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Introduction: Heart disease is a major cause of mortality in aging dogs and
cats, with cardiomegaly being the most frequent radiographic finding. While
deep learning methods have shown potential in detecting and quantifying
cardiomegaly, their integration into clinical veterinary practice remains limited
due to challenges in interpretability and workflow alignment.

Methods: We developed a deep learning framework for the automatic estimation
of Vertebral Heart Size (VHS) and Cardiothoracic Ratio (CTR) from thoracic
radiographs of dogs and cats. A diverse dataset collected from two veterinary
institutions was used. Segmentation of cardiac and thoracic anatomical regions
was performed using Mask R-CNN, followed by automatic measurement of
VHS and CTR. Model performance was evaluated against expert radiologist
annotations.

Results: The proposed framework demonstrated strong agreement with manual
evaluations. Pearson correlation coefficients reached 0.922 for VHS and 0.933
for CTR, with regression slopes close to unity and minimal intercepts. The
method was validated on both lateral and ventrodorsal projections, confirming
its versatility across common clinical views.

Discussion/conclusion: This work introduces an automated, robust approach
for cardiac size assessment in dogs and cats. By supporting objective and
reproducible measurements of VHS and CTR, the framework has potential to aid
in the early detection and monitoring of heart disease, particularly in veterinary
settings with limited access to specialized radiology expertise.

KEYWORDS

dogs, cats, cardiomegaly, thoracic radiography, vertebral heart scale, cardiothoracic
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1 Introduction

Heart disease is a significant cause of mortality in aging dogs and cats (1). Proactive
measures, including early detection and appropriate treatment strategies, are crucial
in enhancing the quality of life and extending the lifespan of affected pets. While
echocardiography remains the gold standard for diagnosing heart disease, providing
detailed insights into cardiac structure and function, plain radiographs are commonly
utilized for initial screening due to their rapid image acquisition and cost-effectiveness.
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Cardiomegaly, characterized by an enlarged cardiac silhouette on
thoracic radiographs, is a common indicator of heart disease. It
can be assessed using biomarkers such as the Vertebral Heart
Size (VHS), also known as the Buchanan Index (BI), and the
Cardiothoracic Ratio (CTR). VHS is a number that normalizes
heart size to body size using mid-thoracic vertebrae as units of
measure (2). It is evaluated from lateral thoracic radiographs
of dogs or cats by measuring the longest axis of the cardiac
silhouette, which extends from the tracheal carina to the cardiac
apex, and the short cardiac axis at the widest part of the cardiac
silhouette, perpendicular to the long axis. These measurements
are then transferred to the vertebrae, starting from the cranial
edge of the fourth thoracic vertebral unit (T4 vertebra), to
count the vertebral units encompassed by each measurement and
sum them to determine the value. CTR, on the other hand, is
the proportion between the widest horizontal measurement of
the heart and the widest horizontal measurement of the chest
cavity (thorax), observed from the inner surface of the ribs on
a ventrodorsal radiograph (3). In clinical veterinary practice,
where access to highly-trained radiologists is often limited, the
interpretation of radiographs frequently falls to less experienced
veterinarians. This further highlights the challenges of manually
assessing biomarkers like VHS and CTR, which are not only time-
consuming and labor-intensive but also prone to measurement
errors and interobserver variability.

To address these limitations, computer-aided diagnosis (CAD)
systems have recently emerged to assist veterinarians in evaluating
cardiomegaly, offering automated and consistent support for
more accurate assessments. Yoon et al. (4) applied convolutional
neural networks (CNN) and bag-of-features (BOF) to distinguish
normal cardiac silhouettes from cardiomegaly, with CNN achieving
superior performance, exceeding 95% in accuracy, sensitivity,
and specificity. Building upon the success of CNN-based
approaches, Burti et al. (5) developed a similar method to
classify radiographs of dogs as having normal cardiac silhouettes
(No-VHS-Cardiomegaly) or enlarged cardiac silhouettes (VHS-
Cardiomegaly). Using models such as Inception V3, Inception-
ResNet V2, VGG-19, and ResNet-101, they reported an area under
the curve (AUC) exceeding 90% for all models, further emphasizing
the potential of CNNs in this domain. Zhang et al. (6) extended
these efforts by using high-resolution networks (HRNets) to detect
16 key anatomical landmarks (12 on vertebrae and 4 on the
heart) in canine X-rays, enabling automated VHS calculation.
This approach achieved an average performance (AP) of 90.9%,
highlighting its robustness in facilitating cardiomegaly assessments.
Similarly, Boissady et al. (7) employed a 121-layer DenseNet with
attention mechanisms to predict cardiac and vertebral landmarks
on lateral radiographs of cats and dogs. Their method achieved
excellent agreement in VHS measurements between Al and human
observers, with an intraclass correlation coefficient (ICC) of
0.998. In addition to VHS-based methods, alternative approaches
have also been explored. Jeong and Sung (8) proposed a novel
strategy for quantifying canine heart size using the adjusted heart
volume index (aHVTI). Their method combined attention U-Net for
segmentation and advanced measurement techniques, achieving an
AUC of 0.83 in detecting left atrial and ventricular enlargement.
More recently, Li and Zhang (9) introduced a regressive vision
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transformer model with an orthogonal layer to predict VHS
scores and classify canine cardiomegaly, achieving a classification
accuracy of 87.3%. Finally, Zhang et al. (10) used diffusion
models to generate synthetic images annotated with vertebral
heart score key points, thereby expanding the training dataset. In
addition, they employed a pseudolabeling strategy to identify high-
confidence predictions, which were then used to iteratively refine
the synthetic dataset.

