
Frontiers in Veterinary Science 01 frontiersin.org

Analysis of the differential 
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Since the number of muscle fibers in pigs is largely fixed after birth, the formation 
of muscle fibers during the embryonic stage plays a crucial role in determining 
postnatal growth performance and meat production potential. In this study, we used 
large Diqing Tibetan pigs (LTP) and small Diqing Tibetan pigs (STP), which show 
significant differences in postnatal growth rate and meat yield, as research models. 
We employed RNA-seq for transcriptome sequencing and applied differential 
expression analysis combined with weighted gene co-expression network analysis 
(WGCNA) to compare their gene expression profiles and identify potential regulatory 
differences during key stages of embryonic muscle development. Longissimus dorsi 
muscle samples were collected from both groups at three critical developmental 
stages—embryonic day 55 (E55), embryonic day 75 (E75), and at birth (D0)—
for transcriptome sequencing. Differential expression analysis revealed that the 
higher meat yield observed in LTP compared with STP may be attributed to a 
stronger capacity for secondary muscle fiber formation during the embryonic 
stage. Furthermore, WGCNA identified candidate genes that may specifically 
regulate muscle development in LTP across the three key developmental stages. 
These findings provide valuable insights into the molecular regulatory networks 
underlying muscle development and growth potential in Diqing Tibetan pigs.
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1 Introduction

Skeletal muscle development is a complex process involving the formation of muscle fibers 
during embryonic development and hypertrophy after birth (1). Myofibers originate from 
myoblasts that proliferate and fuse to form myotubes, which then differentiate into mature 
myofibers. In pigs, the formation of skeletal muscle during embryonic development involves 
two key phases: the establishment of primary myofibers and the emergence of secondary 
myofibers. The formation of primary myofiber occurs during early gestation (from day 35 to 
day 55), when precursor myogenic cells fuse to form myotubes (2). Following the formation 
of primary fibers, secondary fiber development occurs from day 55 to day 90, during which 
myogenic cells rapidly proliferate and differentiate, utilizing the primary fibers as a scaffold 
for the formation of secondary fibers (3). Following birth, the number of muscle fibers in pigs 
remains stable, with the primary change being an increase in fiber size (4). Consequently, the 
embryonic stage of skeletal muscle development is vital. Elucidating the genetic mechanisms 
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that regulate this process, particularly during early development, is 
essential for improving pork production efficiency.

The Diqing Tibetan pig is an excellent local breed primarily 
distributed in the Diqing Tibetan Autonomous Prefecture of Yunnan 
Province, China. As a typical plateau breed, Diqing pigs exhibit low 
oxygen tolerance (5–8) and possess outstanding meat quality traits 
(9–13). Based on body size differences, Diqing Tibetan pigs can 
be categorized into large, medium, and small types. Adult large pigs 
can weigh between 70 and 150 kg, with an average daily gain of 
200–250 grams during the fattening period; small pigs typically weigh 
between 45 and 55 kg, gaining 100–120 grams daily during the same 
phase (14–16). These body size differences not only affect the growth 
rate and meat quality characteristics of the pigs but also provide 
important material for analyzing the functional genes involved in 
variations in muscle fiber development within the breed. Currently, 
research on Diqing Tibetan pigs mainly focuses on various aspects, 
including origin and domestication (17), genetic diversity (18–20), 
hybrid utilization (21, 22), growth characteristics (23, 24), high-
altitude adaptation (25), fat deposition (26–29), and postnatal muscle 
development (30–32). Despite the existing studies covering multiple 
areas, research on the differential expression of genes involved in 
muscle development during the embryonic stages of large and small 
Diqing Tibetan pigs is still limited. In this study, we utilized both 
large and small Diqing Tibetan Pigs, which exhibit marked differences 
in growth rate, and lean meat percentage. Our objective was to 
identify key genes that influence muscle fiber development at various 
stages across different body types. These findings will provide a 
valuable foundation for genetic improvement and effective 
breeding strategies.

