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Introduction: Antimicrobial resistance (AMR) is a critical One Health challenge 
affecting both human and animal health. Tritrichomonas foetus, a protozoan 
parasite causing reproductive and gastrointestinal disorders in cattle and cats, 
presents a growing threat due to limited treatment options. While nitroimidazoles 
such as ronidazole remain the standard of care, their use is restricted in food-
producing animals and associated with emerging resistance in feline strains. 
Propolis, a complex natural resin produced by bees, has demonstrated 
antimicrobial and antiparasitic activity in other protozoan infections.
Methods: This in vitro study assessed the minimum lethal concentrations (MLC) 
of ethanolic propolis tincture from the Észak-Alföld region of Hungary against 
feline- and bovine-derived T. foetus strains, compared to four nitroimidazoles.
Results: Propolis showed promising activity, with an MLC of 1.25 mg/ mL for feline 
isolates and 0.16 mg/mL for bovine isolates after 48 h. Ronidazole demonstrated 
reduced efficacy against feline isolates (MLC 32 μg/mL), suggesting partial 
resistance, whereas bovine isolates remained susceptible (MLC 1 μg/mL).
Discussion: Our findings highlight propolis as a potential alternative treatment 
for T. foetus, particularly in cattle where nitroimidazole use is prohibited. 
Standardizing propolis tincture and conducting in vivo studies will be essential 
to translate these results into clinical applications. This study contributes to 
efforts to combat AMR and develop sustainable, natural therapeutic alternatives 
in veterinary medicine, aligning with One Health principles.
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1 Introduction

Livestock production is the fastest-growing agricultural sector worldwide (1). However, 
infectious diseases remain a major challenge, causing direct losses through increased mortality 
and reduced productivity, pose a significant challenge (2). Furthermore, zoonotic and cross-
species diseases pose risks not only to animal populations but also to human health and 
ecosystem integrity, as highlighted by the One Health framework (3).

Parasitic infections are particularly problematic due to their persistence and limited 
treatment options. Among protozoans, Tritrichomonas foetus, a monoflagellated parasite (4) 
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is a significant concern, affecting both feline and bovine populations 
(5–7). Genetic distinctions between the feline and bovine genotypes 
of T. foetus have been identified, including single nucleotide 
polymorphisms (SNPs) in the internal transcribed spacer-2 (ITS-2) 
region and polymorphisms in elongation factor-1-alpha and cysteine 
protease 8 sequences (4–6, 8).

In domestic cats, T. foetus infections are most common in 
breeding facilities (9, 10), shelters (11) and exhibition settings (12, 13). 
Infected cats typically present with gastrointestinal signs such as 
diarrhea, anorexia, weight loss, abdominal pain, and chronic colitis 
(14, 15). Metronidazole and tinidazole show limited efficacy (16, 17) 
and are often unable to fully eradicate the parasite completely (18). 
Thus, veterinarians often turn to ronidazole (19). Ronidazole is 
approximately 10 times more effective than metronidazole (20), but is 
not authorized for cats (21). Despite high doses and prolonged use, 
ronidazole only achieves a 65% improvement rate against feline 
T. foetus and can lead to neurotoxic clinical signs in treated animals 
(14, 15, 20, 22, 23). Consequently, ronidazole is not authorized for use 
in cats in the European Union (24, 25).

In cattle, T. foetus is a sexually transmitted parasite, prevalent in 
regions practicing natural insemination (26). Infected bulls act as 
asymptomatic reservoirs (27), while infected cows may suffer from 

vaginitis, spontaneous abortion (28), pyometra, and other 
reproductive disorders, that lead to significant economic losses (26).

Although zoonotic transmission is rare, a documented case in an 
immunosuppressed patient underscores the potential risk (29). Due 
to its efficacy, safety, and excellent pharmacokinetic properties, 
secnidazole has been successfully used in the treatment of human 
Trichomonas vaginalis (30, 31), and giardiasis in dogs (32) and cats 
(33). The group of 5-nitroimidazoles remains the primary treatment 
option for trichomoniasis in human and veterinary medicine (34–39). 
However, their use in food-producing animals is prohibited (40), 
leaving cattle infections largely without effective treatment.

