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Accuracy of genome-enabled
polygenic risk score prediction of
cruciate ligament rupture risk in
the Labrador Retriever

Benjamin Miranda, Mehdi Momen*, Susannah J. Sample and
Peter Muir*

Comparative Orthopaedic & Genetics Research Laboratory, Department of Surgical Science, School of
Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States

Introduction: Canine cruciate ligament rupture (CR) is a common, complex,
polygenic, orthopaedic disease in dogs that results in serious financial burden
and patient morbidity even in the face of surgical correction. The goal of
this study was to evaluate the clinical utility of CR polygenic risk score
(PRS) prediction models using genome-wide SNP data from a large reference
population of Labrador Retriever dogs.
Methods: Using 10-fold cross-validation and an independent validation
population, we assessed Bayesian and machine learning models with and
without covariates using both genome-wide SNPs as well as genic SNPs. Models
were tuned by optimizing numbers of CR risk SNPs selected by genome-wide
association and adjusting posterior probability thresholds to maximize prediction
accuracy.
Results: Models that included clinical covariates (sex, neuter status, age, weight,
withers height, as well as the first 10 principal components from the genetic
relationship matrix) universally yielded higher accuracy up to 88.5% compared
to 77% without covariates. Prediction accuracy for some models was reduced
when only genic SNPs were used suggesting SNPs in non-coding regions could
influence the CR disease risk.
Discussion: Our results confirm that PRS models provide sufficient predictive
accuracy for clinical application in veterinary medicine and offer a viable, early-
life screening tool for personalized care and selective breeding to reduce
CR incidence in high-risk breeds. Our results further confirm that CR is
a complex polygenic disease in which genome-wide risk SNPs influence
disease pathogenesis.

KEYWORDS

cruciate ligament rupture, dog, genome-wide association study, genomic prediction,
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Introduction

Canine cruciate ligament rupture (CR) is one of the most common orthopaedic
diseases encountered in veterinary medicine (1). The disease often results in serious long-
term sequelae such as reduced mobility from osteoarthritis even with surgical stabilization
of the stifle since osteoarthritis is typically established at diagnosis (2). With a high rate of
contralateral rupture, CR results in a high patient morbidity and a high economic burden
to owners (3, 4). CR is a complex polygenic disease in which both environmental and
genetic risk contribute to disease progression (5). Some of these factors include breed
predisposition (6), ligament matrix degeneration (7), obesity (8), conformation (8), and
joint immune responses (7). In addition, ligament rupture is usually a consequence of
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complex pathogenesis where polygenic effects on various
physiological pathways affect cruciate ligament homeostasis in
different ways that promote fatigue injury to collagen fibers with
progressive fiber rupture in the presence of synovitis as the cause
of the majority of non-contact CR rather than a single cycle
mechanical overload of the cranial cruciate ligament (5). The
concept that CR is a heritable disease rather than an injury aligns
with a growing body of evidence in the human literature regarding
non-contact ACL rupture (5, 9, 10).

The prevalence of CR is breed dependent with heritability
estimates ranging from 0.27–0.85 in dogs (11–14). Breeds with
high prevalence, such as the Labrador Retriever, Rottweiler, and
Newfoundland, have a concentration of risk loci because of breed
selection (15, 16). Genomic studies in dogs have shown CR is
highly polygenic in the Labrador Retriever (5, 11). Genome-wide
association studies have identified few large effect and numerous
small effect genetic variants suggesting CR is primarily a polygenic
disease (5, 17). Current heritability estimates in the Labrador
Retriever (0.52–0.63) suggest CR is a disease with moderate to high
heritability (5). Studies of the genetic architecture of CR in the
Labrador Retriever have also shown that risk of CR is influenced by
coat color (18). Many risk genes are also shared with human ACL
rupture (5).

For complex heritable diseases, polygenic risk score (PRS)
prediction enables quantification of an individual’s risk by
assuming all single nucleotide polymorphisms (SNPs) are disease-
associated risk variants even if their effect is very small (11, 19).
These variants in combination influence disease risk and can be
analyzed by risk models to estimate the probability of an individual
developing the disease over their lifetime (20). So, a PRS value
represents the heritable risk of developing a disease in an individual
based on the total number of significant genetic variants they
have (21). PRS prediction is widely used in the study of human
complex polygenic disease and is now being increasingly studied
in companion animals in veterinary medicine (5, 21).

