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of Animal Science and Technology, Hunan Agricultural University, Changsha, China

Copy number variations (CNVs), which include duplications and deletions of DNA
segments, are significant structural variants that play crucial roles in the genetics
of complex traits in livestock. High-throughput sequencing technologies enable
the systematic identification of structural variants across genomes. However,
CNV-based analyses of whole-genome sequencing data in rabbits remain largely
unexplored. Herein, we characterized genome-wide CNVs of two rabbit breeds,
Jiuyishan rabbit (JY) and Hyplus rabbit (HP), using whole-genome resequencing
to elucidate their genetic characteristics and selection signatures. In total, 5,599
CNV regions (CNVRs) were identified between JY and HP, covering 0.98% of
the reference genome. To identify selection signatures, we employed variance
stabilizing transformation (Vst) values, selecting the top 1% of CNVRs with the highest
Vst values, resulting in 56 CNVRs. These CNVRs harbored 27 genes. Functional
analyses indicated that these genes were associated with important traits such as
growth (HOMER1, NOS1AP, PDE4B, LEPROT) and reproduction (FRAS1, CFAP43,
TMOSF2, and CTNND?2). This study aims to enhance our understanding of CNVs and
selection signals in rabbits, provide insights into the genetic differences between
Chinese indigenous breeds and Western commercial lines, and offer valuable
resources for investigating the genetic basis of complex traits.

KEYWORDS
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1 Introduction

Modern rabbits (Oryctolagus cuniculus), known simply as rabbits, are among the most
recently domesticated species, with domestication initiated in monasteries in southern France
approximately 1,500 years ago (1, 2). This process was followed by artificial selection, leading
to the establishment of numerous breeds. The resulting breeds can be distinguished based on
their extensive phenotypic diversity, and over 300 recognized breeds have been identified
worldwide (3). This diversity serves as an invaluable resource for genetic research and provides
profound insights into the genetic mechanisms underlying phenotypic variation, disease
resistance, and adaptation to different environments. Currently, China hosts at least 40
indigenous and recently introduced commercial rabbit breeds that are primarily distributed
in provinces such as Shandong, Sichuan, Henan, and Hebei (4). Rabbits are widely used for
meat, wool, and fur production. However, the Chinese meat rabbit industry relies heavily on
foreign breeds and synthetic lines, and the development of superior domestic breeds is still
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limited (5). Jiuyishan rabbits (JY), an important indigenous genetic
resource in Hunan Province, China, are renowned for their exceptional
meat quality, high fertility, strong adaptability, and disease resistance,
and are characterized by a relatively small body size and slow growth
rate (5). Moreover, recently established rabbit lines or strains, such as
Hyplus (HP), Hyla, and Hycole rabbits, have been developed through
the cross-breeding of existing varieties or morphs. This process aims
to introduce desirable traits and create novel combinations of
morphological features, thereby enhancing production traits in
specialized meat lines (6-8). Among these, Hyplus rabbits, developed
by the French company Groupe Grimaud, encompasses eight special
strains that were introduced to China in the early 21st century. They
are characterized by rapid growth rate, high meat yield, and excellent
reproductive performance (9). In recent years, the number of
indigenous rabbit breeds has declined rapidly owing to the
introduction of more efficient breeding programs and increased
competition from foreign commercial breeds (5, 10). Nevertheless,
considering the increasing recognition of local breeds as valuable
genetic resources, several measures have been implemented to ensure
their preservation.

Structural variation refers to genomic variations >1 kb, including
copy number variations (CNVs), translocations, and inversions (11).
CNVs, a specific type of structural variation typically ranging from
approximately 50bp to several 1 megabases, are primarily
characterized by deletions and duplications (12). These variants can
intersect with genes, altering their structure and expression, which in
turn results in phenotypic variability and increased susceptibility to
diseases in both humans (13, 14) and domestic animals (15-17).
CNVs account for a significant proportion of heritability loss observed
in genome-wide studies of certain traits. Although less prevalent than
other molecular markers within the genome, CNVs encompass larger
genomic regions and, consequently, exert significant effects on
phenotypic variability (18). Unlike SNPs, CNV's span larger genomic
regions and exhibit higher mutation rates, potentially having a more
substantial impact on gene structure, regulation, and expression (19).

