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Introduction: 2-methoxy-1,4-naphthoquinone (MNQ), a compound derived
from Impatiens balsamina L., is recognized for its anti-inflammatory and
antioxidant properties. However, the effects of D19, a derivative of MNQ, remain
unexplored. This study aimed to elucidate the protective effect of D19 against
lipopolysaccharide (LPS)-induced follicular granulosa cells (GCs) dysfunction in
sheep and its underlying molecular mechanisms.

Methods: An in vitro model of GCs injury was established using LPS to
induce inflammation and oxidative stress. The effects of D19 were evaluated
by examining inflammatory response, oxidative stress, ferroptosis and
steroidogenesis following treatment. Gene interference was applied to knock
down GPX4 expression to validate its role in the protective mechanism of D19.
Results: D19 attenuated LPS-induced ferroptosis in GCs by restoring the
expression of the key ferroptosis regulator GPX4. Subsequently, interfering
with GPX4 activated NF-xB and upregulated the expression of inflammatory
factors (TNF-a, IL-1p, IL-6) while disrupting NRF2 and inhibiting the expression
of antioxidant-related factors (CAT, GSH-PX, SOD2). D19 effectively protected
GCs from GPX4 deficiency-induced inflammation and oxidative damage.
Furthermore, D19 mitigated ferroptosis caused by GPX4 deficiency and
maintained iron metabolic homeostasis by restoring the morphology of GCs,
increasing mitochondrial membrane potential, decreasing the accumulation
of Fe?* and lipid peroxides, and promoting the expression of GPX4 and FTH1.
D19 also improved steroid hormone secretion abnormalities caused by GPX4
deficiency.

Discussion: These results demonstrate that D19 protects sheep follicular GCs
from LPS-induced damage by modulating the GPX4-mediated ferroptosis
signaling pathway, providing new potential drugs and therapeutic targets for
addressing GCs dysfunction and follicular developmental abnormalities.
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1 Introduction

The global farming industry has historically prioritized enhancing
productivity. However, a significant contemporary challenge
confronting this sector is the prevalence of bacterial contamination,
particularly affecting the reproductive system. Around 90% of animals
develop uterine bacterial infections after parturition, leading to
fertility decline, ovarian dysfunction, slower follicle development, and
impaired steroidogenesis (1). Lipopolysaccharide (LPS), a significant
component of Gram-negative bacteria, is a source of pathogenicity
due to its release in large quantities during bacterial death or lysis and
has been shown to cause inflammation, oxidative stress, and
disruption of testosterone secretion in testicular macrophages of sheep
(2). Pigs, mice, and humans exposed to bacterial contamination have
shown higher concentrations of LPS in serum and follicular fluid (3).
The causative agent of polycystic ovarian syndrome has also been
found to be closely related to abnormal LPS levels (4).

As an essential component of the follicle, follicular granulosa cells
(GCs) are responsible for providing nutrients to the oocyte and regulating
steroid hormone synthesis, and their abnormal function is a major factor
leading to follicular atresia. Extant data substantiate that LPS instigates
aberrant expression of inflammatory factors, mitochondrial dysfunction,
oxidative damage, and steroid-related hormone secretion disorders in
follicular GCs, profoundly impacting the normal development of follicles
(5). Consequently, based on the above research background, it is
imperative to investigate the precise mechanism of LPS to develop
effective therapeutic strategies for treating follicular atresia.

Ferroptosis is a unique mode of cell death, the initiation mechanism
of which involves intracellular iron overload, ROS production, lipid
peroxidation processes, mitochondrial membrane densification
accompanied by volume reduction, rupture of the outer membrane, and
reduction or disappearance of mitochondrial cristae, accompanied by a
significant decrease in the content of reduced glutathione (GSH) and loss
of the activity of glutathione peroxidase 4 (GPX4), which is significantly
different from the traditional modes of cell death such as autophagy,
apoptosis, and necroptosis. The GPX family is widely present in mammals,
but its member, GPX4, is an indispensable antioxidant enzyme due to its
unique amino acid sequence and spatial structure (6) and has been
demonstrated to be an important target for the treatment of ferroptosis
(7). GPX4 deficiency compromises the antioxidant system in GCs, leading
to intracellular oxidative stress, ferroptosis induction, and disruption of
steroid hormone synthesis and secretion, ultimately resulting in abnormal
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ovulation (8, 9). The proteomic analysis revealed that LPS induced
ferroptosis through the NRF2/GPX4 axis, accompanied by oxidative
stress and inflammatory responses (10). Ferroptosis-mediated oxidative
stress-inflammatory response, as evidenced by the down-regulation of
NRF2/GPX4 and the up-regulation of NF-KB, has been identified in
young rats presenting with premature ovarian failure (11). LPS inhibited
the expression of GPX4, which activated NF-kB signaling and promoted
the release of inflammation-associated factors IL-1f3, IL-6, and TNF-a, as
well as a large accumulation of intracellular ROS levels, whereas the
intracellular GSH content was noticeably downregulated (12). In light of
these findings, we hypothesize that LPS-induced inflammation and
oxidative stress may occur through the GPX4-mediated ferroptosis
pathway, severely limiting the reproductive efficiency of the animals.
Therefore, there is an urgent need to find novel therapeutic interventions
to address this issue.

Since the long-term use of conventional antibiotics can lead to
problems such as drug resistance and drug residues within livestock
products, more and more scholars are focusing on highly effective and
low-toxicity natural herbal treatments. Impatiens balsamina L. contains a
key active component, 2-methoxy-1,4-naphthoquinone (MNQ), which
has been scientifically proven to possess a variety of bioactive properties,
including antipruritic, anti-inflammatory, antimicrobial, anticancer, and
antiallergenic effects (13). Available studies have shown that MNQ
possesses potent antibacterial properties, effective against both Gram-
positive (Staphylococcus aureus) and Gram-negative (Escherichia coli)
bacteria, as well as Helicobacter pylori and several fungal species, such as
Penicillium and Fusarium (14, 15). Treatment with MNQ promoted cell
cycle progression from S phase to G2/M phase in olfactory ensheathing
cells (OECs), stimulated mitotic division, enhanced proliferative capacity,
and activated the NRF2-mediated antioxidant defense system (16).
Previous studies have shown that MNQ mediates the TNF signaling
pathway to alleviate inflammation and functional impairment in bovine
follicular GCs and regulates steroid hormone synthesis (17).

