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Age-related obesity and 
inflammaging in cats
Miki Kobayashi  and Motoo Kobayashi *
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Aging is characterized by chronic systemic inflammation accompanied by cellular 
senescence, immunosenescence, organ dysfunction, and age-related diseases. A 
chronic low-grade pro-inflammatory state known as “inflammaging” accelerates 
age-related diseases such as obesity, diabetes, vascular diseases, and certain types 
of cancer. Senescent cells drive age-related tissue dysfunction partially by inducing 
a chronic senescence-associated secretory phenotype (SASP) associated with 
various diseases. Obesity and insulin resistance change with advancing age and 
are linked to low-grade chronic inflammation, leading to age-related diseases. 
Obesity results in significant changes in the adipokine profile, such as reduced 
levels of anti-inflammatory adipokines, e.g., adiponectin. Cats are more prone 
to obesity than dogs owing to the unique characteristics of their glucose and 
lipid metabolism. Severely obese cats show excessive visceral fat accumulation, 
significantly increased triglyceride, free fatty acids, and TNF-α plasma concentrations 
as pro-inflammatory markers, and a significant decrease in adiponectin. Aged 
obese cats with excessive visceral fat exhibit fatty liver and enlarged adipocytes 
with macrophage infiltration. A healthy lifestyle is recognized as the most effective 
way to maintain health and fight aging. Aging is inevitable in animals; however, 
delaying the onset of age-related disease through adequate interventions at the 
early stages of SASP induction is possible. Adequate nutrition, moderate exercise, 
and a good mental state can effectively prevent age-related obesity in cats.
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1 Introduction

As aging progresses, the ability of the animal body to resolve inflammation is reduced 
significantly, resulting in an imbalance between proinflammation and anti-inflammation. This 
results in a chronic low-grade pro-inflammatory state known as “inflammaging,” which 
accelerates age-related diseases like obesity, diabetes, vascular diseases, and certain types of 
cancer (1). Inflammaging occurs in senescent tissues and is involved in the development of 
age-related diseases (2). Oxidative stress (OS) is associated with various age-related conditions, 
including sarcopenia and frailty (3), and OS-induced aging and associated disorders cause soft 
tissue deterioration and homeostatic imbalances (4, 5). Moreover, stressed senescent cells 
exhibit an altered secretome, referred to as the senescence-associated secretory phenotype 
(SASP), which results in the secretion of pro-inflammatory cytokines (6).

The increase in the prevalence of overweight and obesity represents a worldwide 
phenomenon that is associated with various chronic diseases such as type-2 diabetes (T2D), 
cancer, rheumatoid arthritis and osteoarthritis (OA), cognitive impairment and dementia, and 
those affecting the cardiovascular (CV) system (7). Obesity superimposed on aging 
(age-related obesity) represents an additional risk factor for the older age group in which the 
prevalence of chronic diseases, as well as the occurrence of complications, increases (8, 9). In 
cats, whose glucose and lipid metabolism differ from that in dogs, obesity and its associated 
diseases increase significantly with age (10, 11). In this review, we outline chronic inflammation 
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as the basic pathophysiology of age-related diseases and discuss the 
relationship between age-related obesity and inflammaging in cats.

2 Senescence-associated secretory 
phenotype and inflammaging

Aging is characterized by chronic systemic inflammation 
accompanied by cellular senescence, immunosenescence, organ 
dysfunction, and age-related diseases (12). Cellular senescence is a state 
of permanent cell proliferation arrest induced by persistent DNA 
damage and other stress-induced signals. Cellular senescence has since 
been reported not only in cultured cells but also in vivo in cells of various 
organisms, ranging from yeast to mammals (13). In vivo, cellular 
senescence is induced by DNA damage-associated stress. The role and 
mechanism underlying senescence-associated secretory phenotypes 
(SASP) have been increasingly recognized, as they are suspected to 
be associated with various diseases (14). Many senescent cells secrete a 
wide spectrum of bioactive factors, including inflammatory cytokines, 
chemokines, growth factors, matrix metalloproteases, lipids, nucleotides, 
extracellular vesicles, and soluble factors, termed SASP (15). The 
combination of these molecules forms the SASP, which determines 
various processes in the body associated with regeneration (16), tissue 
remodeling (17), inflammation (14), and carcinogenesis (18). The SASP 
is a dynamic process that can be divided into several phases. The first 
phase starts immediately after DNA damage, followed by an early SASP 
phase characterized by increased synthesis spanning several days. 
Within 4–10 days, the secretion of most SASP factors increases through 
autocrine exposure, leading up to the mature phase of the SASP (19). 
SASP regulation occurs at both the transcriptional and post-
transcriptional levels. Nuclear factor kappa B (NF-κB) plays a key role 
in regulating the expression of genes that are the main components of 
the SASP (20). Senescent cell accumulation and long-term SASP 
secretion may result in disrupted tissue function, accelerated aging, and 
the development of age-related pathologies (21). Mitochondrial 
dysfunction is an often-unappreciated hallmark of cellular senescence 
which plays important roles not only in the senescence growth arrest but 
also in the development of the SASP and resistance to cell-death (22).

