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Introduction: Antimicrobial resistance (AMR) is a critical One Health challenge
affecting both human and animal health. Tritrichomonas foetus, a protozoan
parasite causing reproductive and gastrointestinal disorders in cattle and cats,
presents a growing threat due to limited treatment options. While nitroimidazoles
such as ronidazole remain the standard of care, their use is restricted in food-
producing animals and associated with emerging resistance in feline strains.
Propolis, a complex natural resin produced by bees, has demonstrated
antimicrobial and antiparasitic activity in other protozoan infections.

Methods: This in vitro study assessed the minimum lethal concentrations (MLC)
of ethanolic propolis tincture from the Eszak-Alféld region of Hungary against
feline- and bovine-derived T. foetus strains, compared to four nitroimidazoles.
Results: Propolis showed promising activity, with an MLC of 1.25 mg/ mL for feline
isolates and 0.16 mg/mL for bovine isolates after 48 h. Ronidazole demonstrated
reduced efficacy against feline isolates (MLC 32 pg/mLl), suggesting partial
resistance, whereas bovine isolates remained susceptible (MLC 1 ug/mL).
Discussion: Our findings highlight propolis as a potential alternative treatment
for T. foetus, particularly in cattle where nitroimidazole use is prohibited.
Standardizing propolis tincture and conducting in vivo studies will be essential
to translate these results into clinical applications. This study contributes to
efforts to combat AMR and develop sustainable, natural therapeutic alternatives
in veterinary medicine, aligning with One Health principles.

KEYWORDS

Tritrichomonas foetus, propolis, antimicrobial resistance, One Health, feline
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1 Introduction

Livestock production is the fastest-growing agricultural sector worldwide (1). However,
infectious diseases remain a major challenge, causing direct losses through increased mortality
and reduced productivity, pose a significant challenge (2). Furthermore, zoonotic and cross-
species diseases pose risks not only to animal populations but also to human health and
ecosystem integrity, as highlighted by the One Health framework (3).

Parasitic infections are particularly problematic due to their persistence and limited
treatment options. Among protozoans, Tritrichomonas foetus, a monoflagellated parasite (4)
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Flavonoids

GRAPHICAL ABSTRACT

Graphical abstract illustrating the antiparasitic effects of flavonoid-rich ethanolic propolis tincture against feline Tritrichomonas foetus. The image
summarizes the preparation of the hydroalcoholic propolis tincture, the presence of key flavonoids, microscopic observation of motile trophozoites,
and the reduction in parasite counts following treatment at various concentrations over 24 and 48 h.
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is a significant concern, affecting both feline and bovine populations
(5-7). Genetic distinctions between the feline and bovine genotypes
of T. foetus have been identified, including single nucleotide
polymorphisms (SNPs) in the internal transcribed spacer-2 (ITS-2)
region and polymorphisms in elongation factor-1-alpha and cysteine
protease 8 sequences (4-6, 8).

In domestic cats, T. foetus infections are most common in
breeding facilities (9, 10), shelters (11) and exhibition settings (12, 13).
Infected cats typically present with gastrointestinal signs such as
diarrhea, anorexia, weight loss, abdominal pain, and chronic colitis
(14, 15). Metronidazole and tinidazole show limited efficacy (16, 17)
and are often unable to fully eradicate the parasite completely (18).
Thus, veterinarians often turn to ronidazole (19). Ronidazole is
approximately 10 times more effective than metronidazole (20), but is
not authorized for cats (21). Despite high doses and prolonged use,
ronidazole only achieves a 65% improvement rate against feline
T. foetus and can lead to neurotoxic clinical signs in treated animals
(14,15, 20, 22, 23). Consequently, ronidazole is not authorized for use
in cats in the European Union (24, 25).