Based on the chemical structure of MNQ, we synthesized its
derivative, D19, a compound whose functions have never been
reported (Figure 1). Our team’s proteomic sequencing data suggests
that the GPX4-mediated ferroptosis signaling pathway plays a key role
in MNQ alleviation of LPS-induced functional impairment of GCs.
Therefore, the present study aimed to explore whether GPX4-regulated
ferroptosis is the underlying mechanism by which D19 exerts its
protective effects against LPS-induced inflammation, oxidative stress,
and steroid hormone synthesis disorders.

MNQ

FIGURE 1
Molecular structures of MNQ and its derivative D19.
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2 Materials and methods
2.1 Ovary collection and GCs cultivation

In this experiment, all sheep were grown to sexual maturity on the
farm and transported to the local slaughterhouse for slaughter
(Jinzhong, Shanxi, China). Meanwhile, we collected the ovaries on-site
and preserved them in DPBS, sterilized at 4 °C with 100 IU/mL of
penicillin and 100 mg/mL of streptomycin (Solarbio, Beijing, China),
and brought them back to the laboratory. The ovaries were sterilized
with 75% alcohol, and follicles with a diameter of 3-5 mm were
selected to remove the GCs for in vitro culture. Specific culturing
methods were carried out as previously described (18). MNQ was
isolated from the stems and leaves of Impatiens balsamina L., and its
derivative D19 was synthesized based on the molecular structure of
MNQ following previously reported methods (19). The structure of
D19 was characterized by 'H nuclear magnetic resonance ("H NMR,
400 MHz, DMSO-d6), with characteristic peaks observed at  8.53 (s,
1H), 7.97-7.89 (m, 1H), 7.82 (d, ] = 7.6 Hz, 1H), 7.73-7.68 (m, 1H),
7.57 (t,] = 7.5 Hz, 1H), 6.71 (dd, J, = 14.7 Hz, J, = 3.3 Hz, 1H), 6.58—
6.44 (m, 2H), 4.28 (s, 1H), 4.20-4.00 (m, 3H), and 3.95 (s, 1H).

2.2 Test groups for GCs

GCs were evenly suspended in a complete medium [89% DMEM-F12
(BOSTER, Wuhan, China), 10% fetal bovine serum (Cellmax, Beijing,
China), and 1% penicillin-streptomycin (BOSTER, Wuhan, China)],
inoculated in cell culture plates of different sizes and cultured in a 37 °C
and 5% CO, humidified incubator. The inoculum densities of GCs in
96-well and 6-well plates were 1 x 10* cells/well and 1 x 10° cells/well,
respectively (20). GCs were treated with D19 (prepared as a 10 mM stock
solution in DMSQ; final DMSO concentration <0.1%) at concentrations
of 0, 0.01, 0.1, 1, 10, 100, and 200 pM. Control groups (CK) received
equivalent DMSO concentrations without D19. All groups were incubated
for 24 h and 48 h, respectively (17, 21). GCs were incubated with different
concentrations of LPS (0, 10, 25, 50, 100, 200, 400 pg/mL) (Solarbio,
Beijing, China) for 12h and 24 h (22). Control siRNA (si-NC: sense,
5-UUCUCCGAACGUGUCACGUTT-3"; antisense, 5'-ACGUGACAC
GUUCGGAGAATT-3") and GPX4-targeting siRNA (si-GPX4: sense,
5-AAGAGUUCGCUGCUGGCUA-3'; antisense, 5-UAGCCAGCA
GCGAACUCUU-3") were synthesized by Shanghai Sangon Biotech. GCs
were transfected with 20 uM of either si-NC or si-GPX4 using an RNA
transfection reagent (Sangon, Shanghai, China). Transfection was
performed for 12, 24, 36, or 48 h. The experimental groups included: (1)
CK, (2) LPS (cells treated with LPS for 12 h), (3) LPS + D19 (cells treated
with LPS for 12 h, followed by D19 treatment for an additional 24 h), (4)
si-NC (cells transfected with control siRNA for 36 h), (5) si-GPX4 (cells
transfected with GPX4-targeting siRNA for 36 h), and (6) si-GPX4 + D19
(0.1 pM) (cells transfected with GPX4-targeting siRNA for 12 h, followed
by D19 treatment for an additional 24 h).

2.3 Immunofluorescence

The immunofluorescence experiments were performed as
previously described (23). Anti-FSHR (Bioworld, Minnesota,
United States) and anti-GPX4 (Sangon Biotech, Shanghai, China)
were used as primary antibodies, and goat anti-rabbit IgG (BOSTER,
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Wauhan, China) was used as the secondary antibody. The negative
control group was incubated with PBS instead of the primary antibody.
Specifically, GCs were inoculated into six-well plates, and the medium
was removed and replaced with 4% paraformaldehyde fixation when
the cells had fused to 60-70%, and GCs were permeabilized with 1%
TritonX-100 (Solarbio, Beijing, China) after washing with PBS,
followed by sealing with 1% BSA (Solarbio, Beijing, China). GCs were
incubated with anti-FSHR and anti-GPX4 antibodies overnight at
4 °C. Hoechst 33342 was used to stain the nuclei of the cells, and the
antigen-antibody conjugate reaction was performed with anti-rabbit
IgG, and then placed under a fluorescence microscope to observe the
specific protein expression.

2.4 MTT analysis

The toxic effects of different concentrations of D19 and LPS, as
well as si-GPX4 on the cells at different time intervals, were performed
in strict accordance with the instructions of the MTT kit (Solarbio,
Beijing, China). GCs viability of each experimental group was
calculated using the OD detected at 490 nm.

2.5 SA-B-galactosidase staining analysis

The senescence of GCs in each treatment group was detected
according to the instructions of the SA-B-galactosidase (SA-B-Gal) staining
kit (Beyotime, Shanghai, China). Specifically, GCs were removed from the
culture and added to p-galactosidase staining fixative, fixed at room
temperature for 15 min, washed with PBS, and then the prepared working
solution (1% [-galactosidase staining solution A, 1% [-galactosidase
staining solution B, 93% f-galactosidase staining solution C, and 5% X-Gal
solution) was incubated overnight at 37 °C. The senescent cells were
visualized under a light microscope to produce the Dark blue color results.

2.6 Glucose and LDH assays

Glucose content and LDH activity in treated GCs were assayed in
strict accordance with the Glucose kit (Njjcbio, Nanjing, China) and
Lactate dehydrogenase assay kit (Njjcbio, Nanjing, China).