Several studies have explored the genetic basis of economically
important traits and phenotypic variation in domestic rabbits.

10.3389/fvets.2025.1612883

Indigenous Chinese rabbit breeds exhibit significant phenotypic
diversity in coat color, body weight, body size, and meat quality, along
with considerable genetic variation. However, information on CNV's
in indigenous Chinese rabbits and their selection based on CNVs
remain unexplored. Therefore, this study aimed to elucidate the
genomic characteristics of JY and HP at the CNV level using whole-
genome resequencing. This research will enhance our understanding
of the physiology and genomic features of rabbits and provide a
theoretical basis for the future breeding of native Chinese breeds.

2 Materials and methods
2.1 Sample collection and DNA extraction

Ear tissues from two rabbit populations (JY and HP; Figure 1)
were collected from Hunan Hyplus Agriculture and Animal
Husbandry Technology Co., Ltd. (Ningyuan County, Hunan Province,
China). For genome sequencing, ear tissues were obtained from 28
male rabbits (13 JY and 15 HP). The sampled individuals had no direct
or collateral blood relationships within the previous three generations.
Genomic DNA was extracted using the standard phenol-chloroform
extraction method to construct DNA sequencing libraries. Genomic
DNA integrity and quality of were assessed using 0.5% agarose gel
electrophoresis and a Nanodrop spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, United States).

2.2 Sequencing data generation and CNV
calling

The sequencing libraries were prepared through a series of steps,
including random DNA fragmentation, purification to obtain
fragments of the desired length, adapter ligation, and DNA clustering.
Sequencing was performed on the Illumina Hiseq X Ten (Illumina, San
Diego, CA, United States) NGS platform at Gene Denovo Biotechnology
Company (Guangzhou, China) generating 150 bp paired-end (PE150)

FIGURE 1
Picture of two breeds of rabbits: (a) Jiuyishan rabbit; (b) Hyplus rabbit.
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read data. Each sample was sequenced at 10 x genome coverage.
Quality control procedures were implemented to eliminate adapter
contamination and low-quality reads based on the following criteria:
(1) reads containing >10% unidentified nucleotides (N) were discarded;
(2) reads where >50% of the bases had Phred quality scores <20 were
excluded; and (3) reads aligning to barcode adapters were removed. The
clean reads were aligned to the Oryctolagus cuniculus reference genome
(Ensembl release 107) obtained from NCBI using the Burrows—
Wheeler Aligner (BWA) software (version 0.7.19) (20) with default
parameters. Subsequently, CNVcaller software was employed for CNV
prediction relative to the OryCun 2.0 reference assembly (21). Firstly,
the reference database was partitioned and overlapping windows of
800 bp were recommended. Second, the read counts in each window
were calculated and reads with high similarity were merged into
segments corresponding to autosomes. Third, GC bias was applied to
normalize the copy number in each window, which facilitated the
classification of different genotypes for each sample. Finally, the CNV
calls were filtered using default parameters. CNV's were categorized as
duplication, deletions and duplication-deletion CNVR regions
(CNVR). The length of CNVR was defined as <50 kb for deletion and
both types, while the length of CNVR for duplications was <500 kb.

2.3 Population differentiation

In the principal component analysis (PCA), the VCEF files were
converted into the MAP and PED formats using PLINK software
(version 1.90). Subsequently, PCA was conducted using GCTA
software (version 1.91) with default settings. TreeBest software
(version 1.92) was employed to construct the evolutionary tree, which
was subsequently visualized using ITOL v7' (22) and a genomic
relationship matrix was constructed used GEMMA (R package) with
-gk and default option to estimate the kinship matrix.

2.4 Sweep selective analysis of the CNVR

The V; parameter between JY and HP was calculated to identify
differential CNVRs.