In cattle, T. foetus is a sexually transmitted parasite, prevalent in
regions practicing natural insemination (26). Infected bulls act as
asymptomatic reservoirs (27), while infected cows may suffer from

Abbreviations: CAE, Catechol equivalent; CPLM, Trichomonas cysteine peptone
liver infusion medium; DMSQO, Dimethyl sulfoxide; DW, Dry weight; GAE, Gallic
acid equivalent; MLC, Minimum lethal concentration; TFC, Total flavonoids content;

TPC, Total phenolic content; T. foetus, Tritrichomonas foetus.
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abortion (28), and other

reproductive disorders, that lead to significant economic losses (26).

vaginitis, spontaneous pyometra,

Although zoonotic transmission is rare, a documented case in an
immunosuppressed patient underscores the potential risk (29). Due
to its efficacy, safety, and excellent pharmacokinetic properties,
secnidazole has been successfully used in the treatment of human
Trichomonas vaginalis (30, 31), and giardiasis in dogs (32) and cats
(33). The group of 5-nitroimidazoles remains the primary treatment
option for trichomoniasis in human and veterinary medicine (34-39).
However, their use in food-producing animals is prohibited (40),
leaving cattle infections largely without effective treatment.

The growing antimicrobial resistance (AMR) of protozoans and
the limitations of current treatments underscore the urgent need for
novel therapeutic strategies (41). The desire for safer, more effective
alternatives has driven interest in plant-based extractions, oils (42),
antimicrobial peptides (43) and propolis (44).

Propolis is a resinous, bee-derived natural product that has garnered
significant attention for its antimicrobial and antiparasitic properties. It
has shown promise as a treatment for infection due to the bioactive
compounds it contains. Its composition — approximately 50% resin, 30%
wax, 10% essential oils, 5% pollen, and 5% organic components (45-49)
— isinfluenced by geographical (50), botanical (45, 46, 51), and climatic
factors (52), as well as by seasonal variation (45, 46), and the genetics of
the bees (46, 47). Extraction methods also play a critical role in
determining propolis efficacy (53). The antimicrobial efficacy of propolis
is strongly correlated with its flavonoid and phenolic content, as these
compounds are known to disrupt microbial metabolic pathways, inhibit
enzyme activity, and induce oxidative stress in pathogens (54-56). Its
anti-protozoal effects are thought to involve disruption of phospholipid
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metabolism, leading to cell lysis (57). Specific components such as
rosmarinic acid (58), apigenin (59, 60), resveratrol (61), kaempferol (62),
quercetin (63), and caffeic acid (64), can contribute to its efficacy through
mechanisms such as increased reactive oxygen species (ROS) production,
cytoplasmic vacuolization (65, 66), and inhibition of surface protein
complexes (67, 68).

Given these promising properties, this study aimed to evaluate the
in vitro efficacy of ethanolic propolis extracts from the Eszak-Alfold
region of Hungary against T. foetus strains isolated from cats and
cattle, in comparison to established nitroimidazole treatments
(metronidazole, ronidazole, tinidazole, and secnidazole). We sought
to identify propolis as a potential natural alternative for managing
T. foetus infections, particularly in light of increasing AMR and the
One Health imperative for sustainable and effective therapies.

2 Materials and methods
2.1 Propolis extract preparation

The raw propolis tincture used in this study was sourced from the
Northern Great Plain (Eszak-Alféld) region of Hungary. The tincture
was prepared by combining 1,000 g of propolis with 3,000 mL of 96%
ethanol and 1,000 mL of glycerol. A conventional extraction method
was employed, wherein the powdered crude propolis was macerated
for 3 weeks at room temperature in a sealed, light-protected vessel.
The undissolved components were then removed using filter paper
(69). The addition of glycerol during extraction enhanced the yield of
active ingredients by facilitating a more polar extraction process, as
described in the literature (70). A final propolis concentration of
200 mg of raw propolis per mL of solvent, corresponding to the ratio
used during tincture preparation (1,000 g propolis in 4,000 mL solvent
mixture). Thus, the extract represents a hydroalcoholic propolis
tincture containing glycerol as a co-solvent, in line with established
preparation methods reported in the literature.

