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Analysis of the differential
transcriptome expression profiles
during prenatal muscle tissue

development in Diging Tibetan
pigs
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Xinxing Dong'*

!College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China, 2School
of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei, China

Since the number of muscle fibers in pigs is largely fixed after birth, the formation
of muscle fibers during the embryonic stage plays a crucial role in determining
postnatal growth performance and meat production potential. In this study, we used
large Diging Tibetan pigs (LTP) and small Diging Tibetan pigs (STP), which show
significant differences in postnatal growth rate and meat yield, as research models.
We employed RNA-seq for transcriptome sequencing and applied differential
expression analysis combined with weighted gene co-expression network analysis
(WGCNA) to compare their gene expression profiles and identify potential regulatory
differences during key stages of embryonic muscle development. Longissimus dorsi
muscle samples were collected from both groups at three critical developmental
stages—embryonic day 55 (E55), embryonic day 75 (E75), and at birth (D0)—
for transcriptome sequencing. Differential expression analysis revealed that the
higher meat yield observed in LTP compared with STP may be attributed to a
stronger capacity for secondary muscle fiber formation during the embryonic
stage. Furthermore, WGCNA identified candidate genes that may specifically
regulate muscle development in LTP across the three key developmental stages.
These findings provide valuable insights into the molecular regulatory networks
underlying muscle development and growth potential in Diging Tibetan pigs.

KEYWORDS

Diging Tibetan pig, myofiber development, embryonic stages, transcriptome analysis,
functional genes

1 Introduction

Skeletal muscle development is a complex process involving the formation of muscle fibers
during embryonic development and hypertrophy after birth (1). Myofibers originate from
myoblasts that proliferate and fuse to form myotubes, which then differentiate into mature
myofibers. In pigs, the formation of skeletal muscle during embryonic development involves
two key phases: the establishment of primary myofibers and the emergence of secondary
myofibers. The formation of primary myofiber occurs during early gestation (from day 35 to
day 55), when precursor myogenic cells fuse to form myotubes (2). Following the formation
of primary fibers, secondary fiber development occurs from day 55 to day 90, during which
myogenic cells rapidly proliferate and differentiate, utilizing the primary fibers as a scaffold
for the formation of secondary fibers (3). Following birth, the number of muscle fibers in pigs
remains stable, with the primary change being an increase in fiber size (4). Consequently, the
embryonic stage of skeletal muscle development is vital. Elucidating the genetic mechanisms
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that regulate this process, particularly during early development, is
essential for improving pork production efficiency.

The Diqing Tibetan pig is an excellent local breed primarily
distributed in the Diqing Tibetan Autonomous Prefecture of Yunnan
Province, China. As a typical plateau breed, Diqing pigs exhibit low
oxygen tolerance (5-8) and possess outstanding meat quality traits
(9-13). Based on body size differences, Diging Tibetan pigs can
be categorized into large, medium, and small types. Adult large pigs
can weigh between 70 and 150 kg, with an average daily gain of
200-250 grams during the fattening period; small pigs typically weigh
between 45 and 55 kg, gaining 100-120 grams daily during the same
phase (14-16). These body size differences not only affect the growth
rate and meat quality characteristics of the pigs but also provide
important material for analyzing the functional genes involved in
variations in muscle fiber development within the breed. Currently,
research on Diqing Tibetan pigs mainly focuses on various aspects,
including origin and domestication (17), genetic diversity (18-20),
hybrid utilization (21, 22), growth characteristics (23, 24), high-
altitude adaptation (25), fat deposition (26-29), and postnatal muscle
development (30-32). Despite the existing studies covering multiple
areas, research on the differential expression of genes involved in
muscle development during the embryonic stages of large and small
Diqing Tibetan pigs is still limited. In this study, we utilized both
large and small Diqing Tibetan Pigs, which exhibit marked differences
in growth rate, and lean meat percentage. Our objective was to
identify key genes that influence muscle fiber development at various
stages across different body types. These findings will provide a
valuable foundation for genetic improvement and effective
breeding strategies.

