16), may arise from
differences in the follicular origin of sEVs (16). Specifically, FF-sEV's
in the present study were isolated from presumably growing follicles
during the luteal phase of the oestrous cycle (dominant follicles of
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FIGURE 3

trophectoderm cells in red, and Caspase-3 labelled apoptotic cells in green.

.. Caspase-3

Representative images of differentially stained day 8 blastocysts resulting from individually matured oocytes, supplemented with follicular fluid-derived
small extracellular vesicles (FF-sEVs) to 6.5, 12.5, and 25 pg/mL EV-protein. Hoechst 33342 aimed to stain nuclei in blue, CDX2 stained the
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~8 mm), whereas Asaadi et al. (16) utilized sEVs derived from
pre-ovulatory follicles (~15 mm). In a previous study, da Silveira et al.
(23) demonstrated that small-follicle sEVs enhance blastocyst rates
by modulating metabolic and epigenetic pathways, including
DNMT3A expression, whereas pre-ovulatory follicle SEVs exhibit
neutral or inhibitory effects. These functional differences likely reflect
the divergent follicular microenvironments: developing follicles are
rich in growth factors such as vascular endothelial growth factor
(VEGF), insulin-like growth factor 1 (IGF-1), and fibroblast growth
factor (FGF), which are known to support oocyte maturation and
early embryonic development (45, 46). In contrast, pre-ovulatory
follicles are primed for ovulation, a process mediated by
proinflammatory factors like tumour necrosis factor-alpha (TNF-a),
). While these

mediators are not inherently detrimental to oocytes, they are

interleukin-6 (IL-6), and prostaglandins (47,

physiologically restricted to the final stages of maturation (e.g.,
meiotic resumption), where they orchestrate follicle rupture and
cumulus expansion. We propose that group-cultured oocytes and
zygotes inherently produce sufficient endogenous growth factors to
sustain development. Consequently, supplementing this self-
sufficient microenvironment with FF-sEV's derived from developing
follicles (already rich in developmental cues) may disrupt
equilibrium, leading to suboptimal IVM conditions. This hypothesis
aligns with our observation that higher FF-sEV's concentrations (e.g.,
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>25 pg/mL) impaired blastocyst development and quality in group
culture conditions. Conversely, low doses of pre-ovulatory FF-sEV's
(e.g., 12.5 pg/mL) may act synergistically during late-stage oocyte
maturation, providing targeted support for processes like cytoplasmic
maturation or cumulus matrix remodeling. Collectively, these
findings underscore the functional significance of follicular stage in
FF-sEVs activity.

Supplementation with 6.5 pg/mL FF-sEVs significantly enhanced
blastocyst development and quality in individually cultured COCs
compared to both higher FF-sEVs concentrations (12.5 and 25 pg/
mL) and non-supplemented controls. Interestingly, COCs treated
with 6.5 pg/mL FF-sEVs achieved blastocyst rates comparable to
group culture systems, though their blastocysts exhibited lower TCN
(125 vs. 143 cells, respectively). This disparity implies that while
FF-sEVs effectively compensate for deficiencies in IVM by delivering
critical developmental mediators (e.g., miRNA, proteins, and lipids),
post-fertilization culture conditions may limit blastocyst quality. The
6.5 pg/mL dose appears to replicate the group culture environment
by providing a balanced cocktail of embryokines-like factors (likely
present in the FF-sEV's cargo) that mimics the autocrine/paracrine
signalling of group-cultured COCs. However, the present study’s key
limitation lies in its inability to isolate the contributions of specific
sEVs components (e.g., miRNAs vs. proteins) to the observed
improvements. Future studies should employ cargo-depletion
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approaches (e.g., RNase-treated EVs, lipid extraction) or single-omics
analyses to identify the active agents. Supplementing individual
culture systems with oviductal or endometrial sEVs during post-
fertilization phases could help elucidate their role in enhancing
blastocyst quality, particularly by mimicking physiological embryo-
maternal communication. A further limitation is that the number of
experimental replicates was not determined using an a priori sample
size calculation. Nevertheless, the increase in blastocyst production
in the individual culture system with 6.5 pg/mL FF-sEVs
supplementation during maturation was substantial.

Conclusion

Supplementation with 6.5 pg/mL FF-sEVs in individually
cultured COCs enhanced day 8 blastocyst rates, TCN, and ICM,
while also reducing AR, compared to both higher FF-sEVs
concentrations (12.5 and 25 pg/mL) and non-supplemented controls.
In contrast, group-cultured COCs and zygotes showed no
developmental improvements with FF-sEVs supplementation, and
adverse outcomes emerged at higher concentrations: blastocyst yield
and TCN were reduced at FF-sEVs doses >10 pg/mL. Calibrated
FF-sEVs supplementation appears to compensate for the lack of
paracrine signaling in individual cultures. The negative effects in
group-cultured COCs may result from competitive interference
between exogenous FF-sEVs and endogenous embryokines in the
maturation medium. The identification of potentially conserved
RNAs, proteins, or lipids in FF-sEVs across mammalian species,
including humans, could support the development of fully synthetic
media to enhance and optimize IVP. In the present study, however,
the specific FF-sEVs components responsible for the observed
improvements in blastocyst production remain unknown.
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