Deep learning approaches have also been introduced to assist
with CTR assessments for diagnosing cardiomegaly in human chest
X-rays (CXRs). These methods predominantly rely on lung and
heart segmentation to calculate CTR. Li et al. (11) demonstrated
the effectiveness of a 2D U-Net architecture, achieving an accuracy
of 95.3%. Chaisangmongkon et al. (12) evaluated four U-Net
variants: VGG-11 U-Net, VGG-16 U-Net, SegNet, and AlbuNet,
with AlbuNet demonstrating the highest accuracy of 96.32%.
Ajmera et al. (13) employed an Attention U-Net, obtaining an
accuracy of 94.96%, while Chou et al. (14) implemented AlbuNet-
34, a U-Net variant incorporating ResNet as an encoder, achieving
an accuracy of 94.9%.

While previous studies have demonstrated the effectiveness of
deep learning in cardiomegaly classification and VHS estimation
in veterinary radiographs, several limitations remain. Despite
its clinical significance in human radiology, no prior veterinary
study has implemented automatic CTR estimation. Existing
studies have focused solely on automatic VHS estimation, which
is limited to lateromedial (LM) radiographs, whereas ventrodorsal
(VD) views provide crucial complementary information for
cardiac assessment. Additionally, most cardiomegaly detection
approaches have primarily emphasized classification or landmark
detection rather than direct anatomical measurements, reducing
their interpretability in clinical practice. Furthermore, these
approaches are constrained by limited data diversity, which
may not fully capture variations in imaging techniques,
patient positioning, or breed differences, thereby affecting
model generalizability.

Given these gaps, the objective of this study is twofold: (1)
to develop a fully automated deep learning algorithm for VHS
estimation from LM radiographs and CTR estimation from VD
radiographs of dogs and cats in a robust manner, and (2) to evaluate
the agreement between the automated predictions and those of
human readers, thereby assessing the algorithm’s reliability and
consistency in clinical settings. To the best of our knowledge, the
proposed work is the first to implement automatic CTR estimation
in radiographs of dogs and cats. The main contributions of this
study are summarized as follows:

1. Providing dual estimation of VHS and CTR to enhance clinical
utility for comprehensive cardiac assessment;

2. Utilizing a diverse dataset from multiple veterinary
institutions, capturing a variety of imaging techniques and
patient demographics;

3. Integrating precise anatomical segmentation and measurement
processes, offering reliable and interpretable metrics that align
with clinical practice.

4. Conducting independent observer validation to ensure robust

assessment of the automated measurements.
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Beyond architectural novelty, our contribution lies in the
clinical relevance, robustness, and integration of deep learning
into a practical veterinary workflow. By combining anatomical
segmentation with precise measurement of VHS and CTR, our
end-to-end approach directly addresses real clinical needs in
veterinary cardiology. It enhances interpretability, aligns with
standard clinical practice, and demonstrates strong agreement with
expert manual assessments, key factors for fostering trust and
adoption in clinical settings.

2 Materials and methods
2.1 Materials

2.1.1 Database construction

Thoracic radiographs of dogs and cats were collected from
routine clinical examinations conducted at two veterinary centers:
Integral Clinica Veterinaria Cullera and Hospital Veterinario
Bluecare. These examinations utilized Sedecal Neovet SHF-210
X-ray generation systems, equipped with the E7239 X model X-
ray tube. The acquisition system comprised a Vieworks Vivix-
S 4343V wired digital radiology detector paired with DxWorks
(VxVue) acquisition software. Both the detector and the software
are CE Mark-certified. For standardization, animal positioning
during radiographic acquisition was guided by a Spanish manual
(15). Radiographic techniques adhered to the ALARA principle (as
low as reasonably achievable), minimizing radiation exposure while
ensuring diagnostic quality.

2.1.2 Training and validation datasets

This study used LM and VD thoracic radiographs of dogs
and cats acquired between September 2023 and April 2024.
Technicians at each center performed a preliminary quality check,
and images were selected based on predefined quality criteria.
Radiographs were excluded if they did not depict thoracic regions,
showed abnormal or incomplete fields of view, exhibited incorrect
positioning, or had poor exposure. Following this evaluation, 199
LM and 200 VD images were selected from the picture archiving
and communication systems (PACS) of the institutions. These
numbers reflect both the patient volume at the veterinary centers
and the data volume necessary for training the deep learning
algorithm. The dataset was then split into training and validation
subsets with an 80-20 ratio.

Table 1 summarizes the dataset used. Notably, we intentionally
do not differentiate between dogs and cats images. Given that
both species undergo the same clinical imaging protocol and that
the primary objective of this study is to develop a generalizable
framework applicable across species, we combined the data into a
single, more heterogeneous dataset.

2.1.3 Test dataset and observer study dataset

The test dataset consisted of 144 radiographic images, including
39 LM and 37 VD images from Integral Clinica Veterinaria Cullera,
and 37 LM and 31 VD images from Hospital Veterinario Bluecare.
VHS for LM images and CTR for VD images were manually
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TABLE 1 Summary of training and validation datasets used for VHS and
CTR estimation.