2.7 Transmission electron microscopy

The experimental procedure was performed as previously
described (24). Briefly, the treated GCs were pre-fixed with 3%
glutaraldehyde for about 24 h and 1% osmium tetroxide for another
2h; dehydrated and osmotically embedded according to the
concentration gradient, and then stained after ultrathin sectioning
using an ultrathin sectioning machine, and finally the images were
captured and analyzed in the electron microscope.

2.8 Mitochondrial membrane potential
assay

Cultured GCs (treated) complete medium was replaced with 2 pM
JC-1 (MCE, Shanghai, China) and continued to be cultured in the
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medium for 15-20 min, washed with PBS, and then the staining
results were observed by fluorescence microscopy (green fluorescence:
Ex/Em = 510/527 nm; red fluorescence: Ex/Em = 585/590 nm).

2.9 Measurement of androstenedione,
estradiol, and progesterone, TNF-«, and
IL-1p using ELISA

The levels of steroid hormones (A, E,, and P,) and inflammatory
factors (TNF-B, IL-1f) in the treated GCs were measured according to
the instructions of the ELISA kit (MEIMIAN, Jiangsu, China). Specific
experimental steps were performed as previously described (25). Briefly,
the diluted GCs supernatant was labeled with horseradish peroxidase
(HRP), incubated for 1 h at a constant temperature of 37 °C, washed
five times with washing solution, and then reacted with substrates A
and B simultaneously for 15 min. The reaction was terminated by
adding a termination solution. Then, the OD value at 450 nm was
measured in each well, and the final concentration was calculated
according to the standard curve. It is worth noting that the procedure
was the same for all five assays, all concentrations were normalized to
2.5 x 10° cells, and all experiments were repeated at least three times.

2.10 Antioxidant assays

The antioxidant capacity of GCs in different treatment groups
was detected by using Nanjing Jianjian Bioengineering Institute
kits (including SOD, GSH, GSH-PX, MDA, total antioxidant
capacity, CAT, and ROS) and Lipid Peroxidation Assay Kit
(BODIPY 581/591 Cl11) (Beyotime, Shanghai, China) and operated
according to the specifications. All experiments were repeated at
least three times.

2.11 Ferrous ion (Fe?*) detection

A ferrous ion content assay kit (Solarbio, Beijing, China) was used
to measure Fe** levels in GCs after adding different treatments. The OD
value at 593 nm was substituted into the standard curve to calculate the
final results, and each set of experiments was repeated at least three times.

2.12 gRT-PCR analysis

Total RNA was extracted from GCs using the Mei5bio RNA
extraction kit (Mei5bio, Beijing, China), and cDNA synthesis was
performed according to the protocol provided with the PrimeScript
RT Reagent Kit (Takara, Tokyo, Japan). Quantitative real-time PCR
(QRT-PCR) was conducted on a Bio-Rad CFX instrument using the
TransGen PerfectStart® Green qPCR SuperMix kit (TransGen, Beijing,
China), following the manufacturer’s instructions. Primer sequences
were designed and synthesized by Shanghai Sangon Biotech (see
Table 1 for details). The qRT-PCR protocol included an initial
denaturation step at 95 °C for 60s, followed by 40 cycles of
amplification (95 °C for 30, 95 °C for 55, and annealing at the
primer-specific Tm for 30s) (25). f-actin was used as an internal
control, and each experiment was performed in triplicate to ensure
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reproducibility. Relative gene expression levels were calculated using
the 2724 method.

2.13 Western blotting analysis

Total GC proteins were extracted with ready-to-use lysate (98%
RIPA, 1% PMSE 1% broad-spectrum phosphorylated protease
inhibitor), centrifuged, and added to the protein sample buffer at a
ratio of 4:1. After SDS-PAGE electrophoresis (80 V for 40 min, 120 V
for 90 min), the proteins were transferred to NC membranes (120 V,
ice bath for 90 min). The membrane was blocked with skimmed milk
powder for 1 h, the primary antibody was incubated overnight at 4 °C,
and the secondary antibody (LI-COR, Lincoln, NE, United States) was
incubated at room temperature and protected from light for 1 h. The
above reagents were purchased from BioTech. Protein bands were
imaged using the Odyssey Infrared Imaging System and Image] to
analyze relative changes. f-actin was used as an internal reference
protein. Antibody information is shown in Table 2.

TABLE 1 Primer sequences for real-time PCR.

Gene Sequence (5'-3’) Product
size (bp)

L6 E: CAATCTGGGTTCAATCAGGCGA 130
R: TGCTCTGCAACTCCATGACAG

IL-1p F: CGTCTTCCTGGGACGTTTTAG 85
R: CTGCGTATGGCTTCTTTAGGG

TNF-a F: GTAGCCCACGTTGTAGCCAA 136
R: TGAGGTAAAGCCCGTCAGTG

NEKB E: CTCCTGGAGCCTCAAACCTG 121
R: TCTACAGGGAAAACTGAATCTTTCT

SoD2 F: GTGGAGAACCCAAAGGGGAAT 160
R: GCAGCAATCTGTAAGCGTCC

GPX4 F: TCGCTGCTGGCTATAACGTC 134
R: CCATTTGATGGCGTTTCCCA

CAT F: GCCTTCTGCCCTGGAACATA 9
R: TAGAAATCCCGCACCTGAGTG

NRE2 F: AAGTCAGGGAGAAGCGAGTTC 199
R: TGTCAATCAAATCCATGTCCTGC

FTHI F: GCCATCAACCGCCAGATCAA 70
R: GAAACTCGGCTCCCATGGACA

STAR F: GCATCCTCAAAGACCAGGAG 194
R: CITGACACTGGGGTTCCACT

36-HSD F: GGAGACATTCTGGATGAGCAG 200
R: TCTATGGTGCTGGTGTGGA

CYPI1AI E: GTTTCGCTTTGCCITTGAGTC 158
R: ACAGTTCTGGAGGGAGGTTGA

CYPI9AI F: GCACTCTGGAAAGCTGTTCG 147
R: CACGTCCACATAGCCCAAGT

HSDI17B4 F: ACGTGTCGAGATTCAAGGCA 127
R: CCAGTTCCTTGGACCTTGGTT

f-actin F: GCAAAGACCTCTACGCCAAC 90
R: GGGCAGTGATCTCTTTCTGC

frontiersin.org


https://doi.org/10.3389/fvets.2025.1621738
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Chen et al.

