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Introduction: In swine disease surveillance, obtaining labeled data for supervised
learning models can be challenging because many farms lack standardized
diagnostic routines and consistent health monitoring systems. Unsupervised
learning is particularly suitable in such scenarios because it does not require
labeled data, allowing for detecting anomalies without predefined labels. This
study evaluates the effectiveness of unsupervised machine learning models in
detecting anomalies in productivity indicators in swine breeding herds.
Methods: Anomalies, defined as deviations from expected patterns, were
identified in indicators such as abortions per 1000 sows, prenatal losses,
preweaning mortality, total born, liveborn, culled sows per 1000 sows, and
dead sows per 1000 sows. Three unsupervised models - Isolation Forest,
Autoencoder, and K-Nearest Neighbors (KNN) - were applied to data from two
swine production systems. The herd-week was used as the unit of analysis,
and anomaly scores above the 75th percentile were used to flag anomalous
weeks. A permutation test assessed differences between anomalous and non-
anomalous weeks. Performance was evaluated using F1-score, precision, and
recall, with true anomalous weeks defined as those coinciding with reported
health challenges, including porcine reproductive and respiratory syndrome
(PRRS) and Seneca Valley virus outbreaks. A total of 8,044 weeks were analyzed.
Results: The models identified 336 anomalous weeks and 1,008 non-anomalous
weeks in Production System 1, and 1,675 anomalous weeks and 5,025 non-
anomalous weeks in Production System 2. The results from the permutation test
revealed significant differences in productivity indicators between anomalous
and non-anomalous weeks, especially during PRRS outbreaks, with more subtle
changes observed during Seneca Valley virus outbreaks. The models performed
well in detecting the PRRSV anomaly, achieving perfect precision (100%) across
all models for both production systems. For anomalies like SVV the models
showed lower performance compared to PRRSV.
Discussion: These findings suggest that unsupervised machine learning models
are promising tools for early disease detection in swine herds, as they can identify
anomalies in productivity data that may signal health challenges.
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Introduction

The global pork production industry is crucial for food
security, with the United States being one of the top producers
and exporters (55). Maintaining herd health is essential for
economic success in this sector. However, challenges persist, with
diseases having a major impact on the swine production systems.
Porcine reproductive and respiratory syndrome virus (PRRSV)
was estimated to cost the U.S. swine industry around $1.2 billion
annually (1). In the Netherlands, PRRSV outbreaks were estimated
to cause an average loss of $131.2 per sow per outbreak (2). The
introduction of the porcine epidemic diarrhea virus (PEDV) in the
U.S. in 2013 caused the loss of seven million pigs (3), and a study
made in the U.S. estimated the cost to be $300,000 per year for
a single 700-sow farrow-to-finishing herd (4). In Europe the cost
of classical swine fever outbreaks in the Netherlands and Belgium
was estimated as $2.3 billion and $11.5 million, respectively. In
Romania, African swine fever led to a reduction of the national pig
population by 8.44%, with 348,691 pigs slaughtered (5), and a study
estimated a loss of $15 billion in a scenario where African swine
fever was introduced in the U.S. and controlled and estimated a
loss of $50 billion in a scenario where the disease spread to feral
swine and it was not controlled (6). These are some examples of
the economic impact of diseases on production, and with that,
it is important to consider strategies to detect early anomalies,
trigger outbreak investigation, and implement measures to avoid
the further spread of pathogens.

Anomalies are data points that deviate from values expected
under a given model or contextual distribution. Such deviations
may arise from measurement errors, atypical operating conditions,
or previously unknown processes affecting the system (7). In
the swine industry, an anomaly refers to an unexpected value
in productivity indicators, which can arise for multiple reasons
like animal management and husbandry, human error in data
collection, environmental changes, and health-related factors.
Numerous studies have demonstrated that syndromic surveillance
is highly effective in detecting health-related events in swine
breeding herds. For example, using statistical process control (SPC)
charts to track productivity indicators has enabled the detection
of deviations associated with PRRSV outbreaks early, often before
routine diagnostic monitoring (8–10). These studies indicated that
observing multiple productivity indicator patterns allows early
detection of health challenges. Apart from these methods, anomaly
detection also relies on methods such as time series (11, 12),
supervised machine learning (13), and unsupervised learning (7,
14).

Unsupervised learning involves using algorithms to identify
patterns or structures in datasets without any external guidance or
labeled information (15). It can be used for different purposes, and
while there is limited information on its use for disease surveillance
in the swine industry, it has been utilized to test lying patterns in
pigs by combining image processing, unsupervised clustering, and
central neural networks with support vector machine classification
(16). Unsupervised learning was also used to identify variables
of economically important performance traits in swine (17) and
to identify evolving phenotypes after trauma using principal
component analysis (18). Moreover, unsupervised learning was

used to describe the network structure and spatiotemporal
characteristics of swine shipment using factor analysis for mixed
data and hierarchical clustering (19). In the context of swine
disease surveillance, obtaining labeled data for supervised learning
models can be difficult because, in many cases, farms do not have
established diagnostic routines or consistent health monitoring
systems to generate reliable labels for anomalies, making it hard
to train supervised models to detect these anomalies reliably.
For this reason, unsupervised models are an attractive option
since they do not require labeled data, allowing them to identify
unknown anomalies that supervised learning might miss if not
predefined in the labels (20–22). In this study, it was hypothesized
that unsupervised models could be used to detect anomalies
in production indicators (abortions per 1,000 sows, prenatal
losses, preweaning mortality, total born, liveborn, culled sows per
1,000 sows and dead sows per 1,000 sows) commonly affected
when there is disease introduction in swine breeding herds
(23, 24) from farms that lack active surveillance or sufficient
labeled data. These models could identify deviations from normal
production patterns that might go unnoticed and could trigger
further investigation of potential health challenges. This provides
insight into how unsupervised learning might perform when
applied to real-world settings, where labels are often unavailable,
and emphasizes the importance of these models in filling the
gap when traditional supervised learning approaches cannot
be applied.