2 Materials and methods

2.1 Ethical statement

All experimental procedures in this study received approval from
The Ethics Committee of Life Sciences, Yunnan Agricultural
University (approval number: 202207003).

2.2 Sample collection

The experimental subjects included large Diqing Tibetan pigs
(LTP) and small Diqing Tibetan pigs (STP), all housed and fed under
uniform conditions at the Lvyuan Agricultural Professional
Cooperative in Shangri-La City, Yunnan Province, China. Our
research team previously established two distinct lineages
characterized by large and small body types through a long-term
selective breeding program focused on growth rate and adult body
weight differences. At 6 months of age, large Diqing Tibetan pigs had
an average weight of 59.33 + 5.77 kg, while small Diging Tibetan pigs
averaged 28.00 + 2.00 kg. Purebred sows from each breed were
synchronized in estrus and mated with purebred boars of the same
breed. Three embryos or piglets at the identical developmental stage
were all derived from the same maternal sow: embryonic day 55 (E55),
embryonic day 75 (E75), and immediately after birth (D0), designated
as LTP-E55, LTP-E75, LTP-DO (and similarly for STP). Three fetuses
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or piglets from every group were randomly chosen for longissimus
dorsi (LD) muscle sampling, subsequently flash-frozen in liquid
nitrogen and preserved at —80 °C in the laboratory.

2.3 Tissue total RNA extraction and
sequencing

Total RNA extraction from tissue samples was performed using
the Trizol method, and nucleic acid integrity was verified via agarose
gel electrophoresis. The optical density (OD) values of the nucleic
acids were measured using a NanoDrop spectrophotometer to assess
their purity. RNA integrity number (RIN) assessment was performed
using the Agilent 2100 Bioanalyzer to evaluate quality. Following
quality control, the RNA samples were submitted to Genedenovo
Biotechnology Co., Ltd. (Guangzhou, China) for paired-end
sequencing. The cDNA library was sequenced on the Illumina
NovaSeq 6000 platform with 6 Gb of raw reads per biological replicate.

2.4 Raw data quality control and alignment

Raw sequencing data (Raw reads) were first processed with the
FASTP tool (version 0.23.4) (33) for quality control. In this step, reads
with adapters or poly-N sequences, over 10% unknown nucleotides,
and more than 50% low-quality bases (Q < 10) were eliminated. This
quality control procedure produced high-quality reads (Clean reads),
ensuring accuracy in subsequent analyses. The Clean reads were
aligned to the reference genome of the pig (Sscrofall.l) with HISAT2
(version 2.2.1) (34), and alignment rates were subsequently calculated.
Finally, transcripts were assembled and quantified using STRINGTIE
(version 2.2.3) (35), producing a raw expression matrix (Counts) for
each gene in each sample.

2.5 ldentification of differentially expressed
genes and functional enrichment analysis

To account for sequencing depth and adjust for gene length
effects, raw read counts were normalized to gene length corrected
trimmed mean of M-values (GeTMM) (36) for all genes in each
sample. The GeTMM normalized matrix encompassing all genes
across all samples was subjected to principal component analysis
(PCA) using the FactoMineR package (version 2.11) (37).

Following PCA confirmation of high-quality sequencing data
and reliable sample grouping, the analysis was performed using the
edgeR package (version 3.40.2) (38), differentially expressed genes
(DEGs) were identified based on the GeTMM of genes, with
statistically significant DEGs defined by dual thresholds of absolute
log, (Fold Change) > 1.0 and adjusted p-value (FDR) < 0.05.
Enrichment analysis for Gene Ontology (GO) was performed on
genes from significantly correlated modules by KOBAS online
database' (39).