The growing antimicrobial resistance (AMR) of protozoans and 
the limitations of current treatments underscore the urgent need for 
novel therapeutic strategies (41). The desire for safer, more effective 
alternatives has driven interest in plant-based extractions, oils (42), 
antimicrobial peptides (43) and propolis (44).

Propolis is a resinous, bee-derived natural product that has garnered 
significant attention for its antimicrobial and antiparasitic properties. It 
has shown promise as a treatment for infection due to the bioactive 
compounds it contains. Its composition — approximately 50% resin, 30% 
wax, 10% essential oils, 5% pollen, and 5% organic components (45–49) 
— is influenced by geographical (50), botanical (45, 46, 51), and climatic 
factors (52), as well as by seasonal variation (45, 46), and the genetics of 
the bees (46, 47). Extraction methods also play a critical role in 
determining propolis efficacy (53). The antimicrobial efficacy of propolis 
is strongly correlated with its flavonoid and phenolic content, as these 
compounds are known to disrupt microbial metabolic pathways, inhibit 
enzyme activity, and induce oxidative stress in pathogens (54–56). Its 
anti-protozoal effects are thought to involve disruption of phospholipid 
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Graphical abstract illustrating the antiparasitic effects of flavonoid-rich ethanolic propolis tincture against feline Tritrichomonas foetus. The image 
summarizes the preparation of the hydroalcoholic propolis tincture, the presence of key flavonoids, microscopic observation of motile trophozoites, 
and the reduction in parasite counts following treatment at various concentrations over 24 and 48 h.
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metabolism, leading to cell lysis (57). Specific components such as 
rosmarinic acid (58), apigenin (59, 60), resveratrol (61), kaempferol (62), 
quercetin (63), and caffeic acid (64), can contribute to its efficacy through 
mechanisms such as increased reactive oxygen species (ROS) production, 
cytoplasmic vacuolization (65, 66), and inhibition of surface protein 
complexes (67, 68).

Given these promising properties, this study aimed to evaluate the 
in vitro efficacy of ethanolic propolis extracts from the Észak-Alföld 
region of Hungary against T. foetus strains isolated from cats and 
cattle, in comparison to established nitroimidazole treatments 
(metronidazole, ronidazole, tinidazole, and secnidazole). We sought 
to identify propolis as a potential natural alternative for managing 
T. foetus infections, particularly in light of increasing AMR and the 
One Health imperative for sustainable and effective therapies.

2 Materials and methods

2.1 Propolis extract preparation

The raw propolis tincture used in this study was sourced from the 
Northern Great Plain (Észak-Alföld) region of Hungary. The tincture 
was prepared by combining 1,000 g of propolis with 3,000 mL of 96% 
ethanol and 1,000 mL of glycerol. A conventional extraction method 
was employed, wherein the powdered crude propolis was macerated 
for 3 weeks at room temperature in a sealed, light-protected vessel. 
The undissolved components were then removed using filter paper 
(69). The addition of glycerol during extraction enhanced the yield of 
active ingredients by facilitating a more polar extraction process, as 
described in the literature (70). A final propolis concentration of 
200 mg of raw propolis per mL of solvent, corresponding to the ratio 
used during tincture preparation (1,000 g propolis in 4,000 mL solvent 
mixture). Thus, the extract represents a hydroalcoholic propolis 
tincture containing glycerol as a co-solvent, in line with established 
preparation methods reported in the literature.

2.2 Parasite isolation

The feline strain of T. foetus was isolated from infected cats within 
a breeding facility in Budapest, Hungary. Samples were collected by a 
veterinarian for diagnostic purposes (T1–10; samples collected in 
November 2022) using a transport broth medium (InPouch TF-Feline, 
Biomed Diagnostics, White City, OR, USA). Despite previous 
treatment with ronidazole, chronic parasitic carriage persisted in the 
population. Positive samples were confirmed using polymerase chain 
reaction (PCR) with the QIAmp DNA Stool Mini Kit (Qiagen GmbH, 
Hilden, Germany). Primary feline cultures were cryopreserved in 10% 
DMSO in liquid nitrogen at −196 °C for further testing (71).

The bovine strain used was T. foetus (Riedmuller), Wenrich and 
Emerson, ATCC 30232 (LGC Ltd., Teddington, Middlesex, UK), a 
reference strain originally isolated from cattle.