The primary goal of this study was to evaluate the efficacy
of unsupervised machine learning models in detecting anomalies
in the productivity indicators of swine breeding herds. Efficacy
in this context was defined by the model’s ability to identify
anomalies indicative of health challenges based on deviations
in productivity indicators. Specifically, the study aimed to (1)
compare unsupervised models in terms of anomaly detection
across anomalous and non-anomalous weeks and (2) examine the
potential of unsupervised models to uncover hidden anomalies that
could signal emerging health challenges, even in the absence of
known disease labels.

Methods

Overview of the study

Data from two distinct production systems were used in
the study, and the models were implemented for each system
individually, allowing for a comprehensive evaluation across
different settings, using the herd-week as the unit of analysis.
Unsupervised learning offers benefits since it does not depend
on labeled data, enabling the discovery of previously unidentified
anomalies that supervised methods might overlook. In this
study, three unsupervised models were implemented—Isolation
Forest, Autoencoder, and K-nearest neighbors (KNN) to identify
anomalous weeks (weeks that had anomaly scores above the
75th percentile) in productivity indicators without providing the
models with prior knowledge of health challenges. Following model
implementation, the identified anomalous weeks were compared
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with known health challenges to evaluate the potential of these
models for syndromic surveillance in swine herds.

Data source

The data used in this study originated from an ongoing
surveillance system that monitors weekly productivity data from
swine breeding herds from two swine production systems across
the United States (FieldEPi Swine Data Surveillance System,
https://fieldepi.org/ongoing-monitoring-of-production-data-
breeding-sows/). This system collects weekly productivity data via
automated emails or Application Programming Interface (API),
securely stored on a dedicated server. This robust surveillance
infrastructure and ongoing communication with participants
enables the aggregation of sow performance monitoring
data that contains productivity data on different indicators
related to breeding, farrowing, and weaning performance, from
various production systems, facilitating both retrospective and
prospective studies.

Inclusion criteria and dataset

The breeding herds selected for this analysis followed the
inclusion criteria: (a) willingness to share weekly productivity
indicators, (b) being operated at a continuous breeding-farrowing
fashion (i.e., not batch farrowing), (c) willingness to share
diagnostic data, vaccination data, and reports from health
challenges from field veterinarians, (d) having at least 21 weeks of
data, comprising a full production cycle in breeding herds.

The dataset was built with data from two production systems.
Production System 1 had an inventory of 24,847 sows distributed in
seven farms and 1,344 herd-weeks (i.e., weekly indicators reported
per herd on a calendar-week basis) of productivity data. Production
System 2 had an inventory of 205,257 sows, 42 farms, and 6,700
herd-weeks of productivity data. The indicators used as input for
the analysis were the weekly abortions per 1,000 sows, weekly
average number of total pigs born per litter, weekly average number
of liveborn piglets per litter, weekly percentage of prenatal losses
defined as the difference between total born and born alive per
litter, weekly preweaning mortality percentage from pigs born alive,
weekly females culled per 1,000 sows, and weekly dead sows per
1,000 sows.

Data on diagnostics provided by the production systems
and reports of health challenges made by the veterinarians were
also collected. The reported outbreaks comprised the following
pathogens: Seneca Valley virus (SVV) and PRRSV. The impact of
a disease on animals does not occur solely during the week of the
outbreak. To reflect this more accurately, each disease’s incubation
and resolution periods were considered and added to the dataset
as indicated in the literature. A period of 8 weeks before and 15
weeks after the week of a PRRSV outbreak positive diagnostic was
considered as weeks within the outbreak period (10, 25). For SVV,
the outbreak period was considered as the week before the positive
diagnostic and 2 weeks after (25–27).

Unsupervised learning for anomaly
detection

The implementation and analysis using the three unsupervised
models were done in the statistical programming environment R©

Statistical Software (v4.4.0; (56)) and Microsoft Excel©.

Isolation Forest

Isolation Forest operates by recursively partitioning the data
using randomly selected features, isolating anomalous values
faster than traditional methods such as clustering or distance-
based techniques. An isolation tree is constructed by recursively
partitioning the dataset based on randomly selected attributes and
threshold values until reaching a specified height limit or a single
data point (28, 29). This process generates a binary tree structure.
To quantify anomalies, a ranking method evaluates each data
point’s path length from the root to the leaf node. The anomaly
score [0, 1] is calculated using the formula:

s (x, n) = 2 − E
(
h (x)

) × c(n),

where E(h(x)) is the expected path length, n is the testing data
size, and c(n) represents the average path length for unsuccessful
searches in a binary search tree. Points with scores close to 1
are classified as anomalies, while those below 0.5 are considered
normal (28).

A 10-fold cross-validation procedure was set up using the caret
package (30), allowing for robust hyperparameter tuning. A set of
hyperparameters for the Isolation Forest model were defined using
a grid, with sample size (256, 500, and 1,000) and number of trees
(100, 200, and 300). Package purrr (31) was used to iterate through
each combination of hyperparameters, training and evaluating the
model on the training data and calculating the mean anomaly score
for each fold. During cross-validation, the average anomaly score
across folds was used as a relative performance metric for model
selection. While this metric does not directly measure detection
accuracy, it provides a consistent basis to compare configurations
in the absence of a large labeled dataset. The small number of
labeled anomalies was later used to evaluate the models’ ability
to flag known health-related anomalies, while also assessing their
potential to uncover hidden or emerging anomalies. After cross-
validation, the optimal hyperparameters, determined by the lowest
average anomaly score, were selected, with a sample size equal
to 700 and a number of trees equal to 100 (Table 1). The final
model was trained with the best hyperparameters, and anomaly
scores were predicted. Finally, anomaly scores were compared to
a threshold using the 75th percentile of the anomaly scores to
classify points as anomalies. The thresholding step was applied post
hoc to the final trained model, rather than during cross-validation.
Cross-validation was used exclusively for hyperparameter tuning,
while the 75th percentile cutoff was applied once to the anomaly
scores from the fully trained model. This separation ensured
that thresholding did not influence model selection, but rather
served as the final classification step. This approach used the
isotree package (32) for anomaly detection. Using a threshold for
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TABLE 1 Parameter values for the different models, or each production
system.