View postion Training

Validation

VD 160 40 200

calculated by each center specialist team. In total, 5 veterinary
specialists participated in the annotations, 3 from Bluecare and 2
from Cullera Clinic, with varying levels of expertise. Each team
included an expert veterinary radiologist, supported by veterinary
anesthesiologists and neurologists. To minimize inconsistencies in
annotations, an additional validation step was performed by the
expert radiologist at each center. Moreover, regular coordination
meetings between teams helped to harmonize imaging quality
protocols and improve annotation consistency. These manual
assessments served as a reference for evaluating the performance
of the proposed automated estimation method.

From this test set, we conducted a inter-observer study by
having the specialists from one center evaluate images from the
other. This observer study dataset comprised a total of 56 images,
20 VD images, and 5 LM images from Integral Clinica Veterinaria
Cullera, and 19 VD images and 12 LM images from Hospital
Veterinario Bluecare.

2.1.4 Data preprocessing

The workflow began with the automatic extraction of key
attributes from the DICOM tags, including filename, patient
number, view position, and patient comments. Depending on
the view position, specific ground-truth annotations were then
recorded: for LM images, these included VHS, cardiac long and
short axis lengths, and the number of vertebral units occupied
by each axis starting from the T4 vertebra; for VD images, these
included CTR and the transverse diameters of both the thorax
and heart. To minimize transcription errors, DICOM metadata
extraction was automatically performed and verified against a
random sample, while all manual annotations were stored in a
standardized CSV format. Finally, the CSV file was cross-checked
by an expert veterinary radiologist. Regarding patient information
and anonymization, only the patient number (numerical code) was
retained to link cases across datasets while ensuring confidentiality.

The radiographs, initially in DICOM format, were converted to
Portable Network Graphics (PNG) format for further processing.
This conversion took into account the photometric interpretation
tag, with windowing applied as needed. Subsequently, the images
underwent normalization, with their intensity values rescaled to
8-bits. To ensure that only relevant information is analyzed,
the images were automatically cropped to focus on the region
of interest (RolI), the central rectangular region containing
the patient’s thorax, excluding the surrounding brighter area,
as depicted in Figure 1. You Only Look Once version 8-m
(YOLOvV8m), a convolutional network-based object detection
model pre-trained on the COCO (Common Objects in Context)
dataset, was employed to identify and locate the Rol. YOLOv8m
was chosen among different variants of YOLOVS to have a good
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(a)

FIGURE 1

Cropping the pet's X-ray scan: (a) original image with non-relevant regions blurred for clarity, (b) region of interest (Rol) detected by YOLO

highlighted in red, and (c) final cropped image used for analysis.

(©)

balance of speed and accuracy. The model was trained using
Ultralytics," a library providing an optimized implementation
of YOLO, offering various tools and functionalities for object
detection and deep learning workflows. The training was
performed in batches of eight images using the stochastic gradient
descent (SGD) optimizer. Ultimately, the bounding box predicted
by the trained model was used to crop the image, isolating the
thoracic region for focused analysis. This initial automatic crop was
also subsequently validated and refined by clinicians.

2.1.5 Data annotation

Manual annotations were performed to provide accurate
ground-truth data for model training and validation, ensuring
reliable segmentation of the relevant anatomical structures.
Specifically, in LM images, the heart, the sixth thoracic vertebral
unit (T6 vertebra), and the carina were annotated, while in VD
images, the heart and thorax were annotated. Labelme,? an open-
source graphical annotation tool for image and video labeling that
supports polygonal, rectangular, and keypoint annotations (16),
was used for precise delineation of these anatomical structures.
Polygon annotations were initially saved in JSON format and
subsequently converted to COCO format to ensure compatibility
with the training pipelines. These annotations were then used
to train and validate segmentation models designed to detect
anatomical regions essential for the estimation of VHS and CTR.
All annotations were reviewed by two experienced radiologists to
eliminate potential errors.

It is important to note that the test set did not include
these segmentation annotations, but rather VHS and CTR values
manually computed by the expert teams. Consequently, the
evaluation of automatic VHS and CTR estimation was performed

1 https://docs.ultralytics.com/

2 https://labelme.io/
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using the observer study dataset, which served as the benchmark
for assessing the accuracy of our approach.

2.2 Methods

The overall methodology employed in this study is depicted
in Figure 2. It includes three key steps: segmentation of different
regions in the thorax, estimation of anatomical features, and
calculation of the biomarkers.

2.2.1 Segmentation model

Mask R-CNN (17), a popular deep learning technique for object
instance segmentation, was employed in this study to segment the
heart, T6 vertebra, and carina from LM images, as well as the
heart and thorax from VD images. The model is composed of
several key components: a backbone, a Region Proposal Network
(RPN), a Region of Interest Alignment (Rol Align) layer, an
object detection head, and a mask generation head, as shown
in Figure 2. The ResNet-50 backbone with a Feature Pyramid
Network (FPN) architecture was adopted as a feature extractor.
FPN is a network architecture that addresses scale variance in
object detection and instance segmentation by combining low-
level and high-level features from different stages of a backbone
network to create multi-scale feature maps for detecting objects of
various sizes. When a radiograph is fed into the ResNet backbone,
it passes through multiple residual bottleneck blocks, resulting in
a feature map that encapsulates abstract representations of the
image. The RPN scans this feature map to propose regions likely
to contain anatomical structures of interest, employing anchor
boxes of varying scales and aspect ratios to densely cover spatial
locations in the input image. These anchor boxes are then refined
based on learned features, serving as reference bounding boxes for
subsequent processing. The Rol Align layer then extracts feature
vectors from the feature map based on the Rols proposed by the
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FIGURE 2

segment the heart and thorax, facilitating the estimation of CTR.