2.14 Statistical analysis

Data were analyzed statistically using SPSS 22.0, subject to
normality and chi-square: one-way ANOVA with Tukey’s-b or
Dunnetts post-hoc multiple comparisons between groups; t-tests for
independent samples were used between groups. GraphPad Prism 8.0
was used for graphical presentation. Data are presented as mean +
SEM. p < 0.05 was the threshold for statistical significance, and all
experiments were repeated at least three times.

3 Result

3.1 Ameliorative effect of D19 treatment on
LPS-induced reduction in viability of GCs

Immunofluorescence staining showed that the FSHR protein
displayed particular expression in sheep follicle GCs, demonstrating
that the GCs used in this study possess high purity and activity and
are appropriate for subsequent experiments (Figure 2A).

Figure 2B demonstrates a concentration-dependent effect of LPS
on GC viability, with the optimal survival rate observed at 25 pg/mL
(p < 0.05). Then, the survival rate of the cells decreased with the
increase in the concentration. When the concentration of LPS reached
400 pg/mL, the GCs were stressed, and some cells died. The results of
GCs treated with different concentrations of D19 showed that low
concentrations of D19 (0-0.1 pM) accelerated the activity of GCs
(Figure 2C). The survival rate of GCs was significantly increased
(p < 0.05) after treatment with 0.1 pM D19 for 24 h and 48 h. On the
contrary, high concentrations (1-200 pM) of D19 caused dose-
dependent cytotoxicity. Approximately 80% of GCs at 200 pM showed
morphological abnormalities and were detached (p < 0.05). Since

TABLE 2 Antibodies information.

Antibodies Company Source Dilution
ratio
IL-1p D220820 Sangon Rabbit 1:500
TNF-a CPA9458 Cohesion Rabbit 1:500
biosciences
NF-KB 380172 Zenbio Rabbit 1:500
pNF-KB 310013 Zenbio Rabbit 1:500
GPX4 D290599 Sangon Rabbit 1:1000
NRF2 380773 Zenbio Rabbit 1:500
SOD2 CY5977 Abways Rabbit 1:500
GSH-Px CY8714 Abways Rabbit 1:500
CAT D122036 Sangon Rabbit 1:500
FTH1 CY5648 Abways Rabbit 1:1000
HSD17B4 D122505 Sangon Rabbit 1:500
38-HSD CY8791 Abways Rabbit 1:1000
CYPI11A1 bs-10099R Bioss Rabbit 1:500
CYP19A1 bs-0114R Bioss Rabbit 1:500
STAR A16432 ABclonal Rabbit 1:500
B-actin AC038 ABclonal Rabbit 1:10000
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400 pg/mL LPS would damage the activity of GCs, the present study
was carried out to investigate the optimal therapeutic concentration
and safety range of D19 at different concentrations. Our findings
indicate that 0.1 pM D19 is the optimal therapeutic concentration,
effectively mitigating LPS-induced damage in GCs (p <0.05).
However, D19 exhibited a narrow therapeutic window, with
concentrations exceeding 100 pM failing to provide any protective
benefit and instead demonstrating significant toxicity (Figure 2D).

3.2 D19 alleviates LPS-mediated
inflammatory response

To explore the mitigating effect of D19 on LPS-induced
inflammation in GCs, the mRNA expression levels of IL-6, IL-1f, and
TNF-a in GCs treated with different concentrations of LPS were first
detected. The results showed that LPS dose-dependently increased the
mRNA expression of the above inflammatory factors compared with CK
(p <0.05), with the maximum observed at a concentration of 400 pg/mL
(Figure 3A). In subsequent experiments, 400 pg/mL LPS was used to
induce inflammation in GCs. Further studies revealed that D19 was able
to inhibit the LPS-induced inflammatory response of GCs. Compared
with the LPS group, 0.1 uM D19 significantly reduced the mRNA levels
of IL-6, IL-1p3, and TNF-a (p < 0.05), and the therapeutic effect at this
concentration was better than that of other concentrations (Figures 2D,
3B). In addition, 100 pM of D19 was the maximum safe concentration
for treating inflammation in combination with cell activity assay
(Figures 2D, 3B). D19 was found to significantly inhibit the LPS-induced
elevation of IL-1p and TNF-a levels in GCs by ELISA kit assay (p < 0.05)
(Figure 3D), and the results of protein levels were consistent with the
above findings (Figures 3B,C). Notably, SA-p-Gal staining revealed that
the dark blue products in GCs were significantly reduced in the
LPS + D19-0.1 pM and LPS + D19-100 uM groups compared to the LPS
group, indicating that D19 alleviated LPS-induced cellular senescence
(Figure 3E). Moreover, the effect of D19 was more pronounced at
0.1 uM than at 100 pM (Figure 3E). The above studies confirmed that
D19 reversed LPS-induced inflammatory injury in sheep follicular GCs.

3.3 D19 protects GCs from LPS-induced
oxidative damage

As shown in Figure 4A, 400 pg/mL LPS significantly inhibited the
expression of antioxidant-related genes GPX4, CAT, and SOD2 in
sheep follicular GCs (p < 0.05). D19-0.1 uM effectively upregulated
the expression levels of the genes mentioned above, with its effective
concentration extending up to 100 pM (p < 0.05) (Figure 4B). Western
blotting analysis (Figure 4C) confirmed that 0.1 pM D19 could
effectively alleviate the LPS-induced reduction in the protein
expression of GPX4, CAT, GSH-PX, and SOD2 (p < 0.05). 100 pM
D19 also had antioxidant effects, but the effect was weaker than that
of 0.1 pM (p < 0.05). In addition, 400 pg/mL LPS effectively inhibited
the total antioxidant capacity, SOD activity, GSH-PX activity, CAT
activity, and GSH level of GCs, and significantly increased MDA
content, glucose content, LDH level, and ROS production. D19 could
significantly reverse the above LPS-induced weakening of antioxidant
indexes in GCs (Figures 4D,E). These data demonstrate that D19
protects sheep follicular GCs from LPS-induced oxidative damage.
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of different concentrations of D19 on LPS-induced decrease in cell viability of GCs. Data from at least three independent experiments are presented as
mean + SEM. Significant differences (p < 0.05) are denoted by different letters