In the current study, our goal was to validate PRS prediction of
the risk of CR in the Labrador Retriever, as the Labrador is one of
the high-risk breeds with an increased prevalence above the general
population at 5.79% (6). Our previous research has generated
a large reference population of Labrador Retrievers accurately
phenotyped as CR cases or controls, enabling definitive estimates
of heritability, genetic architecture, and initial PRS prediction using
cross validation in this reference population (5). The purpose of
the present study was to continue clinical development of PRS
prediction of risk of CR in the Labrador Retriever by using a
new validation population to confirm PRS prediction has sufficient
accuracy for clinical use (5, 20).

Materials and methods

Data collection and phenotyping

Client-owned Labrador Retriever dogs were recruited at the
University of Wisconsin-Madison School of Veterinary Medicine
through online advertising, local, and national breed clubs for the
validation group. All procedures were performed in accordance
with the recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health and the
American Veterinary Medical Association and IACUC approval
(V5463). All owners gave informed consent. Purebred status was
confirmed from a pedigree for each dog. Relatedness between
individuals was screened via pedigree review and siblings were
excluded to reduce Type 1 error rates. Dogs were phenotyped by
orthopaedic exam and lateromedial stifle radiographs. Dogs were
considered a case if they had CR diagnosed by a veterinarian
with most cases having their CR confirmed during surgical stifle
stabilization. Labrador Retriever dogs were classified as a control
if >8 years of age, had both stifles palpated as stable by a
veterinarian, and no evidence of stifle effusion or osteophytosis on
stifle radiograph that would be indicative of a CR (22). This age
threshold was chosen because Labrador Retrievers ≥8 years have an
∼6% chance of experiencing CR (23). Age, weight, withers height,
sex, neuter status, and coat color were also recorded. If a control
dog subsequently developed a CR, the phenotype was updated.

Sample populations and SNP genotyping
quality control

DNA was obtained from blood or saliva samples. SNP
genotyping was performed using Illumina CanineHD BeadChip
containing ∼230,000 SNPs across the canine genome (CanFam3.1).
The reference or training population (TRN) group of Labrador
Retriever dogs contained 1,006 dogs (440 cases, 556 controls). The
meta dataset was made up of dogs recruited at UW-Madison 719
Labrador Retrievers (326 cases, 383 controls) and the second was
provided by Cornell University 287 Labrador Retrievers (114 cases,
173 controls) (5). The covariate phenotypes were not available for
the dataset from Cornell University. The validation or testing group
(TST) of Labrador Retrievers consisted of 52 dogs (24 cases, 28
controls). Within cases in the TST group, there were 8 neutered
males, 3 intact males, 12 ovariohysterectomized females, and 1
intact female. Within controls, there were 7 neutered males, 7 intact
males, 13 ovariohysterectomized females, and 1 intact female.

Quality control filtering of genotypic data was performed
using PLINK v1.9 software (24). Samples with a genotyping call
rate below 95% were excluded. SNPs were removed from the
dataset if they had a minor allele frequency (MAF) <0.01, had
a genotyping call rate ≤95%, or if they deviated from Hardy-
Weinberg proportions at a P < 1E-06. Missing genotypes were
imputed using Beagle 5.4 software (25, 26). SNP data quality control
resulted in 142,071 SNPs remaining.

Experimental design for polygenic risk
score prediction

The bioinformatics approach for our analysis is summarized
in Figure 1. The TRN group of 1,006 Labrador Retriever dogs was
used for model fitting. The TST group of 52 Labrador Retriever
dogs was used as an independent validation sample. Each dog in
the TST group had a predicted phenotype from their PRS value
and a true CR case and control phenotype. Eight statistical models
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FIGURE 1

Flowchart illustrating the workflow for polygenic risk score prediction and threshold tuning of case-controls for cruciate ligament rupture in the
Labrador Retriever. Data from 1,064 dogs were used as the reference training set (n = 1,006) and SNP effects were tested on an independent
validation set (n = 52). All samples were genotyped by Canine HD BeadChip and quality controlled. Genome-wide selection (GWS) using a
mixed-model (MM) approach was applied, followed by 10-fold cross-validation (CV) for top risk SNP selection. Predictive modeling employed
machine learning classifiers, Bayesian probit regression models, and ensemble logistic regression, with threshold tuning finalized using the validation
dataset. Ten-fold cross validation was then rerun after optimization of risk SNP selection and threshold tuning.