1 http://bioinfo.org/kobas/
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2.6 Weighted gene co-expression network
analysis

Using the GeTMM values of each gene across all samples,
we performed weighted gene co-expression network analysis
(WGCNA) in R using the WGCNA package (version 1.73) (40). The
weighted adjacency matrix was constructed using the soft-
thresholding power (B) of 9 to attain scale-free topology. The
adjacency was transformed into a topological overlap matrix (TOM),
and the corresponding dissimilarity (1-TOM) is calculated. The
modules were identified by dynamic tree cutting and with a minimum
module size of 50. A correlation of 70% (equivalent to a distance
metric threshold of 0.3 in analytical pipelines) was used to merge
similar modules. We conducted a correlation analysis between each
module and the three developmental stages of different body types to
identify relevant modules highly associated with LTP across these
stages. Visualization was achieved through heatmaps, and modules
with p-value < 0.05 were designated as significantly correlated
modules for further analysis. A significance threshold of p-value <
0.05 was applied for enrichment analysis. We calculated kernel module
eigengenes (KME) by assessing gene significance (GS) and module
membership (MM) to identify hub genes within the modules.

2.7 Construction of the differentially
expressed gene interaction network

We compared the identified DEGs with protein entries in the
STRING database® (41). Based on homology protein-protein
interaction data, we created an interaction network for the identified
DEGs, which was subsequently visualized using Cytoscape (version
3.10.1) (42). Nodes with the most neighbors were designated as
key genes.

2.8 Validation by real-time quantitative
PCR

The porcine GAPDH gene (43, 44) was employed as the internal
reference. The total RNA for qPCR was derived from the RNA used
in the RNA-seq experiments. The design of primers was conducted
with Primer-BLAST,’ with the sequences provided in Table 1.
Shenggong Biological Engineering (Shanghai) Co., Ltd., Kunming
Branch (Kunming, China) synthesized all primers. In accordance with
the manufacturer’s guidelines, QPCR was conducted using a SYBR
Green qPCR kit (TTANGEN, China, FP205) on an FQD-96A real-
time PCR detection system (Bioer, Hangzhou, Zhejiang, China). The
reaction system had a total volume of 20 pL, which included 10 pL of
2 x SuperRreMixPlus, 0.6 pL of each forward and reverse primer
(10 pM), 1 puL of cDNA, 0.5 pL of 50 x ROX Reference Dye, and
7.3 uL of RNase-free distilled water were added. The reaction program
comprised an initial activation step at 95 °C for 15 min, followed by
40 cycles of denaturation at 95 °C for 10 s and annealing/extension at

2 http://string-db.org/
3 http://www.ncbi.nlm.nih.gov/tool/primer-blast/
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TABLE 1 Primers for real-time quantitative PCR.

Genes Sequence (5-3') ‘ Length

GAPDH F: GACATCAAGAAGGTGGTGAAGCA 177
R: GTCGTACCAGGAAATGAGCTTGA

PDLIM3 F: CGGCCCAAACCTTTCATAATCC 153
R: TAGGGGCCATCTTAGCAGCA

CMYAS5 F: GATGAAGAGGGCAAGACCAAGA 100
R: TGGTCTCCCAGGTTATTCCAC

ATP2A1 F: TTCAACGATCCTGTCCACGG 158
R: GCGTTCTTCTTTGCCATCCG

ACACB F: CTGCACGGAAATGATCGCTG 213
R: CCCTCATCTGGGTTTTCGCT

CLCN1 F: GCACCGCCTGCTCTATC 211

R: CACGACCACGTTGACTTTT

60 °C for 20 s. A melting curve analysis was executed by incrementally
increasing the temperature from 60 °C to 95 °C, with each sample
evaluated in triplicate. Gene expression levels were normalized to
GAPDH, and The 2A—AACt method was utilized to assess relative
expression levels.