The term “inflammaging,” first used by Franceschi et al. in 2000, 
is associated with chronic sub-clinical inflammatory processes and 
biological aging (23). The SASP phenotype has been proposed as the 
underlying cause of inflammaging and comprises various soluble 
factors, including pro-inflammatory mediators (e.g., IL-6 and IL-8) 
and matrix-degrading molecules characterized by the release of 
pro-inflammatory cytokines (24). Senescent cells exhibit molecular 
(e.g., senescence marker expression) and morphological features (e.g., 
enlarged or flattened cells) (25).

3 Inflammaging and age-related 
diseases

Aging is the strongest risk factor for most chronic diseases, 
including obesity. Central obesity and inflammation have consistently 
been found to be strongly associated with the severity and future risk 
of severe multimorbidity. The pro-inflammatory state of aging has 
been suggested to be a proxy biomarker of the pace of aging. Strong 
epidemiological evidence suggests that elevated levels of 
pro-inflammatory markers in older animals are associated with the 
risk of developing most diseases typical of aging (26). The systemic 
consequences of aging on the development of aging phenotypes can 
be roughly summarized into four major domains: (1) changes in body 
composition, (2) an imbalance between energy availability and 
demand, (3) dysregulation of signaling networks that maintain 
homeostasis, and (4) neurodegeneration with impaired neuroplasticity 
(26). Age-related changes in body composition and physical fitness are 
among the most apparent and unavoidable effects of aging, and cause 
metabolic dysfunction (Table 1). Visceral fat, which is responsible for 
many obesity-related pathologies and an independent risk factor for 
coronary artery disease, stroke, and death, continuously accumulates 
and is reflected in an increase in waist circumference throughout life 
(27). Evidently, all organs experience some changes in tissue 
composition throughout life, and the related changes are directly 
associated with sub-clinical and clinical pathology, including 
neurodegeneration (28), physical frailty, increase in fibro-connective 
build-up in muscles, and demineralization and loss of bone 
strength (29).

The balance between energy availability and demand is tightly 
regulated, and ATP is constantly resynthesized because its storage is 
sufficient for only a few seconds (30). In muscle cells and neurons, this 
stability is co-adjuvanted by the phosphocreatine buffering system, 
which accumulates chemical energy to be  promptly used when 
demand suddenly increases. Most energy muscles use is generated 
through aerobic metabolism; hence, energy consumption can 
be estimated indirectly from oxygen consumption. Older individuals 
with multiple comorbidities have less available energy and require 
more energy at rest and during physical activity. The amount of energy 
used at rest decreases with age largely because of a loss of lean body 
mass but declines less in those with multiple chronic conditions 
(physical inactivation) (31). Hence, sick older individuals use most of 
their available energy to perform activities essential to daily living.

A mild pro-inflammatory state develops in most aging individuals, 
reflected by high levels of pro-inflammatory markers, such as IL-6 and 
C-reactive protein (CRP) (32). These hormones, inflammatory 
biomarkers, and antioxidants are part of complex signaling networks 
that control homeostasis, and individual biomarker levels may reflect 
adaptations within homeostatic feedback loops rather than causative 

TABLE 1  Age-related changes contributing metabolic dysfunction.