Production
system

Model Parameters∗ Value

Production system 1 Isolation Forest Sample size 700

Number of trees 100

Autoencoder Batch size 128

Epochs 50

Hidden layer 1 64

Hidden layer 2 64

KNN k 3

Production system 2 Isolation Forest Sample size 800

Number of trees 300

Autoencoder Batch size 256

Epochs 50

Hidden layer 1 64

Hidden layer 2 32

KNN k 3

∗Sample size—Number of data points sampled to build each individual tree in the forest
Number of trees—Number of decision trees in the forest
Batch size—Number of training samples used in the model’s forward/backward pass. It
controls the amount of data fed into the model in each training iteration.
Epochs—Number of complete passes through the entire training dataset.
Hidden layer 1—Number of neurons in the first hidden layer of the autoencoder. This controls
the complexity of the model and the capacity to capture patterns from the data.
Hidden layer 2—Number of neurons in the second hidden layer of the autoencoder. It
controls the model’s capacity to learn complex patterns.
k—Number of nearest neighbors to consider when making a classification or
regression decision.

anomaly detection has been an approach used in the literature
(33). By using the 75th percentile as a threshold for the anomaly
scores, it is possible to detect the most extreme outliers without
being overly restrictive or lenient. This choice provided a simple
and interpretable threshold that could be applied consistently
across models. Percentile-based thresholding is commonly used in
unsupervised settings where labeled anomalies are limited, as it
allows for empirical selection of a cutoff based on the observed
distribution of anomaly scores (34–36).

K-nearest neighbor

K-nearest neighbor (KNN), a clustering technique, can be also
implemented for anomaly detection with unsupervised learning.
The principle behind this model is to find k predefined number
of training samples that are closest in the distance to a new point
and predict a label for the new point using the samples (37). The
anomaly score [0, ∞] is calculated as follows:

kNN
(
xq, X, k

) = 1
k

∑
x∈Nk (X, xq)

∣∣∣∣xq − x
∣∣ ∣∣ 2,

where Nk(X, xq) is the set of k nearest neighbors of xq, xq is the
query data, and X is the search space (38).

In this study, a KNN algorithm was employed for anomaly
detection using the kknn (39), and FNN (40) packages in R. First,
a parameter grid was defined for tuning the number of neighbors
(k), ranging from 3 to 10. A 10-fold cross-validation was used
to evaluate different configurations, with each fold generating an
anomaly score based on the sum of distances to the k-nearest
neighbors. The KNN model was trained, utilizing a Euclidean
distance (specified via the distance = 2 argument) and a rectangular
kernel to compute the distances. The anomaly scores for each fold
were computed as the row sums of these distances, representing
the degree of “anomalousness” of each data point. The results of
each fold were stored and averaged across all folds to identify the
optimal hyperparameter (k) based on the lowest average anomaly
score. After selecting the best k (k = 3), the final model was trained
on the entire training dataset (Table 1). The FNN package was then
used to calculate the final distances, with anomaly scores derived
from the summed distances to the nearest neighbors. To classify
anomalies, the 75th percentile of the anomaly scores was used as
a threshold, and data points above this threshold were labeled as
anomalies (33–36).

Autoencoders

Autoencoders, a type of neural network, learn to compress
and reconstruct input data by minimizing the reconstruction
error or anomaly score; anomalies are detected based on poor
reconstruction performance (the difference between the input and
the output), as anomalies do not fit the learned patterns (22).
The reconstruction error or anomaly score [0, ∞] is calculated
as follows:

S (xi)= ∣∣∣∣xi−gu (fw (xi))
∣∣∣∣ ,

where xi is the input data, gu is the decoder function, fw is the
encoder function. Anomaly detection using autoencoders operates
on the premise that anomalies are linked to higher values of S(xi),
reconstruction losses, while normal data is associated with lower
reconstruction losses (22).

A 10-fold cross-validation procedure was set up allowing
for hyperparameter tuning. A grid of hyperparameters was
defined, including various configurations for the number of
hidden units in the two layers, hidden layer 1 (64, 128, 256),
and hidden layer 2 (32, 64), the number of epochs (50, 100),
batch size (128, 256), and learning rate (0.001, 0.0001). An
autoencoder model with the specified hyperparameters, using
the Tanh activation function, L1/L2 regularization, and other
training parameters, such as adaptive learning rates and mini-
batch size, was created. The reconstruction error for each data
point was calculated by comparing the original data to the
model’s reconstructed data. The reconstruction error was used
to identify anomalies by setting a threshold based on the 75th
percentile of the errors. A grid search was then performed to
evaluate each combination of hyperparameters, and the average
reconstruction error was calculated for each configuration. The
best-performing hyperparameters were selected based on the lowest
average reconstruction error (Table 1). The final autoencoder
model hyperparameters had an average reconstruction error of
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298.62. Reconstruction error scores were predicted, and anomalies
were identified by comparing their reconstruction errors to the 75th
percentile threshold (33–36). Throughout the process, functions
from the h2o package (41) were utilized for model training,
prediction, and evaluation, while base R functions were employed
for data manipulation and grid search management.

