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Porcine proliferative enteropathy caused by the intracellular bacterium Lawsonia
intracellularis remains an economically significant health concern in global pig
farming. Clinical and subclinical forms of the disease commonly occur, resulting
in substantial productivity losses due to effects on pig growth rate, feed efficiency,
and mortality. Current management and control strategies rely primarily on effective
vaccines and antibiotics. However, due to antimicrobial resistance being a global
public health issue, there is a growing interest in and the need for research,
development and large-scale implementation of novel and promising alternatives
to antibiotics in animal production. This review integrates current research on novel
prevention and management strategies, including current trends in phytotherapy
(e.g., phytogenic feed additives), probiotics, prebiotics, immunomodulators, advanced
vaccination protocols, and genetic resistance trends in swine. This review also
discusses the implementation of biosecurity measures, cost-effectiveness, economic
implications, and future perspectives of these strategies.
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1 Introduction

Proliferative enteropathy (PE), also known as ileitis, is an infectious disease affecting pigs
and other animals (like horses, rodents, rabbits and deer). It is caused by Lawsonia
intracellularis, an obligately intracellular Gram-negative, microaerophilic, vibrioid-shaped
bacterium. It was first isolated in pure co-culture from infected pig intestines in 1993 using
cell culture techniques, with challenge exposure studies then fulfilling Koch’s postulates (1, 2).
PE is characterised by a distinctive thickening of the intestinal mucosa due to the proliferation
of immature intestinal crypt epithelial cells (3). Lesions often occur in the ileum but may also
be seen in the jejunum, cecum and colon. The extent of the lesions determines the clinical
status of affected pigs. Mild to severe grey-green sloppy diarrhoea and noticeable weight loss
are the main signs in clinically affected animals. Subclinical infection is a common condition
in which infected pigs have noticeable retardation in growth rates but lack prominent
diarrhoea (4, 5).
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PE presents diagnostic challenges in live animals due to its varied
clinical manifestations and the nature of the causative pathogen (6).
Often, the disease ranges from acute to chronic forms, exhibiting signs
such as diarrhoea, reduced weight gain, and in severe cases, mortality
(7). The asymptomatic carriers and subclinical infections may further
complicate diagnosis. Accurate and timely identification of PE is
critical for effective management and control of the disease within
swine populations (8). This requires a combination of clinical
evaluation, laboratory testing, and an understanding of herd history
and management practises. Laboratory diagnostics play a pivotal role
in confirming PE (9).

This review aims to provide a comprehensive and up-to-date
synthesis of current knowledge on L. intracellularis infection in
swine, with a particular focus on porcine PE. This article also
includes an overview of the global epidemiological relevance of the
disease, an exploration of the main risk factors, pathogenesis,
clinical manifestations, and diagnostic approaches, as well as host
immune responses. Given the increasing global emphasis on
reducing antibiotic use in livestock production, the review also
critically evaluates non-antibiotic alternatives for preventing and
controlling of PE. These include vaccination strategies, nutritional
interventions (such as prebiotics, probiotics, phytogenics, feed
strategies and nanoparticles), and biosecurity as well as
husbandry practises.

10.3389/fvets.2025.1596316

2 Global relevance

PE is considered endemic in domestic pig herds worldwide,
regardless of whether they are raised indoors or outdoors. Surveys
have indicated that over 95% of commercial pig herds globally are
infected with L. intracellularis, as detected by serology and/or faecal
PCR assays (10, 11). The prevalence at the herd level, as reported in
multiple studies across various countries, ranged between 48 and
100% (see Table 1). Transmission of L. intracellularis occurs by the
faecal-oral route from infected pigs and the contaminated
environment to susceptible pigs. The level of faecal shedding can
be high in some infected pigs, and the infective dose is considered
relatively low (10° organisms of L. intracellularis/g of faeces). Previous
studies of infected pigs have shown a faecal burden range of 10* to
10° L. intracellularis/g of faeces (via qPCR detection), with a lower
limit of detection of 10° L. intracellularis/g of faeces (12).

3 Main risk factors

Pigs of all ages are considered susceptible to L. intracellularis
infection. On single-site farms with a continuous pig flow between
different pig ages/farm areas/housing locations, infection usually
occurs a few weeks after weaning, presumably when maternal

TABLE 1 A summary of prevalence studies conducted worldwide since 2000, as documented in peer-reviewed articles.

Region Sample Methodology Herd prevalence (%) References

Europe Faeces/blood (of nursery, qPCR/ELISA 90.3 (10)

Germany growing and finishing pigs) 91.7/90

Denmark 95.8/100

Spain 83.3/90.0

France 79.2/100

The Netherlands 91.7/100

UK 100/70.0

Denmark Faeces (of pigs weighing PCR 93.7 (13)
30-50 kg)

Sweden Faeces and rectal swabs (of nPCR 48 (181)
pigs aged 8-12 weeks)

Korea Blood (of weaning, growing | IFA 100 (182)
and finishing pigs)

United States Blood ELISA 90.9 (183)

France Blood ELISA 88 (16)

Spain Blood ELISA 89 (16)

Great Britain and Ireland Blood ELISA 92.9-93.1 (22)

Brazil Blood IPMA 100 (168)

Thailand Blood ELISA 83.3 (184)

Australia Blood ELISA 100 (185)

China Faeces (of sows and PCR 93.6 (186)
fattening pigs)

Chile Blood ELISA 100 (187)

Vietnam Faecal swabs qPCR 100 (26)

PCR, polymerase chain reaction; nPCR, Nested PCR; RS, rectal swab; IPMA, Immunoperoxidase monolayer assay; IFA, indirect immunofluorescence antibody technique; ELISA, enzyme-

linked immunosorbent assay.
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antibodies fade. This dynamic can be delayed by using effective
antimicrobial agents in the nursery area, such as quinoxaline, during
the first weeks post-weaning (13-15), forestalling early infections. In
this case, clinical disease is usually later in the growing and finishing
phases (8). In multi-site farm systems with a distinct separation of
groups of post-weaning and breeding pigs by age and site,
L. intracellularis infection is typically delayed in the grower-finishers
until they reach 16 to 20 weeks of age (16). The disease occurs rarely
in breeding stock due to age-based immunity and prior exposure and/
or vaccination (17, 18). The environment of most pig farms likely
contains a sustained level of L. intracellularis in the residual faecal
material and organic materials in buildings, equipment, or other
fomites (19-21). Transmission of faecal matter from contaminated
areas to different farm areas, such as those containing breeding
animals, would be expected to occur more commonly on single-site
farms via boots, rodents, or other fomites (21, 22). Additionally,
Musca (house flies) and Eristalis (hover flies) are the farm insects with
the highest potential to carry and spread Porcine L. intracellularis
because parts of their life cycle are closely linked to pigs. Since adult
M. domestica flies can travel between farms located up to 7 km apart,
there is a risk of mechanical transmission of L. intracelularis from one
farm to another through these insects (23).

The occurrence of this disease is influenced not only by pathogen
exposure but also by a range of environmental and management-
related stressors that compromise gut health and immune resilience.
Stressful conditions such as weaning, overcrowding, abrupt dietary
changes, poor nutritional quality, mycotoxicosis, and inadequate
hygiene can induce intestinal barrier damage and increase
susceptibility to infection (24, 25). Additionally, procedural stressors
such as castration, transport, and sudden temperature fluctuations
exacerbate immunosuppression and may increase pathogen shedding
and transmission. The presence of rats is also considered a risk factor
for PE (26-28). These factors collectively disturb the gut microbiota,
weaken mucosal defences, and may facilitate colonisation by
L. intracellularis, particularly in weaned piglets undergoing rapid

10.3389/fvets.2025.1596316

physiological and environmental transitions. An overview of these
stressors and their possible impact on PE susceptibility is summarised
in Figure 1. Recent studies suggest that transmission of L. intracellularis
may begin before weaning. For example, L. intracellularis has been
detected in 3-week-old piglets using molecular techniques in ileal
digesta and mucosal scrapings, indicating colonisation during
lactation or via maternal or environmental sources (19). Whilst direct
evidence of vertical (in utero) transmission remains limited, these
findings underscore the potential for mother/progeny transmission
(either passive immunity or early active exposure), which may
be critical in designing preventive and control measures (19).