Overview of the methodology for estimating VHS and CTR from thoracic radiographs. LM images are processed by the segmentation model M; to
segment the heart, trachea, and T6 vertebra, enabling the estimation of VHS, while VD images are processed by the segmentation model M, to

R
; b L.
Cardiac a_xes [
and T6 size f

estimation

t |
— - .
estimation

Cardiac axes and T6
size measurements

Masks of the heart, T6
vertebra, and carina

Cardiac size
e 2Nd thorax size
estimation

CTR
— [N
estimation

heart size and thorax
size measurements

Masks of the heart
and thorax

RPN and transforms them into a fixed-size tensor. This refined
feature map is processed by two parallel branches: the object
detection branch and the mask generation branch. In the object
detection branch, the model predicts the object category and refines
the instance bounding box for each Rol using a fully connected
layer that maps feature vectors to a final set of n object classes and
4n corresponding bounding box coordinates. Meanwhile, the mask
generation branch operates as a fully convolutional network, where
the Rol feature map is passed through a transposed convolutional
layer and a convolutional layer to produce a binary segmentation
mask for each class. For each anatomical structure of interest,
the mask head outputs a probability map for each pixel within
the bounding box region of the structure. These probability maps
are subsequently thresholded using a value of 0.5 to create binary
masks, precisely delineating the exact pixels occupied by each
structure. Two distinct Mask R-CNN models were trained in this
study: M; for segmenting the heart, T6 vertebra, and carina from
LM images, and M, for segmenting the heart and thorax from
VD images.

2.2.2 VHS and CTR estimation

After obtaining the segmentation masks of the heart, T6
vertebra, and tracheal carina from M, the contours of each region
were identified to facilitate further analysis. The intersection region
between the tracheal carina and the heart was determined using
their respective contours. Within this intersection, the carina point
was defined as the central point along the x-axis and the uppermost
point along the y-axis. The apex point, identified as the farthest
point on the heart contour from the carina point, was then located.
The long axis (L) of the cardiac silhouette was measured as the
distance between the carina point and the apex point, while the
short axis (S) was measured at the widest part of the cardiac
silhouette, perpendicular to the long axis. To estimate the size of
the T6 vertebra (Te), the major axis of an ellipse fitted to the
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T6 vertebra contour was measured. Finally, VHS was calculated
using Equation 1, where the sum of the cardiac long and short axes
was divided by the size of the T6 vertebra. Only Jeong and Sung
(8) has proposed the use of a single vertebra (specifically T4) as
a normalizing factor for a novel cardiac index. Building on this
approach and based on our initial experiments, we proposed using
the T6 vertebra to normalize the patient’s heart size. Our findings
demonstrate that the T6 vertebra provides better results than the
T4 vertebra (see Section 4), and to the best of our knowledge, this
approach has not been previously proposed.

L+S

6

VHS =

(1)

Once the segmentation masks of the heart and thorax were
obtained from M, the contours of both regions were identified
and smoothed using B-spline interpolation to ensure accurate
boundary representation. The widest transverse dimension of the
heart (H,) was then measured as the distance between the leftmost
and rightmost points on the heart contour. Similarly, the widest
transverse dimension of the thorax (7T;) was measured as the
distance between the leftmost and rightmost points on the thorax
contour. Finally, CTR was calculated as the ratio of the hearts
widest transverse dimension to that of the thorax, as defined in
Equation 2. The process of measuring the cardiac axes and the
T6 vertebra for VHS estimation, as well as the heart and thorax
dimensions for CTR estimation, is shown in Figure 3.

H,
CTR= —= 2
T @)

2.2.3 Evaluation metrics
For algorithm development and initial quantitative evaluation,
we used the manual segmentations performed under expert
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(a)

FIGURE 3

Thoracic radiographs illustrating cardiac assessment. (a) Lateral projection demonstrating the cardiac axes and T6 vertebra used for VHS estimation.
(b) Ventrodorsal projection depicting heart and thorax dimensions for CTR estimation.

supervision, providing precise anatomical references necessary
for model training. However, the core of the clinical evaluation
and the algorithm reliability assessment was performed using
the annotations directly obtained from experienced veterinary
radiologists. This expert-based evaluation is crucial, as it ensures
that the algorithm’s performance is measured against the highest
clinical standards, thereby validating its practical utility and
trustworthiness in real veterinary practice.