2.3 Parasite culture

Maintenance and propagation of T. foetus were performed using 
Trichomonas cysteine peptone liver infusion medium (CPLM; Biolab 

Zrt., Budapest, Hungary). The medium was autoclaved at 121 °C for 
15 min, followed by the addition of 70 mL of sterile inactivated horse 
serum (Biolab Zrt., Budapest, Hungary). A vial of Trichomonas 
selective supplement (Biolab Zrt., Budapest, Hungary) was then 
added, containing 500 mg/vial streptomycin and 80 mg/vial penicillin 
added to 425 mL of CPLM broth, to inhibit bacterial overgrowth that 
might outcompete the parasite. Fresh medium was prepared weekly 
and stored at 4 °C, while cultures were maintained in 15 mL centrifuge 
tubes at 37 °C under aerobic conditions. The cultures were passaged 
every 2 days to ensure their growth remained in the log phase.

Parasite morphology was observed using a Leica Microsystems 
Dmi1 microscope (BioMarker Kft., Gödöllő, Hungary) at 
400 × magnification. Quantification of motile trophozoite forms—
characterized by their bulb-like shape, undulating membrane, and 
jerky flagellar movement (Supplementary Video 1)—was conducted 
using a Bürker chamber (DIN12847, VWR International, LLC., 
Debrecen, Hungary) and a standard cell-counting formula.

The initial trophozoite count was determined 24 h post-
incubation of the received samples. Mean cell counts were calculated 
across 25 large squares in the chamber. A twofold dilution was 
achieved by adding 20 μl of sterile isotonic saline to 20 μl of the 
suspension. The average cell count was then multiplied by the dilution 
factor and normalized using a factor of 2.5 × 105, yielding the final 
count in pcs/mL.

2.4 Determination of the total phenolic 
content and total flavonoids content

The total phenolic content (TPC) of the propolis tincture was 
assessed using the Folin–Ciocalteu method (72) with gallic acid as 
the standard. For the analysis, 200 μg/mL of the propolis tincture 
was mixed with 500 μl of Folin–Ciocalteu reagent (10% v/v) and 
500 μl of sodium carbonate (2% w/v). The reaction mixture was 
incubated at room temperature, without light, for 1 h. Absorbance 
was measured at 700 nm using a Hach DR6000 spectrophotometer 
(Hach Lange Kft., Budapest, Hungary), with a blank (reaction 
mixture without propolis tincture) serving as the control. A 
calibration curve was constructed with standard solutions of gallic 
acid (0.01–0.5 mM; Merck Life Science Ltd., Budapest, Hungary). 
The resulting regression equation was y = 0.0061x + 0.0278, with 
R2 = 0.9987. The TPC results were expressed as gallic acid equivalent 
(GAE) in milligrams (mg) per gram (g) of the dry weight (DW) of 
the propolis tincture.

The total flavonoid content (TFC) was determined using the 
aluminum chloride colorimetric method as described by Dias et al. 
(73). In this analysis, 125 μl of 1 mg/mL propolis tincture was mixed 
with 625 μl of distilled water and 37 μl of 5% sodium nitrite solution. 
After 5 min, 75 μl of 10% aluminum chloride solution was added, 
followed by 250 μl of 1 M sodium hydroxide and 137 μl of distilled 
water. The mixture was vortexed thoroughly, and the intensity of the 
resulting pink coloration was measured at 510 nm using a Hach 
DR6000 spectrophotometer, with a blank as the control. A calibration 
curve was constructed with standard solutions of catechol (0.022–
1.5 mM; Merck Life Science Ltd., Budapest, Hungary). The resulting 
regression equation was y = 0.0049x + 0.0152, with R2 = 0.9979. The 
TFC results were expressed as catechol equivalent (CAE) in mg per g 
of DW of propolis.
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Both TPC and TFC determinations were conducted in triplicate 
to ensure accuracy and reliability.