2.2 Parasite isolation

The feline strain of T. foetus was isolated from infected cats within
a breeding facility in Budapest, Hungary. Samples were collected by a
veterinarian for diagnostic purposes (T1-10; samples collected in
November 2022) using a transport broth medium (InPouch TF-Feline,
Biomed Diagnostics, White City, OR, USA). Despite previous
treatment with ronidazole, chronic parasitic carriage persisted in the
population. Positive samples were confirmed using polymerase chain
reaction (PCR) with the QIAmp DNA Stool Mini Kit (Qiagen GmbH,
Hilden, Germany). Primary feline cultures were cryopreserved in 10%
DMSO in liquid nitrogen at —196 °C for further testing (71).

The bovine strain used was T. foetus (Riedmuller), Wenrich and
Emerson, ATCC 30232 (LGC Ltd., Teddington, Middlesex, UK), a
reference strain originally isolated from cattle.

2.3 Parasite culture

Maintenance and propagation of T. foetus were performed using
Trichomonas cysteine peptone liver infusion medium (CPLM; Biolab
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Zrt., Budapest, Hungary). The medium was autoclaved at 121 °C for
15 min, followed by the addition of 70 mL of sterile inactivated horse
serum (Biolab Zrt., Budapest, Hungary). A vial of Trichomonas
selective supplement (Biolab Zrt., Budapest, Hungary) was then
added, containing 500 mg/vial streptomycin and 80 mg/vial penicillin
added to 425 mL of CPLM broth, to inhibit bacterial overgrowth that
might outcompete the parasite. Fresh medium was prepared weekly
and stored at 4 °C, while cultures were maintained in 15 mL centrifuge
tubes at 37 °C under aerobic conditions. The cultures were passaged
every 2 days to ensure their growth remained in the log phase.

Parasite morphology was observed using a Leica Microsystems
Dmil microscope (BioMarker Kft.,, Go6dolls, Hungary) at
400 x magnification. Quantification of motile trophozoite forms—
characterized by their bulb-like shape, undulating membrane, and
jerky flagellar movement (Supplementary Video 1)—was conducted
using a Biirker chamber (DIN12847, VWR International, LLC.,,
Debrecen, Hungary) and a standard cell-counting formula.

The initial trophozoite count was determined 24h post-
incubation of the received samples. Mean cell counts were calculated
across 25 large squares in the chamber. A twofold dilution was
achieved by adding 20 pl of sterile isotonic saline to 20 pl of the
suspension. The average cell count was then multiplied by the dilution
factor and normalized using a factor of 2.5 x 10°, yielding the final
count in pcs/mL.

2.4 Determination of the total phenolic
content and total flavonoids content

The total phenolic content (TPC) of the propolis tincture was
assessed using the Folin—-Ciocalteu method (72) with gallic acid as
the standard. For the analysis, 200 pg/mL of the propolis tincture
was mixed with 500 pl of Folin-Ciocalteu reagent (10% v/v) and
500 pl of sodium carbonate (2% w/v). The reaction mixture was
incubated at room temperature, without light, for 1 h. Absorbance
was measured at 700 nm using a Hach DR6000 spectrophotometer
(Hach Lange Kft., Budapest, Hungary), with a blank (reaction
mixture without propolis tincture) serving as the control. A
calibration curve was constructed with standard solutions of gallic
acid (0.01-0.5 mM; Merck Life Science Ltd., Budapest, Hungary).
The resulting regression equation was y = 0.0061x + 0.0278, with
R?=0.9987. The TPC results were expressed as gallic acid equivalent
(GAE) in milligrams (mg) per gram (g) of the dry weight (DW) of
the propolis tincture.

The total flavonoid content (TFC) was determined using the
aluminum chloride colorimetric method as described by Dias et al.
(73). In this analysis, 125 pl of 1 mg/mL propolis tincture was mixed
with 625 pl of distilled water and 37 pl of 5% sodium nitrite solution.
After 5 min, 75 pl of 10% aluminum chloride solution was added,
followed by 250 pl of 1 M sodium hydroxide and 137 pl of distilled
water. The mixture was vortexed thoroughly, and the intensity of the
resulting pink coloration was measured at 510 nm using a Hach
DR6000 spectrophotometer, with a blank as the control. A calibration
curve was constructed with standard solutions of catechol (0.022-
1.5 mM; Merck Life Science Ltd., Budapest, Hungary). The resulting
regression equation was y = 0.0049x + 0.0152, with R* = 0.9979. The
TFC results were expressed as catechol equivalent (CAE) in mg per g
of DW of propolis.
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Both TPC and TFC determinations were conducted in triplicate
to ensure accuracy and reliability.