composed of four Bayesian regression models and four machine-
learning models were used to estimate the predicted phenotype.
The Bayesian models were Bayesian Ridge Regression (BRR),
Bayesian Lasso (BL), Bayes B (BB), and Bayes C (BC) (5, 20). All
the Bayesian models were fitted using the BGLR package (27).
The four machine-learning models were Least Absolute Shrinkage
and Selection Operator (LASSO), Support Vector Machine (SVM),
Random Forest (RF), and Elastic Net (EN) (28). EN and LASSO
were fitted using the glmnet function from the glmnet R-package
(29). RF was implemented using the R-package “wsrf” (30) and
SVM used the e1071 package (31).

Ten-fold cross validation

Initially, 10-fold cross validation was performed using the
reference TRN group. The data were randomly partitioned into 10-
folds, with nine of the folds used for model training and the 10th

used as a test set. Each test set was assessed in turn until all 10-
folds had been evaluated. The partition scheme used was like that in
Baker et al. (20). The advantage of multiple-fold cross validation is
that it allows the training dataset to remain large without sacrificing
a portion of the dataset for testing. The predictions were aggregated
from the 10 folds and averaged across the runs.

Prediction performance for each model was assessed using
accuracy (ACC) and the area under the receiver operator
characteristic (ROC) curve (AUC). After obtaining a posterior
probability for all folds, we computed the prediction accuracy
metrics. Clinical covariates were included in our cross-validation
analysis and were sex, neuter status, weight, age, and withers
height, as well as 10 principal components (PCs) from the genetic
relationship matrix using all dogs. We also computed a genomic
relationship matrix (GRM) and verified that the average genomic
relationship between the reference (TRN) and validation (TST)
populations was close to zero (Mean = −0.01, SD = 0.038). ACC
values were also calculated using the tuned posterior probability
thresholds (see below).

Optimization of risk SNP selection for each
statistical model

Because each statistical model has a different analytical
approach, different models often perform optimally with differing
numbers of CR risk SNPs. Risk SNPs were selected based on
strength of association with CR by genome-wide association study
(GWAS) using a threshold mixed model for a binary trait (32).
Cross-validation models were run with different numbers of risk
SNPs to determine the optimum performance.

Optimization of the posterior probability
threshold for distinguishing cases and
controls

After obtaining the posterior probability for each individual
dog in the validation TST group using the eight models, we
determined the optimum threshold that maximized CR risk
prediction accuracy and best distinguish cases from control.
Youden’s J statistic (P∗), ACC, and geometric mean (gMean) were
used as metrics for threshold optimization (33). The Youden’s
J statistic computed as P∗ = |FPR + TPR – 1| where FPR is
the false positive rate and TPR is the true positive rate. FPR
represents the proportion of incorrectly identified positive results.
FPR = FP/(FP + TN) where FP (False Positive) are the positive
results incorrectly predicted, and TN (True Negative) are the
negative results correctly predicted. TPR represents the proportion
of correctly identified positive results and is also known as
Sensitivity. TPR = TP/(TP + FN) where TP (True Positive) are
the positive results correctly predicted, and FN (False Negative) are
the negative results incorrectly predicted. The gMean, or geometric
mean, a metric that is particularly valuable in binary classification
tasks, focuses on the balance between the TPR (Sensitivity) and
the TNR (Specificity); gMean = √

(TPR∗TNR) (34). TNR is the
true negative rate, also known as Specificity, and represents the
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proportion of correctly identified negative results. Furthermore,
the predictive accuracy of models (ACC) defined as ACC =

(TP+TN)
(TP + TN + FP + FN) , was evaluated for all thresholds. Then, a grid
search was performed, looking at a range of posterior probabilities
from 0 to 1 with 0.025 intervals to find the most reliable cut off
threshold for distinguishing CR cases from controls according to
the posterior probability.

Genic ontology and CR prediction
according to genic region

A gene list was collected by referencing all genes related to
CR from previous publications as summarized in Table 3 in Baker
et al. (17). A pathway and gene ontology (GO) analysis was then
performed using the most significant GO terms or wiki pathways
associated with CR to verify each gene’s relationship with the
biology of CR. The GO is a database compiling the biological
background of genes and gene products across species. Next,
all genetic variants located within the gene list’s genic regions
without flanking regions were extracted for prediction purposes.
Genic regions were identified for each gene using the UCSC
Genome Browser with the transcription and coding start and
stop coordinates, respectively, used to define each gene location.
The TRN group of 1,006 Labrador Retriever dogs was used for
model training and the TST group of Labrador Retriever dogs for
validation. The eight previously used models were used to measure
all predictive performance metrics.