Assessing differences among anomalous
and non-anomalous weeks

Permutation test to compare means
Given the non-normality, lack of homogeneity of variances,

and potential dependence among observations in the data, a
permutation test was used to compare the means of the productivity
indicators between anomalous and non-anomalous weeks. The
data are correlated by subject over time, so permutation was
performed by reshuffling the subjects, ensuring that all observations
within the same subject were resampled together. Permutation
tests are a non-parametric alternative to traditional hypothesis tests
and do not rely on assumptions of normality, homoscedasticity,
or independence. By reshuffling the observed data at the subject
level and recalculating the test statistic for each permutation,
permutation tests create a distribution of the test statistic under the
null hypothesis. This process enables the estimation of a p-value
without making assumptions about the underlying distribution
of the data (42). A summary table was created to compare
anomalous and non-anomalous weeks with the average production
indicator values, reconstruction errors, and anomaly scores. The
same process was done according to each source of the health
challenge. The health challenge sources were defined according
to the outbreak report, and if there was no outbreak report,
the anomalies were defined as “Others.” PRRSV and SVV were
considered true outbreaks, and everything else was considered as
no outbreak or “Others.”

Density plots
Density plots were built for each productivity indicator for

each model and production system. The density plots display the
distribution of the log10 values of productivity indicators, with the
x-axis representing the log-transformed productivity values and the
y-axis representing the density, or the relative frequency, of those
values. In the plot, two sets of curves are shown: the red curves
represent the anomalous weeks, while the blue curves represent the
non-anomalous weeks. By comparing the density of the red and
blue curves, one can observe how the distribution of productivity
indicators differ between anomalous and non-anomalous weeks.

Performance

A confusion matrix was created to calculate the performance.
Binary labels for both predicted anomalies and true anomalies
were defined. True anomalies were considered only for the weeks
with health challenge labels (PRRSV and SVV), and these were
marked as anomalies (1). In Production System 1, 152 weeks were

labeled as PRRSV, while in Production System 2, 821 weeks were
labeled as PRRSV, and 72 weeks were labeled SVV. Weeks that
were not associated with health challenges were not considered
true anomalies and were classified as negative (0). In Production
System 1, this included 1,192 weeks labeled as “Others” (0), and in
Production System 2, 5,807 weeks were classified as “Others” (0). A
TP was considered when there was an anomaly (1), and the models
identified an anomalous week. A TN was considered when there
was no anomaly (0), and the models did not identify an anomalous
week. An FP was considered when there was no anomaly in a
specific week, but the models identified that week as being an
anomalous week. Lastly, an FN was considered when there was an
anomaly in a specific week (1), but the models did not identify that
week as being anomalous. Using the confusion matrix, precision
(the proportion of true positives out of all predicted positives),
recall (the proportion of true positives out of all actual anomalies),
and F1-score (the harmonic mean of precision and recall) were
calculated. The F1-score, which balances both precision and recall,
was used to evaluate the overall performance of the models.

PRRSV example line plots

Since the dataset had a total of 973 weeks with PRRSV
outbreaks, line plots were created for the 8 weeks before and 15
weeks following an outbreak for each production system. These
plots illustrated the deviations in productivity indicators during
anomalous weeks, potentially associated with PRRSV outbreaks,
compared to non-anomalous weeks.

Results

Descriptive

A total of 8,044 weeks were analyzed. The total number of
anomalous weeks for Production System 1 was 336 and the number
of non-anomalous weeks was 1,008. For Production System 2,
the number of anomalous weeks was 1,675, and the number of
non-anomalous weeks was 5,025.

Production System 1

In Production System 1, the differences between anomalous
and non-anomalous weeks across the three anomaly detection
models (Isolation Forest, Autoencoder, and KNN) revealed that
abortions per 1,000 sows had a significant increase in anomalous
weeks (p-value <0.001) for all three models, with a difference in
means ranging from 1.70 (Autoencoder) to 2.95 (Isolation Forest),
suggesting that anomalous weeks are associated with a higher
number of abortions. Prenatal losses also displayed significant
differences, with Isolation Forest and KNN showing the largest
effects (difference of 0.84 with p-value 0.01 and difference of
0.93 with p-value <0.001, respectively), indicating that anomalous
weeks had increased prenatal losses. Conversely, total born and
liveborn both showed negative differences in means (with Isolation
Forest reporting a difference of −1.48 and a difference of −1.75
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TABLE 2 Permutation test results for production system 1 and production system 2.

Production
system

Variable Isolation forest Autoencoder KNN

Difference in
means∗

p-Value Difference in
means∗

p-Value Difference in
means∗

p-Value

1 Abortions per 1,000 2.95 <0.001 1.70 <0.001 2.72 <0.001

Prenatal losses 0.84 0.01 0.34 0.32 0.93 <0.001

Preweaning mortality 0.01 0.08 0.01 0.35 0.01 0.09

Total born −1.48 <0.001 −1.09 <0.001 0.31 0.31

Liveborn −1.75 <0.001 −1.31 <0.001 −0.15 0.61

Sow culled per 1,000 10.04 0.02 10.79 <0.001 12.27 <0.001

Sow deaths per 1,000 0.96 <0.001 0.00 1.00 1.01 <0.001

Anomaly score 0.12 <0.001 1,677.60 <0.001 67.69 <0.001

2 Abortions per 1,000 4.12 <0.001 3.08 <0.001 4.56 <0.001

Prenatal losses 0.79 <0.001 0.41 <0.001 0.70 <0.001

Preweaning mortality 7.35 <0.001 8.81 <0.001 8.87 <0.001

Total born −1.12 <0.001 −1.19 <0.001 −0.13 0.25

Liveborn −1.92 <0.001 −1.60 <0.001 −0.84 <0.001

Sow culled per 1,000 27.59 <0.001 29.79 <0.001 38.18 <0.001

Sow deaths per 1,000 1.45 <0.001 1.22 <0.001 2.00 <0.001

Anomaly score 0.11 <0.001 59,177.13 <0.001 60.32 <0.001

∗The difference in means displayed in the table reflects the difference between anomalous and non-anomalous weeks, calculated using a permutation test (Anomalous - Non-anomalous)

for total born and liveborn, with p-values <0.001, respectively),
pointing to lower birth rates in anomalous weeks. The sows culled
per 1,000 sows showed a higher difference for anomalous weeks
(e.g., 12.27 with p-value <0.001 for KNN) than for non-anomalous
weeks. Lastly, the anomaly scores revealed large differences (e.g.,
1,677.60 for Autoencoder with p-value <0.001), emphasizing that
weeks with anomalies exhibit a highly elevated anomaly score
compared to non-anomalous weeks (Table 2).