2.5 LC-MS/MS profiling of selected
bioactive compounds

To confirm the accuracy of the colorimetric determinations of
total phenolic and flavonoid content, the propolis tincture was
additionally analyzed by LC-MS/MS using a SCIEX Exion LC 2.0
UHPLC system (AB Sciex LLC, Framingham, MA, USA) coupled to
a SCIEX QTRAP 4500 triple quadrupole mass spectrometer (AB Sciex
Pte. Ltd., Singapore) under identical chromatographic conditions. In
parallel with the colorimetric assays, the concentrations of three major
phenolic constituents of propolis, caffeic acid phenethyl ester (CAPE),
pinocembrin, and galangin were quantified based on literature reports
of their antimicrobial relevance (74-77). Separation was achieved on
a Merck Purospher STAR RP-18 column (150 x 4.6 mm, 3 pm particle
size; Merck KGaA, Darmstadt, Germany) maintained at 30 °C. The
mobile phases consisted of solvent A (water with 0.1% formic acid)
and solvent B (acetonitrile with 0.1% formic acid), with a gradient
elution from 20 to 80% B over 20 min. The injection volume was 10 pl
and the flow rate was 0.8 mL/min. Multiple reaction monitoring
(MRM) mode was applied, with compound-specific precursor—
product ion transitions optimized for each analyte.

2.6 The propolis and nitroimidazole
treatment

Parasite growth and viability were assessed following previously
described methodologies (78, 79). During the treatment phase, a
hydroalcoholic propolis tincture (200 mg/mL in 96% ethanol with
glycerol) was employed alongside a control sample. A two-fold
dilution series was generated to determine the lowest concentration
where the parasites die out. Unlike standard turbidity assessments,
this study focused on the change in trophozoite counts across
dilutions. A 24-well cell culture plate (VWR International, LLC.,,
Debrecen, Hungary) was utilized. The potential effects of the solvent
(ethanol) were also evaluated independently to distinguish the
impact of the active compounds in the propolis tincture from that of
the solvent.

Each well was filled with 3 mL of CPLM broth, except for the first
column. The propolis tincture stock solution (200 mg/mL, well A1)
and 96% ethanol-only control (well C1) underwent an initial tenfold
dilution (0.3 mL + 2.7 mL), followed by sequential two-fold dilutions
across the wells (Table 1). The dilution series for the propolis tincture
and ethanol solvent ensured that any observed effects were attributable
to propolis’ active compounds rather than the solvent.

The initial parasite suspension was prepared at approximately
2.4 x 10° cells/mL for the feline strain and 5 x 10 cells/mL for the
bovine strain, based on proliferation rates consistent with the literature
(80-84). Each well was inoculated with 50 pl of the suspension.
stock
metronidazole, tinidazole, and secnidazole) were prepared (Merck
KGaA, Darmstadt, Germany) at 1024 pg/mL in DMSO and distilled
water (85). A two-fold dilution series was created in CPLM broth
across the first two rows of a 24-well plate, with the solvent undergoing

Nitroimidazole derivatives solutions  (ronidazole,
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TABLE 1 Dilution series of starting propolis tincture and ethanol solvent.