Assessment of CR prediction accuracy

A posterior probability from each model was generated for
each dog in the TST group. Ensembles of the Bayesian models or
machine learning models were also used to generate an average
posterior probability for individual dog risk prediction as a CR
case or control. This predicted phenotype was then compared
to the true phenotype of each dog. AUC and three different
coefficients of determination (R2) metrics were calculated to assess
the predictive performance of different model scenarios. AUC was
calculated using the pROC R package (34–38). The three R2 values
were Cox and Snell’s R2 (R2

C&S) (39–41), Efron’s R2 (R2
ef ) (42),

and Nagelkerke’s R2 (R2
nag) (43). We evaluated all models with

and without considering covariates and considered either whole
genome SNPs or genic only SNPs. The covariate variables we
considered were sex, neuter status, weight, age, and withers height
as well as 10 principal components from the genetic relationship
matrix. The TRN group of Labrador Retrievers were used as the
training set and the TST group of dogs for validation.

Results

Optimization of CR risk SNPs for PRS
prediction

The top GWAS SNPs were ranked based on P-value, and
different percentages of top SNPs were selected to further

evaluate model performance based on analysis using 10-fold
cross-validation. The optimal predictive ability for CR risk varied
across statistical models. The best predictive performance with
all Bayesian models was obtained using 30% of the SNPs (42,621
SNPs). The best performance with RF was achieved using the top
1% of the SNPs (1,420 SNPs), while the best predictive performance
for EN and LASSO was obtained using 2% of the SNPs (2,841
SNPs). The best performance with SVM was obtained using 7% of
the SNPs (9,944 SNPs).

Model performance using top GWAS SNPs,
threshold optimization with the test group,
and subsequent 10-fold cross validation in
the reference group

We used the P∗, ACC, and gMean metrics for model tuning
to determine the optimum threshold points for each model using
Labrador Retriever dogs in the TST group. We considered the
threshold as optimal when the ACC and gMean were highest and
P∗ was minimum. Optimal thresholds ranged from 0.425 to 0.5
(Figure 2, Table 1). Among machine learning models, the highest
ACC was achieved by the LASSO machine learning model after
model tuning (0.844) and the highest AUC was achieved with the
SVM model (0.838) at P∗ = 0.021 (Table 1). For Bayesian models,
the highest ACC was observed with Bayes C (0.836) at P∗ = 0.1
(Table 1), which also achieved the highest AUC (0.83).

Tuned model performance with and
without covariates in the independent
validation test set using GWAS top SNPs

Predictive performance with covariates yielded higher ACC
for all algorithms after model tuning except RF and results are
summarized in Table 2. With covariates and posterior probability
threshold tuning, the LASSO and EN algorithms yielded the highest
ACC (0.885). Amongst the Bayesian models, the BL and BayesC
algorithms yielded the highest ACC (0.842). These models also
yielded the highest AUC values. Without covariates, ACC values
were lower, and the Bayesian ensemble approach yielded the
highest ACC (0.769) and AUC (0.768). Without covariates Bayesian
models outperformed machine learning models.

Predicting cruciate ligament rupture risk
using genic SNPs

The 41 CR risk genes previously identified in the literature
were functionally verified with the GO terms analysis to confirm
their relationship with CR. Each GO term represents a particular
biological process in the body, and we counted the number of genes
from our list that matched each GO term (Figure 3). Amongst the
twenty GO terms, extracellular matrix organization (P = 4.89E-
52), degradation of the extracellular matrix (P = 5.5E-32), collagen
metabolic process (P = 2.3E-14), skeletal system development (P
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FIGURE 2

A grid search was performed to identify the optimum threshold range and evaluate model performance for prediction of cruciate ligament rupture
case status. Each data point represents a threshold ranging from 0 to 1 with 0.025 intervals. Lower P* values aligned with higher ACC and gMean
values. The circle dots show the optimum point for each model. EN, Elastic Net; LASSO, Least Absolute Shrinkage and Selection Operator; RF,
Random Forest; SVM, Support Vector Machine; ML, machine learning; BL, Bayesian Lasso; BRR, Bayesian Ridge Regression. The analysis used a
training group of 1,006 Labrador Retrievers for model training and a test group of 52 Labradors for prediction optimization.
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TABLE 1 Accuracy of Bayesian and machine learning statistical models for prediction of cruciate ligament rupture risk using polygenic risk scores in the
Labrador Retriever reference population using 10-fold cross validation, top genome-wide risk SNPs, and tuned posterior probability thresholds.