2 Materials and methods

2.1 Ethical statement

All experimental procedures in this study received approval from 
The Ethics Committee of Life Sciences, Yunnan Agricultural 
University (approval number: 202207003).

2.2 Sample collection

The experimental subjects included large Diqing Tibetan pigs 
(LTP) and small Diqing Tibetan pigs (STP), all housed and fed under 
uniform conditions at the Lvyuan Agricultural Professional 
Cooperative in Shangri-La City, Yunnan Province, China. Our 
research team previously established two distinct lineages 
characterized by large and small body types through a long-term 
selective breeding program focused on growth rate and adult body 
weight differences. At 6 months of age, large Diqing Tibetan pigs had 
an average weight of 59.33 ± 5.77 kg, while small Diqing Tibetan pigs 
averaged 28.00 ± 2.00 kg. Purebred sows from each breed were 
synchronized in estrus and mated with purebred boars of the same 
breed. Three embryos or piglets at the identical developmental stage 
were all derived from the same maternal sow: embryonic day 55 (E55), 
embryonic day 75 (E75), and immediately after birth (D0), designated 
as LTP-E55, LTP-E75, LTP-D0 (and similarly for STP). Three fetuses 

or piglets from every group were randomly chosen for longissimus 
dorsi (LD) muscle sampling, subsequently flash-frozen in liquid 
nitrogen and preserved at −80 °C in the laboratory.

2.3 Tissue total RNA extraction and 
sequencing

Total RNA extraction from tissue samples was performed using 
the Trizol method, and nucleic acid integrity was verified via agarose 
gel electrophoresis. The optical density (OD) values of the nucleic 
acids were measured using a NanoDrop spectrophotometer to assess 
their purity. RNA integrity number (RIN) assessment was performed 
using the Agilent 2100 Bioanalyzer to evaluate quality. Following 
quality control, the RNA samples were submitted to Genedenovo 
Biotechnology Co., Ltd. (Guangzhou, China) for paired-end 
sequencing. The cDNA library was sequenced on the Illumina 
NovaSeq 6000 platform with 6 Gb of raw reads per biological replicate.

2.4 Raw data quality control and alignment

Raw sequencing data (Raw reads) were first processed with the 
FASTP tool (version 0.23.4) (33) for quality control. In this step, reads 
with adapters or poly-N sequences, over 10% unknown nucleotides, 
and more than 50% low-quality bases (Q ≤ 10) were eliminated. This 
quality control procedure produced high-quality reads (Clean reads), 
ensuring accuracy in subsequent analyses. The Clean reads were 
aligned to the reference genome of the pig (Sscrofa11.1) with HISAT2 
(version 2.2.1) (34), and alignment rates were subsequently calculated. 
Finally, transcripts were assembled and quantified using STRINGTIE 
(version 2.2.3) (35), producing a raw expression matrix (Counts) for 
each gene in each sample.

2.5 Identification of differentially expressed 
genes and functional enrichment analysis

To account for sequencing depth and adjust for gene length 
effects, raw read counts were normalized to gene length corrected 
trimmed mean of M-values (GeTMM) (36) for all genes in each 
sample. The GeTMM normalized matrix encompassing all genes 
across all samples was subjected to principal component analysis 
(PCA) using the FactoMineR package (version 2.11) (37).

Following PCA confirmation of high-quality sequencing data 
and reliable sample grouping, the analysis was performed using the 
edgeR package (version 3.40.2) (38), differentially expressed genes 
(DEGs) were identified based on the GeTMM of genes, with 
statistically significant DEGs defined by dual thresholds of absolute 
log2 (Fold Change) > 1.0 and adjusted p-value (FDR) < 0.05. 
Enrichment analysis for Gene Ontology (GO) was performed on 
genes from significantly correlated modules by KOBAS online 
database1 (39).