3.4 D19 inhibits LPS-induced ferroptosis in
GCs

Given that GPX4, a core molecule in ferroptosis regulation, has
been significantly inhibited by LPS in this study, and combining
the above findings, we speculate that the protective effect of D19
against LPS-induced functional impairment of GCs may be realized
through the GPX4-mediated ferroptosis signaling pathway. As
depicted in , LPS treatment significantly decreased the
mitochondrial membrane potential, as evidenced by enhanced
green fluorescence, whereas the mitochondrial membrane
potential in the LPS + D19-0.1 uM and LPS + D19-100 pM groups
was close to the normal level. TEM results ( ) revealed
that GCs in the LPS-treated group displayed significant
ultrastructural abnormalities compared with the CK group. These
abnormalities included mitochondrial condensation, reduced
volume, reduction and coarsening of cristae, widening of the inter-
cristae lumen, and increased membrane and electron densities.
Furthermore, autophagic lysosomes and a small number of
vacuoles were observed. Compared with the LPS group,
LPS + D19-0.1 pM

morphology, with most of the mitochondria restored to an

significantly improved mitochondrial

elliptical shape, uniform matrix electron density, and well-defined

and straight cristae. The morphology of LPS + D19-100 pM cells
was slightly abnormal, and the mitochondria showed a slight
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condensation, accompanied by a mild expansion of the rough
endoplasmic reticulum. Autophagic lysosomes were still visible in
the cytoplasm. In addition, the large accumulation of Fe** in
LPS-treated cells was significantly reversed by D19 treatment

( ), which also successfully alleviated the inhibitory effect
of LPS on FTHI mRNA and protein expression levels (p < 0.05)
( ,1). Taken together, these results suggest that D19 can

effectively alleviate the process of LPS-induced ferroptosis in sheep
follicular GCs and mitigate cellular damage.

3.5 D19 restores LPS-suppressed steroid
hormone production in GCs

To assess the effect of D19 on LPS-induced steroid hormone
synthesis in GCs, we examined the levels of A,, E,, and P, in GCs.
The ELISA results showed that LPS significantly inhibited the
synthesis of these three hormones in GCs compared to CK (p < 0.05),
whereas D19 treatment effectively reversed the inhibitory effect of
LPS and significantly elevated the A,, E,, and P, expression levels
(p <0.05) ( ). The expression of steroid synthesis-related
genes (HSD17B4, CYPI9AI, 3p-HSD, CYP11A1, and STAR) and
their proteins were also greatly inhibited by LPS, and the expression
levels of these genes and proteins were significantly increased by D19

treatment (p < 0.05) ( ,C). Based on these findings,
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FIGURE 3 (Continued)

TNF-a protein expression in GCs. (D) ELISA quantification of IL-1f and TNF-a levels in different GCs treatment groups. (E) Senescence levels of GCs
were assessed using the SA-B-Galactosidase Staining kit. Data originating from at least three independent experiments are presented as mean + SEM.
Significant differences (p < 0.05) are denoted by different letters.
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we conclude that D19 effectively mitigates LPS-induced impairment
of steroid hormone synthesis in sheep follicular GCs.

3.6 D19 suppresses inflammation caused
by GPX4 deficiency in GCs

GPX4 protein is specifically expressed in sheep follicular GCs
(Figure 7A). si-GPX4 effectively inhibited GPX4 mRNA and protein
expression (p < 0.05) (Figures 7B,C) and significantly reduced cell
viability at multiple time points (p < 0.05) (Figure 7D). However,
0.1 pM D19 effectively alleviated the inhibitory effect of si-GPX4 on
GC activity (p < 0.05) (Figure 7D). To further study the effect of
GPX4 deletion on the inflammatory response of GCs and to clarify
the role of D19, we obtained the following findings: ELISA results

Frontiers in Veterinary Science 08

(Figure 7E) revealed that D19 effectively reversed the si-GPX4-
mediated upregulation of IL-18 and TNF-« levels in GCs (p < 0.05).
Mechanistically, we found that si-GPX4 activated the NF-kB signaling
pathway, indicated by a significant increase in NF-xB mRNA
expression and p65 phosphorylation, subsequently promoting the
expression of TNF-a, IL-6, and IL-1f (p < 0.05) (Figures 7EG).
Notably, total p65 protein levels remained unchanged across all
groups (p > 0.05) (Figure 7G). The protein levels of TNF-oc and IL-1f
were consistent with those of mRNA (p < 0.05) (Figures 75EG).
Interestingly, after D19 treatment, the expression levels of NF-xB,
TNF-a, IL-6, and IL-1 were significantly lower than those in the
si-GPX4 group (p < 0.05) and returned to near-normal cell levels.
Meanwhile, Western blotting results showed that the trends of protein
levels of p65 NF-kB, TNF-a, and IL-1p were consistent with the
mRNA results (Figure 7G). Therefore, we conclude that D19 can
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effectively alleviate si-GPX4-induced decrease in cell viability and
inflammatory injury.

3.7 Effect of D19 on oxidative damage in
GCs induced by GPX4 deficiency

To investigate whether D19 protects against LPS-induced
oxidative damage via GPX4, we suppressed GPX4 expression in
sheep follicular GCs and assessed oxidative stress and D19’s effects.
Compared with GCs transfected with si-NC, antioxidant indices
(total antioxidant capacity, SOD activity, CAT activity, GSH-PX
activity, and GSH level) were significantly decreased (p < 0.05),
while oxidative damage and metabolism-related indices (ROS level,
MDA content, glucose level, and LDH activity) were significantly
increased (p < 0.05) in GCs with GPX4 knockdown ( ,B).
Si-GPX4 significantly reduced mRNA and protein expression levels
of antioxidant-related genes (NRF2, CAT, SOD2, and GPX4)
compared to si-NC (p < 0.05), as shown in ,D. After the
D19 treatment, the above antioxidant indexes were significantly
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restored ( ), oxidative damage and metabolism-related

indexes were reduced ( ,B), and the expression levels of
antioxidant-related genes and proteins were effectively up-regulated
(p <0.05) ( ,D). These data demonstrate that D19 has
therapeutic potential for treating si-GPX4-induced oxidative

damage in GCs.