When analyzing the weeks classified as having PRRSV, we
see significant differences in many productivity indicators. The
abortions per 1,000 sows showed differences across all models,
with a large difference in means, particularly in Isolation Forest
(3.90, p-value <0.001), followed by KNN (3.91, p-value <0.001),
indicating an increase in abortions in anomalous weeks. Significant
differences were also observed in total born across all models (p-
value <0.01) and liveborn for Isolation Forest and Autoencoder (p-
value <0.001), with negative differences suggesting lower numbers
in anomalous weeks. Sows culled per 1,000 sows showed an
increase in the number of culled sows during anomalous weeks,
particularly with the KNN model (15.38, p-value = 0.01). Anomaly
scores demonstrated high values in anomalous weeks associated
with PRRSV, especially in the Autoencoder model (2,274.80).
The weeks classified as “Others” showed less drastic differences
in most variables, but sows culled per 1,000 sows and anomaly
scores remained significant across all models with p-values <0.001
(Table 3).

Based on the density plots for Isolation Forest (Figure 1),
Autoencoders (Figure 2), and KNN (Figure 3), it can be concluded

that, overall, productivity indicators such as abortions per 1,000
sows and sows culled per 1,000 sows during anomalous weeks
(marked in red) tend to be higher than those in non-anomalous
weeks (marked in blue). This is evident as the tails of the density
curve for anomalous weeks stretch far to the right side of the
plot for these productivity indicators, indicating higher values. In
contrast, for liveborn and total born, the tails of the density curve
for anomalous weeks reach far to the left, signifying lower values
compared to non-anomalous weeks.

Production System 2

In Production System 2, the differences between anomalous
and non-anomalous weeks remain consistent across the three
models. Abortions per 1,000 sows showed significant increases
for anomalous weeks, with the difference in means ranging from
3.08 (Autoencoder) to 4.56 (KNN), with p-values <0.001. Prenatal
losses showed smaller but significant differences across all methods,
with Isolation Forest reporting the highest effect (0.79, p-value
<0.001). Like Production System 1, total born and liveborn both
showed negative differences, with total born decreasing by as
much as −1.12, with p-value <0.001 (Isolation Forest), indicating
reduced birth rates for anomalous weeks. Sows culled per 1,000
sows showed large differences between anomalous and non-
anomalous weeks, with values ranging from 27.59 (Isolation Forest)
to 38.18 (KNN), with p-value <0.001, suggesting increased sow
culling in this production system during anomalous weeks. The
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TABLE 3 Permutation test results for production system 1 and production system 2 for different anomalies.