The Vsr operates on principles similar to the Fg; statistic, a
well-established measure for evaluating genetic differentiation
between populations, and provides an unbiased measure of the
Fsr. However, the Vi is tailored to quantify population differences
based on copy number variation data. The formula for Vg
is: Vg = (Vtotal _(Vpopl X Npopl + VpopZ x Npop2)/Ntotal)/Vtotal >
where V. represents the total variance in the copy number between
op1 ANd Vo,
population 1 and population 2, respectively. N, and N, represent the

the two groups, V, , are variances in the copy numbers within
sample sizes of populations 1 and 2, respectively. And N, is the total
sample size. Subsequently, the top 1% of areas, defined as those having
received strong selection, were identified. The CNVRs with the top 1%
Vir values were then selected as candidate regions for further analysis.
Functional enrichment analysis of these CNVRs was conducted
using ANNOVAR for annotation. Additionally, Gene Ontology (GO)

1 https://itol.embl.de/
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and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses were performed on the candidate CNV-associated genes using
KOBAS 3.0% (23). FDR was used to adjust the p-value, and the critical
value of the adjusted p-value with a significance threshold of <0.05.

3 Results
3.1 Identification of CNVR

Whole-genome sequencing of 13 JY and 15 HP rabbits was
conducted to detect genome-wide CNVRs and to compare the
differentiation between the two populations. The mapped read depth
ranged from 10.07 X to 12.99x, with an average depth of 10.77 x per
and the average mapping rate 98.30%
(Supplementary Table S1). These results indicated that the data were
of sufficient quality for further analysis. A total of 5,599 CNVRs were
obtained, with an average length of 3775.39 bp, covering 0.99% of the

sample, was

reference genome. These included 2,771 duplication CNVRs, 138
deletion CNVRs, and 2,690 duplication-deletion CNVRs
(Supplementary Table S2). A total of 565 CNVR identified on the
largest chromosome (chromosome 1) and 59 CNVRs for the smallest
chromosome (chromosome 21) (Figure 2a). The sizes of all CNVRs
showed an L-shaped distribution, which was detected in 1.6-282 kb,
with approximately 3,018 CNVRs (53.90%) between 2 and 5kb
(Figure 2b). There was a significant positive linear correlation between
the number of CNVRs and the corresponding chromosome length
(r=0.92, Figure 2c¢).

3.2 Population structure analysis

The heatmap of genomic relationships between individuals, as
shown in Supplementary Figure S1, indicates that individuals from each
samples are not clustered together. Principal component analysis (PCA)
was carried out to distinguish reproducible differences between JY and
HP populations (Figure 3a). The first two principal components (PC1:
23.04%, PC2: 7.14%) could separate JY and HP breeds. To verify the
repeatability of the samples from these two populations, genetic distances
among individual samples were calculated using an evolutionary tree
(Figure 3b). The results showed that CNVR clustering was readily
divided into two branches. This clustering-based approach corroborated
the findings of the PCA. Interestingly, the JY population exhibited
greater genetic separation within these breeds owing to duplication
events. In contrast to the HP rabbits, the JY rabbits may have experienced
less selective pressure, leading to numerous nonfunctional duplications.

3.3 Differentiated CNVRs between JY and
HP

All CNVRs were compared to the rabbit genome database, and Vst
analysis was performed for each CNVR-related gene to identify
population-specific selection signatures. The Manhattan plot shows the

2 http://bioinfo.org/kobas/
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FIGURE 2
Genomic diversity and distribution of CNVRs. (a) Distribution of CNVRs on chromosome ideogram according to their state. The CNVRs are illustrated
in green (delections), blue (duplications) and red (both of delections and duplications). (b) Distribution of CNVRs size by state. (c) Correlation between
CNVR counts and chromosome length.

results of Vst with chromosomes in the horizontal coordinates and Vst
values in vertical coordinates (Figure 4). Identifying genes with high
differentiation between different breeds. The top 0.01 was taken as the
threshold line (threshold: 1%, Vst = 0.7335). The results showed that 56
outlier loci that, overlapped with 27 genes, exceeded the threshold in the
two breeds (Supplementary Table 53). To better understand genes with
a high degree of variation among varieties. All genes were identified and
carried out to GO enrichment and KEGG pathways analyses. A total of
26 GO terms were enriched at level 2 GO enrichment, which included
cellular processes (GO:0009987), binding (GO:0005488), biological
regulation (GO:0065007), catalytic activity (GO:0003824), response to
stimulus (GO:0050896), and ATP-dependent activity (GO:0140657)
(Figure 5 and Supplementary Table S4). KEGG analysis revealed 19
pathways, including galactose metabolism (ko00052), carbohydrate
digestion and absorption (ko04973), cAMP signaling pathway
(k002010), ECM-receptor interaction (ko04512), and Fox0 signaling
pathway (ko04068) (Figure 6 and Supplementary Table S5). Among
them, galactose metabolism, carbohydrate digestion, and absorption
were significantly enriched.