2.5 LC–MS/MS profiling of selected 
bioactive compounds

To confirm the accuracy of the colorimetric determinations of 
total phenolic and flavonoid content, the propolis tincture was 
additionally analyzed by LC–MS/MS using a SCIEX Exion LC 2.0 
UHPLC system (AB Sciex LLC, Framingham, MA, USA) coupled to 
a SCIEX QTRAP 4500 triple quadrupole mass spectrometer (AB Sciex 
Pte. Ltd., Singapore) under identical chromatographic conditions. In 
parallel with the colorimetric assays, the concentrations of three major 
phenolic constituents of propolis, caffeic acid phenethyl ester (CAPE), 
pinocembrin, and galangin were quantified based on literature reports 
of their antimicrobial relevance (74–77). Separation was achieved on 
a Merck Purospher STAR RP-18 column (150 × 4.6 mm, 3 μm particle 
size; Merck KGaA, Darmstadt, Germany) maintained at 30 °C. The 
mobile phases consisted of solvent A (water with 0.1% formic acid) 
and solvent B (acetonitrile with 0.1% formic acid), with a gradient 
elution from 20 to 80% B over 20 min. The injection volume was 10 μl 
and the flow rate was 0.8 mL/min. Multiple reaction monitoring 
(MRM) mode was applied, with compound-specific precursor–
product ion transitions optimized for each analyte.

2.6 The propolis and nitroimidazole 
treatment

Parasite growth and viability were assessed following previously 
described methodologies (78, 79). During the treatment phase, a 
hydroalcoholic propolis tincture (200 mg/mL in 96% ethanol with 
glycerol) was employed alongside a control sample. A two-fold 
dilution series was generated to determine the lowest concentration 
where the parasites die out. Unlike standard turbidity assessments, 
this study focused on the change in trophozoite counts across 
dilutions. A 24-well cell culture plate (VWR International, LLC., 
Debrecen, Hungary) was utilized. The potential effects of the solvent 
(ethanol) were also evaluated independently to distinguish the 
impact of the active compounds in the propolis tincture from that of 
the solvent.

Each well was filled with 3 mL of CPLM broth, except for the first 
column. The propolis tincture stock solution (200 mg/mL, well A1) 
and 96% ethanol-only control (well C1) underwent an initial tenfold 
dilution (0.3 mL + 2.7 mL), followed by sequential two-fold dilutions 
across the wells (Table 1). The dilution series for the propolis tincture 
and ethanol solvent ensured that any observed effects were attributable 
to propolis’ active compounds rather than the solvent.

The initial parasite suspension was prepared at approximately 
2.4 × 105 cells/mL for the feline strain and 5 × 104 cells/mL for the 
bovine strain, based on proliferation rates consistent with the literature 
(80–84). Each well was inoculated with 50 μl of the suspension.

Nitroimidazole derivatives stock solutions (ronidazole, 
metronidazole, tinidazole, and secnidazole) were prepared (Merck 
KGaA, Darmstadt, Germany) at 1024 μg/mL in DMSO and distilled 
water (85). A two-fold dilution series was created in CPLM broth 
across the first two rows of a 24-well plate, with the solvent undergoing 

an equivalent dilution series. Positive (containing parasites without 
active compounds) and negative (lacking parasites and active 
compounds) control plates were included alongside treatment groups. 
Cultures were incubated at 37 °C under aerobic conditions.

Parasite counts were performed at 24 h and 48 h using a Bürker 
chamber. Minimum lethal concentrations (MLC) was defined as the 
lowest concentration at which no motile organisms were observed (79).

Statistical analysis of trophozoite count variations was conducted 
using the Kruskal-Wallis test in R version 4.3.0 (86, 87). Treatment 
effects were analyzed across species, strains, treatment durations, 
and concentrations.

3 Results

3.1 Total phenolic and flavonoid content 
determination

In Hungary, the primary botanical sources of propolis are poplar 
(Populus spp.) and birch (Betula spp.) buds (47). These sources 
significantly influence the concentration of phenolic and flavonoid 
compounds. The total phenolic content (TPC) and total flavonoid 
content (TFC) were measured dried extract obtained by evaporating 
the hydroalcoholic propolis tincture. The TPC was determined to 
be 37.9 ± 0.08 mg gallic acid equivalent (GAE)/g of dried extract, 
while the TFC was 19.2 ± 0.05 mg catechol equivalent (CAE)/g of 
dried extract.