Model Optimal threshold
after tuning

P∗ gMean ACC AUC R2
nag R2

c&s R2
ef

RF 0.45 0.053 0.828 0.832 0.829 0.571 0.426 0.485

SVM 0.425 0.021 0.838 0.839 0.838 0.582 0.434 0.495

LASSO 0.5 0.147 0.832 0.844 0.835 0.579 0.432 0.491

EN 0.45 0.063 0.828 0.833 0.829 0.581 0.433 0.493

ML_Ens 0.45 0.069 0.834 0.839 0.835 0.585 0.436 0.496

BRR 0.425 0.001 0.828 0.828 0.828 0.589 0.439 0.501

BL 0.5 0.115 0.824 0.828 0.826 0.591 0.441 0.502

BayesB 0.475 0.087 0.824 0.831 0.826 0.588 0.439 0.500

BayesC 0.475 0.100 0.828 0.836 0.830 0.586 0.437 0.499

BM_Ens 0.5 0.113 0.823 0.832 0.825 0.591 0.441 0.502

AUC Area under the receiver operator characteristic curve, ACC predictive accuracy of models at the optimum posterior probability threshold, R2
nag Nagelkerke’s R2, R2

c&s Cox and Snell’s R2,
R2

ef Efron’s R2, RF, Random Forest; SVM, Support Vector Machine; LASSO, Least Absolute Shrinkage and Selection Operator; EN, Elastic Net; ML_Ens, Machine Learning Ensemble; BRR,
Bayesian Ridge Regression; BL, Bayesian Lasso; BM_Ens, Bayesian Model ensemble. The number of genome-wide association study risk SNPs considered by each statistical model varied.

= 6.9E-14), elastic fiber formation (P = −1.78E-13), response to
growth factor (P = 6.8E-11), ossification (P = 1.38E-10), regulation
of the extracellular matrix organization (P = 2.75E-6), and Type
1 collagen synthesis (P = 1.23E-5) were particularly associated
with CR.

PRS prediction was also performed with and without covariates
using genic SNPs. With covariates, Bayesian model performance
was improved for the BRR, BL, BayesB, and BayesC algorithms,
and for the RF and SVM machine learning models, compared with
the analysis with genome-wide SNPs (Tables 2, 3). The LASSO and
the BL algorithms had the highest ACC (0.875) (Table 3). For the
machine learning models with covariates, AUC was highest with the
LASSO model (0.871) and for the Bayesian models with covariates
the BL model had the highest AUC (0.874). Without covariates,
only the LASSO, EN, and ensemble machine learning models
exhibited enhanced performance (Tables 2, 3). The LASSO and the
EN algorithms had the highest ACC (0.731) without covariates. For
the machine learning models without covariates, AUC was highest
with the ensemble model (0.731) and for the Bayesian models
without covariates the BayesB model had the highest AUC (0.712)
(Table 3).

Discussion

Canine CR is a common orthopaedic disease with a
high economic burden from long-term morbidity due to the
development of stifle osteoarthritis even in the face of surgical
correction (4, 5, 44), so population screening to identify dogs with
elevated risk would be an impactful development (5, 45). CR in
the Labrador Retriever is a complex heritable disease made up of
numerous small effect SNPs and relatively few large effect ones (5).
Age of neutering is an important environmental effect (46).

PRS prediction is a powerful tool for defining the heritable
risk of developing a disease in an individual subject and is well
suited to quantifying a subject’s risk for highly complex heritable

diseases (19, 20). Such an approach has been extensively used
to assess risk of human complex heritable diseases (44). Overall,
prediction accuracy was similar between the statistical models
we studied. Validation data from the current study suggest PRS
prediction of risk of CR in the Labrador Retriever is sufficiently
accurate for use as a clinical screening tool for personalized medical
care and selection for breeding with a prediction accuracy up to
88% with inclusion of covariates and up to 77% with analysis of
only genetic information. Given that PRS prediction only needs
a DNA sample easily obtained from a saliva swab, such testing
can be performed in puppies before sale to the public, which
is potentially advantageous compared with phenotypic screening
later in life when dogs may already have been used for breeding
or undergone training as a working dog. Additionally, PRS risk
prediction testing can provide owners with information that can
guide personalized care of the individual dog, particularly regarding
modifiable environmental risk factors, such as neutering before 1
year of age (46).