Dilution series of 200 mg/mL propolis tincture

Well Al A2 A3 A4 A5 A6
Dilution 10x 20x 40x 80x 160x 320x
mg/mL 20 10 5 2.5 1.25 0.62

Well Bl B2 B3 B4 B5 B6
Dilution 640x 1,280x 2,560x 5,120x 10,240x 20,480x
mg/mL 0.31 0.16 0.08 0.04 0.02 0.01

Dilution series of 96% ethanol solvent

Well C1 C2 C3 C4 C5 Cé
Dilution 10x 20x 40x 80x 160x 320x
% 9.6 4.8 2.4 1.2 0.6 0.3

Well D1 D2 D3 D4 D5 D6
Dilution | 640x 1,280x 2,560% 5,120x 10,240x 20,480x
% 0.15 0.07 0.04 0.02 0.01 0.005

The upper two rows of the plate contained the extracted propolis dilution along with its
solvent, while the lower two rows served as controls, containing only the solvent diluted to
the same concentrations as those in the upper rows.

an equivalent dilution series. Positive (containing parasites without
active compounds) and negative (lacking parasites and active
compounds) control plates were included alongside treatment groups.
Cultures were incubated at 37 °C under aerobic conditions.

Parasite counts were performed at 24 h and 48 h using a Biirker
chamber. Minimum lethal concentrations (MLC) was defined as the
lowest concentration at which no motile organisms were observed (79).

Statistical analysis of trophozoite count variations was conducted
using the Kruskal-Wallis test in R version 4.3.0 (86, 87). Treatment
effects were analyzed across species, strains, treatment durations,
and concentrations.

3 Results

3.1 Total phenolic and flavonoid content
determination

In Hungary, the primary botanical sources of propolis are poplar
(Populus spp.) and birch (Betula spp.) buds (47). These sources
significantly influence the concentration of phenolic and flavonoid
compounds. The total phenolic content (TPC) and total flavonoid
content (TFC) were measured dried extract obtained by evaporating
the hydroalcoholic propolis tincture. The TPC was determined to
be 37.9 + 0.08 mg gallic acid equivalent (GAE)/g of dried extract,
while the TFC was 19.2 + 0.05 mg catechol equivalent (CAE)/g of
dried extract.

Targeted LC-MS/MS quantification of three phenolic
constituents with well-documented antimicrobial relevance
revealed concentrations of 10.8 + 0.6 mg/g dried extract for CAPE
(Figure 1), 14.6 + 0.8 mg/g DW for pinocembrin (Figure 2), and
6.1 + 0.4 mg/g DW for galangin (Figure 3). These compounds
together account for 83.1% of the measured TPC, aligning well with
values reported for temperate zone propolis. This profile
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FIGURE 1
Multiple reaction monitoring (MRM) chromatogram of caffeic acid phenethyl ester (CAPE) in the propolis tincture. Representative MRM chromatogram
of caffeic acid phenethyl ester (CAPE) detected by LC-MS/MS in the ethanolic propolis tincture. The compound was identified using a specific
transition with m/z 283 and eluted at a retention time (RT) of 11.2 min. CAPE concentration was quantified at 10.8 + 0.6 mg/g dried extract.
Chromatographic separation was achieved under gradient conditions using a Merck Purospher STAR RP-18 column (150 x 4.6 mm, 3 um) at 30 °C.

MRM Chromatogram of Pinocembrin
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FIGURE 2

Multiple reaction monitoring (MRM) chromatogram of pinocembrin in the propolis tincture. LC-MS/MS MRM detection of pinocembrin (m/z 255) in
the analyzed propolis tincture. The compound eluted at 13.1 min and was quantified at 14.6 + 0.8 mg/g dried extract. The chromatographic method
and instrumental parameters were identical to those described for CAPE. The distinct peak confirms the presence and retention behavior of
pinocembrin among the main phenolic constituents.

underscores the substantial contribution of these constituents to the 3.2 Viability and reproduction
tincture’s overall bioactivity.

Calibration curves for gallic acid and catechol standards used in Parasite counts were assessed 24 and 48 h after collection, with
the TPC and TFC assays are shown in Figure 4. three parallel treatments performed for each time point. For the feline

Frontiers in Veterinary Science 05 frontiersin.org


https://doi.org/10.3389/fvets.2025.1635358
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Kerek et al. 10.3389/fvets.2025.1635358
MRM Chromatogram of Galangin
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Transition: 269-151
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FIGURE 3

bioactive profile of the propolis tincture.