Targeted LC–MS/MS quantification of three phenolic 
constituents with well-documented antimicrobial relevance 
revealed concentrations of 10.8 ± 0.6 mg/g dried extract for CAPE 
(Figure 1), 14.6 ± 0.8 mg/g DW for pinocembrin (Figure 2), and 
6.1 ± 0.4 mg/g DW for galangin (Figure  3). These compounds 
together account for 83.1% of the measured TPC, aligning well with 
values reported for temperate zone propolis. This profile 

TABLE 1  Dilution series of starting propolis tincture and ethanol solvent.

Dilution series of 200 mg/mL propolis tincture

Well A1 A2 A3 A4 A5 A6

  Dilution 10× 20× 40× 80× 160× 320×

  mg/mL 20 10 5 2.5 1.25 0.62

Well B1 B2 B3 B4 B5 B6

  Dilution 640× 1,280× 2,560× 5,120× 10,240× 20,480×

  mg/mL 0.31 0.16 0.08 0.04 0.02 0.01

Dilution series of 96% ethanol solvent

Well C1 C2 C3 C4 C5 C6

  Dilution 10× 20× 40× 80× 160× 320×

  % 9.6 4.8 2.4 1.2 0.6 0.3

Well D1 D2 D3 D4 D5 D6

  Dilution 640× 1,280× 2,560× 5,120× 10,240× 20,480×

  % 0.15 0.07 0.04 0.02 0.01 0.005

The upper two rows of the plate contained the extracted propolis dilution along with its 
solvent, while the lower two rows served as controls, containing only the solvent diluted to 
the same concentrations as those in the upper rows.
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underscores the substantial contribution of these constituents to the 
tincture’s overall bioactivity.

Calibration curves for gallic acid and catechol standards used in 
the TPC and TFC assays are shown in Figure 4.

3.2 Viability and reproduction

Parasite counts were assessed 24 and 48 h after collection, with 
three parallel treatments performed for each time point. For the feline 

FIGURE 1

Multiple reaction monitoring (MRM) chromatogram of caffeic acid phenethyl ester (CAPE) in the propolis tincture. Representative MRM chromatogram 
of caffeic acid phenethyl ester (CAPE) detected by LC–MS/MS in the ethanolic propolis tincture. The compound was identified using a specific 
transition with m/z 283 and eluted at a retention time (RT) of 11.2 min. CAPE concentration was quantified at 10.8 ± 0.6 mg/g dried extract. 
Chromatographic separation was achieved under gradient conditions using a Merck Purospher STAR RP-18 column (150 × 4.6 mm, 3 μm) at 30 °C.

FIGURE 2

Multiple reaction monitoring (MRM) chromatogram of pinocembrin in the propolis tincture. LC–MS/MS MRM detection of pinocembrin (m/z 255) in 
the analyzed propolis tincture. The compound eluted at 13.1 min and was quantified at 14.6 ± 0.8 mg/g dried extract. The chromatographic method 
and instrumental parameters were identical to those described for CAPE. The distinct peak confirms the presence and retention behavior of 
pinocembrin among the main phenolic constituents.
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strain, a marked increase in trophozoite counts was observed after 
24 h (138%), followed by a smaller increase by 48 h (8%), culminating 
in a total increase of 157%. The bovine strain exhibited a similar, but 
less dramatic rise in trophozoite counts, with an 82% increase in 24 h 
and an additional 23% increase by 48 h, resulting in a total increase of 
124% (Figure 5).

3.3 Propolis treatment efficacy

Three primary T. foetus cultures from feline origin and three from 
bovine origin were tested in parallel. For the feline strain, the MLC of 
propolis was 1.25 mg/mL after 24 and 48 h, corresponding to a 
160 × dilution of the initial propolis tincture. For the bovine strain, 

FIGURE 3

Multiple reaction monitoring (MRM) chromatogram of galangin in the propolis tincture. Chromatographic profile of galangin (m/z 269) obtained by 
LC–MS/MS in MRM mode. The analyte eluted at a retention time of 15.4 min and was present at a concentration of 6.1 ± 0.4 mg/g dried extract. This 
compound, together with CAPE and pinocembrin, accounts for 83.1% of the total phenolic content (TPC), indicating its strong contribution to the 
bioactive profile of the propolis tincture.