3.8 D19 mediates ferroptosis in GCs by
regulating GPX4

Evidence indicates that intracellular inflammatory responses and
oxidative stress are strongly linked to ferroptosis caused by GPX4
downregulation. Thus, we investigated whether D19 alleviates GPX4
deficiency-induced inflammation and oxidative damage in GCs by
modulating ferroptosis. Suppressing GPX4 dramatically elevated Fe**
concentration in GCs compared to the si-NC group (p < 0.05), as
. However, D19 treatment in si-GPX4-
transfected GCs normalized Fe** levels, indicating D19’s ability to

demonstrated in

rescue GCs from GPX4 deficiency-induced iron overload (see
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FIGURE 5 (Continued)
mitochondria (Mi), rough endoplasmic reticulum (RER); microvilli (1, yellow arrows), autolysosomes (1, green arrows). Scale bars: TEM x 8,000, 2 pm;
TEM X 20,000, 500 nm. (C—E) The effects of D19 (0.1 pM, 100 pM) on LPS-induced changes in ferrous ion levels and FTH1 gene and protein expression
were evaluated. Data from at least three independent experiments are presented as mean + SEM. Significant differences (p < 0.05) are denoted by
different letters.
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). As shown in , si-GPX4-transfected GCs
exhibited a significantly increased green fluorescence signal compared
to the si-NC group, indicating elevated lipid peroxide levels. D19
treatment attenuated this increase, resulting in a red fluorescence
signal distinct from the si-GPX4 group, suggesting that D19 effectively
reduced lipid peroxide levels. TEM analysis showed that si-GPX4 GCs
exhibited significant mitochondrial dysfunction, indicated by
decreased membrane potential, cristae loss, increased membrane

density, and elevated autophagosome numbers. D19 treatment
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mitigated these abnormalities, restoring mitochondrial morphology
and membrane potential ( ,1). In addition, the gene and
protein expression of FTHI in the GCs of the si-GPX4 group was
significantly lower than that of the si-NC group (p < 0.05), whereas
the expression level of FTHI in the si-GPX4 + D19 group was
significantly higher than that of the si-GPX4 group (p < 0.05)
( ,F). Therefore, we conclude that D19 can effectively inhibit
the ferroptosis process induced by GPX4 deficiency and maintain the
iron metabolism homeostasis in GCs.
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3.9 D19 prevents GPX4 deficiency-induced
disruption of steroidogenesis in GCs

The critical role of GCs in follicular development is realized
through the synthesis of steroid hormones. However, when GCs were
exposed to an environment in which GPX4 was inhibited, the
synthesis of E, and P, was significantly suppressed compared with the
si-NC group (p < 0.05) (Figure 10A), while the mRNA and protein
expression levels of steroid hormone synthesis-associated factors
(HSD17B4, CYP19A1, 33-HSD, CYPI11A1, and STAR) were also
significantly downregulated (p < 0.05) (Figures 10B,C). Noticeably, the
levels of E, and P,, as well as the expression of steroid hormone
synthesis-related genes and proteins, were significantly up-regulated
in the si-GPX4 + D19 group compared with the si-GPX4 group
(p <0.05) (Figures 10A-C). These results suggest that D19 can
effectively alleviate the inhibition of steroid hormone synthesis
function in GCs by GPX4 deletion and thus repair the functional
damage of GCs.

4 Discussion

Dysfunction of follicular GCs in sheep is one of the key factors
affecting normal follicular development and ovulation. LPS has been
shown to induce inflammatory responses, oxidative stress, and steroid
hormone synthesis disorders in GCs, leading to impaired GCs
function. Increasing evidence demonstrates that the exposure of
animals to LPS induces a range of reproductive disorders. Higher
levels of LPS were detected in the blood, follicular fluid, and milk of
cows with endometritis (26), accompanied by diminished ovarian
function (27). Several studies have indicated that LPS not only inhibits
GCs’ proliferation (28) but also triggers an inflammatory response
in vitro in human follicular GCs, characterized by the upregulation of
inflammatory cytokines, including TNF-a, IL-1f, and IL-6 (29). LPS
also significantly increased SA-B-gal activity, a cellular senescence
(30). MNQ, belonging the
naphthoquinones class of compounds, is considered the most

marker, in macrophages to
principal and representative active component of Impatiens balsamina
L. Studies have confirmed that MNQ exhibits dose-dependent
cytotoxicity, effectively killing various cancer cells at high
concentrations while displaying anti-inflammatory and antioxidant
activities at low concentrations (31). MNQ also promotes the
proliferation of OECs at concentrations ranging from 0 to 1 pM,
whereas a concentration of 10 uM is highly cytotoxic, significantly
reducing cell viability (16). Our results demonstrate that low
concentrations of D19 (0-100 uM) significantly ameliorated the
LPS-induced decrease in GCs viability, whereas high concentrations
of D19 exhibited toxicity similar to that of MNQ (32). Furthermore,
MNQ has been reported to participate in host defense and exert
(33), exhibit anti-
neuroinflammatory activity by reducing nitric oxide (NO) production

immunomodulatory effects as well as
in LPS-stimulated BV-2 cells (34). Naphthoquinones extracted from
Sinningia canescens effectively reduced the elevation of inflammatory
factors TNF-a, IL-6, and IL-1f in mice blood induced by LPS (35).
Consistent with these findings, our results demonstrate that the MNQ
derivative D19 also exerts anti-inflammatory effects by downregulating
the LPS-induced expression of the inflammation-related genes TNF-a,

IL-6, and IL-1f in sheep follicular GCs.
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LPS is recognized as a potent inducer of both inflammation
and oxidative stress in cellular models in vitro. LPS led to a high
accumulation of ROS in lung epithelial cells, thereby triggering
oxidative stress (36). LPS up-regulated MDA levels and down-
regulated antioxidant capacity in human follicular GCs, as well as
inhibited the expression of SOD, CAT, and GPx genes (5).
Interestingly, we observed a similar phenomenon in sheep
follicular GCs: LPS significantly suppressed total antioxidant
capacity, SOD activity, GSH-PX activity, and CAT activity, and
reduced GSH levels in GCs, while increasing MDA and ROS levels.
In addition, the transcriptional and translational levels of CAT,
GSH-PX, and SOD2 were also greatly inhibited by LPS, whereas the
levels of LDH and glucose were significantly increased, a result that
is consistent with the findings in BEAS-2B cells (37). The above
results suggest that LPS can induce oxidative stress in sheep
follicular GCs. Studies indicate that naphthoquinones (plumbagin,
juglone, menadione, etc.) possess strong antioxidant capabilities by
scavenging ROS and inducing the expression of antioxidant genes
like SOD (38). Previous research has revealed potent antioxidant
activity in certain extracts of Impatiens balsamina L. (39). However,
studies on MNQ and its derivatives mainly focus on anticancer,
antibacterial, and anti-inflammatory effects, while their antioxidant
effects in animals are more limited (40). Interestingly, our
experimental results revealed that D19 treatment significantly
mitigated the LPS-induced impairment of antioxidant capacity in
GCs, contributing to a more robust antioxidant defense and
enriching the understanding of MNQ and its derivative D19s
antioxidant effects.