4 Pathogenesis

L. intracellularis infects the small and large intestines, leading to
PE or proliferative haemorrhagic enteritis. The pathogenesis involves
infection of epithelial cells, with the bacteria spreading as these cells
divide and migrate (29). Pathogenesis involves the replication of
L. intracellularis in the cytoplasm of enterocytes, leading to cell
maturation failure and ultimately resulting in proliferative enteropathy
(Figure 2). Most pigs eventually recover, and cellular immunity is
believed to play an essential role in disease resolution (30, 31).

The intestinal epithelium is the second largest epithelium in the
pig, after its lungs and is characterised by its rapid self-renewal and
dynamic function (32, 33). This tissue undergoes complete
regeneration every 2 to 3 days, making it the fastest-renewing tissue
in the body (34-36). This rapid turnover is essential for maintaining
barrier integrity and ensuring efficient nutrient absorption (37, 38).
The renewal process originates in the intestinal crypts, where stem
cells, including actively dividing leucine-rich repeat-containing
G-protein coupled receptor 5 (LGR5", used as a stem cell marker)
crypt base columnar cells and quiescent label-retaining cells (LRCs)
at the +4 position, give rise to transit-amplifying progenitor cells
(36, 39). These cells migrate upward along the crypt-villus axis,

Weaning

\

FIGURE 1

2k
5 &
Nutrition
@ Mycotoxins “
Overcrowding Transport
of pigs in pens %‘;j
=

Rodents

Overview of predisposing stressors and environmental factors contributing to Lawsonia intracellularis infection in pigs.

Exposure to large
temperature changes

Inadequate Castration

praxis

Frontiers in Veterinary Science

03

frontiersin.org


https://doi.org/10.3389/fvets.2025.1596316
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Gomez-Osorio et al.

10.3389/fvets.2025.1596316

0 I
-

s oo 00
!

@
QO
o)
SR

N

/
\\I\, Gut microbes e L. intracellularis

ﬁ[ Mucus layer @/ transit amplifying cells @

w Stem cell

2 Red cell

FIGURE 2

histopathology of proliferative enteropathy.

»—e Secretory non-specific IgA

"% Immature enterocyte S Goblet cell

® !9APlasmatic cell % Dendritic cell

Sequential alterations in intestinal crypt cellular composition and immune responses during Lawsonia intracellularis infection. (A) Normal porcine
intestinal crypt showing a well-organised architecture with balanced epithelial cell types, a protective mucus layer, commensal microbes, and local
immune cells. (B) Early infection phase: L. intracellularis invades immature enterocytes, leading to inflammation, disruption of normal epithelial
turnover, and early loss of goblet cells. (C) Advanced infection: Extensive crypt hyperplasia and the dominance of proliferating immature enterocytes
result in loss of cellular diversity, mucin depletion, immune dysregulation, and compromised barrier function. These changes underlie the characteristic
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differentiating into absorptive enterocytes and various secretory cell
types, including goblet cells, enteroendocrine cells, microfold (M)
cells, and Paneth cells. However, the latter are rare in pigs (40, 41).

In newborn piglets, the gastrointestinal tract is relatively
immature, making these animals very susceptible to infectious
diseases. Additionally, after some weeks, weaning is also a critical
period due to the multiple stressors it introduces, such as transient
anorexia, intestinal inflammation, and unbalanced gut microbiota (24,
42). An overview of the dynamics of intestinal crypts, emphasising the
critical role of crypt-villus architecture in both nutrient uptake and
serving as a barrier, is mandatory to understand PE comprehensively
(33). Continuous cell turnover is a characteristic of the intestinal
epithelium, fuelled by stem cells at the crypt base. These stem cells are
supported and safeguarded by a niche comprising specialised cells,
which also dictates competition for space and influences cell fate.

There are various signalling pathways, including Wnt (Wingless
and Int-1), Neurogenic locus notch homologue (Notch), epidermal
growth factor (EGF) and bone morphogenetic protein (BMP), which
are integral to maintaining stem cell populations and guiding
differentiation. Any imbalances in these pathways can lead to disease,
showing the delicate balance required for intestinal homeostasis and
the complex interactions within the crypt niche (33, 34).

The intestinal epithelium undergoes constant regeneration, regulated
by stem cells at the crypt base and supported by signalling pathways,
including Wnt (Wingless and Int-1), Neurogenic locus notch homologue
(Notch), epidermal growth factor (EGF) and bone morphogenetic
protein (BMP) (24, 29, 43, 44). These pathways coordinate proliferation,
differentiation, and lineage allocation of epithelial cells, maintaining
homeostasis and barrier function (33, 34, 43, 44).

Frontiers in Veterinary Science

Weaning stress leads to a reduction in quiescent homeobox-only
protein+ (HOPX*) and active sex-determining region Y-box
9 + (SOX9*) stem cells in piglets, particularly in the small intestine
(34). This alteration in stem cell dynamics may influence susceptibility
to L. intracellularis. During peak infection, Notch-1 is upregulated
whilst WNT/f-catenin signalling is suppressed, promoting immature
crypt cell hyperplasia and goblet cell depletion (18, 29, 35). Apoptosis
and autophagy dysfunction also impair mucin production,
contributing to mucosal thickening (45, 46).

Wnt signalling sustains the stem cell pool and promotes
proliferation (38, 39), Notch regulates absorptive versus secretory cell
fate (18), EGF supports proliferation and migration, and BMP acts as
a brake by promoting differentiation along the crypt-villus axis (40, 43,
44, 47). Disruption of this balance facilitates L. intracellularis
colonisation and pathogenesis. Targeting these signalling networks
may offer novel alternatives to antibiotics in managing PE by restoring
intestinal epithelial homeostasis (31, 42). These changes in cell function
and signalling are believed to hinder goblet cell development and
promote the proliferation of crypt-immature cells. This process
potentially leads to a decrease in mucin production and a thickening
of the intestinal mucosa in cases of L. intracellularis infection (48). A
visual overview of these pathways is provided in Figure 3. For a detailed
understanding of the molecular pathways implicated in the host cell-
pathogen interactions and the related immune response, we strongly
recommend that the reader consult the detailed works published by
Vannucci and Gebhart (29) and Obradovic and Wilson (49).

Key features of PE may vary and include an acute haemorrhagic
form of diarrhoea, with the severity and colour of faeces varying, with
occasional black tarry faeces to frank blood (50). The affected pig may
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demonstrate weakness and pallor, along with rapid death. In subclinical
cases, a substantial variation in pig weights and sizes has been noticed
with few sporadic diarrhoeas, decreased body weight gain, anorexia,
and apathy (48). Emerging evidence suggests that chronic or subclinical
L. intracellularis infections (whilst often clinically silent) can
nonetheless impair growth performance, damage intestinal mucosa,
and predispose animals to secondary infections, all contributing to a
higher risk of carcass downgrading or condemnation. For example, it
has been found that vaccinating subclinically infected pigs improved
carcass quality, and vaccine-based reduction in intestinal lesions was
also associated with better systemic health and slaughter outcomes (4).
PE manifests in a variety of clinical forms, ranging from subclinical
infections to acute and chronic disease presentations. The clinical form
depends on factors such as pig age, immune status, environmental
conditions, and bacterial load. Acute PE, also known as proliferative
haemorrhagic enteropathy (PHE), typically affects older growers or
finisher pigs and is characterised by sudden death and haemorrhagic
diarrhoea with high mortality. Chronic forms include porcine
intestinal adenomatosis (PIA), necrotic enteritis, and regional ileitis,
leading to thickened intestinal mucosa and persistent diarrhoea, which
may reduce performance over time. Subclinical infections, which are
most common in grow-finish pigs, may go unnoticed but can
significantly impact growth rates and flock uniformity. A schematic
summary of the clinical spectrum of PE is shown in Figure 4.