FIGURE 4

Calibration curves for gallic acid and catechol standards used in the determination of total phenolic content (TPC) and total flavonoid content (TFC), 
respectively. The gallic acid standard curve was constructed over the range of 0.01–0.5 mM, yielding the regression equation y = 0.0061x + 0.0278 
with R2 = 0.9987. The catechol standard curve was generated over 0.022–1.5 mM, with the regression equation y = 0.0049x + 0.0152 and R2 = 0.9979. 
Absorbance measurements were taken at 700 nm (TPC) and 510 nm (TFC), respectively.
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the MLC was 0.63 mg/mL after 24 h and decreased to 0.16 mg/mL 
after 48 h, representing 320 × and 1,280 × dilutions, respectively 
(Figure 6).

The results indicate that the feline strain was more tolerant to 
ethanol (9.6%), while the bovine strain exhibited greater sensitivity 
(4.8%). Treatment duration influenced efficacy in the feline strain, 
while concentration was the key determinant for the bovine strain. 
Statistical analysis (p-values) is detailed in Supplementary Table 1.

3.4 Nitroimidazole treatments results

Nitroimidazole derivative stock solutions (ronidazole, 
metronidazole, tinidazole, secnidazole) were prepared with dimethyl 
sulfoxide (DMSO) and distilled water. DMSO exhibited parasiticidal 
effects up to 1%, but below this threshold, parasites were released from 
inhibition. Thus, the observed effects were attributed to the 
active substances.

For the feline strain, the MLC of ronidazole was 32 μg/mL after 
24 h and 16 μg/mL after 48 h. For the bovine strain, the MLC was 
1 μg/mL after 24 h and <0.25 μg/mL after 48 h (Figure 7).

Metronidazole, tinidazole, and secnidazole were tested only on 
bovine strain. Metronidazole exhibited an MLC of 1 μg/mL at both 24 

and 48 h. Similarly, secnidazole demonstrated a consistent MLC of 
0.5 μg/mL across both time points Tinidazole’s MLC decreased from 
2 μg/mL at 24 h to 0.5 μg/mL at 48 h (Figure  8). The findings 
demonstrate that secnidazole had the highest efficacy among 
nitroimidazoles, with a consistent MLC of 0.5 μg/mL, while 
tinidazole’s efficacy improved with longer treatment duration.

4 Discussion

This study evaluated the in vitro efficacy of a naturally derived 
propolis tincture and various nitroimidazole compounds against 
T. foetus isolates of feline and bovine origin. Our findings reveal clear 
differences in susceptibility between the two host-adapted genotypes 
and highlight the potential of propolis as a natural therapeutic 
alternative — particularly in the context of AMR and One 
Health priorities.

CAPE, pinocembrin, and galangin are among the most widely 
studied phenolic constituents of propolis, known for their potent 
antimicrobial and anti-inflammatory properties. Their quantification 
in this study provides additional chemical context for interpreting 
the observed biological activities. However, propolis is a complex 
natural product containing over 300 identified compounds, 

FIGURE 5

Trophozoite count progression was observed after 24 and 48 h of incubation at 37 °C for feline (A) and bovine (B) strains, relative to the initial parasite 
count. Data are presented as mean ± standard deviation (n = 3).
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including other flavonoids, phenolic acids, terpenes, and aromatic 
esters (65, 77). Consequently, while the present targeted profiling 
captures key bioactive markers, it does not encompass the full 
chemical diversity of the tincture. Future studies should employ 
comprehensive untargeted metabolomics to expand the 
phytochemical coverage and investigate potential synergistic effects 
among constituents.

The propolis tincture achieved complete eradication of feline-
origin T. foetus at a concentration of 1,250 μg/mL. Remarkably, 
bovine-origin strains demonstrated even higher sensitivity, with 
effective concentrations dropping to 630 μg/mL after 24 h and further 
to 160 μg/mL after 48 h. These results align with previous research on 
the anti-protozoal effects of propolis, though observed variations are 
likely due to differences in propolis composition, which can 
be influenced by geographical, botanical, and climatic factors. These 
findings underscore the need for standardization of propolis tincture 
— particularly their phenolic and flavonoid profiles — to ensure 
consistent efficacy and reproducibility in therapeutic applications.