Therefore, on the one hand, the Dice Similarity Coefficient
(DSC) was employed to evaluate the performance of the
segmentation models on the validation set. The DSC quantifies
the similarity between the predicted segmentation mask and the
ground-truth mask on a pixel-by-pixel basis. It ranges from 0 to
1, where 0 indicates no overlap and 1 represents perfect overlap.
Higher DSC values correspond to better segmentation accuracy and
improved model performance. The DSC is computed according to
Equation 3, where |P N G| denotes the number of pixels common
to both the predicted mask PP and the ground-truth mask G, while
|P| and |G| denote the total number of pixels in the predicted and
ground-truth masks, respectively:

21PN G

DSC=——
|P + |G|

3)

On the other hand, to assess the clinical similarity between VHS
and CTR measurements, two complementary metrics were used.
First, the Root Mean Squared Error (RMSE), defined as the square
root of the average squared differences between ground-truth and
estimated values, quantifies the magnitude of deviations between
automatic and manual VHS and CTR estimates. Second, the
Pearson Correlation Coefficient (PCC) was calculated to evaluate
the linear correlation and similarity between these measurements.
In addition, we used Bland-Altman plots to analyze the inter-
observer study.
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2.2.4 Experimental settings

The segmentation models were trained using Detectron2 (v0.6),
an open-source computer vision library built on PyTorch. To
accelerate training and enhance performance, transfer learning
was employed by initializing the models with pre-trained weights
from the COCO dataset. COCO is a widely recognized benchmark
dataset for research in object detection, instance segmentation, and
image captioning. It comprises 328,000 images of everyday objects
and humans, annotated with bounding boxes and segmentation
masks for 91 distinct object categories. Leveraging the pre-trained
weights enabled the models to utilize generic low-level features,
such as edges and textures, learned from a large dataset, while
fine-tuning adapted these features to the specific requirements
of our domain. This approach effectively transferred pre-trained
knowledge to our domain-specific task, mitigating challenges
associated with limited training data.

For this experiment, the shorter side of the input images was
resized to 800 pixels, while the longer side was constrained to
a maximum of 1,333 pixels, preserving the aspect ratio. These
settings ensured that images were uniformly scaled, facilitating
consistent training. Additionally, data augmentation was employed
by randomly flipping images horizontally with a 50% probability,
enhancing the model’s robustness to variations in the data. The
training was conducted on an NVIDIA A30 GPU with 24 GB of
memory, utilizing CUDA for accelerated computation. The model
was trained with a batch of 2 images and optimized using stochastic
gradient descent (SGD) with a momentum of 0.9 and a weight
decay of 0.0001. The loss function consisted of a combination of
cross-entropy loss for classification, smooth L1 loss for bounding
box regression, and binary cross-entropy loss for mask prediction,
enabling comprehensive optimization across different components.
Performance monitoring and early stopping were conducted using
the mean Average Precision (mAP) calculated over a range of
IoU thresholds from 0.5 to 0.95, with a step of 0.05. The training
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TABLE 2 Summary of training parameters for models M1 and M2,
including the learning rate, number of training epochs, and the number of
sampled Rols per image during the training process.

Model Learing rate Epochs Sampled Rols per
image

M, 0.0025 40 512

M, 0.0025 56 256

parameters used to finetune the segmentation models are described
in Table 2.

3 Results

We first evaluate the performance of the deep learning
models for VHS and CTR evaluation using the validation dataset.
Subsequently, we evaluate the clinical significance of the algorithm
using the independent test dataset. We finalize the evaluation
comparing our algorithm with the observer study.

3.1 VHS estimation model

3.1.1 Performance in segmentation of the heart,
T6 vertebra, and carina

The mean DSC for the segmentation of the heart, T6 vertebra,
and carina in the validation dataset was 94.2%, 62.6%, and
68.9%, respectively. The high DSC achieved for heart segmentation
highlights the model’s effectiveness in accurately capturing the
anatomical features of the heart within the images. With a median
dice score of 87%, the segmentation model performs well in
capturing and delineating the structure of the T6 vertebra in
most cases. However, in some cases, the model segmented the
fifth thoracic vertebral unit (T5 vertebra) or seventh thoracic
vertebral unit (T7 vertebra) instead of the T6 vertebra, leading
to a lower mean DSC. This mis-segmentation arises due to the
relative positioning and structural similarities among T5, T6, and
T7 vertebrae. Despite this, the use of a specific vertebra, such as T6,
is not critical for the normalization process in the VHS calculation,
as the T5, T6, and T7 vertebrae exhibit similar dimensions. The
normalization process is generally robust to minor positional
changes or variations introduced by selecting an adjacent vertebra.
By excluding 9 cases where the model mis-segmented the T5 or
T7 vertebra instead of the T6 vertebra, the mean DSC for the
T6 vertebra improves significantly from 62.6% to 80.8% as shown
in Figure 4. Excluding the mis-segmented cases demonstrates the
model’s potential to achieve high segmentation performance for
the T6 vertebra, emphasizing that the primary challenge lies in
distinguishing adjacent vertebrae rather than the segmentation
process itself. The dice score for carina detection is considered
acceptable, as the focus is on achieving overall localization of
the region.

3.1.2 Performance of VHS calculation
Figure 5 illustrates the cardiac axes derived from the contours
of the heart and carina, demonstrating their precise orientation
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consistent with anatomical structure. The longest axis extends
from the tracheal carina to the cardiac apex, while the short axis
intersects the widest part of the cardiac silhouette perpendicularly
to the longest axis, reflecting clinical practice. The VHS estimation
method demonstrated significant performance, achieving a PCC of
0.833, indicating a strong linear relationship between the ground-
truth and estimated values as shown in Figure 6. Additionally, the
method achieved a RMSE of 0.654, reflecting its high accuracy in
estimating the VHS.