4 Discussion

Domestication, followed by directional artificial and natural
selection, as well as several other genetic events, has shaped the
genomes of domestic animals, resulting in differentiation of numerous
breeds and populations within species (24). CNVs are crucial sources
of genetic diversity and show variations among animal breeds. Some
unique CNVs may have been selected during domestication,
contributing to species-specific traits. In recent years, CNVs have been

Frontiers in Veterinary Science

widely used as a supplementary tool in association studies, aiding in
the identification of genetic variants associated with economically
important traits and elucidating the genetic basis of these traits across
different livestock species (25). However, studies on rabbit CNV's
are limited.

In this study, we identified 5,599 CNVRs in two rabbit species
using the whole-genome resequencing (WGRS) technique. Compared
to previous studies based on array comparative genome hybridization
(26), we detected more than 30 times more CNVRs per rabbit
population. Additionally, our results demonstrate that WGRS and
long-read sequencing provide superior precision for breakpoint
identification, enhanced sensitivity, and higher resolution than array-
based technologies. Among the identified CNVRs, a positive linear
correlation was observed between the number of CNVRs and
chromosomes length. Additionally, the number of duplication events
exceeded that of deletions, a pattern consistent with findings reported
previously (27, 28). The inconsistencies in CNVR counts observed
across studies may be attributed to differences in sample sizes,
detection methods, and reference genomes. Consequently, most newly
identified CNVRs can be considered novel, thereby enriching existing
research on CNVs in rabbits. This is the first comprehensive
investigation of genomic CNVR maps across different
rabbit populations.

Genes located within CNVRs with diverse molecular functions
serve as valuable resources for elucidating the biological relationships
between CNVRs and the genetic basis of phenotypic variation. GO
enrichment analysis revealed that the detected CNVR-overlapping
genes in both rabbit breeds were significantly enriched in reproductive,
immune system, and developmental processes. The enrichment of
functional categories among CNV-harboring genes likely reflects

frontiersin.org


https://doi.org/10.3389/fvets.2025.1612883
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Wang et al.
7
L]
e
L]
Js
0.2 °
Hi5
HES ©
< Hi2 14
2 o
E 0.0 [ X ] o H
a
Js
-0.2 Jie
53
o U
A3
&
-0.4
-0.3 -0.2 0.1 0.2

-0.1 0.0
PC1(23.04%)

FIGURE 3

Analysis of population structure of two rabbit breeds. (a) PCA derived
from all CNVRs in two population genomes. Red nodes and blue
nodes represent the Hyplus and Jiuyishan rabbit groups, respectively.
(b) Evolutionary tree constructed from CNVRs. Red stripes and blue
stripes represent the Hyplus and Jiuyishan rabbit groups,
respectively.

targeted artificial selection of physical traits in rabbits. Under such
selective pressures, CNVs may accumulate in rabbit breeds, thereby
forming a genetic basis for important economic traits. A valuable
finding from KEGG pathway analysis was the cAMP signaling
pathway, which plays a pivotal role in coordinating complex cellular
processes, such as cellular growth and proliferation, differentiation,
hormone production, and secretion (29). As a secondary messenger,
cAMP regulates a broad spectrum of cellular functions in response to
the extracellular stimuli. Localized cAMP signaling elicits distinct
cellular responses. Studies have demonstrated that the cAMP signaling
pathway is crucial for regulating adipogenesis in both mice and rabbits
(30). Furthermore, evidence suggests its involvement in mammalian
ovarian function (31).