Multiple reaction monitoring (MRM) chromatogram of galangin in the propolis tincture. Chromatographic profile of galangin (m/z 269) obtained by
LC-MS/MS in MRM mode. The analyte eluted at a retention time of 154 min and was present at a concentration of 6.1 + 0.4 mg/g dried extract. This
compound, together with CAPE and pinocembrin, accounts for 83.1% of the total phenolic content (TPC), indicating its strong contribution to the
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with R? = 0.9987. The catechol standard curve was generated over 0.022-1.5

Concentration (mM)

Calibration curves for gallic acid and catechol standards used in the determination of total phenolic content (TPC) and total flavonoid content (TFC),
respectively. The gallic acid standard curve was constructed over the range of 0.01-0.5 mM, yielding the regression equation y = 0.0061x + 0.0278

Absorbance measurements were taken at 700 nm (TPC) and 510 nm (TFC), respectively.

0.8 1.0

mM, with the regression equation y = 0.0049x + 0.0152 and R? = 0.9979.

strain, a marked increase in trophozoite counts was observed after
24 h (138%), followed by a smaller increase by 48 h (8%), culminating
in a total increase of 157%. The bovine strain exhibited a similar, but
less dramatic rise in trophozoite counts, with an 82% increase in 24 h
and an additional 23% increase by 48 h, resulting in a total increase of
124% (Figure 5).

Frontiers in Veterinary Science 06

3.3 Propolis treatment efficacy

Three primary T. foetus cultures from feline origin and three from
bovine origin were tested in parallel. For the feline strain, the MLC of
propolis was 1.25 mg/mL after 24 and 48 h, corresponding to a
160 x dilution of the initial propolis tincture. For the bovine strain,
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count. Data are presented as mean + standard deviation (n = 3).

Trophozoite count progression was observed after 24 and 48 h of incubation at 37 °C for feline (A) and bovine (B) strains, relative to the initial parasite
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the MLC was 0.63 mg/mL after 24 h and decreased to 0.16 mg/mL
after 48 h, representing 320 x and 1,280 x dilutions, respectively
(Figure 6).

The results indicate that the feline strain was more tolerant to
ethanol (9.6%), while the bovine strain exhibited greater sensitivity
(4.8%). Treatment duration influenced efficacy in the feline strain,
while concentration was the key determinant for the bovine strain.
Statistical analysis (p-values) is detailed in Supplementary Table 1.

3.4 Nitroimidazole treatments results

(ronidazole,
metronidazole, tinidazole, secnidazole) were prepared with dimethyl
sulfoxide (DMSO) and distilled water. DMSO exhibited parasiticidal
effects up to 1%, but below this threshold, parasites were released from
inhibition. Thus, the observed effects were attributed to the
active substances.

For the feline strain, the MLC of ronidazole was 32 pg/mL after
24 h and 16 pg/mL after 48 h. For the bovine strain, the MLC was
1 ug/mL after 24 h and <0.25 pg/mL after 48 h (Figure 7).

Metronidazole, tinidazole, and secnidazole were tested only on
bovine strain. Metronidazole exhibited an MLC of 1 pg/mL at both 24

Nitroimidazole derivative stock solutions
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and 48 h. Similarly, secnidazole demonstrated a consistent MLC of
0.5 pg/mL across both time points Tinidazole’s MLC decreased from
2pg/mL at 24h to 0.5pg/mL at 48h (Figure 8). The findings
demonstrate that secnidazole had the highest efficacy among
nitroimidazoles, with a consistent MLC of 0.5 pg/mL, while
tinidazole’s efficacy improved with longer treatment duration.

4 Discussion

This study evaluated the in vitro efficacy of a naturally derived
propolis tincture and various nitroimidazole compounds against
T. foetus isolates of feline and bovine origin. Our findings reveal clear
differences in susceptibility between the two host-adapted genotypes
and highlight the potential of propolis as a natural therapeutic
alternative — particularly in the context of AMR and One
Health priorities.