3 Results

3.1 RNA-seq data quality assessment of LD
muscle samples

The RNA-seq data showed that the LTP groups at three
developmental stages generated an average of 38.37 M, 41.39 M, and
46.46 M raw reads, respectively. The STP groups produced an average
of 3821 M, 38.49 M, and 36.77 M raw reads. Following quality
control, the clean read rate surpassed 98%, with over 95% of reads
mapping to the porcine reference genome (Sscrofa 11.1), indicating
high-quality alignment (Supplementary Table S1). Subsequently, PCA
(Figure 1) demonstrated that biological replicates within each group
clustered tightly, while clear separation was observed among different
groups, occupying distinct positions. This confirms the high quality
of the data and the reliability of sample grouping, supporting their
suitability for downstream analysis.

3.2 DEGs regulating the LD muscle
development

During the critical developmental window from E55 to DO, the
number of secondary myofibers formed in pigs directly determines
postnatal meat yield. To identify functional genes regulating secondary
myofiber formation and development, we performed longitudinal
analysis of DEGs across developmental stages and identified
consistently dynamically expressed candidates with relevant biological
functions. In the LD muscle of LTP, across the different age groups,
we identified 53 DEGs in the comparison of E75 vs. E55, 3,302 DEGs
in DO vs. E75, and 3,896 DEGs in DO vs. E55 comparison
(Figures 2A-C). A total of 21 DEGs were identified as shared among
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FIGURE 1
PCA plot of LTP and STP. Each dot color represents a different time point and each dot represents an individual pig.

these three comparisons (Figure 2D; Supplementary Table S2). GO
enrichment analysis revealed that these genes are significantly
involved in key biological processes related to muscle growth and
development (Figure 3A), including regulation of cytoskeleton
organization (CAPN6, STMNI), troponin complex (TNNTI), and
regulation of muscle contraction (ATP2A1). As shown in Figure 3B,
the expression patterns of these genes across developmental stages
exhibited distinct temporal dynamics: ATP2A1 expression gradually
increased over time, whereas STMNI and CAPNG6 showed progressive
downregulation throughout development. In contrast, TNNTI
expression displayed a biphasic trend, initially decreasing followed by
a subsequent increase.

In STP, we identified 365 DEGs in the comparison of E75 vs. E55,
5,401 DEGs in DO vs. E75, and 5,583 DEGs in DO vs. E55 comparison
(Figures 4A-C). A total of 155 DEGs were identified as shared among
these three comparisons (Figure 4D; Supplementary Table S2). GO
enrichment analysis revealed that these genes are significantly
involved in key biological processes related to cell division, including
the mitotic spindle (CDK1, SKA3, ESPLI, KIF11, GEM, and KIFCI),
mitotic cytokinesis (STMNI, ANLN, KIF4A, CIT, CKAP2, and
KIF20A), and mitotic cell cycle checkpoint (ZWINT, WEEI, and
CHEKI) (Figure 5A). Expression profiling across developmental
stages demonstrated distinct temporal dynamics for these genes
(Figure 5B): while GEM exhibited a biphasic expression pattern
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characterized by an initial increase followed by a decrease, all other
DEGs showed progressive downregulation throughout development.
In addition to these genes, we observed a gradual decrease in MYF5
expression, whereas MEF2C and TNNTI displayed progressive
upregulation over time (Figure 5C).

3.3 Gene co-expression networks across
three developmental stages in LTP

3.3.1 Co-expression modules associations with
three developmental stages of LTP

Compared to STP, LTP demonstrated significantly enhanced
postnatal growth rates and superior meat production. To identify
genes strongly associated with the three key developmental stages in
LTP, we conducted WGCNA we performed WGCNA using both
breed and developmental time as phenotypic traits. Based on the gene
expression data from the LD muscle across three developmental stages
of LTP and STP, a filtered gene expression matrix comprising 8,958
genes was obtained. As illustrated in Figure 6A, the optimal soft-
thresholding power (f = 9) was selected to construct an approximately
scale-free topological overlap matrix. As shown in Figure 6B, the
genes were clustered into 23 distinct co-expression modules. Among
these, the darkred module contained the largest number of genes (961
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DEGs at three different developmental stages in LTP. (A) Volcano map of DEGs between E55 and E75. (B) Volcano map of DEGs between E75 and DO.
(C) Volcano map of DEGs between E55 and DO. (D) Venn maps of DEGs at three different developmental stages in LTP. Each dot represents a gene, red
dots represent genes up-regulated, blue dots represent genes down-regulated, and gray dots represent genes with non-significant differences. The
sum of the numbers in each large circle represents the total number of DEGs expressed in the group, and the overlapping parts of the circles represent

genes), while the orange module had the fewest (55 genes)
(Supplementary Table S3).