Regarding growth traits, several genes (HOMERI, NOSIAP,
PDE4B, and LEPROT) have been associated with fatty acid metabolism
and skeletal muscle development. HOMERI encodes a scaffold protein
primarily localized in postsynaptic structures, where it interacts with
metabolic glutamate receptors (32). Studies have shown that HOMERI
is involved in skeletal muscle contraction, development of skeletal
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muscle fibers, and regulation of Ca** channel activity (33). Nitric oxide
synthase 1 adaptor protein (NOSIAP) has been reported to be linked
to fatty acid metabolism in cattle (34). Additional studies indicated
that NOSIAP plays a critical role in regulating hepatic insulin
sensitivity and p38 MAPK inactivation in obese mice, highlighting its
potential as a therapeutic target for type 2 diabetes prevention and
treatment (35). PDE4B, a member of the PDE4 family that specifically
hydrolyzes intracellular cAMP, has been implicated in fat deposition
and may serve as a positional candidate gene for intramuscular fat in
pigs (36). The leptin receptor overlapping transcript (LEPROT) has
been suggested to play multiple roles in immune system regulation
(37). Furthermore, studies have demonstrated that LEPROT is
associated with fat synthesis and body weight in pigs (38).

In terms of reproductive traits, several notable genes were
identified, including FRAS1, CFAP43, TM9SF2, and CTNND?2.
FRASI encodes an extracellular matrix protein that plays a critical
role in epidermal basement membrane formation during gestation
(39). Mutations in this gene have been linked to Fraser syndrome
in humans (40), whereas polymorphisms in FRASI are highly
expressed in the oviducts of pigs and can serve as biomarkers of
sow fertility (41). Cilia- and flagella-associated protein 43
(CFAP43) has been implicated in multiple morphological
abnormalities of sperm flagella. Recent studies have reported that
CFAP43-null male mice exhibit infertility due to defects in the
sperm flagellar structure (42, 43). Furthermore, significant
correlations between CFAP43 expression levels and litter size in
goats have been reported (44). A previous study also identified
CNV in CFAP43 of domestic pigs that were associated with
reproductive traits (45). TM9SF2, a member of a highly conserved
transmembrane 9 protein superfamily characterized by nine
putative transmembrane domains, has been identified as a
candidate gene associated with sperm morphology and distal
midpiece reflex in a Duroc boar populations (46). The CTNND2
gene encodes delta-catenin protein, a key component of the
adherens junction complex, and plays an important role in
neuronal structure and function. Studies have demonstrated that
CTNND?2 participates in the regulation of cell proliferation and
influences the number of body segments in zebrafish (47).
Additionally, prior research has established a connection between
CTNND?2 and pig litter traits, as well as body size (48, 49). Notably,
CTNND2 plays an essential role in retinal morphogenesis,
adhesion, and the architectural integrity of retinal cells in animal
models (50). Based on these findings, it is reasonable to hypothesize
that CNV events involving CTNND?2 are involved in the regulation
of retinogenesis in domestic rabbits.

Given these critical functions, the genes harboring CNV identified
in this study emerge as promising molecular markers, which hold
significant potential for guiding future breeding strategies aimed at
enhancing indigenous Chinese rabbit breeds, these findings provide a
genetic basis for targeted improvements in traits relevant to livestock
production and health.

While this genome-wide CNV profiling of the two rabbit
populations provides valuable structural variation data, certain
limitations remain and should not be overlooked. The lack of
orthogonal biological validation—such as qPCR confirmation for
high-impact CNVRs—introduces uncertainty regarding the
accuracy of boundary delineation, especially for complex tandem
duplications. In future studies, we anticipate that additional
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structural variations between Jiuyishan rabbits and Hyplus
rabbits and identified 5,599 CNVRs. Among these, several
candidate genes were identified as potentially contributing to
growth traits (HOMERI, NOSIAP, PDE4B, and LEPROT) and
reproductive traits (FRAS1, CFAP43, TM9SF2, and CTNND?2).
These findings further illustrate genetic adaptations to
ecological niches and management practices, offering valuable
insights for precision breeding strategies aimed at improving
productivity. Although further biological validation is necessary,
our findings offer significant insights into the molecular
mechanisms underlying key phenotypic variations in rabbits.
Additionally, these results will facilitate future selection and
improvement of economically important traits in native Chinese
rabbit breeds.
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