3.2 CTR estimation model

3.2.1 Performance in segmentation of the heart
and thorax

The
performance in segmenting both the heart and thoracic region on

segmentation model M, demonstrated excellent
the validation set, achieving an average DSC of 97.4% for the heart
and 97.6% for the thorax. The median DSC values were 97.9%
for the heart and 97.8% for the thorax, indicating consistently
high segmentation accuracy across the dataset. Furthermore, the
model maintained robust performance even in challenging cases,
with minimum DSC values of 91.8% for the heart and 94.9% for
the thorax. Figure 7 illustrates box plots of the DSC distributions
for both anatomical structures, further highlighting the model’s
reliability and precision.

3.2.2 Performance of CTR calculation

Figure 8 provides a qualitative illustration of the model-
derived measurements of heart and chest sizes, extracted from
the corresponding heart and thoracic contours generated
by the The
boundaries enable a visually coherent estimation of cardiac

segmentation model. extracted anatomical
and thoracic dimensions, with results that align well with
established clinical practices. While the qualitative consistency
supports the model’s practical applicability, the quantitative
performance of CTR estimation is not presented, as ground-
CTR were not

truth annotations for available for the

validation dataset.

3.3 Clinical evaluation of the deep learning
algorithms

The performance of the VHS and CTR estimation models
was assessed relative to the manual assessments conducted by
the expert teams from Cullera and Bluecare. Figures9, 10
illustrate the correlation between automatically estimated and
manually calculated VHS and CTR values, respectively, across
the test dataset. We included in the caption the slope and
interception of the regression fit to provide a more quantitative
and interpretable measure of agreement between the automatic and
manual annotations.

For VHS, the results indicate a strong linear correlation
between the model predictions and the manual assessments,
with PCC values of 0.899 and 0.922 for Bluecare and Cullera,
respectively. The agreement between manual and automated
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Box plots of DSC for the segmentation of the heart, T6 vertebra, and carina. (a) DSC distribution for the entire validation dataset (40 cases). (b) DSC
distribution with cases of T6 vertebra mis-segmentation excluded (31 cases).
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FIGURE 5

cardiac axes, while the green line represents the T6 vertebra size.

Representative examples of cardiac axes and T6 vertebra size estimation on validation images. Blue, yellow, and magenta contours represent the
heart, tracheal carina, and T6 vertebra, respectively. The cyan outline depicts the ellipse fitted to the T6 vertebra contour. Red lines indicate the

measurements are further supported by the regression equations,
yielding slopes of 0.95 and 0.92 and interceptions of 0.24 and
0.89, respectively. Notice that a slope close to 1 and a small
positive intercept suggest minimal systematic bias, reinforcing the
reliability and robustness of the proposed method. For CTR, we
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obtained strong correlations with manual measurements (PCC =

0.93 and 0.85 for Bluecare and Cullera, respectively). However,
the regression analysis revealed slopes of 0.78 and 0.66 with
intercepts of 0.14 and 0.21, indicating a tendency to underestimate

higher values.
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Box plots of DSC for the segmentation of the heart and thorax (40
images).

The root mean square error (RMSE) between the model’s
predictions and manual calculations further complements these
findings. For VHS, the RMSE values are 0.607 and 0.587 for
Bluecare and Cullera, respectively. Given that the mean VHS value
is around 10 vertebral units, these deviations represent an error of
approximately 6%, which indicates a high level of agreement. In
terms of Mean Absolute Error (MAE), the corresponding values
are 0.51 and 0.41. These results are slightly better than the RMSE
0f 0.654 observed on the validation dataset, showing the robustness
of the algorithm. Similarly, for CTR, the RMSE values are 0.031
and 0.043, which correspond to deviations below 7% with respect
to the mean CTR value of 0.66. These low errors further support
the accuracy and reliability of the automatic measurements.

We can further study the performance of the algorithms
computing the 95% confidence intervals for the ground-truth and
the automatically estimated VHS and CTR values across the test

Frontiersin Veterinary Science

10.3389/fvets.2025.1612338

dataset, which are shown in Table 3. For VHS, the estimated
intervals closely align with the ground-truth, demonstrating
the model’s accuracy. In Bluecare, the estimated range slightly
underestimates both the lower and upper bounds of the ground-
truth, while, in Cullera, the estimated interval slightly overestimates
both bounds of the ground-truth, reflecting a minimal upward
shift. For CTR, the estimated intervals also show strong agreement
with the ground-truth. In Bluecare, the estimated range overlaps
extensively with the ground-truth, and in Cullera, the estimated
interval slightly narrows variability compared to the ground-truth
but remains consistent with its central tendency.

Finally, Figure 11 presents a qualitative comparison between
manual annotations and automatic VHS estimations. The figure
demonstrates that the orientation of the automatically estimated
cardiac axes closely aligns with the expert manual annotations.
Key landmarks, such as the carina and apex, are accurately
localized by the automated method, ensuring robust determination
of the longest cardiac axis. Moreover, the automatically calculated
VHS values are consistent with the manual measurements,
underscoring the reliability of the automated system for clinical
use. Similarly, Figure 12 illustrates the comparison between manual
The results show that the
automatically estimated heart and thorax dimensions closely match

and automatic CTR estimations.

the expert annotations. Additionally, the automatically calculated
CTR values are nearly identical to the manual measurements,
further demonstrating the accuracy and effectiveness of the
automated approach in providing precise clinical assessments.