5 Host-bacteria interaction:
understanding the immune response
against Lawsonia intracellularis in pigs

The actual cell receptor(s) involved and the actual bacterial
ligand(s) present on L. intracellularis that interact with these cell
receptors remain unclear, despite previous cell culture studies. The
flagellar filament of bacteria, composed of numerous flagellin proteins,

Frontiers in Veterinary Science

is detected by Toll-like receptors (TLR5) on epithelial cells, which
trigger the Nuclear Factor kappa-light-chain-enhancer of activated B
cells (NF-kB) and mitogen-activated protein kinase (MAPK)
signalling pathways, thereby activating pro-inflammatory genes. Two
flagellin proteins present on L. intracellularis, Lawsonia flagellin C
(LfliC and LFIiC), serve as pathogen-associated molecular patterns
(PAMPs), have been identified in the interaction between the
bacterium and its host, influencing the immune response, wherein the
expression of flagellin protein specifically activated the NF-kB and
MAPK pathways in human embryonic kidney epithelial cells. Thus,
exploring the binding partners of cytoplasmic flagellin and uncovering
the underlying mechanisms could provide valuable insights and is a
promising area for future research (29, 51-54). Following invasion and
intracellular replication within crypt epithelial cells, L. intracellularis
antigens are processed by dendritic cells and macrophages, which then
present them to T cells via MHC molecules in local lymphoid tissues.
This activates a Type 1 T helper cell (Th1)-mediated immune response,
characterised by Interferon-gamma (IFN-y) production from
CD4 + T cells and cytotoxic activity by CD8 + T cells (both critical in
55, 56). IFN-y further
activates macrophages, enhancing their ability to clear infected cells.

controlling intracellular infections) (51,

Humoral immunity also plays a role. Although antibody responses
lag behind cell-mediated responses, both systemic IgG and mucosal
IgA have been observed following natural infection and vaccination.
Secretory IgA contributes to mucosal protection by neutralising
extracellular bacteria and inhibiting reinfection (52, 57, 58). Moreover,
vaccination with live attenuated strains has been shown to induce both
cellular and humoral immunity, protecting against reinfection (29,
51-54). In chronic or subclinical infections, the immune response
may be insufficient to prevent bacterial persistence, leading to
prolonged epithelial hyperplasia and disruption of intestinal barrier
function. L. intracellularis infection has been associated with altered
WNT/f-catenin and Notch signalling pathways in the intestinal
crypts, affecting stem cell turnover, inhibiting goblet cell
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Classification of porcine proliferative enteropathy (PE) stages and main signs caused by Lawsonia intracellularis.

differentiation, and reducing mucin production This impairs mucosal
defence and contributes to pathogenesis (29, 45, 55).

Recent transmission studies have shown that L. intracellularis can
spread efliciently within pig populations, with a basic reproduction
number (Ro) of 3.35 and a transmission rate of 0.096 per day, even
when introduced by a single infected pig (59). These findings
underscore the pathogen’s ability to persist and propagate under
natural conditions, reinforcing the importance of early immune
control and biosecurity. These mechanisms illustrate that the host
immune response to L. intracellularis involves a tightly regulated
interplay between innate sensors, pro-inflammatory signalling, T-cell-
mediated immunity, and mucosal antibody responses (56). Disruption
of these responses may allow chronic colonisation and disease
progression, underlining the importance of integrated immune
control and highlighting targets for vaccine and non-antibiotic-
based interventions.

The immune response against L. intracellularis includes both
humoral and cell-mediated immunity. Natural infection confers robust
immunity, and specific cell-mediated immunity and IgA have been
detected in the intestinal lumen of infected pigs (49, 51). L. intracellularis
shows a unique challenge to the swine immune system. Like many other
intracellular bacteria (such as Mycobacterium spp. and Brucella spp.),
L. intracellularis has mechanisms to modulate the host's immune system
as it enters the cells via a delayed-type hypersensitivity (DTH) reaction.
Studies have indicated a significant DTH response in infected intestines
at 24h post-cutaneous antigen sensitisation, with alterations in
apoptosis reactions (31, 51). This DTH reaction was observed at a high
concentration of 10° L. intracellularis organisms. As an intracellular
bacterium, it resides within the cells of the intestine, specifically
targeting enterocytes (Figure 2). This localisation allows it to evade some
aspects of the host's immune surveillance. Understanding the immune
response to this pathogen is critical for developing effective vaccines and
therapeutic strategies. The immune response to L. intracellularis is
complex, involving both the innate and adaptive arms of the immune
system, each playing a crucial role in combating this infection (49).

Frontiers in Veterinary Science

The innate immune response is the first line of defence against
L. intracellularis. Upon infection, innate immune cells such as
macrophages and dendritic cells in the intestinal mucosa recognise the
pathogen through pattern recognition receptors. This recognition leads
to the secretion of various cytokines and chemokines, initiating an
inflammatory response to contain the bacterium’s spread. The innate
response also plays a pivotal role in shaping and informing the
subsequent adaptive immune response. However, the effectiveness of the
innate response is often challenged by the bacterium’s ability to survive
and replicate within the host cells. It has been reported that
L. intracellularis can survive and replicate within porcine macrophages
(Figure 2C). This was observed through transmission electron
microscopy; which revealed the bacteria within phagolysosomes and free
in the macrophage cytoplasm, sometimes in binary fission. The study
also employed qPCR to track bacterial numbers, demonstrating that
L. intracellularis can proliferate at low levels within macrophages over
time, suggesting a potential role for macrophages in the persistence and
pathogenesis of the disease (60). Following the innate response, the
adaptive immune system is activated. The involvement of both B cells
and T cells characterises this response. T cells, particularly CD4 + T
helper cells, play a crucial role in orchestrating a targeted immune
response. They aid in activating macrophages and other immune cells to
destroy the infected cells. Developing a robust adaptive immune response
is critical to achieving long-term immunity against the bacterium (49).
Future research on these aspects is key to developing more effective
vaccines and therapeutic strategies. A deeper understanding of the
immune response will also aid in managing PE, improving the health
and productivity of swine herds worldwide (49, 61).

6 Diagnostic methods

The accurate diagnosis of proliferative enteropathy (PE) in swine
remains a formidable challenge in veterinary medicine, primarily due
to the multifactorial presentation of the disease and the complex
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biology of its etiological agent, Lawsonia intracellularis. The clinical
spectrum of PE spans from subclinical manifestations to severe
pathological states, encompassing chronic forms characterised by
impaired growth performance and persistent diarrhoea, as well as
acute presentations potentially culminating in mortality. The
diagnostic process is further confounded by the presence of
asymptomatic carriers and animals harbouring subclinical infections,
which serve as silent reservoirs and contribute to the insidious
propagation of the pathogen within herds (9).