We have recruited a large reference population of Labrador
Retrievers over several years that we used as a TRN group for PRS
prediction modeling using 10-fold cross validation in the present
study. During the initial cross-validation analysis, we found that the
optimal SNP set varied amongst the prediction models studied, as
previous research has suggested (5). So, our analysis also considered
use of an optimal number of SNPs for each model that maximized
prediction accuracy. Optimal SNP set size was variable between
models with the Bayesian models having the best ability to handle
larger number of SNPs in the model training set.

We also found that tuning of the posterior probability threshold
led to additional gains in ACC in classifying CR cases from controls,
as opposed to using a single threshold of 0.5 for all models (20).
In our analysis, we found that ACC and P∗ did not always align
exactly on a specific threshold probability. In this scenario, we
emphasized ACC and gMean in our tuning optimization, as ACC is
the most clinically relevant parameter describing predictive ability.
With the inclusion of individualized optimal posterior probability
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TABLE 2 Polygenic risk score prediction accuracy for cruciate ligament rupture in the Labrador Retriever validation group using Bayesian and machine
learning models with and without covariates and top genome-wide risk SNPs.

Model Optimal threshold
after tuning

P∗ gMean ACC AUC R2
nag R2

c&s R2
ef

Validation set with covariates

RF 0.45 0.048 0.690 0.692 0.690 0.581 0.461 0.492

SVM 0.425 0.024 0.845 0.846 0.845 0.59 0.442 0.511

LASSO 0.5 0.095 0.880 0.885 0.881 0.594 0.444 0.512

EN 0.45 0.018 0.884 0.885 0.884 0.584 0.440 0.502

ML_Ens 0.45 0.018 0.866 0.865 0.866 0.587 0.459 0.506

BRR 0.425 0.125 0.810 0.808 0.813 0.619 0.464 0.525

BL 0.5 0.101 0.841 0.846 0.842 0.616 0.461 0.524

BayesB 0.475 0.065 0.824 0.827 0.824 0.615 0.460 0.523

BayesC 0.475 0.101 0.841 0.846 0.842 0.618 0.462 0.524

BM_Ens 0.5 0.065 0.824 0.827 0.824 0.653 0.489 0.526

Validation set without covariates

RF 0.45 0.030 0.693 0.692 0.693 0.335 0.251 0.243

SVM 0.425 0.107 0.694 0.692 0.696 0.263 0.197 0.194

LASSO 0.5 0.095 0.629 0.635 0.631 0.254 0.190 0.183

EN 0.45 0.018 0.634 0.635 0.634 0.254 0.190 0.183

ML_Ens 0.45 0.048 0.690 0.692 0.690 0.344 0.257 0.250

BRR 0.425 0.001 0.751 0.752 0.751 0.416 0.311 0.347

BL 0.5 0.077 0.746 0.750 0.747 0.41 0.307 0.344

BayesB 0.475 0.077 0.746 0.750 0.747 0.401 0.30 0.335

BayesC 0.475 0.077 0.746 0.750 0.747 0.405 0.303 0.337

BM_Ens 0.5 0.036 0.768 0.769 0.768 0.501 0.374 0.395

AUC Area under the receiver operator characteristic curve, ACC predictive accuracy of models at the optimum posterior probability threshold, R2
nag Nagelkerke’s R2, R2

c&s Cox and Snell’s R2,
R2

ef Efron’s R2, RF, Random Forest; SVM, Support Vector Machine; LASSO, Least Absolute Shrinkage and Selection Operator; EN, Elastic Net; ML_Ens, Machine Learning Ensemble; BRR,
Bayesian Ridge Regression; BL, Bayesian Lasso; BM_Ens, Bayesian Model ensemble. The number of genome-wide association study risk SNPs considered by each statistical model varied.

FIGURE 3

Gene ontology (GO) term and wiki pathway analysis for association with cruciate ligament rupture (CR). The graph compares each GO term’s
P-value for association with CR to the other GO terms. The ID and name for each GO term is listed for each column.
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TABLE 3 Polygenic risk score prediction accuracy for cruciate ligament rupture in the Labrador Retriever validation group using Bayesian and machine
learning models with and without covariates and genic SNPs.