Production
system

Anomaly
type

Variable Isolation Forest Autoencoder KNN

Difference
in means∗

p-Value Difference
in means∗

p-Value Difference
in means∗

p-Value

1 PRRSV Abortions per 1,000 3.90 <0.001 1.86 0.05 3.91 <0.001

Prenatal losses 0.44 0.44 0.46 0.43 0.96 0.08

Preweaning mortality 0.00 0.60 0.01 0.43 0.01 0.33

Total born −1.73 <0.001 −1.50 0.01 1.05 0.07

Liveborn −2.12 <0.001 −1.74 <0.001 0.45 0.39

Sow culled per 1,000 11.60 0.38 14.17 0.06 15.38 0.01

Sow deaths per 1,000 1.21 0.01 0.13 0.77 1.66 <0.001

Anomaly score 0.13 <0.001 2,274.80 0.47 91.38 <0.001

Others Abortions per 1,000 0.08 0.43 −0.01 0.95 0.36 0.04

Prenatal losses 1.58 <0.001 −0.03 0.95 0.78 0.05

Preweaning mortality 0.04 <0.001 0.00 0.89 0.01 0.27

Total born −0.79 <0.001 −0.09 0.56 −0.23 0.10

Liveborn −0.74 <0.001 −0.16 0.25 −0.46 <0.001

Sow culled per 1,000 5.73 <0.001 4.22 0.01 8.39 <0.001

Sow deaths per 1,000 0.55 0.05 −0.53 0.05 0.17 0.57

Anomaly score 0.07 <0.001 47.95 <0.001 20.00 <0.001

2 PRRSV Abortions per 1,000 5.20 <0.001 4.32 <0.001 6.07 <0.001

Prenatal losses 1.05 <0.001 0.51 <0.001 0.82 <0.001

Preweaning mortality 9.60 <0.001 12.57 <0.001 10.53 <0.001

Total born −1.01 <0.001 −1.18 <0.001 0.13 0.49

Liveborn −2.06 <0.001 −1.70 <0.001 −0.69 <0.001

Sow culled per 1,000 29.62 0.02 39.15 <0.001 39.52 <0.001

Sow deaths per 1,000 1.64 <0.001 1.63 <0.001 2.28 <0.001

Anomaly score 0.12 <0.001 90,289.09 <0.001 66.56 <0.001

Others Abortions per 1,000 0.95 <0.001 0.26 0.06 0.73 <0.001

Prenatal losses 0.02 0.66 −0.05 0.21 0.10 0.01

Preweaning mortality 2.32 <0.001 2.69 <0.001 4.72 <0.001

Total born −1.40 <0.001 −1.22 <0.001 −0.08 0.67

Liveborn −1.42 <0.001 −1.18 <0.001 −0.17 0.25

Sow culled per 1,000 22.31 <0.001 15.25 <0.001 37.47 <0.001

Sow deaths per 1,000 0.70 <0.001 0.35 0.03 1.18 <0.001

Anomaly score 0.08 <0.001 9,968.82 <0.001 46.33 <0.001

SVV Abortions per 1,000 0.48 0.06 0.00 0.99 0.51 0.05

Prenatal losses −0.12 0.28 0.13 0.19 −0.02 0.83

Preweaning mortality 2.35 0.45 3.04 0.27 7.47 0.03

Total born −0.09 0.73 0.64 <0.001 0.26 0.35

Liveborn 0.04 0.88 0.51 0.01 0.28 0.24

Sow culled per 1,000 8.51 0.01 −1.49 0.61 16.52 <0.001

Sow deaths per 1,000 0.89 0.03 −0.07 0.83 0.70 0.11

Anomaly score 0.05 <0.001 265.32 <0.001 19.80 <0.001

PRRSV, Porcine reproductive and respiratory syndrome virus; SVV, Seneca Valley virus.
∗The difference in means displayed in the table reflects the difference between anomalous and non-anomalous weeks, calculated using a permutation test (Anomalous - Non-anomalous).
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FIGURE 1

Density plots for Isolation Forest (Production System 1). Each production indicator and the anomaly scores are shown in the density plots; the y-axis
represents the density, and the x-axis represents the log value of each variable (the log transformation was done for better interpretation of the
chart). The blue color represents the non-anomalous weeks, and the red color represents the anomalous weeks. The plots illustrate how the model
separates non-anomalous and anomalous weeks, providing a visual overview of deviations in production indicators relevant for anomaly detection.

anomaly scores showed a disparity between anomalous and non-
anomalous weeks, with Autoencoder reporting a high difference of
59,177.13 with a p-value <0.001 (Table 2).

For the weeks classified as PRRSV, these exhibited significant
differences, particularly in abortions per 1,000 sows, which showed
differences in means across models (ranging from 4.32 for
Autoencoder to 6.07 for KNN, with p-value <0.001), indicating
a high number of abortions in anomalous weeks associated with
a PRRSV. Similarly, PWM showed significant differences, with
high values in anomalous weeks across models (p-value <0.001).
Sows culled per 1,000 sows showed high differences in the number
of culled sows, particularly with the KNN model (39.52, p-value
<0.001). Significant differences in anomaly scores were observed
across all models, with extremely high values for PRRSV anomalies,
especially in the Autoencoder model (90,289.09, p-value <0.001).
The weeks classified as SVV presented more variability, with less
consistent differences, particularly in prenatal losses and liveborn.
This likely reflects the milder and short-lived clinical expression of
SVV in sows, as infection typically resolves within 8–10 days and
does not severely affect reproductive parameters, unlike PRRSV
(27). However, sows culled 1,000 sows still showed significant
differences, with large values for the KNN model (16.52, p-
value <0.001). When comparing the weeks classified as “Others,”
significant differences in variables like abortions per 1,000 sows
(Isolation Forest: 0.95, p-value <0.001; Autoencoder: 0.26, p-value
= 0.06; KNN: 0.73, p-value <0.001 ) and sows culled per 1,000
sows (Isolation Forest: 22.31, p-value <0.001; Autoencoder: 15.25,

p-value <0.001; KNN: 37.47, p-value <0.001 ) were observed, but
with smaller values than those associated with PRRSV (Table 3).

Based on the density plots for Isolation Forest (Figure 4),
Autoencoders (Figure 5), and KNN (Figure 6), the conclusions
from the charts are like those for Production System 1.

Performance

The models performed well in detecting the PRRSV anomaly,
achieving perfect precision (100%) across all methods and for
both production systems, with F1-scores ranging from 60%
(Autoencoder for Production System 2) to 77% (Isolation Forest for
Production System 2). For anomalies like SVV the models showed
lower F1-scores for the Isolation Forest and the Autoencoder
models compared to PRRSV (Table 4).

PRRSV example line plots

The PRRSV line plots (Figure 7) illustrate the differences
between weeks classified as anomalous due to a PRRSV outbreak
and those that were not considered anomalous. It can be observed
that the number of abortions per 1,000 sows began to rise before
the diagnosis of the PRRSV outbreak, especially noticeable in
the line plot for Production System 2, and that the number of
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FIGURE 2

Density plots for Autoencoder (Production System 1). Each production indicator and the reconstruction error are shown in the density plots; the
y-axis represents the density, and the x-axis represents the log value of each variable (the log transformation was done for better interpretation of the
chart). The blue color represents the non-anomalous weeks, and the red color represents the anomalous weeks. The plots illustrate how the model
separates non-anomalous and anomalous weeks, providing a visual overview of deviations in production indicators relevant for anomaly detection.

abortions reached higher values than those reached during the
non-anomalous weeks.

Discussion

This paper evaluates the use of unsupervised machine
learning models to detect anomalies in productivity indicators
on swine farms. Given the increasing automation in data
collection and analysis in modern swine production systems,
leveraging this data is crucial for monitoring health status and
improving farm management (43, 44). These systems collect large
volumes of data on production performance, which could be
analyzed to identify health-related anomalies. Anomaly detection
techniques, such as those explored in this study, can provide early
warnings for diseases, enabling timely interventions and enhancing
productivity monitoring.