Given these diagnostic intricacies, the early and precise
identification of PE is paramount for the successful implementation
of disease control strategies and the optimisation of herd health
outcomes. A multifaceted diagnostic approach is therefore imperative,
integrating detailed clinical assessments with targeted laboratory
analyses, alongside a thorough appraisal of herd epidemiological data
and husbandry practises. Amongst these, laboratory diagnostics
(particularly molecular and serological assays) constitute the
cornerstone for definitive confirmation of PE, enabling the
differentiation between active infection and subclinical carriage. As
such, comprehensive diagnostic protocols are essential for mitigating
the impact of this economically significant enteric disease in
commercial swine operations. Diagnostic methods for ileitis caused
by L. intracellularis in pigs include both direct and indirect approaches.
Indirect methods measure antibodies against the pathogen using tests
such as indirect immunofluorescence (IFA), immunoperoxidase
monolayer assay (IPMA) or enzyme-linked immunosorbent assay
(ELISA) (9). Direct detection methods include immunohistochemistry
and fluorescent in situ hybridisation (FISH), as well as polymerase
chain reaction (PCR), on tissue and faecal samples, respectively. The
reliability of PCR applied to faecal samples in detecting L. intracellularis
may be compromised by the presence of inhibitory substances,
including competing non-target DNA, bile salts, and bilirubin, which
can interfere with the DNA amplification (polymerase activity/
efficiency) (7, 62, 63). Additionally, in animals recently vaccinated
with live attenuated L. intracellularis strains, transient faecal shedding
of the vaccine organism can lead to false-positive PCR results.
Therefore, laboratory findings (particularly PCR results) should
be interpreted with caution in vaccinated animals, as current tests do
not differentiate between vaccine and wild-type strains. Several
methods can be employed: Conventional PCR, typically followed by
agarose gel electrophoresis, remains a sensitive and specific method
for detecting Lawsonia intracellularis DNA in faecal samples or
intestinal tissue (64). This method can identify, in one step, the
pathogen even in subclinical cases, making it invaluable for early
detection (64). Nested PCR is more sensitive than conventional PCR
(65). However, quantitative PCR (qQPCR) (especially real-time TagMan
assays) has now become the gold standard, offering enhanced
sensitivity, faster results, and the ability to quantify bacterial load (66).

Histopathological analysis allows the confirmation of lesions
in intestinal tissue samples under a microscope and is considered
a traditional and reliable method, and the primary way to reach a
conclusive diagnosis (9). Characteristic histological lesions are the
proliferation of enterocytes and the reduction of the number of
goblet cells, which are indicative of PE. Immunohistochemistry
(IHC) enhances histopathological diagnosis by using antibodies
to detect the presence of L. intracellularis antigens in tissue
(67).

immunosorbent assay (ELISA) and immunoperoxidase monolayer

samples Serological tests, including enzyme-linked
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assay (IPMA), measure the antibody response to the infection.
Whilst helpful in assessing herd exposure, serology has limitations
in acute diagnosis due to the time taken for antibody
development (68).

Diagnosis of porcine PE represents a significant challenge due to
the variability in its clinical expression and the biology of the causative
agent. The broad range of manifestations of the infection (from acute
haemorrhagic forms to chronic or subclinical presentations) makes
Additionally,
L. intracellularis is shed intermittently, which limits the sensitivity of

clinical diagnosis unreliable in many cases.
diagnostic methods such as PCR when samples are not collected at
optimal times. Sample quality and handling further influence
diagnostic outcomes, as degradation during transport or delayed
processing can impair both molecular and histopathological analyses
(69). The presence of live-attenuated vaccine strains in recently
vaccinated animals may also complicate the interpretation of PCR and
ELISA results (69).

Furthermore, co-infections with pathogens such as Salmonella spp.
or PCV2 can obscure the clinical signs of PE or exacerbate them,
requiring differential diagnosis. Importantly, subclinical infections are
common and may significantly impact growth performance without
obvious clinical signs, necessitating routine surveillance through
serology or quantitative PCR (qPCR) (9). Despite these constraints,
qPCR remains the gold standard for diagnosing L. intracellularis due to
its high sensitivity, specificity, and ability to quantify bacterial load in
faecal and tissue samples (69). It is currently impossible to differentiate
between infected and vaccinated animals (DIVA). There are no markers
in commercial L. intracellularis vaccines. Still, the development of an
amplification method based on the genomic differences between
L. intracellularis vaccine and wild-type strains would be an interesting
approach for the development of a DIVA method (9).

Recent advancements in diagnostic technology are providing new
avenues for detecting PE. Molecular techniques, such as quantitative
PCR, offer more precise quantification of bacterial load, aiding in the
understanding of the severity of infection (11). The most frequently
utilised gene for targeting in diagnostics is the 16S ribosomal DNA (16S
rDNA) gene (9). However, other markers, such as aspA99 and ubiE,
have also been employed to identify L. intracellularis (64, 69). Several
different primer pairs have been applied to the detection process of this
bacterium. Additionally, metagenomic sequencing can support the
usefulness of functional nutraceuticals and/or immunomodulator
supplementation in reducing the impact of enteric pathogens and
pathogen shedding rates in food animals without the use of
antimicrobials, as well as identify co-infections, which are common in
cases of ileitis and can impact treatment decisions (11). On-farm rapid
tests are also being developed, offering quicker and more accessible
diagnostics (9). However, accurate diagnosis still relies on integrating
laboratory results with clinical signs and herd management history.
Several diagnostic techniques are available for detecting L. intracellularis
in pigs, each with distinct advantages and limitations that depend on
the clinical context, tissue availability, and herd-level surveillance goals.
Table 2 provides a comparative overview of commonly used diagnostic
methods, summarising their sensitivity, specificity, turnaround times,
and key practical considerations. Veterinarians play a crucial role in
interpreting these findings to inform decisions about disease
management and control strategies. It is also essential to consider the
biosecurity measures and vaccination status of the herd, as these factors
significantly influence the prevalence and manifestation of PE.
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TABLE 2 Comparison of main diagnostic methods used for the detection of Lawsonia intracellularis in pigs.

Diagnostic
method

Sensitivity

Specificity

Turnaround
time

Comments References

PCR Moderate-High High

1-2 days

Faeces, intestinal | Requires DNA (8,188)

tissue extraction and gel

electrophoresis

qQPCR High High

<24h

Faeces, mucosal Quantitative, rapid, (66, 188)

scrapings and currently
considered the gold

standard

HC High High

2-3 days

Intestinal tissue Useful post-mortem, (8,76, 188)
confirms presence in

enterocytes

ELISA Moderate Moderate

2-5 days

Serum Indicates exposure, (76, 188)
not active infection;
useful in herd

monitoring

FISH High High

2-3 days

Intestinal tissue Visual confirmation in (76, 188)
tissue requires

specialised equipment

H&E Variable Low-moderate

2-3 days

Intestinal tissue Supportive; may miss (188)
mild or chronic

infections

PCR, Polymerase Chain Reaction; qPCR (Real-Time PCR), Quantitative Polymerase Chain Reaction; IHC, Immunohistochemistry; ELISA, Enzyme-Linked Immunosorbent Assay; FISH,

Fluorescence In Situ Hybridisation; H&E, Haematoxylin and Eosin Staining.

7 Advantages and limitations of the
use of antibiotics

The use of antibiotics in animal production has three primary
purposes: therapeutic, preventive, and growth promotion. Therapeutic
and preventive uses involve relatively high dosages for short periods of
treatment and reduce the disease’s occurrence. Antibiotics used as
growth promoters are administered at low (subtherapeutic) dosages as
feed additives, decreasing morbidity and mortality and improving
growth and the feed conversion rate (70-72). Thus, production costs are
reduced, with 10-15% less feed required to achieve expected
performance levels (73). One report on global trends in antimicrobial
use in food animals projected that pigs will present the most considerable
growth in antimicrobial consumption, contributing 45% to the total
increase between 2017 and 2030 (74). Medication of older pigs (such as
breeding stock) has not shown the potential to eliminate L. intracellularis
infections. Partial depopulation and medication-based eradication
attempts have been largely unsuccessful (48). Since PE can vary in onset
time across different farms and between batches of pigs within the same
farm, in-feed antimicrobials added too late may not adequately reduce
clinical signs or improve performance (48, 75). Conversely, administering
antimicrobials too early can hinder pigs’ exposure to the pathogen,
preventing the development of natural immunity. As a result, these
animals may remain immunologically naive and be at greater risk of
developing the acute haemorrhagic form (PHE) upon later exposure (76).