Our results demonstrating the in vitro efficacy of Hungarian 
propolis against T. foetus are consistent with findings in other 
protozoan infections. For instance, Freitas et  al. reported 
significant inhibitory effects of propolis on Giardia lamblia 
trophozoites, with complete eradication at concentrations as low 
as 500 μg/mL (88). Similarly, Pontin et al. observed substantial 

antiparasitic activity of Brazilian propolis against Leishmania 
amazonensis, suggesting a broad-spectrum potential for propolis 
in protozoan infections (89). These parallels reinforce the 
relevance of our findings and highlight propolis as a promising 
natural alternative for managing protozoan pathogens, particularly 
in the context of emerging antimicrobial resistance.

Nitroimidazoles remain the mainstay of T. foetus treatment, with 
ronidazole widely used in feline infections. In this study, ronidazole 
demonstrated an MLC of 32 μg/mL against feline isolates after 24 h, 
decreasing to 16 μg/mL after 48 h. Given that the resistance threshold 
is considered >10 μg/mL, this suggests partial resistance in the feline 
strains we tested (90). This observation is consistent with previous 
findings reporting MLCs of 1 μg/mL for susceptible strains and up to 
100 μg/mL in resistant isolates (20, 91). The suspected resistance in 
our feline isolates may reflect prior exposure to ronidazole and 
emphasize the need for diagnostic tools capable of detecting resistant 
infections to guide appropriate therapy.

In contrast, bovine-origin T. foetus strains exhibited markedly 
higher susceptibility to ronidazole, with an MLC of 1 μg/mL at 24 h 
and <0.25 μg/mL at 48 h. Alternative nitroimidazoles (metronidazole, 
tinidazole, and secnidazole) demonstrated similar or improved 
efficacy. Notably, secnidazole maintained an MLC of 0.5 μg/mL at 
both time points, highlighting its potential as an alternative treatment. 
Tinidazole also showed improved efficacy with prolonged treatment. 

FIGURE 6

Efficacy (mg/mL) of a two-fold dilution series of propolis tincture was evaluated after 24 and 48 h of treatment for feline (A) and bovine (B) strains. The 
minimum lethal concentration (MLC) was determined microscopically after 24 and 48 h of incubation at 37 °C. Data are presented as mean ± standard 
deviation (n = 3). For the feline strain (A), the MLC was determined to be 1.25 mg/mL. Further dilutions beyond this point showed increased in the 
number of parasites, indicating release from the inhibitory effects of the propolis. In the bovine strain (B), the MLC was 0.63 mg/mL after 24 h of 
treatment, with reduced parasite counts observed at concentrations as low as 0.08 mg/mL. After 48 h of treatment, the MLC decreased to 0.16 mg/
mL, with a significant antiparasitic effect persisting down to 0.04 mg/mL. Beyond this dilution, parasites were progressively released from inhibition.
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FIGURE 7

The changes in trophozoite counts were assessed after 24 and 48 h of treatment with a two-fold dilution series (μg/mL) of ronidazole for feline (A) and 
bovine (B) strains. The results indicate that ronidazole demonstrated the highest efficacy in the bovine strain, with a minimum lethal concentration 
(MLC) of 1 μg/mL, compared to 32 μg/mL in the feline strain. MLC was determined microscopically following 24 and 48 h of incubation at 37 °C. Data 
are presented as mean ± standard deviation (n = 3).

FIGURE 8

The changes in trophozoite counts after 24 h and 48 h of treatment with a two-based dilution series (μg/mL) of metronidazole (A), tinidazole (B), and 
secnidazole (C) are depicted for bovine strains. The results are presented as the mean and standard deviation (n = 3). The MLC was evaluated 
microscopically after 24 h and 48 h of incubation at 37 °C.
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This marks the first study to evaluate ronidazole’s activity against 
bovine-origin T. foetus, pointing to promising avenues for further 
investigation. However, the lack of comparative data on nitroimidazole 
efficacy against bovine isolates remains a critical gap.

Our findings on the MLC of nitroimidazoles against T. foetus align 
with existing literature on their efficacy against trichomonas 
infections. The Centers for Disease Control and Prevention (CDC) 
notes that metronidazole and tinidazole are the primary treatments 
for Trichomonas vaginalis, with cure rates ranging from 84 to 98% for 
metronidazole and 92 to 100% for tinidazole. Secnidazole, a newer 
nitroimidazole, has also demonstrated high efficacy, with some studies 
reporting cure rates comparable to or exceeding those of 
metronidazole and tinidazole (92, 93). These data support our 
observations of secnidazole’s potent activity against bovine-origin 
T. foetus strains and suggest its potential as an effective alternative 
where other nitroimidazoles are less effective or contraindicated.