Previous research has explored anomaly detection in the
context of animal health and health challenges. For example, gated
recurrent units -Autoencoders have been used to detect early
signs of respiratory diseases in growing-pig farms, focusing on
environmental factors (57). Additionally, a study by (author?)
(58) found that the long short-term memory Autoencoder
model outperformed other models, including Farrington, Early
Aberration Reporting System, and regression models, in detecting
anomalies related to PRRSV. Similarly, the Isolation Forest

model, previously used to detect estrus in dairy cows (59)
and to identify anomalies in temperature and humidity data
(60), performed well in distinguishing between anomalous
and non-anomalous weeks. The KNN model, known for its
effectiveness in both supervised and unsupervised learning (61,
62), showed similar results to the Autoencoder and Isolation
Forest models in this study, with anomalous weeks showing
significant differences between anomalous and non-anomalous
weeks (Table 2).

The models employed in this study represent distinct
anomaly detection approaches, each with its strengths and
limitations. Isolation Forest is known for its efficiency, scalability,
and ability to detect anomalies without assumptions about
data distribution, making it suitable for high-dimensional data
(28, 29). However, its performance may decline with highly
imbalanced datasets or when anomalies closely resemble normal
instances (45). In contrast, Autoencoders use neural networks to
capture complex, non-linear relationships within high-dimensional
datasets, making them effective for detecting subtle anomalies
(22). However, they can be computationally intensive and
require careful tuning to avoid issues related to training
anomalies and generalization (45). KNN, a non-parametric
model that requires minimal parameters, is versatile for both
classification and regression tasks. However, it struggles with
high-dimensional data and is prone to overfitting (46). Despite
these limitations, all models provided valuable insights into
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FIGURE 3

Density plots for KNN (Production System 1). Each production indicator and the anomaly score are shown in the density plots; the y-axis represents
the density, and the x-axis represents the log value of each variable (the log transformation was done for better interpretation of the chart). The blue
color represents the non-anomalous weeks, and the red color represents the anomalous weeks. The plots illustrate how the model separates
non-anomalous and anomalous weeks, providing a visual overview of deviations in production indicators relevant for anomaly detection.

FIGURE 4

Density plots for Isolation Forest (Production System 2). Each production indicator and the anomaly scores are shown in the density plots; the y-axis
represents the density, and the x-axis represents the log value of each variable (the log transformation was done for better interpretation of the
chart). The blue color represents the non-anomalous weeks, and the red color represents the anomalous weeks.
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FIGURE 5

Density plots for Autoencoder (Production System 2). Each production indicator and the reconstruction error are shown in the density plots; the
y-axis represents the density, and the x-axis represents the log value of each variable (the log transformation was done for better interpretation of the
chart). The blue color represents the non-anomalous weeks, and the red color represents the anomalous weeks.

FIGURE 6

Density plots for KNN (Production System 2). Each production indicator and the anomaly score are shown in the density plots; the y-axis represents
the density, and the x-axis represents the log value of each variable (the log transformation was done for better interpretation of the chart). The blue
color represents the non-anomalous weeks, and the red color represents the anomalous weeks.
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TABLE 4 Performance metrics per anomaly type for each production system.

Production
system

Anomaly
type

Isolation Forest Autoencoder KNN

Precision Recall F1-
score

Precision Recall F1-
score

Precision Recall F1-
score

1 PRRSV 100% 51% 67% 100% 52% 68% 100% 50% 67%

2 PRRSV 100% 62% 77% 100% 43% 60% 100% 52% 68%

SVV 100% 13% 22% 100% 18% 31% 100% 50% 67%

FIGURE 7

The average of abortions per 1,000 sows in the weeks prior to and following PRRSV outbreaks. The chart on the top refers to the isolation forest
model with the average of abortions per 1,000 sows for Production System 1. The chart on the bottom refers to the isolation forest model with the
average of abortions per 1,000 sows for Production System 2. The red line is the average for anomalous weeks, and the green line is the average for
non-anomalous weeks. The vertical dots refer to the week of the PRRSV outbreak.

production behavior during anomalous and non-anomalous weeks
(Table 2).

In the case of disease detection, it is of the utmost importance to
guarantee that possible epidemics are caught early. Previous studies
using statistical process control charts observed that deviations
in productivity indicators start to be noticed on average 4 weeks
before the diagnostic confirmation of a PRRSV outbreak (8, 10).
The results from this study showed that the Isolation Forest,
KNN, and Autoencoder models indicated a trend of increasing
number of anomalies in productivity indicators associated with
outbreaks compared to weeks that were not considered anomalies
(Table 3). These findings underscore the complementary nature of
the Isolation Forest, KNN, and Autoencoder models, providing
valuable insights into how productivity indicators fluctuate during
significant events and demonstrating their potential for monitoring
and detecting anomalies in swine production systems. For instance,
for both production systems, the KNN model detected a higher
difference in abortions per 1,000 sows during PRRSV outbreaks