Misuse and extensive use of antibiotics can result in the
development of resistance. Resistance can be acquired and transferred
by commensal and pathogenic bacteria (77, 78). Resistance genes may
also be transferred to retail meat products and the environment, thus
spreading to animal and human populations. The extent to which this
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scenario contributes to an increased risk of therapeutic failure in
humans is controversial (79), with most human-based resistance
issues being ascribed to overuse amongst the human population
rather than livestock. Several countries have developed policies to
reduce or ban antibiotic use of antibiotics in animal production. For
instance, the European Union (Reg. No. 1831/2003/EC) has prohibited
the use of antibiotics as growth promoters in animals since 2006 (80).
The U. S. Food and Drug Administration (FDA) began restricting
medically necessary antimicrobials in 2017. Allowing only therapeutic
purposes under veterinarian prescribing (81). Since 2020, China has
banned all growth-promoting pharmaceutical feed additives, except
traditional Chinese medicines, which will be withdrawn from animal
production (82). Antibiotic-free animal products have experienced
significant market growth and increased opportunities in recent years.
Antibiotic resistance poses a worldwide threat to public health. The
One Health approach is crucial for understanding and preventing the
spread of antibiotic resistance from farm to table (83).

8 Non-antibiotic alternatives to
control PE

8.1 Vaccines

Commercial vaccines against L. intracellularis, both live attenuated
and inactivated, are available for prophylactic use, each with
advantages and disadvantages. The development of such vaccines
represents a significant advancement in swine health management.
Vaccination against this pathogen has become a key strategy in
preventing the economic losses associated with the disease,
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characterised by poor weight gain and diarrhoea. Two main types of
vaccines are available: inactivated (killed) and live attenuated. Live
attenuated vaccines have been particularly effective in inducing
immunity in pigs, offering both ease of administration and long-
lasting protection. The live attenuated vaccines for L. intracellularis
were designed to provoke an immune response without causing the
disease. This vaccine closely mimics a natural infection, thus providing
robust and comprehensive immunity. It is typically administered
orally, which is stress-free for the animals and mimics the natural
route of infection, leading to greater localised immunity in the gut
where L. intracellularis colonises. The immune response triggered by
this vaccine involves both humoral and cellular immunity, providing
a broad defence mechanism against the pathogen (51). Live bacterial
vaccines may be antagonised by the simultaneous administration of
certain antimicrobials; therefore, the live attenuated vaccine for
L. intracellularis is often administered to suckling piglets at 2-3 weeks
old via an oral drench or oral administration by gel onto the farrowing
area (84, 85).

In contrast, inactivated vaccines contain killed bacteria and are
usually administered via intramuscular injection. Inactivated vaccines
can be administered using two distinct delivery systems: conventional
intramuscular injection and intradermal application via needle-free
devices. Whilst both routes aim to elicit protective immunity,
intradermal vaccination tends to promote stronger local antigen
presentation and has shown promising efficacy in reducing lesion
severity and improving immune stimulation, particularly in inducing
mucosal and cell-mediated responses (86, 87). Their effectiveness is
considered more limited in terms of immunity range and duration
than live attenuated vaccines (88, 89). Maternal antibodies might
antagonise the effectiveness of injectable killed vaccines in piglets (52).
The immune response induced by inactivated vaccines is
predominantly humoral. Killed vaccines are usually formulated with
various adjuvants to stimulate a more robust immune response (52,
88, 89). Combination vaccines for pigs, including L. intracellularis
amongst other injectable antigens (such as porcine circovirus 2 and
Mycoplasma hyopneumoniae), can help reduce the number of vaccine-
related injections and manipulations (90). The piglet'’s immune system
is not considered sufficiently developed to receive vaccine
administration before 2 weeks old (91).

Compared with vaccination, natural L. intracellularis infection
induces a strong immune response involving both humoral and cell-
mediated mechanisms. Mucosal immunity is characterised by the
production of secretory IgA in the intestinal lumen, whilst systemic
responses include DTH and elevated IFN-y levels, which contribute
to long-term immunity and control of re-infection (51, 92). Guedes
et al. demonstrated a robust DTH response in pigs 24 h after cutaneous
antigen sensitisation with L. intracellularis, suggesting a strong T-cell-
mediated component in natural infection (92). Importantly, these
DTH responses are considered protective rather than pathologic, as
they reflect memory T-cell activation and effective host control of
intracellular pathogens. This aligns with the broader understanding of
DTH as a Th1-type response involving IFN-y production, critical for
bacterial clearance without inducing immunopathology (51).

In contrast, vaccination (whether live attenuated or inactivated)
elicits a protective immune response that is often more targeted. Live
oral vaccines reduce clinical signs, faecal shedding, and mortality, but
may not always prevent colonisation or transmission (93, 94). Some
studies have shown these vaccines elicit a measurable mucosal IgA

Frontiers in Veterinary Science

10.3389/fvets.2025.1596316

and systemic immune response (52), although DTH reactions appear
less pronounced compared to natural infection (93, 94). Moreover,
intradermal inactivated vaccines have recently shown higher efficacy
in reducing lesions and mortality but require further investigation to
clarify their immunological mechanisms (86). Musse et al. further
showed that intramuscular vaccination significantly reduced
diarrhoea, antimicrobial use, and L. intracellularis shedding, whilst
improving lean meat percentage in naturally infected Danish herds
(86, 87). Vaccination may also influence gut microbiota composition,
potentially contributing to reduced pathogen colonisation. It has
been demonstrated that oral vaccination altered microbial
communities in the gut, favouring beneficial species and decreasing
L. intracellularis abundance (95). To better illustrate the differences
in immune responses elicited by natural L. intracellularis infection
compared to various vaccination strategies, Table 3 summarises key
associated outcomes for

immunological parameters and

each approach.

8.2 Prebiotics and probiotics

The pig gut microbiota consists of a complex community of
thousands of microbial species established soon after birth. Strategies
that enhance beneficial bacterial populations are being increasingly
explored as alternatives to antibiotics in managing enteric diseases,
such as PE. Prebiotics are defined as non-digestible food ingredients
that stimulate the growth of beneficial bacteria in the colon (96-98).
Prebiotics are suggested to modulate the gut environment, making it
less favourable for the proliferation of pathogens like L. intracellularis
and more supportive of beneficial microbial populations such as
Lactobacillus, Bifidobacterium, and Faecalibacterium spp. (99, 100).
For instance, insoluble B-glucans from cereals such as barley and oats
have been shown to increase Lactobacillus and Bifidobacterium counts
in the caecum and colon of pigs (100).

In a controlled feeding study, pigs fed oat-based diets exhibited
significantly higher counts of these microbes in the caecum and colon
compared to those on barley-based or enzyme-supplemented diets
(101). Beneficial gut microbes may produce metabolites, such as
short-chain fatty acids and bacteriocins, which influence the gut
microbiota and immune responses (98, 102). In some cases, prebiotic
non-digestible fibres may block pathogen adhesion to host cells, but
this specific effect has not yet been demonstrated for L. intracellularis
(69). Specific prebiotic feed additives include fructooligosaccharides
(FOS), inulin, and mannooligosaccharides (MOS) (103), with other
substances such as resistant starch and complex polysaccharides,
including cellulose, hemicellulose, and pectin recognised for prebiotic
activity (104). Trials adding distiller’s dried grains with solubles and
soybean hulls to pig diets were associated with a slight reduction in
L. intracellularis infection levels (73, 74). Supplementation of sow diets
with short-chain fructooligosaccharides during late gestation and
lactation improved measurable gut immune parameters and immune
response against L. intracellularis in their offspring, with these piglets
showing healthy gut morphology (96). The source of these benefits
was not clear, but it may have involved an improved gut microbiota
passed from sows to piglets, with more short-chain fatty acids present
in the piglet gut (96). Although few studies directly investigate the
control of L. intracellularis using prebiotics, the possible use of
prebiotics in managing PE has been suggested (105, 106).
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TABLE 3 Comparative immunological responses and effects of natural Lawsonia intracellularis infection and vaccination strategies in pigs.