1  http://bioinfo.org/kobas/
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2.6 Weighted gene co-expression network 
analysis

Using the GeTMM values of each gene across all samples, 
we  performed weighted gene co-expression network analysis 
(WGCNA) in R using the WGCNA package (version 1.73) (40). The 
weighted adjacency matrix was constructed using the soft-
thresholding power (β) of 9 to attain scale-free topology. The 
adjacency was transformed into a topological overlap matrix (TOM), 
and the corresponding dissimilarity (1-TOM) is calculated. The 
modules were identified by dynamic tree cutting and with a minimum 
module size of 50. A correlation of 70% (equivalent to a distance 
metric threshold of 0.3  in analytical pipelines) was used to merge 
similar modules. We conducted a correlation analysis between each 
module and the three developmental stages of different body types to 
identify relevant modules highly associated with LTP across these 
stages. Visualization was achieved through heatmaps, and modules 
with p-value < 0.05 were designated as significantly correlated 
modules for further analysis. A significance threshold of p-value < 
0.05 was applied for enrichment analysis. We calculated kernel module 
eigengenes (KME) by assessing gene significance (GS) and module 
membership (MM) to identify hub genes within the modules.

2.7 Construction of the differentially 
expressed gene interaction network

We compared the identified DEGs with protein entries in the 
STRING database2 (41). Based on homology protein–protein 
interaction data, we created an interaction network for the identified 
DEGs, which was subsequently visualized using Cytoscape (version 
3.10.1) (42). Nodes with the most neighbors were designated as 
key genes.

2.8 Validation by real-time quantitative 
PCR

The porcine GAPDH gene (43, 44) was employed as the internal 
reference. The total RNA for qPCR was derived from the RNA used 
in the RNA-seq experiments. The design of primers was conducted 
with Primer-BLAST,3 with the sequences provided in Table  1. 
Shenggong Biological Engineering (Shanghai) Co., Ltd., Kunming 
Branch (Kunming, China) synthesized all primers. In accordance with 
the manufacturer’s guidelines, qPCR was conducted using a SYBR 
Green qPCR kit (TIANGEN, China, FP205) on an FQD-96A real-
time PCR detection system (Bioer, Hangzhou, Zhejiang, China). The 
reaction system had a total volume of 20 μL, which included 10 μL of 
2 × SuperRreMixPlus, 0.6 μL of each forward and reverse primer 
(10 μM), 1 μL of cDNA, 0.5 μL of 50 × ROX Reference Dye, and 
7.3 μL of RNase-free distilled water were added. The reaction program 
comprised an initial activation step at 95 °C for 15 min, followed by 
40 cycles of denaturation at 95 °C for 10 s and annealing/extension at 

2  http://string-db.org/

3  http://www.ncbi.nlm.nih.gov/tool/primer-blast/

60 °C for 20 s. A melting curve analysis was executed by incrementally 
increasing the temperature from 60 °C to 95 °C, with each sample 
evaluated in triplicate. Gene expression levels were normalized to 
GAPDH, and The 2^−ΔΔCt method was utilized to assess relative 
expression levels.

3 Results

3.1 RNA-seq data quality assessment of LD 
muscle samples

The RNA-seq data showed that the LTP groups at three 
developmental stages generated an average of 38.37 M, 41.39 M, and 
46.46 M raw reads, respectively. The STP groups produced an average 
of 38.21 M, 38.49 M, and 36.77 M raw reads. Following quality 
control, the clean read rate surpassed 98%, with over 95% of reads 
mapping to the porcine reference genome (Sscrofa 11.1), indicating 
high-quality alignment (Supplementary Table S1). Subsequently, PCA 
(Figure 1) demonstrated that biological replicates within each group 
clustered tightly, while clear separation was observed among different 
groups, occupying distinct positions. This confirms the high quality 
of the data and the reliability of sample grouping, supporting their 
suitability for downstream analysis.