As depicted in Figure 7, the module-trait relationships analysis
identified four co-expression modules (brown, darkgreen, blue, and
red) significantly associated with LTP-E55, encompassing a total of
2,124 genes; four co-expression modules (yellow, black, darkgreen,
and green) were found to be significantly correlated with LTP-E75,
comprising 1,994 genes; five co-expression modules (tan, salmon,
midnightblue, orange, and darkred) showed significant associations
with LTP-DO, containing 2,017 genes. All these significant modules
exhibited positive correlations with their respective traits,
suggesting that the genes within these modules may play crucial
roles in muscle development during the E55, E75, and DO
stages of LTP.

3.3.2 Hub genes significantly positively correlated
with three developmental stages of LTP

Higher KME values indicate a stronger gene-module
relationship (Supplementary Table S4). A total of 1,103 genes with
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KME values greater than 0.8 were identified from the modules
significantly positively correlated with LTP-E55, with core genes
including INS, KNGI1, SST, and ACAN. From the modules
significantly positively correlated with LTP-E75, 1,047 genes were
identified, featuring core genes such as GNAT2, PAX6, and FABP6.
Additionally, 1,181 genes were identified from the modules
significantly positively correlated with LTP-DO, including core genes
like CYCI, UQCRFS1, COX5A, NDUFV1, NDUFA9, NDUFS3, and
UQCRCI (Figures 8A-C).

3.4 Verification of DEGs by real-time
quantitative PCR

To validate the RNA-seq results, qPCR was conducted on
PDLIM3, CMYA5, ATP2A1, ACACB and CLCNI. As illustrated in
Figure 9, the qPCR results displayed trends aligned with the RNA-seq
data, thereby confirming the accuracy and reliability of the
RNA-seq findings.
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(B) Expression changes of key pathway genes during development.

Expression changes of key pathway genes in LTP during development. (A) GO enrichment analysis of DEGs shared among the three comparisons.

4 Discussion

4.1 A coordinated program of CAPN6,
STMN1, and ATP2A1 expression enhances
secondary myofiber formation in LTP

In myoblasts, overexpression of CAPN6 (Calpain 6) suppresses
autophagy and inhibits myoblast differentiation and regeneration by
sustaining mTOR signaling pathway activity (45). During secondary
myofiber formation in LTP, numerous myoblasts fuse adjacent to
primary myofibers to form new myotubes. The observed
downregulation of CAPN6 expression (Figure 3B) may therefore
enhance secondary myofiber formation by promoting myoblast
differentiation. STMNI (Stathmin 1), a microtubule-destabilizing
protein, has been shown in multiple studies to promote cell
proliferation (46, 47). We propose that decreased STMNI expression
(Figure 3B) may drive LTP secondary myofiber formation by reducing
myoblast proliferative capacity and facilitating the transition toward
differentiation. ATP2A1 (ATPase sarcoplasmic/endoplasmic reticulum
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Ca®* transporting 1) is predominantly highly expressed in fast-twitch
fibers (Figure 3B) (48, 49). Given that secondary myofibers exhibit
fast-twitch characteristics (50), the progressively increasing expression
of ATP2A1 in LTP muscle suggests a potential correlation with the
expanding population of secondary myofibers.