Parameter

Natural infection

Live oral vaccine

Inactivated

intradermal vaccine

Intramuscular vaccine

DTH/IFN-y response

Strong DTH and high IFN-y

response (51, 56)

| DTH response observed
(56, 93)

Limited data; systemic responses

not fully characterised (86)

Moderate systemic response;

humoral immunity confirmed (87)

Mucosal IgA

Robust mucosal IgA

production (51, 56)

| than natural infection (56,

93)

Induced mucosal immunity;

mechanisms under study (86)

Moderate mucosal response

observed (87)

Reinfection risk

Often sterile immunity

| clinical signs; reinfection

Superior lesion control;

| transmission and signs (87)

(51)

| shedding duration (93, 95)

(86)

post-infection (51, 56, 135) possible (93) reinfection risk not fully
eliminated (86)
Faecal shedding | naturally post-recovery | shedding | shedding vs. unvaccinated pigs = | shedding duration (87)

Clinical signs and mortality

1 mortality
(if untreated)

severe enteropathy (51)

| signs and mortality (93—

95)

| in lesion scores and mortality

(86)

| diarrhoea and antimicrobial use

(87)

Growth and productivity

1 ADG and FCE (51)

1 ADG and ROI in field
trials (93, 94)

1 weight gain and lean meat

yield (86)

1 ADG vs. unvaccinated; FCE

comparable (87)

Microbiota impact

Potential dysbiosis; altered

mucosal environment (51)

Modulates microbiota
towards beneficial taxa (1
Lactobacillus and | L.

No information

No information

(95)

intracellularis abundance)

DTH, Delayed-Type Hypersensitivity; IFN-y, Interferon-gamma; ADG, Average Daily Gain; FCE, Feed Conversion Efficiency; ROI, Return on Investment.

Probiotics consist of live microorganisms intended to be beneficial
to gut health, such as isolates of Lactobacillus, Bifidobacterium,
Bacillus, and Enterococcus spp., which are marketed for oral use in pig
diets (107). These probiotics may work by competing with pathogenic
bacteria for adhesion sites on the intestinal mucosa, producing
antimicrobial substances, and enhancing the host immune response
in the gut (108-110). Bacillus-based probiotics have gained
considerable attention as viable alternatives to antibiotics in livestock,
particularly due to their spore-forming ability, which ensures stability
through feed processing and resilience in the gastrointestinal
environment. Several strains such as Bacillus subtilis, Bacillus
licheniformis, and Bacillus pumilus have been studied for their
potential to improve gut health, enhance immune function, and
reduce enteric pathogen loads in pigs and poultry (107, 108, 111, 112).
One study suggested that administering Bacillus pumilus probiotics
was associated with a reduced severity of clinical signs of PE in pigs
and improved gut health (107). A major consideration of the
usefulness of probiotics is gauging how many (if any) live bacteria
administered into a pig’s diet actually make it through the farm feed
preparation system and upper digestive tract to an intended site of
colonisation in the lower bowel. The combined use of prebiotics and
probiotics (synbiotics) has been suggested to function more effectively
than either component alone (113). Current research is focused on
identifying specific strains of probiotics and types of prebiotics that
may be effective against enteropathogenic bacteria. Future directions
also involve understanding the optimal dosages, timing, and
administration methods for maximum efficacy (114).

Diet composition and physical form also influence microbial
composition, subsequently the L. intracellularis infection in pigs (115,
116). Coarse, non-pelleted feed may reduce the prevalence of
pathogens such as L. intracellularis and promote beneficial microbes
including Prevotella and Lactobacillus spp. (115). Diet composition in
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terms of feed form may also influence infection dynamics. Pelleted
diets have been linked to increased L. intracellularis colonisation and
faecal shedding in pigs due to shifts in gut microbiota and reduced
fermentation by-products like butyrate and acetate. Pelleted feed
exhibited a higher pathogen load compared to meal-form diets (116).
A study demonstrated that pigs fed coarse, non-pelleted diets
exhibited a significantly lower burden of L. intracellularis in the ileal
microbiota, suggesting that feed texture can modulate pathogen
colonisation through its impact on microbial community structure
(115). Additionally, it has been reported that fermented liquid diets
delayed shedding and reduced intestinal lesions, highlighting feed
form as a significant factor in subclinical ileitis management (117).
However, research on these aspects remains scarce, and more research
in this field is still necessary.

8.3 Phytogenics

Feed additives based on mixtures of phytomolecules, known as
phytogenic (also referred to as phytobiotics or botanicals), have
garnered significant attention in mainstream livestock health and
nutrition trends (118, 119). These plant-based products, including
essential oils and other botanical extracts, have been recognised for
their pigs’
nutrient digestibility, biochemical profile, gene expression,

beneficial effects on growth  performance,
hypocholesterolaemia, immunity, meat quality, fatty acid composition,
amino acid content, and especially in mitigating the impact of disease
and environmental stressors on pig gut health, mainly due to
antimicrobial, anti-inflammatory, and immunomodulatory properties
(110, 120, 121). The metabolism of essential oils and other plant
extracts follows different enzymatic degradation pathways in vivo,

making it essential to study both their chemical profiles and
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metabolites. Biotransformation of phytomolecules through phase 1
(oxidation, reduction, hydrolysis) and phase 2 metabolism is crucial
for assessing their safety profiles (122). Although various
pharmacodynamic properties of different secondary plant metabolites
have been reported in vitro, their actual availability in target organs
remains unverified. Hence, research on absorption, distribution,
metabolism, and excretion is essential to bridge the gap between
in vitro and in vivo findings (82, 83). Due to the complexity of their
chemical composition, volatility, and susceptibility to metabolic
degradation, understanding their bioavailability, pharmacokinetic,
and pharmacodynamic parameters is critical for their effective and
practical application in livestock health (123). Limitations on the use
of antibiotics in livestock farming have led to a search for potentially
valuable phytomolecules as replacements (124), including those
intended for use in PE (125-127). Several plant secondary metabolites
have demonstrated antibacterial activity, which can disrupt bacterial
cell walls and interfere with their metabolic processes, reducing the
pathogen load in the intestines of pigs (119). Incorporating some
phytogenic feed additives into feed was observed to reduce the
incidence and severity of PE, offering a non-antibiotic alternative for
therapy (125-127). Beyond their antimicrobial action, phytogenics
are also known for their antioxidant and anti-inflammatory properties
(126, 128-130). Their use in gastrointestinal diseases, such as PE, may
lead to situations where the product enhances the immune response
by facilitating efficient pathogen clearance and reducing the likelihood
of severe infection (131).

A broad spectrum of phytomolecules has been demonstrated to
have a range of properties relevant to animal health, including
antimicrobial, antioxidant, anti-inflammatory, and immunomodulatory
properties (132-134). The possible efficacy of orally administered
phytogenics may therefore be greater in gastrointestinal tract conditions.
Phytogenic preparations containing extracts of plants such as chestnut
(Castanea sativa), oregano (Origanum vulgare), thyme (Thymus
vulgaris), coriander (Coriandrum sp.), garlic extracts (Allium sativum)
and plume poppy (Macleaya cordata) have shown initial promising
results as antibiotic alternatives for the control of PE (86, 95, 96, 135).
Feeds supplemented with isoquinoline alkaloids derived from Macleaya
cordata extract have been shown to mitigate intestinal lesions caused by
L. intracellularis and to reduce the incidence of carcass condemnation
at slaughter, suggesting an improvement in systemic health (136). For
instance, it was evidenced that weaned piglets fed a diet supplemented
with Macleaya cordata extract and benzoic acid exhibited improved
growth performance, enhanced villus height and villus-to-crypt ratios,
elevated antioxidant enzyme activities, and beneficial shifts in gut
microbiota, including increased Lactobacillus and reduced Escherichia
and Shigella populations (137). Recent evidence supports the use of
phytogenic-based feed additives in managing co-infections relevant to
porcine enteric diseases. For example, a recent study demonstrated that
a phytogenic blend administered through feed significantly reduced
clinical signs, lesion severity, and pathogen load in pigs co-infected with
L. intracellularis and Brachyspira hyodysenteriae. Their findings further
indicated improved gut histomorphology and reduced inflammatory
markers, underscoring the potential of phytogenics as an effective
non-antibiotic strategy to control multiple enteropathogens in swine
production systems (138). Therefore, improvements in intestinal and
systemic health through phytogenic supplementation may reduce these
indirect effects and support antibiotic-reduction strategies in swine
production (139).
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Challenges remain related to the significant variations and
determination of the composition and concentration of active
ingredients and secondary metabolites in source plant materials and any
phytogenic products derived for use in animals. Batches of unpurified
phytogenic products may suffer significant variations due to geo-climatic
factors, physiological variations, soil quality, agricultural practises,
extraction, fabrication, and storage processes (118). Identifying active
compounds in phytogenic feed additives is essential for understanding
their mode of action (129). Therefore, standardisations of plant-derived
feed additives are necessary to guarantee the minimum or range of
concentration of suggested active compounds in any commercial
product that impacts animal health and productivity (118). Achieving
consistent quality and quantity of natural phytogenic feed additives
requires optimised growing conditions, appropriate harvest timing,
genetic engineering (140, 141), as well as regular quality control of raw
material and end products. The stability of phytogenic feed additive
compositions and their biological activity, particularly essential oils, can
also be hindered by heat, light, metals, the feed matrix, and the
availability of water and oxygen in the production system (142).