CAPE, pinocembrin, and galangin are among the most widely
studied phenolic constituents of propolis, known for their potent
antimicrobial and anti-inflammatory properties. Their quantification
in this study provides additional chemical context for interpreting
the observed biological activities. However, propolis is a complex
natural product containing over 300 identified compounds,
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including other flavonoids, phenolic acids, terpenes, and aromatic
esters (65, 77). Consequently, while the present targeted profiling
captures key bioactive markers, it does not encompass the full
chemical diversity of the tincture. Future studies should employ
comprehensive expand the
phytochemical coverage and investigate potential synergistic effects
among constituents.

untargeted metabolomics to

The propolis tincture achieved complete eradication of feline-
origin T. foetus at a concentration of 1,250 pg/mL. Remarkably,
bovine-origin strains demonstrated even higher sensitivity, with
effective concentrations dropping to 630 pg/mL after 24 h and further
to 160 pg/mL after 48 h. These results align with previous research on
the anti-protozoal effects of propolis, though observed variations are
likely due to differences in propolis composition, which can
be influenced by geographical, botanical, and climatic factors. These
findings underscore the need for standardization of propolis tincture
— particularly their phenolic and flavonoid profiles — to ensure
consistent efficacy and reproducibility in therapeutic applications.

Our results demonstrating the in vitro efficacy of Hungarian
propolis against T. foetus are consistent with findings in other
protozoan infections. For instance, Freitas et al. reported
significant inhibitory effects of propolis on Giardia lamblia
trophozoites, with complete eradication at concentrations as low
as 500 pg/mL (88). Similarly, Pontin et al. observed substantial

Frontiers in Veterinary Science

antiparasitic activity of Brazilian propolis against Leishmania
amazonensis, suggesting a broad-spectrum potential for propolis
in protozoan infections (89). These parallels reinforce the
relevance of our findings and highlight propolis as a promising
natural alternative for managing protozoan pathogens, particularly
in the context of emerging antimicrobial resistance.

Nitroimidazoles remain the mainstay of T. foetus treatment, with
ronidazole widely used in feline infections. In this study, ronidazole
demonstrated an MLC of 32 pg/mL against feline isolates after 24 h,
decreasing to 16 pg/mL after 48 h. Given that the resistance threshold
is considered >10 pg/mL, this suggests partial resistance in the feline
strains we tested (90). This observation is consistent with previous
findings reporting MLCs of 1 pg/mL for susceptible strains and up to
100 pg/mL in resistant isolates (20, 91). The suspected resistance in
our feline isolates may reflect prior exposure to ronidazole and
emphasize the need for diagnostic tools capable of detecting resistant
infections to guide appropriate therapy.

In contrast, bovine-origin T. foetus strains exhibited markedly
higher susceptibility to ronidazole, with an MLC of 1 pg/mL at 24 h
and <0.25 pg/mL at 48 h. Alternative nitroimidazoles (metronidazole,
tinidazole, and secnidazole) demonstrated similar or improved
efficacy. Notably, secnidazole maintained an MLC of 0.5 pg/mL at
both time points, highlighting its potential as an alternative treatment.
Tinidazole also showed improved efficacy with prolonged treatment.
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This marks the first study to evaluate ronidazole’s activity against
bovine-origin T. foetus, pointing to promising avenues for further
investigation. However, the lack of comparative data on nitroimidazole
efficacy against bovine isolates remains a critical gap.

Our findings on the MLC of nitroimidazoles against T. foetus align
with existing literature on their efficacy against trichomonas
infections. The Centers for Disease Control and Prevention (CDC)
notes that metronidazole and tinidazole are the primary treatments
for Trichomonas vaginalis, with cure rates ranging from 84 to 98% for
metronidazole and 92 to 100% for tinidazole. Secnidazole, a newer
nitroimidazole, has also demonstrated high efficacy, with some studies
reporting cure rates comparable to or exceeding those of
metronidazole and tinidazole (92, 93). These data support our
observations of secnidazole’s potent activity against bovine-origin
T. foetus strains and suggest its potential as an effective alternative
where other nitroimidazoles are less effective or contraindicated.