The role of propolis as an alternative treatment is particularly 
compelling in light of regulatory restrictions on nitroimidazoles in 
food-producing animals. Although there are no direct comparative 
studies on propolis efficacy against feline- or bovine-origin T. foetus, 
studies in other protozoan infections support its potential. For 
instance, Brazilian propolis eradicated T. vaginalis at 500 μg/mL (83) 
while Cuban propolis achieved similar effects at much lower 
concentrations (3.2–9.1 μg/mL) (94). In contrast, Egyptian propolis 
required concentrations as high as 75,000 μg/mL against Trichomonas 
gallinae (95). Hungarian propolis has demonstrated antiparasitic 
activity in avian studies at concentrations ranging from 1,100 to 
5,000 μg/mL (44, 96, 97). Our data suggest that bovine-origin T. foetus 
is particularly sensitive to propolis, which may be promising for local 
treatments in breeding bulls and for reducing infection reservoirs 
in cattle.

Nevertheless, variability in propolis composition remains a major 
challenge. Standardization of key active compounds — such as 
flavonoids and phenolic acids — and detailed pharmacokinetic studies 
are essential to enable reproducible and clinically relevant outcomes. 
In this study, we observed distinct differences in the sensitivity of 
feline and bovine T. foetus isolates to both propolis and 
nitroimidazoles. The partial resistance of feline strains to ronidazole 
highlights the importance of continued surveillance and alternative 
therapies to combat AMR. Future studies should prioritize the 
development of reliable diagnostic assays to differentiate treatment 
failure due to resistance, reinfection, or suboptimal dosing regimens.

The variability in the effective concentrations of propolis observed 
in our study aligns with the significant differences reported in other 
Trichomonas species. For example, a study from Hungary found that 
ethanolic tincture of propolis from the Észak-Alföld region had a 
minimum eradication concentration (MEC) ranging from 2.5 to 5 mg/
mL against T. gallinae (96). In contrast, an Egyptian study reported 
that an aqueous propolis tincture required concentrations as high as 
50 mg/mL to fully inhibit the growth of T. gallinae within 48 h (95). 
These findings underscore the critical influence of botanical and 
geographical factors on the composition and efficacy of propolis, 
particularly in terms of its flavonoid and phenolic content, and 
highlight the need for standardization to ensure reproducible and 
reliable antiparasitic effects.

In summary, our findings contribute to the growing body of 
evidence supporting natural, sustainable alternatives to conventional 

antimicrobials in veterinary medicine. By highlighting the potential 
of propolis and identifying strain-dependent differences in 
susceptibility, this work aligns with the One Health objective of 
mitigating AMR while safeguarding animal health and productivity.

5 Conclusion

This study provides compelling in vitro evidence that Hungarian 
propolis exhibits significant antiparasitic activity against both feline- 
and bovine-derived T. foetus strains, with particularly marked efficacy 
against bovine isolates. These findings are noteworthy given the 
regulatory restrictions on nitroimidazole use in food-producing 
animals and the emerging partial resistance of feline strains to 
ronidazole, underscoring the pressing need for novel, sustainable 
alternatives in veterinary practice.

Importantly, our results highlight the potential of propolis as a 
natural antimicrobial agent that aligns with the One Health concept 
of integrated approaches to combat AMR while preserving animal 
health and productivity. However, the inherent variability in propolis 
composition — driven by geographical, botanical, and extraction 
factors — necessitates standardization of its active constituents to 
ensure reproducible efficacy and safety. Furthermore, comprehensive 
in  vivo studies, including pharmacokinetic profiling and safety 
assessments, are essential before propolis can be  integrated into 
therapeutic regimens.

Future research should also prioritize the development of reliable 
diagnostic tools to detect resistant T. foetus strains, enabling targeted 
interventions and supporting stewardship efforts to mitigate AMR 
spread. Collectively, this work contributes to the expanding evidence 
base supporting the use of natural compounds as adjuncts or 
alternatives to conventional antimicrobials, offering promising 
avenues for sustainable disease management in veterinary medicine.
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