3.4 Human observer study

To compare the performance of the automatic tools with
human raters, we performed an inter-observer study with a subset
of the images. In this study, images from both centers were
independently evaluated by the experts’ teams of both centers. The
results for VHS estimation are shown in terms of Bland-Altman
plots in Figure 13. In the plots, circles and crosses were used to
denote the acquisition center of each image.

The Bland-Altman plot comparing Observer 1 and Observer
2 (the two clinical centers) shows a mean bias of 0.36, indicating
a systematic difference between the two raters. However, given
that the VHS measurement range lies between 8 and 12, a
bias of 0.36 remains relatively small (3% — 4%) and may be
considered acceptable on the required level of precision for
clinical interpretation.

On the other hand, the comparisons between manual
observations and the automatic estimation method reveal lower
biases: 0.2412 for Observer 1 and —0.1229 for Observer 2 2% —
3% and 1% — 1.5%, respectively). These values suggest a better
systematic agreement with the automatic method than between the
two manual raters. Across all three comparisons, the 95% limits
of agreement were of similar magnitude, indicating comparable
variability. Most points lay within these limits, with only a few
outliers observed. In general, the Bland-Altman analysis indicates
that the automatic method could be a viable alternative.

Figure 14 shows the Bland-Altman plots for the CTR
measurement. In this case, the Bland-Altman plot comparing
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FIGURE 8
Representative examples of cardiac and thoracic size estimations on validation images. Blue and cyan contours denote the thorax and heart
boundaries, respectively. The yellow line indicates thorax size, while the magenta line represents heart size.
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FIGURE 9
Correlation plots comparing VHS estimations from the model with observer measurements: (a) model estimations vs. observer from Bluecare

(regression line is y = 0.95x + 0.24) and (b) model estimations vs. observer from Cullera (regression line is y = 0.92x + 0.89). Respectively, 34 and 39
cases.

the two clinical centers shows more agreement than in the
VHS case, with a bias of 0.065 (only 1% of disagreement). In
contrast, the comparisons of each observer with the automatic

estimation display show larger mean biases (0.0178 and 0.0113,
respectively) and slightly wider limits of agreement, indicating
greater variability between human and automated measurements.
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FIGURE 10

Correlation plots comparing CTR estimations from the model with observer measurements: (a) model estimations vs. observer from Bluecare
(regression line is y = 0.78x + 0.15) and (b) model estimations vs. observer from Cullera (regression line is y = 0.66x + 0.21). Respectively, 34 and 39

cases.
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TABLE 3 Comparison of 95% confidence intervals for ground-truth and
automatically estimated VHS and CTR in the observer study dataset.

Biomarker ground-truth Estimated
Bluecare Cullera Bluecare Cullera
VHS (9.881, (8.364, (9.577, (8.573,
10.702) 9.289) 10.443) 9.497)
CTR (0.630, (0.687, (0.637, (0.668,
0.693) 0.732) 0.689) 0.703)

Overall, the automated approach broadly agrees with human
ratings but is less precise than inter-observer agreement.

4 Discussion

This study aimed to develop a deep learning framework
for automatic estimation of VHS and CTR in dogs and cats
from thoracic radiographs, leveraging Mask R-CNN-based
segmentation models and subsequent anatomical measurements.
The results obtained underscore the robustness of the proposed
methodology, with strong correlations between automated
predictions and manual assessments, while also identifying notable
areas for improvement.

The T6 vertebra was used to normalize the patient’s heart size
relative to body size in this study. The use of the T4 vertebra as a
normalizing factor, as described in Jeong and Sung (8), was also
investigated. However, the experiments demonstrated a stronger
correlation with the T6 vertebra. This may be attributed to the
T6 vertebra’s central position within the thoracic spine, which
likely provides a more representative and consistent reference point
for normalizing heart size across diverse patients. Future research
could explore the inclusion of intervertebral space measurements
to further refine VHS estimation.

The
performance in segmenting the heart, achieving a mean DSC of

segmentation model M; demonstrated significant
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94.2%. However, its performance was comparatively lower for
more challenging structures, such as the T6 vertebra and the carina,
which yielded mean DSCs of 62.6% and 68.9%, respectively. The
segmentation inaccuracies for the T6 vertebra primarily stemmed
from structural similarities and relative positional variations
among adjacent vertebrae (T5, T6, and T7). Despite these issues, it
is noteworthy that the VHS calculation process remained robust to
these variations, as adjacent vertebrae exhibit similar dimensions.
When excluding cases of mis-segmented vertebrae, the mean DSC
for the T6 vertebra improved significantly to 80.8%, emphasizing
the potential for enhanced performance with refined training data
or additional anatomical landmarks for differentiation. Similarly,
the carina, being a relatively small and anatomically complex
structure, posed a challenge for accurate segmentation due to its
indistinct and variable boundaries across different radiographs.
The
performance in segmenting the heart and thoracic regions,

segmentation model M, showcased outstanding
achieving mean DSCs of 97.4% and 97.6%, respectively. These
results highlight the model’s ability to generalize effectively
across a diverse testing dataset. This high segmentation accuracy
significantly contributed to the reliable calculation of the CTR,
demonstrating the model’s potential for seamless integration into
clinical workflows.