Model Optimal threshold
after tuning

P∗ gMean ACC AUC R2
nag R2

c&s R2
ef

Validation set with covariates using genic SNPs

RF 0.45 0.024 0.835 0.836 0.835 0.590 0.442 0.511

SVM 0.425 0.018 0.856 0.855 0.856 0.615 0.460 0.528

LASSO 0.5 0.095 0.870 0.875 0.871 0.629 0.471 0.519

EN 0.45 0.060 0.853 0.855 0.853 0.607 0.454 0.512

ML_Ens 0.45 0.012 0.827 0.827 0.827 0.698 0.522 0.565

BRR 0.425 0.095 0.858 0.855 0.859 0.616 0.461 0.533

BL 0.5 0.018 0.874 0.875 0.874 0.616 0.461 0.534

BayesB 0.475 0.018 0.856 0.855 0.856 0.610 0.457 0.529

BayesC 0.475 0.018 0.856 0.855 0.856 0.614 0.46 0.532

BM_Ens 0.5 0.065 0.824 0.827 0.824 0.635 0.476 0.517

Validation set without covariates using genic SNPs

RF 0.45 0.018 0.634 0.635 0.634 0.244 0.183 0.18

SVM 0.425 0.143 0.675 0.673 0.679 0.249 0.186 0.184

LASSO 0.5 0.119 0.724 0.731 0.726 0.363 0.272 0.278

EN 0.45 0.042 0.729 0.731 0.729 0.317 0.237 0.239

ML_Ens 0.45 0.036 0.732 0.731 0.732 0.437 0.327 0.334

BRR 0.425 0.185 0.693 0.692 0.699 0.290 0.217 0.221

BL 0.5 0.089 0.668 0.673 0.670 0.292 0.218 0.222

BayesB 0.475 0.083 0.707 0.712 0.708 0.281 0.21 0.213

BayesC 0.475 0.030 0.693 0.692 0.693 0.288 0.215 0.219

BM_Ens 0.5 0.244 0.652 0.673 0.664 0.373 0.279 0.273

AUC Area under the receiver operator characteristic curve, ACC predictive accuracy of models at the optimum posterior probability threshold, R2
nag Nagelkerke’s R2, R2

c&s Cox and Snell’s R2,
R2

ef Efron’s R2, RF, Random Forest; SVM, Support Vector Machine; LASSO, Least Absolute Shrinkage and Selection Operator; EN, Elastic Net; ML_Ens, Machine Learning Ensemble; BRR,
Bayesian Ridge Regression; BL, Bayesian Lasso; BM_Ens, Bayesian Model ensemble. The number of genome-wide association study risk SNPs considered by each statistical model varied.

thresholds, prediction models generally surpassed an ACC of 0.8
with 10-fold cross validation. With our analysis of the validation
TST group, model predictions also surpassed an ACC of 0.8 when
covariates were included in the model, except for the RF model,
suggesting our CR genetic risk prediction approach is a clinically
relevant genetic test. Machine learning models, such as RF, require
tuning for optimal performance and the weaker performance of this
model is likely due to problems with model tuning.

A drawback to 10-fold cross validation, is its tendency to
overfit the data, resulting in artificially high PRS scores, because
of relatedness between individuals in an inbred population, even
if the population is a large one. With our initial 10-fold cross
validation within the reference population, ACC was generally
above 0.8, but when the validation population was tested without
consideration of covariates, ACC fell below 0.7 for machine
learning models and below 0.8 for Bayesian models, suggesting
overfitting was present in the 10-fold cross validation analysis. This
highlights the importance of accounting for population structure
and relatedness in predictive modeling, as failure to do so may lead
to inflated performance metrics and poor generalizability. Using an

external, independent validation group of subjects can help mitigate
overfitting by reducing data leakage and ensuring better model
robustness. Moreover, consideration of covariates may enhance the
validity of PRS prediction, particularly in genetically homogenous
or related populations. Covariates are variables that can influence
the phenotype independently of genetic risk. Identification of and
inclusion of covariates helps separate the contributions of genetic
effects from broader physiological or developmental factors and
allow the models to more appropriately attribute variation in the
results to genetic predictors (47).