3.2 DEGs regulating the LD muscle 
development

During the critical developmental window from E55 to D0, the 
number of secondary myofibers formed in pigs directly determines 
postnatal meat yield. To identify functional genes regulating secondary 
myofiber formation and development, we performed longitudinal 
analysis of DEGs across developmental stages and identified 
consistently dynamically expressed candidates with relevant biological 
functions. In the LD muscle of LTP, across the different age groups, 
we identified 53 DEGs in the comparison of E75 vs. E55, 3,302 DEGs 
in D0 vs. E75, and 3,896 DEGs in D0 vs. E55 comparison 
(Figures 2A–C). A total of 21 DEGs were identified as shared among 

TABLE 1  Primers for real-time quantitative PCR.

Genes Sequence (5′-3′) Length

GAPDH F: GACATCAAGAAGGTGGTGAAGCA 177

R: GTCGTACCAGGAAATGAGCTTGA

PDLIM3 F: CGGCCCAAACCTTTCATAATCC 153

R: TAGGGGCCATCTTAGCAGCA

CMYA5 F: GATGAAGAGGGCAAGACCAAGA 100

R: TGGTCTCCCAGGTTATTCCAC

ATP2A1 F: TTCAACGATCCTGTCCACGG 158

R: GCGTTCTTCTTTGCCATCCG

ACACB F: CTGCACGGAAATGATCGCTG 213

R: CCCTCATCTGGGTTTTCGCT

CLCN1 F: GCACCGCCTGCTCTATC 211

R: CACGACCACGTTGACTTTT
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these three comparisons (Figure 2D; Supplementary Table S2). GO 
enrichment analysis revealed that these genes are significantly 
involved in key biological processes related to muscle growth and 
development (Figure  3A), including regulation of cytoskeleton 
organization (CAPN6, STMN1), troponin complex (TNNT1), and 
regulation of muscle contraction (ATP2A1). As shown in Figure 3B, 
the expression patterns of these genes across developmental stages 
exhibited distinct temporal dynamics: ATP2A1 expression gradually 
increased over time, whereas STMN1 and CAPN6 showed progressive 
downregulation throughout development. In contrast, TNNT1 
expression displayed a biphasic trend, initially decreasing followed by 
a subsequent increase.

In STP, we identified 365 DEGs in the comparison of E75 vs. E55, 
5,401 DEGs in D0 vs. E75, and 5,583 DEGs in D0 vs. E55 comparison 
(Figures 4A–C). A total of 155 DEGs were identified as shared among 
these three comparisons (Figure 4D; Supplementary Table S2). GO 
enrichment analysis revealed that these genes are significantly 
involved in key biological processes related to cell division, including 
the mitotic spindle (CDK1, SKA3, ESPL1, KIF11, GEM, and KIFC1), 
mitotic cytokinesis (STMN1, ANLN, KIF4A, CIT, CKAP2, and 
KIF20A), and mitotic cell cycle checkpoint (ZWINT, WEE1, and 
CHEK1) (Figure  5A). Expression profiling across developmental 
stages demonstrated distinct temporal dynamics for these genes 
(Figure  5B): while GEM exhibited a biphasic expression pattern 

characterized by an initial increase followed by a decrease, all other 
DEGs showed progressive downregulation throughout development. 
In addition to these genes, we observed a gradual decrease in MYF5 
expression, whereas MEF2C and TNNT1 displayed progressive 
upregulation over time (Figure 5C).

3.3 Gene co-expression networks across 
three developmental stages in LTP

3.3.1 Co-expression modules associations with 
three developmental stages of LTP

Compared to STP, LTP demonstrated significantly enhanced 
postnatal growth rates and superior meat production. To identify 
genes strongly associated with the three key developmental stages in 
LTP, we  conducted WGCNA we  performed WGCNA using both 
breed and developmental time as phenotypic traits. Based on the gene 
expression data from the LD muscle across three developmental stages 
of LTP and STP, a filtered gene expression matrix comprising 8,958 
genes was obtained. As illustrated in Figure 6A, the optimal soft-
thresholding power (β = 9) was selected to construct an approximately 
scale-free topological overlap matrix. As shown in Figure  6B, the 
genes were clustered into 23 distinct co-expression modules. Among 
these, the darkred module contained the largest number of genes (961 

FIGURE 1

PCA plot of LTP and STP. Each dot color represents a different time point and each dot represents an individual pig.
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genes), while the orange module had the fewest (55 genes) 
(Supplementary Table S3).