The VHS estimation model exhibited strong agreement with
manual assessments, achieving a PCC of 0.833 and an RMSE
of 0.654 on the testing dataset. These metrics show the model’s
ability to provide accurate and consistent measurements aligned
with radiological practices. Additionally, the method’s robustness
was highlighted in observer study datasets, where PCCs of 0.899
(Bluecare) and 0.922 (Cullera) were achieved with slope similar
to 1 and intersection close to 0, suggesting no bias in the results.
These results demonstrate the model’s effectiveness in adapting
to real-world variability in radiographs. In addition, the CTR
estimation also achieved a comparable level of agreement with
manual measurements, reflected in a PCC of 0.933 (Bluecare)
and 0.856 (Cullera), with RMSE values of 0.031 for Bluecare and
0.043 for Cullera. The consistency in CTR measurements can be

frontiersin.org


https://doi.org/10.3389/fvets.2025.1612338
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Mekonnen et al.

10.3389/fvets.2025.1612338

Bl=6.0+50=1.0"

(@)

FIGURE 11

Comparison of manual annotation (a) and automatic estimation (b) of VHS, where V1 in (a) indicates the number of vertebrae that fall within the
cardiac long axis length starting from T4, and V2 in (a) indicates the number of vertebrae that fall within the cardiac short axis length starting from T4.
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FIGURE 12

Comparison of manual annotation (a) and automatic estimation (b) of CTR.

attributed to the high accuracy of M, in segmenting the thoracic
and cardiac regions, highlighting the reliability of the framework
for detecting cardiomegaly in ventrodorsal radiographs.

The clinical study, performed using the test dataset,
demonstrated strong correlations between automated and
manual assessments, validating the clinical applicability of the
proposed framework. The mean absolute error between automatic
and manual VHS measurements was approximately 0.5 cm. This
is comparable to the mean intra-group difference of 0.5 vertebral
units (v) reported by Hansson et al. (18) for human observers, and
significantly lower than the interobserver difference of 1.0 &= 0.3v.
Such a level of agreement suggests that our automated method
performs on par with trained human experts. Similarly, we
observed differences between the Bluecare and Cullera observers,
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which may reflect interobserver variability and potentially image
acquisition differences. These findings underscore the value
of automated tools in standardizing measurements, reducing
subjectivity, and improving consistency across clinical settings.
Direct comparisons with state of the art are challenging due
to differences in datasets and methodologies. Some state-of-the-
art approaches focus on image classification without providing
quantitative measurements, while others rely on anatomical
landmark detection, which is not fully aligned with clinical
procedures. In contrast, we conducted an inter-observer study
comparing automated predictions with annotations from two
centers. Bland-Altman plots show that automated VHS predictions
were comparable to, or even exceeded, the agreement observed
between manual raters. On the other hand, CTR estimation
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FIGURE 13
Bland-Altman plots between (a) raters from the two centers, (b) rater from Bluecare vs. automatic estimation, and (c) rater from Cullera vs automatic
estimation, when estimating VHS from LM images.

showed slightly larger discrepancies than those between human A key limitation of this study is the relatively small size of the
raters, possibly because this task is relatively straightforward  training dataset, which reduced the robustness and generalizability
for experts. of the segmentation model M;, particularly when dealing with
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anatomically variable or less distinguishable structures. This  species, breeds, and imaging protocols, as well as the lack of large-
constraint is common in veterinary imaging, where curated and  scale public repositories. Although we mitigated this limitation by
annotated datasets are typically limited in size due to the diversity of ~ initializing the segmentation model with weights pre-trained on
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the COCO dataset (transfer learning), which provided a strong
starting point for learning general visual features, some anatomical
regions remain challenging. Addressing this issue could involve
expanding the dataset to include more diverse and representative
cases, especially those with complex or atypical anatomical
presentations, thereby enhancing the model’s ability to capture
broader anatomical variability. In addition, exploring data-centric
strategies such as synthetic image generation or semi-supervised
learning methods could further improve model performance by
leveraging unlabeled data or augmenting training diversity without
requiring extensive manual annotation.

The proposed framework offers significant potential for
veterinary medicine, particularly in scenarios where experienced
radiologists are scarce. By providing automated, accurate, and
reproducible measurements of VHS and CTR, the framework
can assist veterinarians in the early detection and monitoring
of cardiac conditions, potentially improving patient outcomes.
The strong agreement of automated predictions with radiologists’
assessments highlights its potential for future integration into
clinical workflows.

5 Conclusion

In conclusion, this study highlights the effectiveness of
deep learning-based approaches for the automated estimation of
key cardiac biomarkers in veterinary radiology. While further
refinements are necessary to address segmentation challenges, the
demonstrated accuracy and reliability of the framework underscore
its potential as a valuable tool in veterinary practice.

Future efforts will aim to overcome segmentation challenges
by expanding the training dataset and leveraging advanced
deep
or transformer-based models. Further validation on larger

learning techniques, such as attention mechanisms
and more diverse datasets will be crucial for enhancing the
framework’s generalizability and clinical applicability. Ultimately,
developing an end-to-end tool with real-time prediction
capabilities could facilitate its adoption in veterinary practices,
improving early detection and management of cardiac conditions

in pets.
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