Commercial plant-derived products should have available data on
their plant chemotype, chemical composition and relevant field and
challenge exposure studies, matching those for antibiotics or other
pharmaceutical treatments (118, 124, 143). Whilst the use of plant-
derived bioactive molecules in controlling PE and other intestinal
diseases shows promise, further research is needed to fully understand
their pharmacokinetics and mechanisms of action, as well as to
optimise their application in swine production. Studies focusing on
identifying the most effective phytotherapeutic preparation
compounds, including phytogenic feed additives, determining optimal
dosages, and understanding their interactions with other dietary
components are essential for this future-oriented field of research for
sustainable livestock production (118).

8.4 Other chemicals

Niacin (nicotinamide, vitamin B3) may influence the function of
neutrophils and macrophages within the innate immune system (144),
potentially aiding in the more effective clearance of pathogenic
bacteria and viruses (145, 146). Nicotinamide has been reported to
exert its anti-inflammatory action, in part, by suppressing neutrophil
chemotaxis (147). The potential application of niacin as a control
strategy for gut infections in pigs presents its own challenges.
Determining the mechanism of action, optimal dosage, and delivery
method for the overall health of swine is critical. Niacin remains a
possible non-antibiotic candidate, warranting further research and
consideration in disease management (148, 149).

Lysozyme is a muramidase enzyme, which is naturally present in
tears, saliva and milk (150, 151). Lysozyme can disrupt the cell walls of
bacteria, exerting a bacteriolytic effect (150). Lysozyme combats bacteria
through multiple mechanisms: it disrupts the peptidoglycan layer of
Gramme-positive bacteria, making some bacteria more susceptible to
antimicrobials and osmotic stress, whilst Gramme-negative bacteria are
more resistant due to their outer membranes (151). At high
concentrations, lysozyme exhibits a non-enzymatic antimicrobial
activity by disrupting bacterial membrane integrity or triggering the
release of bacterial autolytic enzymes (152). Furthermore, lysozyme has
immunostimulatory properties, enhancing antibody production,
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hypersensitivity responses, and disease resistance, with heat treatment
potentially boosting these effects. These properties underscore its role
in the innate immune system (153). Its application in swine health may
utilise its ability to target and reduce the bacterial load in the intestines
(151, 154). The optimal dosage and understanding of the long-term
effects of dietary lysozyme supplementation in pigs are crucial areas of
ongoing research. Additionally, the effectiveness of lysozyme against
L. intracellularis specifically, and its interaction with other components
of the pig’s diet and microbiota, requires further investigation. Future
studies are also needed to explore the potential of lysozyme in
combination with other therapeutic agents, such as probiotics or
phytogenics, as part of an integrated approach to PE management.

Antimicrobial peptides (AMPs), or host defence peptides, are a
critical immune mechanism and barrier against pathogenic bacterial
invasion. Mature AMPs usually contain 12-100 amino acid residues, an
amphiphilic molecular structure, and a positive charge, which optimises
their interaction with cell membrane targets (155). AMPs can have a
broad-spectrum antibacterial activity, representing potent effector
molecules in the innate immune system. AMPs have antimicrobial,
antiviral and antitumor effects and exhibit substantial in vivo effects,
such as anti-inflammatory response, recruiting immune cells, promoting
epithelial damage repair, and promoting phagocytosis of bacteria (155).
However, few AMPs have entered the market to replace antibiotics.
Limitations in their use include the complexity and high costs of their
production as pharmaceutical agents, particularly for animals. The AMP
molecules’ efficacy requires a complete 3-D structure, which is difficult
and expensive to manufacture. AMPs also suffer from high metabolic
instability, so dosage and delivery may be difficult to achieve. Even so,
AMPs have been suggested as a potential strategy for controlling
bacterial pathogens in the swine industry (156-159).

Another emerging field in animal and veterinary sciences is
nanobiotechnology, offering various practical applications, including
therapeutic, diagnostic, and nutritional uses. Nanoparticles (NPs), in
general, are particles in size < 100 nm that can enter cells, tissues and
organs and are recognised for their antibacterial, antifungal, antiviral,
antiprotozoal, and antioxidative properties (160-163). NPs are
employed to meet the animal’s requirements for elements, enhance
their productivity, improve microbial profiles and immune status, as
well as diminish the risk of diseases. For example, silver, copper,
selenium, and zinc nanoparticles can serve as alternative health and
growth-promoting additives to antibiotics (160, 163-165). It is
essential to acknowledge that metal nanoparticles may enhance
cellular uptake and distribution throughout an animal’s body, which
could impact their toxicity (166, 167). Nanoparticles in an animal’s
diet can trigger inflammation or even result in cell death, leading to
pathological changes in various organs, including the liver, pancreas,
kidneys, small intestine, adrenal glands, and brain. Therefore,
additional research is crucial to confirm that the addition of metal-
containing nanoparticles to animal nutrition is safe and does not have
a negative impact on humans, animals, or the environment (164).

9 Biosecurity, hygiene and husbandry
practises

Good hygiene and husbandry practises are essential in reducing
the risk of infection and spreading PE and other enteric pathogens
within a swine herd. This includes strict access control, with
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biosecurity protocols, regular cleaning and disinfection of pens,
feeding areas, and equipment to minimise the presence of the
pathogen in the environment (168). Proper waste management and
control of rodent and insect populations appear also to be important,
as they can be vectors for disease transmission (23, 28). Implementing
strict external and internal biosecurity measures, such as controlling
farm access and using area-specific protective clothing and boots, can
further help in reducing the introduction and spread of the
pathogen (48).

The type of production system—whether a closed-cycle (farrow-
to-finish) or multi-site (three-site or two-site) production model—
also plays a significant role in PE risk and management. In closed-
cycle systems, where all stages of production occur on a single site,
the potential for continuous exposure to L. intracellularis may
be higher if strict internal biosecurity and thorough sanitation
between age groups are not rigorously maintained. However, this
system also facilitates tighter control over pig flow and staff
management (10). In contrast, multi-site systems (e.g., separate
nursery and grow-finish units) can reduce cross-contamination
between age groups but may introduce additional risk through
frequent animal transport and environmental transitions, which are
known stressors that predispose pigs to PE. The choice of system
influences batch management strategies, particularly all-in-all-out
(AIAO) protocols (169). Proper batch separation and downtime
between groups are easier to enforce in well-structured multi-site
systems, thereby reducing persistence of infections. In both systems,
the strict application of biosecurity measures, sanitation protocols,
and animal flow control is critical to mitigate the risks associated with
PE transmission and outbreaks (10).