The role of propolis as an alternative treatment is particularly
compelling in light of regulatory restrictions on nitroimidazoles in
food-producing animals. Although there are no direct comparative
studies on propolis efficacy against feline- or bovine-origin T. foetus,
studies in other protozoan infections support its potential. For
instance, Brazilian propolis eradicated T. vaginalis at 500 pg/mL (83)
while Cuban propolis achieved similar effects at much lower
concentrations (3.2-9.1 pg/mL) (94). In contrast, Egyptian propolis
required concentrations as high as 75,000 pg/mL against Trichomonas
gallinae (95). Hungarian propolis has demonstrated antiparasitic
activity in avian studies at concentrations ranging from 1,100 to
5,000 pg/mL (44, 96, 97). Our data suggest that bovine-origin T. foetus
is particularly sensitive to propolis, which may be promising for local
treatments in breeding bulls and for reducing infection reservoirs
in cattle.

Nevertheless, variability in propolis composition remains a major
challenge. Standardization of key active compounds — such as
flavonoids and phenolic acids — and detailed pharmacokinetic studies
are essential to enable reproducible and clinically relevant outcomes.
In this study, we observed distinct differences in the sensitivity of
feline and bovine T. foetus isolates to both propolis and
nitroimidazoles. The partial resistance of feline strains to ronidazole
highlights the importance of continued surveillance and alternative
therapies to combat AMR. Future studies should prioritize the
development of reliable diagnostic assays to differentiate treatment
failure due to resistance, reinfection, or suboptimal dosing regimens.

The variability in the effective concentrations of propolis observed
in our study aligns with the significant differences reported in other
Trichomonas species. For example, a study from Hungary found that
ethanolic tincture of propolis from the Eszak-Alféld region had a
minimum eradication concentration (MEC) ranging from 2.5 to 5 mg/
mL against T. gallinae (96). In contrast, an Egyptian study reported
that an aqueous propolis tincture required concentrations as high as
50 mg/mL to fully inhibit the growth of T. gallinae within 48 h (95).
These findings underscore the critical influence of botanical and
geographical factors on the composition and efficacy of propolis,
particularly in terms of its flavonoid and phenolic content, and
highlight the need for standardization to ensure reproducible and
reliable antiparasitic effects.

In summary, our findings contribute to the growing body of
evidence supporting natural, sustainable alternatives to conventional
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antimicrobials in veterinary medicine. By highlighting the potential
of propolis and identifying strain-dependent differences in
susceptibility, this work aligns with the One Health objective of
mitigating AMR while safeguarding animal health and productivity.

5 Conclusion

This study provides compelling in vitro evidence that Hungarian
propolis exhibits significant antiparasitic activity against both feline-
and bovine-derived T. foetus strains, with particularly marked efficacy
against bovine isolates. These findings are noteworthy given the
regulatory restrictions on nitroimidazole use in food-producing
animals and the emerging partial resistance of feline strains to
ronidazole, underscoring the pressing need for novel, sustainable
alternatives in veterinary practice.

Importantly, our results highlight the potential of propolis as a
natural antimicrobial agent that aligns with the One Health concept
of integrated approaches to combat AMR while preserving animal
health and productivity. However, the inherent variability in propolis
composition — driven by geographical, botanical, and extraction
factors — necessitates standardization of its active constituents to
ensure reproducible efficacy and safety. Furthermore, comprehensive
in vivo studies, including pharmacokinetic profiling and safety
assessments, are essential before propolis can be integrated into
therapeutic regimens.

Future research should also prioritize the development of reliable
diagnostic tools to detect resistant T. foetus strains, enabling targeted
interventions and supporting stewardship efforts to mitigate AMR
spread. Collectively, this work contributes to the expanding evidence
base supporting the use of natural compounds as adjuncts or
alternatives to conventional antimicrobials, offering promising
avenues for sustainable disease management in veterinary medicine.
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