	-	 Physical frailty

	-	 Physical inactivation

	-	 Ectopic lipid deposition

	-	 Visceral adiposity

	-	 Insulin resistance

	-	 Senescence-associated secretory phenomenon (SASP)

Abbreviations: AMP, Adenosine 5′-monophosphate; AMPK, AMP-activated protein 

kinase; AT, Adipose tissue; BCS, Body condition score; CRP, C-reactive protein; 

FAS, Fatty acid synthase; FFA, Free fatty acid; IL-6, Interleukin-6; IRS, Insulin receptor 

substrate; JNK, c-Jun N-terminal kinase; MCP-1, Monocyte chemoattractant 

protein-1; NAD, Nicotinamide adenine dinucleotide; NFκB, Nuclear factor kappa 

B; OS, Oxidative stress; PI3K, Phosphatidylinositol 3-kinase; SAA, Serum amyloid 

A; SASP, Senescence-associated secretory phenotype; SREBP-1, Sterol regulatory 

element binding protein-1; TNF-α, Tumor necrosis factor-α.
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factors. The number of neurons also declines throughout life, as 
neurons generally stop reproducing shortly after birth (31). With 
aging, microglia acquire a predisposition to reactive inflammation, 
and brain tissue from older individuals exhibits higher levels of 
pro-inflammatory cytokines and lower levels of anti-inflammatory 
cytokines than those in the brain tissue of younger individuals. Higher 
inflammation has been associated with lower cognition and reduced 
neuronal plasticity, which are expressed as reduced capacities for 
adaptation and compensation (33). Clinically, inflammaging is 
characterized by increased blood levels of several inflammatory 
biomarkers, including CRP, IL-6, IL-8, and TNF-α (34). Furthermore, 
serum IL-6 levels also predict incident disability and frailty (35).

Obesity and insulin resistance are altered with advancing age and 
are linked to low-grade chronic inflammation, leading to age-related 
systemic metabolic dysfunction, physical limitation, and frailty (36). 
Mitochondrial hormesis may also play a role in aging, and mild 
mitochondrial toxicity may trigger beneficial compensatory responses 
that improve cellular fitness (37). Resveratrol and metformin, which 
inhibit cellular energy metabolism by increasing AMP levels, 
activating AMP-activated protein kinase (AMPK), and decreasing 
oxygen uptake, are possible examples of this (38). Obesity has become 
a prominent health problem globally and is closely associated with 
many chronic diseases, such as diabetes mellitus, cardiovascular 
diseases, and certain types of cancer (39). Obesity develops when 
energy intake exceeds energy expenditure and is characterized by 
excessive adipose tissue (AT) accumulation. When AT reaches its 
maximum capacity for energy storage, it releases free fatty acids (FFA), 
causing ectopic lipid deposition in other tissues, such as the liver, 
skeletal muscle, and vasculature. Adipose tissue shows increased 
macrophage infiltration during the development of obesity (40, 41). 
Consequently, these AT macrophages secrete high levels of 
pro-inflammatory cytokines, resulting in obesity-associated chronic 
low-grade inflammation and impaired insulin signaling (42).

Obesity results in significant changes in the adipokine profile, 
creating a shift toward elevated levels of pro-inflammatory adipokines, 
such as leptin and resistin, and reduced levels of anti-inflammatory 
adipokines, such as adiponectin (43). Obesity is also associated with 
increased perivascular fat, expressed as pro-inflammatory markers, 
including serum amyloid A (SAA) (44). SAA subtypes 1–3 are well-
described acute-phase reactants that are elevated in acute 
inflammatory conditions such as infection, tissue injury, and trauma. 
SAA subtypes have also been implicated in chronic metabolic diseases, 
including obesity, diabetes, and cardiovascular disease, and, passively, 
in autoimmune diseases, including systemic lupus erythematosus, 
rheumatoid arthritis, and inflammatory bowel disease (45). 
Circulating SAA levels are positively associated with visceral adiposity 
(46), suggesting that visceral fat is a potential source of SAA. These 
changes in circulating levels of adipokines are exactly SASP.

4 Obesity in cats

Obesity is the most common age-related disease in cats. Similar 
to that in humans, an increased incidence of obesity in cats has been 
observed to accompany aging in recent years (11, 47), and its 
prevalence is assumed to be  30–40% (47, 48). In cats, obesity is 
associated with the development of insulin resistance (49) and T2D 
(50, 51) and is considered a good model of human metabolic 