(Production System 1: 3.91, Production System 2: 6.07) than
the other two models. Conversely, for SVV outbreaks, less
pronounced differences between anomalous and non-anomalous
weeks were observed across the models, suggesting that SVV-
related disruptions may cause less noticeable changes in production
performance. These findings underscore the value of applying
multiple anomaly detection models to capture a wide range
of disease-related fluctuations in swine production. Each model
may be sensitive to different types of anomalies, some may
detect extreme deviations, while others may better identify subtler
or multivariate patterns, so comparing results across models
can help uncover patterns that might be missed by any single
method (47). Although no formal ensemble or voting approach
was tested in this study, evaluating multiple models in parallel
provided complementary insights and highlighted the potential
for integrating diverse anomaly detection approaches in future
work, particularly when routine diagnostics are not implemented
at the farm.
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The analysis of anomalous and non-anomalous weeks, based
on different anomaly classifications (PRRSV, SVV, and Others),
reveals variations in the productivity indicators, which aligns
with findings from several studies on swine production. For
instance, PRRSV-infected herds have been reported to exhibit
higher rates of abortion, prenatal loss, and mortality (48, 49),
which is consistent with the higher differences in anomaly scores,
reconstruction errors, and productivity indicators observed during
anomalous weeks in this study (Table 3). Specifically, the increased
anomalies in PRRSV-classified weeks suggest a disruption in
normal reproductive performance, as demonstrated by the elevated
production losses seen in the literature (23). Furthermore, similar
trends were observed for SVV, where anomalous weeks showed
deviations in productivity indicators, similar to the experimental
findings of other studies (24, 50), who reported production losses
following SVV infections. These findings also corroborate (26),
who emphasized the need for greater surveillance of SVV due to its
potential to cause significant production losses. In contrast, non-
anomalous weeks, particularly those classified as “Others,” showed
smaller differences in productivity indicators between anomalous
and non-anomalous weeks (Table 3), reflecting the absence of
major health challenges as noted in the literature for non-endemic
diseases (48). Collectively, these results highlight the significant
role that diseases play in negatively affecting the performance
and overall health of swine herds, reinforcing the importance of
targeted interventions for mitigating these viral infections.

The F1-score, precision and recall metrics were used to evaluate
the performance of the unsupervised anomaly detection models
tested in this study (7, 51, 52). These metrics yielded F1-Scores
values below 80%, with PRRSV reaching higher performance scores
than SVV. As observed by the results of the permutation tests,
this was expected, since PRRSV showed a larger difference in
means between anomalous and non-anomalous weeks than the
SVV and “Others.” It should be taken into consideration that
the performance metrics were calculated based on a limited set
of labeled data, with only weeks associated with specific health
challenges (PRRSV and SVV) considered as true anomalies. In
the context of unsupervised learning, these models are particularly
useful for exploring patterns in datasets where labeled anomalies
are limited. By detecting deviations without relying solely on
predefined labels, the models in this study were able to highlight
weeks with statistically significant differences from non-anomalous
weeks, as confirmed by permutation tests comparing productivity
indicators. This suggests that unsupervised approaches can help
reveal anomalies that may have been missed, undiagnosed,
or mislabeled, providing insight into potentially overlooked
issues within the production system. While supervised models
depend on the availability and accuracy of labels, unsupervised
models can flag unusual patterns even when diagnostic data
are incomplete or uncertain. One practical way to leverage
these insights is through the creation of production scores that
summarize deviations across production systems or farms. For
example, farms or production systems could be categorized
based on overall performance scores derived from anomaly
detection outputs, allowing managers to identify areas with major
deviations and prioritize investigations. Such scoring frameworks

can provide a structured and interpretable method to monitor
production variability.

While this study provides valuable insights into anomaly
detection for disease monitoring in swine farms, it is important
to acknowledge its limitations. The analysis primarily focused
on health challenges, particularly PRRSV and SVV, and did
not consider other factors that may influence the appearance
of anomalies, such as environmental conditions or management
practices. These models are intended to be agnostic, that is, they flag
deviations in productivity indicators without assuming a specific
cause, serving as an exploratory tool to highlight potential issues
rather than a definitive measure of disease presence. Some flagged
anomalies may represent false positives, triggered by routine
management activities (e.g., vaccination, moving sows, or issues
with electronic sow feeders), environmental events (e.g., weather),
or missing data inputs, while others could reflect undiagnosed
or emerging health challenges. if data are not entered or if
key variables show unexpected gaps, the models would likely
identify this as an anomaly, since the resulting deviation from
the established farm-specific pattern differs from the expected
trajectory of production indicators. In this sense, the models can
also serve as a tool to detect irregularities in data recording or
reporting practices. However, they cannot distinguish between
anomalies arising from biological events and those caused by data-
entry errors, emphasizing the need for human interpretation of the
alerts. In this study, a threshold using the 75th percentile was used,
but thresholds may need to be tuned in each production system
to balance sensitivity and specificity, for example, by adjusting
cutoffs based on production system-specific baseline variability
or by applying adaptive approaches that account for temporal
changes. Furthermore, the study did not assess PRRSV statuses
prior to outbreak reports, which could have impacted the results, as
farms with different levels of prior exposure to PRRSV may exhibit
varying responses. Another potential limitation of the data used in
this study is that the data for the same herds across consecutive
weeks may exhibit temporal correlation. For example, production
indicators could be influenced by health or environmental factors
persisting over time. However, the models used in this study focus
on detecting local anomalies based on deviations from the learned
distribution or neighborhood (53). These models are not explicitly
designed to account for temporal correlations but are still effective
at identifying significant deviations regardless of the relationship
between weeks.

Future research could broaden the scope by considering
additional factors like environmental conditions, pathogen
introductions, or farm management differences, providing
a more comprehensive understanding of anomaly detection
in swine production systems. Moreover, exploring
other farm settings, such as nurseries or wean-to-finish
operations, could offer further insights into the robustness
and applicability of the models tested in this study.
Additionally, considering the incorporation of time-series
models or temporal correlation-aware anomaly detection
techniques could be used to capture the dependencies of
production indicators over time and enhance the model
performance (54).
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Conclusion

The utility of unsupervised machine learning techniques in
detecting anomalies was demonstrated in this study, paving
the way for more proactive management strategies in livestock
health. By employing Isolation Forest, Autoencoder, and KNN
models, it was found that anomalous weeks showed a significant
difference in the overall values of the productivity indicators,
anomaly scores, and reconstruction errors compared to non-
anomalous weeks. These findings highlight the potential for using
productivity indicators to aid decision-makers in implementing
surveillance systems, mainly in farms that are not routinely
collecting samples for diagnostics. Monitoring these data is
crucial for triggering timely diagnostic tests and treatments
and enhancing biosecurity measures, ultimately contributing
to improved animal welfare and farm productivity during
health challenges.
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