Steroid hormones are key regulators in maintaining follicular
development and normal ovulation of oocytes. Within the steroid
hormone synthesis pathway, P, is converted to A,, which is further
converted to E,, and these hormones collectively regulate the overall
process (41). CYPI9AI has been widely recognized as a key enzyme
in estrogen synthesis (42). Previous studies have demonstrated that
LPS-induced suppression of CYPI9AI expression in bovine (43),
mouse, and porcine follicular GCs leads to reduced E, secretion and
disruption of oocyte meiotic progression (44). CYP11A1, 3-HSD,
and STAR are involved in the early stages of steroid hormone
synthesis, where CYPI1A] catalyzes the conversion of cholesterol to
pregnenolone, and STAR is responsible for the transport of
cholesterol to androgens. STAR is responsible for transporting
cholesterol into mitochondria for CYPI1AI1 utilization (22).
Exposure of human follicular GCs to LPS also leads to a significant
reduction in E, and P, levels, accompanied by a significant down-
regulation of CYP19A1, CYP11AI, and STAR gene expression (45).
HSD17B4 is reported to function in testosterone synthesis by
catalyzing the conversion of androstenedione into testosterone (46).
Therefore, the reduction of these key enzymes inevitably leads to an
overall decrease in steroid hormone synthesis. The results of the
present study are consistent with previous studies, which found that
exposure of sheep follicular GCs to LPS significantly reduced the
gene and protein expression levels of HSDI17B4, CYPI9AI,
CYPI11A1, 3p-HSD, and STAR, resulting in significant inhibition of
E,, Py, and A, synthesis. Our team’s previous research results showed
that MNQ derivative D21 could alleviate the steroid hormone
synthesis disorder caused by LPS (21). Encouragingly, the present
study demonstrated that D19 exhibits a similar effect to D21 in
mitigating LPS-induced steroid hormone synthesis disorder, further
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D19 mediates ferroptosis in GCs by regulating GPX4. (A,B) D19 protects GCs from LPS-induced abnormalities in Fe®* and lipid peroxide levels. (C,D)
Mitochondrial membrane potential and cellular ultrastructure of GCs in different treatment groups were assessed using JC-1 staining and TEM,
respectively. Nucleus (N), mitochondria (Mi), autolysosomes (1 green arrows). Scale bars: TEM x 8,000, 2 pm; TEM x 20,000, 500 nm. (E,F) Relative
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presented as mean + SEM. Different letters indicate statistically significant differences (p < 0.05).
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expanding the potential application of MNQ derivatives in
enhancing follicular GCs function.

GPX4, a key negative regulator of the ferroptosis pathway,
effectively inhibits ferroptosis through GSH-dependent scavenging of
lipid peroxides and is a potential target for the treatment of ferroptosis-
related diseases (11). Previous studies have shown that LPS inhibits
GPX4 expression in BEAS-2B cells, leading to intracellular Fe**
accumulation and disruption of iron metabolic homeostasis (47). In
addition, lower-than-normal levels of GPX4 and FTH]1 in both human
and mouse ovarian tissues from patients with ovarian cysts suggest
ferroptosis (48). In the present study, we similarly observed that LPS
significantly inhibited the expression of GPX4 and FTHI in sheep
follicular GCs, leading to Fe?* accumulation, which was significantly
reversed by D19 treatment. Following D19 treatment, the mRNA and
protein expression levels of GPX4 and FTHI in GCs were markedly
increased compared to the LPS group, alleviating LPS-induced iron
overload and further suppressing the ferroptosis process in GCs.
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have found that LPS
morphological abnormalities and a decline in membrane potential in

Researchers induced mitochondrial
HT-22 cells (10). Interestingly, we also observed that D19 significantly
protected sheep follicular GCs from LPS-induced mitochondrial
damage and loss of membrane potential. Taken together with our
team’s previous sequencing data, we speculate that the core mechanism
by which D19 alleviates LPS-induced inflammation, oxidative stress,
and steroid hormone synthesis disorders in sheep follicular GCs may
be closely related to the GPX4-mediated ferroptosis signaling pathway.

It has been reported that GPX4 is recognized as a key inhibitor of
ferroptosis in various tissues and plays a crucial role in cell survival.
Early studies demonstrated that GPX4 deficiency induces ferroptosis
in murine embryonic fibroblasts (49). Furthermore, GPX4 interacts
synergistically with the NF-kB signaling pathway to co-regulate
apoptosis and ferroptosis in KGN cells (8). MNQ can modulate cell
proliferation, differentiation, and apoptosis in Raji cells, potentially
mediating the suppression of inflammatory responses, angiogenesis,
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and tumor metastasis via the NF-kB signaling pathway (50). In the
present study, we observed that GPX4 knockdown significantly
reduced viability in sheep follicular GCs, an effect that D19 markedly
attenuated. Overexpression of GPX4 inhibits the NF-kB signaling
pathway, thereby downregulating the expression of pro-inflammatory
cytokines such as TNF-a and IL-6, ultimately protecting the rat heart
from inflammatory damage (51). 5,8-Dimethoxy-1,4-naphthoquinone
(DMNQ) derivatives significantly attenuated the LPS-induced
expression of NO, ROS, and inflammatory cytokines in BV-2
microglial cells by modulating the MAPK/NF-xB signaling pathway
(52). In agreement with these findings, our experiments demonstrated
that D19 significantly mitigated the activation of the NF-kB pathway
and the subsequent upregulation of pro-inflammatory cytokines
(TNF-a, IL-1p, and IL-6) induced by GPX4 interference in sheep
follicular GCs. These results indicate that D19 treatment reversed this
GPX4 deficiency-mediated inflammatory response.