syndrome (52). Cats are more prone to obesity than dogs owing to 
their unique glucose and lipid metabolism characteristics (53, 54). In 
feline livers, glucokinase, the rate-limiting enzyme in glycolysis, is 
lacking (53), and gluconeogenic enzyme activity is higher than that in 
canine livers (55). Additionally, the expression levels of mRNA 
associated with the insulin signaling pathway, including insulin 
receptor substrate (IRS)-1, IRS-2, phosphatidylinositol 3-kinase 
(PI3K) P-85α, are significantly lower in cats than those in dogs (54), 
and expression levels of IRS-2 and PI3K mRNA significantly decreased 
in liver and skeletal muscle of obese cats (56). Furthermore, 
adiponectin, an adipokine that improves insulin sensitivity, is lower in 
cats in the normal state (54) and with weight gain (56). Thus, 
adiponectin appears to play an important role in the development of 
obesity-related metabolic disturbances in cats. Collectively, this 
evidence suggests that, similar to humans, cats have an inherently 
lower ability to process glucose and are predisposed to obesity and 
insulin resistance, as well as visceral obesity-induced lipid 
metabolism abnormalities.

Much like in human medicine, consensus on objective 
biochemical and mechanical parameters such as body mass index and 
its reference values for classifying weight status is lacking in veterinary 
medicine. Body condition score (BCS) is a commonly accepted semi-
quantitative method for evaluating weight status. It involves subjective 
visual observation and palpation made by an observer, using a scale 
from 1 to 9, where 1 indicates emaciation, 5 is ideal, and 9 is extremely 
fat (57). Severely obese cats with a BCS of 9 showed excessive amounts 
of visceral fat accumulation and a significant increase in plasma 
concentrations of triglyceride, FFA, and TNF-α as pro-inflammatory 
markers and a significant decrease in adiponectin concentrations (10, 
11). Aged obese cats with excessive visceral fat show enlarged 
adipocytes with macrophage infiltration (10, 11). mRNA expression 
levels of FAS and SREBP-1 in abdominal AT and livers of obese cats 
were significantly increased (58). In the aged obese cats, ectopic lipid 
accumulation was accelerated, and fatty liver is observed frequently 
(10, 11, 59). Changes in circulating levels of adipokines (adiponectin, 
leptin, and resistin), inflammatory cytokines (TNF-α, IL-1β, IL-6, 
MCP-1, and SAA) and lipids (FFA and triglyceride) in obese cats are 
summarized in Table 2 (59–62).

TABLE 2  Changes in circulating adipokines and inflammatory cytokines 
in obese cats.

Adipokines and 
inflammatory cytokines

References

Adiponectin ↓ (10, 11, 59, 60, 62, 87)

Leptin ↑ (60)

Resistin ↑ (60)

TNF-α ↑ (10, 11, 62)

IL-1β ↑ (62)

IL-6 ↑ (10, 11)

MCP-1 — (61)

SAA ↑ (10, 59, 87)

FFA ↑ (11, 59)

Triglyceride ↑ (10, 11, 59, 87)

↑: increased, ↓: decreased, —: unchanged.
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On the other hand, adipose tissue adiponectin mRNA and 
circulating adiponectin do not exhibit a correlation (63). Feline and 
human studies have shown that adiponectin gene expression is 
adipose depot-dependent (52), indicating that circulating adiponectin 
levels are dependent on other factors in addition to adiposity and fat 
depot location. Remodeling adipocytes are senescent cells and cannot 
produce adiponectin. This SASP is one of the characteristics of feline 
obesity and is considered to induce insulin resistance, followed by 
severe metabolic disorders such as obesity, diabetes, and vascular 
dysfunction, among others.