CDK1 (Cyclin-dependent kinase 1), a core regulator of the cell
cycle, promotes myoblast proliferation when highly expressed (51, 52).
SKA3 (Spindle and kinetochore-associated complex subunit 3) is a
microtubule-binding component of the outer kinetochore and plays a
critical role in cell division; studies indicate that SKA3 expression
drives cellular proliferation (53, 54). ESPLI (Extra spindle pole bodies
like 1) functions primarily in initiating the final separation of sister
chromatids, thereby sustaining cell cycle progression (55). KIF11
(Kinesin family member 11), a motor protein involved in spindle
formation and chromosome segregation (56), has been widely
reported to promote cell proliferation (57, 58). KIFCI (Kinesin family
member Cl) contributes to centrosome integrity (59), and its
knockdown has been shown to suppress cancer cell proliferation (60).
ANLN (Anillin) encodes a key regulator of cytokinesis that acts as a
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scaffold protein to facilitate RhoA pathway activation and contractile
ring assembly, ensuring successful cell division (61, 62); ANLN
overexpression promotes proliferation in cancer cells (63). KIF4A
(Kinesin family member 4A) is essential for proper chromosome
segregation (64), and multiple studies demonstrate that its
overexpression significantly enhances cell proliferation (65, 66). CIT
(Citron rho-interacting serine/threonine kinase) regulates critical
steps in cytokinesis, and its overexpression promotes cancer cell
proliferation (67). Under physiological conditions, loss of CIT leads to
cytokinesis failure and impaired proliferation (68). Upregulation of
CKAP2 (Cytoskeleton-associated protein 2) has been shown to
directly stimulate cell proliferation in multiple cancer types (69, 70).
KIF20A (Kinesin family member 20A), a kinesin superfamily protein,
functions primarily during mitosis by participating in cell cycle
regulation, microtubule dynamics, and cytokinesis; its overexpression
enhances tumor cell proliferation (71, 72). ZWINT (ZW10 interacting
kinetochore protein) plays an essential role in maintaining genomic
stability, and its suppression significantly reduces proliferative capacity
(73). WEEI (WEEI G2 checkpoint kinase) expression facilitates cell
cycle progression, while its inhibition suppresses cancer cell
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proliferation both in vitro and in vivo (74, 75). CHEK1 (Checkpoint
kinase 1) encodes a checkpoint kinase involved in DNA damage
response, cell cycle control, and cell survival pathways. Its
overexpression, primarily studied in cancer models, significantly
promotes cell proliferation (76). During myofiber formation in STP,
the progressive downregulation of the aforementioned genes
(Figure 5B) suggests a potential shift in myoblasts from a proliferation-
dominant state toward a differentiation phase, a trend consistent with
observations in LTP. During embryonic muscle development in pigs,
the early stage is primarily characterized by cell proliferation, followed
by a transition to differentiation and fiber formation (77, 78). Thus,
from E55 to DO, skeletal muscle development in both STP and LTP
likely exits the rapid myoblast proliferation stage and enters a
differentiation-dominant phase.

In STP, we also found that the expression level of MYF5
gradually decreased with developmental time, while the expression
levels of MEF2C and TNNTI continued to increase. MYF5
(Myogenic factor 5) regulates the differentiation process of
myogenic cells, and its enhanced expression promotes myogenic
differentiation and functional improvement (79). The decreased
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expression of MYF5 (Figure 5C) during myofiber formation in STP
may consequently impair the capacity for secondary myofiber
formation. MEF2C (Myocyte enhancer factor 2C) plays a pivotal
role in regulating the formation and function of oxidative muscle
fibers, facilitating the transition from glycolytic to oxidative fiber
types (80, 81). TNNT1 (Troponin T1, slow skeletal type) is a key
regulatory factor in slow-twitch fiber development, involved in
myofibril assembly, determination of contractile properties, and
regulation of energy metabolism (82). During the embryonic
period, primary myofibers are structurally predisposed to express
slow-twitch-specific proteins (83), the continuous upregulation of
MEF2C and TNNTI (Figure 5C) suggests a gradual enhancement
in primary myofiber formation capability and an increasing
abundance of primary myofibers in STP. These gene expression
trends indicate that from E55 to D0, muscle development in STP
appears to be primarily oriented toward the generation of primary
myofibers. Primary myofibers form during the early embryonic
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stages, while secondary myofibers develop at a later phase; the
combined number of both determines the total myofiber count in
postnatal individuals (84). Secondary myofibers serve as the main
source of muscle mass increase, and a higher proportion of
secondary myofibers is associated with greater meat yield (85-87).
Integrating these findings with previous results from LTP,
we propose that LTP likely possesses a stronger capacity for
secondary myofiber generation compared to STP, which may
contribute to its higher postnatal meat yield.