Alongside hygiene, effective husbandry practises are crucial in
managing PE. This includes management strategies such as all-in-
all-out production systems, which involve housing pigs of the same
age group together and thoroughly cleaning and disinfecting the
facilities between groups. Such systems help break the cycle of
infection and reduce the level of exposure of young, susceptible pigs
to the pathogen. Nutritional management also plays a key role, with
diets tailored to support gut health and immunity being particularly
beneficial. Optimal housing and ventilation conditions, appropriate
stocking densities, and minimising stress-inducing practises such as
heat stress are essential components of effective PE control (76, 170).
Improved farm hygiene measures will reliably reduce the prevalence
and severity of PE (168). Quaternary ammonium-based compounds
have effective anti-L. intracellularis disinfectant activities, but isolates
appeared somewhat resistant to phenolic or iodine-based mixtures
(21). The effectiveness of various commercial disinfectants against
L. intracellularis was determined in vitro. Besides, certain disinfectants,
including quaternary ammonium and their combinations with
aldehydes, as well as oxidising agents, were highly effective at
inactivating L. intracellularis under simulated conditions, including
the presence of hard water and organic materials. The study suggests
that these disinfectants could be reliable options for controlling the
spread of L. intracellularis in swine farms, reducing the risk of
PE (171).

Thoroughly washing and cleaning pig pens, facilities, boots, and
equipment, along with effective rodent control on both single-site and
multi-site farms, are likely to be more effective strategies for reducing
PE (20, 27, 28, 172). These methods are generally more reliable than
relying solely on slatted floors and sunken pits for faeces removal.
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Regular monitoring and evaluation of health status, growth
performance, and incidence of PE signs in the herd can provide
valuable insights into the effectiveness of the implemented practises.
Training farm staff in proper hygiene and animal handling techniques
is also crucial for maintaining a consistently high standard of care.
Additionally, collaboration with veterinarians for regular health
check-ups and implementation of vaccination programmes can
complement hygiene and husbandry practises in controlling PE. By
adopting a comprehensive and proactive approach to hygiene and
husbandry, swine producers can significantly reduce the prevalence
and impact of PE, thereby enhancing their herds’ overall health
and productivity.

To effectively address the complex aetiology and management
of porcine PE caused by L. intracellularis, an integrated decision-
tree model was developed to guide veterinarians, swine producers,

10.3389/fvets.2025.1596316

and researchers through a structured approach to prevention,
diagnosis, and outbreak management (Figure 5). The model is
divided into three main stages: Prevention, Diagnosis, and Outbreak
Management. In the Prevention stage, core strategies include
biosecurity measures (e.g., sanitation, pig flow, staff training),
vaccination protocols (including gilt acclimation and optimal
timing), and nutritional interventions (such as the use of prebiotics,
probiotics, emerging technologies like
nanoparticles). If clinical signs arise, the model progresses to the

phytogenics, and
diagnosis phase, which integrates symptom recognition with
laboratory-based diagnostics using faecal and blood samples. Upon
confirmation of PE, the model advances to Outbreak Management,
emphasising enhanced biosecurity, targeted treatment, and
supportive decision-making to contain disease spread and reduce
recurrence. This framework aims to guide veterinarians and farm
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Decision-tree workflow for the prevention, diagnosis, and management of porcine proliferative enteropathy (PE).
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managers in minimising PE impact through proactive and
evidence-based actions.

10 Economic impacts

The dominance of the immature form of proliferating crypt
epithelial cells in PE, with their characteristic morphology and
staining, means that fewer membrane transporters related to digestion
and nutrient acquisition are operative (carbohydrates, amino acids,
lipids and Vitamin B12). Thus, reduced nutrient absorption by the
immature intestinal mucosa is the primary and significant cause of the
reduction in weight gain and feed conversion efficiency seen in
PE-affected pigs (173).

PE, therefore, remains a significant economic concern in the
swine industry due to its impact on animal health and farm
productivity. The disease affects pigs by causing poor growth,
increased feed requirements per kilogramme of gain, a higher
percentage of lightweight pigs, and increased mortality rates (174).
These issues create a bottleneck in swine production systems, affecting
the overall economic efficiency and reducing the supply of breeding
animals (174). Subclinical infections of PE are highly prevalent,
leading to reduced production parameters, such as weight gain, feed
conversion, and uniformity amongst pigs, but without apparent signs
like diarrhoea or weight loss (175). This form of the disease can go
undetected, still causing economic losses, but without overt signs of
clinical illness.

The disease is responsible for poor feed conversion and a 6-20%
reduction in average daily gain, resulting in increased days to market
and greater variation in end weight. Pig farms affected by ileitis often
experience performance setbacks such as poor feed conversion,
increased days to market, and greater variability in end weights;
elevated mortality is primarily limited to acute haemorrhagic cases
(15). These statistics underline the critical importance of managing
and preventing ileitis to minimise economic losses in the swine
industry. In monetary terms, the financial losses due to ileitis are
substantial. In 2005, economic losses due to PE in North American
and European commercial production systems, particularly intensive
grow-finish operations where L. intracellularis is endemic, were
estimated from adverse impacts on slaughter weight, feed conversion
efficiency, space utilisation, breeding problems and morbidity-
mortality effects, totalling from USD 1 to USD 5 per affected growing
pig (175). The impact is likely higher since those published estimates
were based on clinical cases and did not include subclinical cases.
There are also costs associated with diagnostics, hygiene, and medical
interventions. Additionally, assuming trends of inflation and price
increases, the mentioned costs are considerably higher today. More
recently, in the United States, it was estimated that the disease causes
a financial loss of around USD 4.65 per fattening pig, which amounts
to an annual loss of USD 56.1 million for American pig farmers (176).
Similarly, in Europe, the cost associated with PE can be up to 5 euros
per pig, with the primary economic losses attributed to reduced
average daily gain, poorer feed conversion efliciency, and increased
mortality in growing and finishing pigs (177). Whilst PE primarily
affects young pigs, subclinical infections may contribute to reduced
performance consistency within herds. Recent study using modelling
has highlighted the substantial economic burden posed by PE in
commercial swine operations. The modelling report estimated that
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productivity losses in finishing pigs affected by L. intracellularis range
from USD 5.98 to USD 17.34 per animal, depending on the clinical
severity and herd management conditions (178). These losses stem
primarily from reduced average daily gain, poorer feed conversion
efficiency, increased morbidity, and carcass downgrading at slaughter.
The analysis underscores the importance of early detection and
strategic intervention (via vaccination, nutritional optimisation/
supplementation, or antimicrobial protocols) to mitigate subclinical
disease impact and preserve profitability across intensive production
systems (178).

Live and inactivated vaccines are now widely implemented for the
control of PE (29, 86). Their use is particularly critical in nucleus herds
and during the introduction of replacement breeding animals into
commercial operations (179). Historical reliance on acclimation
protocols or timed medication regimens (without consistent
vaccination) has proven insufficient. In such cases, naive gilts,
especially those transported to multiplier or satellite farms, have
remained vulnerable and have been involved in significant PE
outbreaks amongst breeding stock (179, 180).

11 Conclusion

In conclusion, PE poses a significant challenge in the swine
industry due to its direct impact on animal health and productivity,
as well as the emerging issue of antimicrobial resistance. The
complexity of porcine PE, characterised by the diverse clinical signs
caused by L. intracellularis, necessitates a multifaceted approach to
With
antimicrobial resistance, the traditional reliance on antibiotics is no

management and control. increasing concern over
longer a sustainable or effective long-term solution, highlighting the
urgent need for integrated disease management strategies. Promising
strategies include improved biosecurity, vaccination programmes,
and the adoption of antibiotic alternatives such as prebiotics,
probiotics, phytogenics, and immunomodulatory compounds. In
particular, understanding the intestinal immune dynamics and
crypt-villus interactions can inform targeted interventions against
L. intracellularis. Future efforts should focus on standardising
non-antibiotic interventions, validating strain-specific effectiveness,
and improving diagnostic tools for field use. In light of the
multifaceted nature of PE, an integrated, evidence-based
management strategy that prioritises early diagnosis, tailored
vaccination, and gut health support is the most promising route to
sustainable control. Further research should prioritise the
development of cross-protective vaccines, microbiota-focused
interventions, and standardised phytogenic applications to reduce
reliance on antibiotics.
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