5 Intervention strategies for 
age-related obesity in cats

A healthy lifestyle has long been recognized as the most effective 
way to maintain health and prevent the deleterious effects of aging (64, 
65). Adequate nutrition, moderate exercise, and a good mental state 
can effectively delay aging (66, 67). Balanced and adequate nutritional 
intake positively affects aging. Exercise is an efficient strategy for 
delaying aging due to various mechanisms, including DNA damage 
(68) and OS (69). Calorie restriction in animals is associated with a 
substantial reduction in pro-inflammatory markers in blood (70). 
Weight loss combined with exercise improves functional status, 
reduces some features of frailty in obese individuals, improves the 
cardiovascular risk profile, and reduces the risk of some types of 
cancer (71, 72). As aging progresses, living organisms experience a 
series of progressive degenerative changes and become more sensitive 
to internal and external stimuli, leading to OS aggravation, increased 
inflammation, apoptosis, and structural and functional cell and organ 
damage, resulting in a SASP followed by age-related diseases (73, 74). 
The SASP has been proposed as the underlying cause of inflammation 
and consists of various soluble factors, such as pro-inflammatory 
mediators (e.g., IL-6 and IL-8) and matrix-degrading molecules 
characterized by the release of pro-inflammatory cytokines (23). 
Alleviation of inflammaging will help prevent age-related diseases. 
The transcription factor NF-κB represents a promising target for SASP 
control. Incidentally, several NF-κB-dependent pro-inflammatory 
SASP factors are downregulated. Moreover, NF-κB is a key upstream 
regulator of the SASP and is, simultaneously, a transcriptional target 
of NF-κB (75). Metformin, an antidiabetic drug with pleiotropic 
effects, also targets senescent cells (76), negatively affecting NF-κB 
without affecting other inflammatory pathways such as p38 and 
JNK. Metformin-mediated inhibition of the SASP may contribute to 
the anti-aging effects observed after metformin treatment (77). 
Metformin activates AMPK and activated AMPK phosphorylates the 
acetyl-CoA carboxylase, inhibiting fat synthesis and promoting fat 
oxidation instead, thus reducing hepatic lipid stores and enhancing 
hepatic insulin sensitivity (78).

Various phytochemicals have been developed as senolytic drugs 
(12). Resveratrol, a natural polyphenol found in plants such as 
peanuts, grapes, and strawberries (79), modulates the expression of 
pro- and anti-apoptotic factors, neutralizes free radical species, 
affects mitochondrial function, chelates redox-active transition-
metal ions, and prevents protein aggregation (80). Resveratrol 
inhibits the SASP through the SIRT1/NF-κB signaling pathway and 
delayed aging (81, 82) (Supplementary Figure 1). Quercetin (12) and 
curcumin (83) have shown anti-SASP and anti-inflammatory 

activities similar to those of resveratrol. For alleviation of 
inflammaging in age-related obesity cats, resveratrol 
supplementation (59), and quercetin supplementation (84) were 
effective. Metformin, which enhances peripheral insulin sensitivity 
and reduces hepatic glucose output, is used as anti-diabetic drug, 
however studies on metformin in age-related obesity cats are 
currently in progress (85).

Early diagnosis of the SASP by detecting various pro-inflammatory 
cytokines and inflammatory markers is possible (45, 86). In age-related 
obesity cats, SAA can be good diagnostic marker at early stage of 
inflammaging (87). Aging is inevitable in animals; however, delaying 
the onset of age-related diseases through adequate interventions in the 
early stage of the SASP is possible. Adequate nutrition, moderate 
exercise, and a good mental state can effectively prevent age-related 
diseases, including obesity, in cats.

6 Conclusion

Aging is characterized by chronic systemic inflammation, which 
is accompanied by cellular senescence, immunosenescence, organ 
dysfunction, and age-related diseases such as obesity, diabetes, 
vascular diseases, and even certain types of cancer. Senescent cells 
partially drive age-related tissue dysfunction by inducing a chronic 
SASP associated with various diseases. Obesity results in significant 
changes in the adipokine profile, creating a shift toward elevated levels 
of pro-inflammatory adipokines, such as leptin and resistin, and 
reduced levels of anti-inflammatory adipokines, such as adiponectin. 
Cats are more prone to obesity than dogs owing to their unique 
glucose and lipid metabolism characteristics. Severely obese cats show 
excessive visceral fat accumulation, a significant increase in plasma 
triglyceride, FFA, and TNF-α concentrations as pro-inflammatory 
markers, and a significant decrease in adiponectin concentrations. A 
healthy lifestyle is recognized as the most effective way to maintain 
health and fight the effects of aging. Adequate nutrition, moderate 
exercise, and a good mental state can effectively prevent age-related 
obesity in cats.
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SUPPLEMENTARY FIGURE 1

Resveratrol activates AMPK in a SIRT1-dependent manner through 
deacetylation of LKB1. High dose of resveratrol activates AMPK directly and 
low dose of resveratrol activate AMPK via SIRT1, and stimulate mitochondrial 
biogenesis that results in improvement of lipid metabolism in tissues (81). 
LKB1, liver kinase B1; PGC-1α, peroxisome proliferator-activated receptor 
gamma coactivator1-alpha; NRF, nuclear respiratory factor; TFAM, 
transcription factor A, mitochondrial; NAD, nicotinamide 
adenine dinucleotide.
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