Oxidative stress resulting from GPX4 deficiency significantly
compromises reproductive efficiency in animals. GPX4 is highly
expressed in the testes and sperm, where it regulates spermatogenesis,
maintains chromatin integrity, and counteracts oxidative stress to
ensure male fertility (53). Its deficiency leads to abnormal sperm
development, germ cell apoptosis, and reduced fertilization capacity
(54), thereby significantly diminishing reproductive efliciency.
Numerous studies have established GPX4 as a transcriptional target of
NRF2, with the two interacting to regulate cellular oxidative stress,
ferroptosis, and iron metabolism (55). In HepG2 cells, LPS may
induce oxidative stress by suppressing the activity of the NRF2/GPX4
axis, while in the D-GalN/LPS-induced acute liver injury model,
MaR1 alleviates oxidative stress and ferroptosis-related liver damage
by activating the NRF2/HO-1/GPX4 pathway, inhibiting ROS and
MDA production, and increasing reduced GSH levels (56).
Additionally, MNQ has been shown to inhibit glucose and LDH
production in triple-negative breast cancer cells, concurrently
suppressing cellular glycolytic activity and the expression of related
molecules (32). In agreement with these findings, the present study
demonstrated that D19 effectively ameliorated oxidative damage in
sheep follicular GCs resulting from GPX4 deficiency. Specifically,
compared to the si-GPX4 group, D19 significantly upregulates
antioxidant-related indicators (total antioxidant capacity, SOD
activity, GSH-PX, CAT, and reduced GSH) in GCs, while
downregulating ROS, MDA, glucose, and LDH levels. Consistently,
GPX4 exerts significant antioxidant activity within mitochondria. The
upregulation of NRF2, CAT, and SOD2 in mouse follicular GCs
protects against premature ovarian failure (POF) (57). Our study
revealed that D19 significantly enhanced the expression of NRF2,
GPX4, CAT, GSH-PX, and SOD2 at both transcriptional and
translational levels in the si-GPX4 group. These findings highlight the
crucial role of D19 in improving GCs oxidative damage through the
NRF2/GPX4 pathway.

Mechanistically, iron overload impairs NRF2 binding to
antioxidant response elements (AREs), resulting in downregulated
GPX4 expression, elevated mitochondrial ROS production, and
diminished mitochondrial membrane potential, ultimately promoting
lipid peroxidation and ferroptosis (58). Consistent with these prior
observations, we found that the downregulation of GPX4 in sheep
follicular GCs resulted in significantly elevated levels of lipid peroxides
and Fe* concurrent with a marked reduction in mitochondrial
membrane potential and the presence of abnormal mitochondrial
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morphology, all characteristic features of ferroptosis (59, 60).
Importantly, the upregulation of GPX4 has been shown to inhibit
ferroptosis and delay the senescence of spermatogenic cells in aged
mice (61). FTHI primarily functions to store intracellular iron and
reduce free iron levels. As evidence, FTHI downregulation induces
ferroptosis in bladder cancer cells (62). In the present study, si-GPX4
significantly decreased FTHI mRNA and protein expression levels in
sheep follicular GCs, suggesting that GPX4 depletion is sufficient to
initiate ferroptosis in these cells. Research has shown that
menaquinone-4, a form of vitamin K, exerts a protective role in a
GPX4-deficiency-induced murine hepatocyte ferroptosis model by
diminishing lipid peroxidation, cell death, and inflammation (63).
Remarkably, we found that D19 effectively reversed ferroptosis in GCs
caused by aberrant GPX4 expression, highlighting a potential new
approach for promoting GCs function.

Given our previous findings that D19 alleviates si-GPX4-induced
ferroptosis and the associated inflammatory and oxidative damage in
sheep follicular GCs, we hypothesized that D19 might also regulate
si-GPX4-induced steroid hormone synthesis disorders. Evidence has
established a close link between GPX4-mediated ferroptosis and
steroidogenesis (64). GPX4, acting as a key antioxidant in testicular
Leydig cells, safeguards steroidogenesis by modulating STAR-
mediated cholesterol delivery to CYPIIAI and the subsequent
CYPI11AI-catalyzed conversion of cholesterol into pregnenolone,
ensuring normal testosterone secretion (65). Similarly, in our
experiments, we observed that si-GPX4 significantly suppressed the
expression of CYP11AI and STAR, along with other steroidogenesis-
related genes (HSD17B4, CYP19A1, and 36-HSD) in sheep follicular
granulosa cells, resulting in decreased E, and P, production. However,
D19 this  si-GPX4-mediated
steroidogenic dysfunction (17), potentially contributing to the

treatment effectively reversed

maintenance of normal GCs function.

5 Conclusion

In conclusion, we synthesized the MNQ derivative D19 and
systematically investigated its biological activities. Our findings indicate
that D19 exhibits lower cytotoxicity than MNQ and effectively
LPS-induced
steroidogenesis impairment, potentially via a mechanism involving the

attenuates inflammation, oxidative stress, and
GPX4-ferroptosis axis. These results provide a theoretical foundation
and a potential drug target for developing novel anti-inflammatory and
antioxidant natural plant extracts to treat follicular developmental

disorders and reproductive system diseases.
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Glossa ry NF-kB - Nuclear factor kappa-light-chain-enhancer of activated B cells
MNQ - 2-methoxy-1,4-naphthoquinone IL-1f - Interleukin-1 beta

GCs - Granulosa cells IL-6 - Interleukin-6

LPS - Lipopolysaccharide CAT - Catalase

qRT-PCR - Quantitative reverse transcription polymerase  GSH-PX - Glutathione peroxidase
chain reaction

SOD2 - Superoxide dismutase 2
GPX4 - Glutathione peroxidase 4

NREF2 - Nuclear factor erythroid 2-related factor 2
E, - Estradiol

FTH1 - Ferritin heavy chain 1
P, - Progesterone

LDH - Lactate dehydrogenase
A, - Androstenedione

TEM - Transmission electron microscopy
NO - Nitric oxide

MDA - Malondialdehyde
OEC:s - Olfactory ensheathing cells

HSD17B4 - Hydroxysteroid 17-beta dehydrogenase 4
KGN cells - Human granulosa-like tumor cell line

CYP19A1 - Cytochrome p450 family 19 subfamily A member 1
ROS - Reactive oxygen species

3B-HSD - 3 beta-hydroxysteroid dehydrogenase
POF - Premature ovarian failure

CYP11A1 - Cytochrome p450 family 11 subfamily A member 1
DMSO - Dimethyl sulfoxide

STAR - Steroidogenic acute regulatory protein
TNF-a - Tumor necrosis factor alpha

SA-B-Gal - SA-B-galactosidase
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