4.2 Developmental stage-specific gene
expression profiles underlie enhanced
myogenesis in LTP

INS promotes skeletal muscle protein synthesis by activating
the PI3K/AKT/mTOR signaling pathway (88) and can also
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upregulate the activity of glucose transporters in muscle cells
enhancing glucose uptake efficiency to support energy metabolism
(89). KNG is known to inhibit the proliferation of gliomas (90)
and mediates pro-inflammatory responses apoptosis and the
generation of reactive oxygen species by activating the bradykinin
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system thereby influencing oxidative stress levels in livestock and
poultry (91). ACAN as a core proteoglycan in cartilage regulates
skeletal growth (92, 93) and may indirectly affect muscle
development through the growth hormone signaling pathway (94).
SST plays a crucial role in growth regulation and metabolism with
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Module-trait relationships in large and small Diging Tibetan pigs across three developmental stages (E55, E75, and DO). Abscissa is the trait, the ordinate
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maternal gene knockout leading to metabolic disorders and
obesity in offspring (95). The expression of the aforementioned
genes shows a significant positive correlation with LTP-E55,
indicating that LTP at E55 may undergo enhanced energy
metabolism to meet the energy requirements for rapid
muscle development.

PAX6 may promote the growth and differentiation of LTP muscle
cells by participating in the regulation of the MAPK signaling pathway
(96). FABP6 interacts with the KLF5 transcription factor, which may
regulate muscle energy metabolism and cell proliferation by
influencing cellular proliferation and lipid storage and utilization in
muscle cells (97). GNAT2 is primarily associated with light signal
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transduction in retinal cone cells (98), and currently, no studies have
been found that directly investigate the relationship between GNAT2
and skeletal muscle development. The significant positive correlation
between the expression of PAX6, FABP6, and KLF5 with LTP-E75
indicates that LTP at the E75 stage may undergo enhanced myocyte
proliferation and differentiation.

CYCI1, UQCRFSI, and NDUFS3 are critical components of the
mitochondrial electron transport chain and energy metabolism (96,
99-101). Their significant positive correlation with LTP-D0 indicates
that LTP at the DO stage may undergo enhanced energy metabolism
to meet the energy demands required for rapid muscle
development in LTP.
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5 Conclusion

Through transcriptomic analysis of embryonic muscle tissue
from Diqing Tibetan pigs exhibiting significant size variation within
the same breed, we discovered that the higher postnatal meat yield
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in larger individuals may be attributed to their enhanced secondary
myofiber formation capacity during embryonic development.
Specifically, the developmental downregulation of CAPN6 and
STMNI expression promoted myoblast differentiation, while the
concurrent upregulation of ATP2A1 expression further facilitated
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gPCR results of DEGs. (A) gPCR validation of PDLIM3 expression. (B) gPCR validation of CMYA5 expression. (C) gPCR validation of ATP2A1 expression in
LTP. (D) gPCR validation of CLCN1 expression in LTP. (E) gPCR validation of ACACB expression in LTP.

secondary myofiber formation, collectively enhancing the secondary
myofiber generative potential in large Diqing Tibetan pigs.
Collectively, our findings provide a substantial theoretical
foundation for genetic improvement and strategic utilization of local
pig breeds.
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