Previous work on PRS prediction of CR risk in dogs has
shown that the inclusion of covariates in PRS prediction increases
accuracy (20). This observation was recapitulated in the present
study. We found that the inclusion of sex, neuter status, age,
weight, and withers height consistently produced higher predictive
accuracy with both our GWAS SNP analysis and the genic
only SNP analysis. Without covariates, the highest ACC was
0.769 using a Bayesian ensemble approach. With covariates, the
highest ACC was 0.885 using the LASSO and EN machine
learning models.

Frontiers in Veterinary Science 08 frontiersin.org

https://doi.org/10.3389/fvets.2025.1625953
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Miranda et al. 10.3389/fvets.2025.1625953

The covariates we considered are readily acquired during
routine clinical assessment. This enhances the clinical utility of
the PRS models described in this report, as it enables their
integration into existing veterinary workflows without the need
for additional or specialized clinical assessment or testing. Cost
is a significant barrier to veterinary healthcare and obtaining the
necessary covariates for our modeling can be done at minimal to
no cost to clients. Use of our analytical approach promises early
identification of disease risk and provision of timely information
for owners by helping to assess a dog’s suitability for breeding, or
working, and for injury prevention.

We also considered PRS prediction using only genic SNPs.
Given that CR is a highly polygenic disease in which risk SNPs
are spread throughout the genome (5), we expected limiting the
number of SNPs to genic regions would reduce predictive AUC
and ACC. We found that the LASSO, EN, and machine learning
ensemble models that considered covariates had reduced ACC, but
RF and SVM had higher ACC. With the BRR, BL, BayesB, and
BayesC models, ACC was also improved by consideration of only
genic SNPs, suggesting these models may better capture additive
and non-linear effects in genic regions. This could be due to the
exclusion of non-genic SNPs reducing statistical noise resulting
to enhance signal-to-noise ratio. Genic regions are more likely to
contain variants with direct biological relevance making it easier
for models with shrinkage or feature selection such as Bayesian or
tree-based methods to detect meaningful associations. The finding
that performance was reduced with some models when only genic
SNPs were considered further supports the notion that the genetic
architecture of CR involves both coding and non-coding regulatory
elements (48). Collectively our findings suggest both genic and
non-genic variants play important, complementary roles in PRS
prediction and both need to be considered when conducting PRS
analysis (5).

There are several limitations to this research. Our validation
population was relatively small compared to the reference
population used to train our PRS prediction models. Further
expansion of both the TRN and TST groups of dogs would likely
further elevate the power of our analysis and provide more robust
results. The slight mismatch in the nadir of P∗ with the peaks in
ACC and gMean in our analysis may be indicative of the small
sample size used for the validation population. Our analysis only
considered the Labrador Retriever. Our gene ontology analysis was
based on a candidate gene list that was recently published (17).
Other approaches to generation of a gene list could have been used
such as genes associated with flanking regions around significant
GWAS SNPs. Whilst coat color is known to be associated with CR
risk in dogs (18), the coat color phenotype was not available for
all dogs in the reference population. Also, GWAS risk SNPs should
capture coat color genetic effects. Consequently, coat color was not
included as a covariate in our bioinformatics approach to avoid
artificially amplifying the risk associated with SNP markers in LD
with both coat color and ACL risk.

Previous work from our laboratory suggests there is
heterogeneity in the genetic contribution to CR in different
breeds of dog (5). Further investigation into this aspect of the
genetic contribution to CR is needed in other high-risk breeds such
as the Rottweiler and Newfoundland. Ultimately, development
of a bioinformatics PRS prediction approach that overcomes this

problem would substantially enhance the clinical impact of genetic
risk testing for CR in dogs.

In conclusion, our findings suggest that PRS prediction of risk
of CR in the Labrador Retriever has sufficient predictive utility for
clinical application using only genetic markers with an ACC of
77% with genome-wide SNPs and a Bayesian ensemble approach.
We identified further gains in ACC with inclusion of additional
readily obtainable clinical covariates yielding an ACC of 88.5%
with genome-wide SNPs and a machine learning approach using
the LASSO or EN algorithms. Clinically, genetic risk prediction
testing has great utility and can be used by breeders during selection
for breeding without the need for radiographic testing or waiting
years to make an epidemiological determination of the CR status
of the dog (23). Additionally, genetic risk testing for CR can be
used for screening of individual dogs, particularly working dogs
that undertake athletic activity where develop of CR would impair
performance. Improved personalized care of the individual patient
should focus on correcting modifiable environmental factors in
dogs with high genetic risk (46).
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