As depicted in Figure 7, the module-trait relationships analysis 
identified four co-expression modules (brown, darkgreen, blue, and 
red) significantly associated with LTP-E55, encompassing a total of 
2,124 genes; four co-expression modules (yellow, black, darkgreen, 
and green) were found to be significantly correlated with LTP-E75, 
comprising 1,994 genes; five co-expression modules (tan, salmon, 
midnightblue, orange, and darkred) showed significant associations 
with LTP-D0, containing 2,017 genes. All these significant modules 
exhibited positive correlations with their respective traits, 
suggesting that the genes within these modules may play crucial 
roles in muscle development during the E55, E75, and D0 
stages of LTP.

3.3.2 Hub genes significantly positively correlated 
with three developmental stages of LTP

Higher KME values indicate a stronger gene-module 
relationship (Supplementary Table S4). A total of 1,103 genes with 

KME values greater than 0.8 were identified from the modules 
significantly positively correlated with LTP-E55, with core genes 
including INS, KNG1, SST, and ACAN. From the modules 
significantly positively correlated with LTP-E75, 1,047 genes were 
identified, featuring core genes such as GNAT2, PAX6, and FABP6. 
Additionally, 1,181 genes were identified from the modules 
significantly positively correlated with LTP-D0, including core genes 
like CYC1, UQCRFS1, COX5A, NDUFV1, NDUFA9, NDUFS3, and 
UQCRC1 (Figures 8A–C).

3.4 Verification of DEGs by real-time 
quantitative PCR

To validate the RNA-seq results, qPCR was conducted on 
PDLIM3, CMYA5, ATP2A1, ACACB and CLCN1. As illustrated in 
Figure 9, the qPCR results displayed trends aligned with the RNA-seq 
data, thereby confirming the accuracy and reliability of the 
RNA-seq findings.

FIGURE 2

DEGs at three different developmental stages in LTP. (A) Volcano map of DEGs between E55 and E75. (B) Volcano map of DEGs between E75 and D0. 
(C) Volcano map of DEGs between E55 and D0. (D) Venn maps of DEGs at three different developmental stages in LTP. Each dot represents a gene, red 
dots represent genes up-regulated, blue dots represent genes down-regulated, and gray dots represent genes with non-significant differences. The 
sum of the numbers in each large circle represents the total number of DEGs expressed in the group, and the overlapping parts of the circles represent 
DEGs shared between groups.
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4 Discussion

4.1 A coordinated program of CAPN6, 
STMN1, and ATP2A1 expression enhances 
secondary myofiber formation in LTP

In myoblasts, overexpression of CAPN6 (Calpain 6) suppresses 
autophagy and inhibits myoblast differentiation and regeneration by 
sustaining mTOR signaling pathway activity (45). During secondary 
myofiber formation in LTP, numerous myoblasts fuse adjacent to 
primary myofibers to form new myotubes. The observed 
downregulation of CAPN6 expression (Figure  3B) may therefore 
enhance secondary myofiber formation by promoting myoblast 
differentiation. STMN1 (Stathmin 1), a microtubule-destabilizing 
protein, has been shown in multiple studies to promote cell 
proliferation (46, 47). We propose that decreased STMN1 expression 
(Figure 3B) may drive LTP secondary myofiber formation by reducing 
myoblast proliferative capacity and facilitating the transition toward 
differentiation. ATP2A1 (ATPase sarcoplasmic/endoplasmic reticulum 

Ca2+ transporting 1) is predominantly highly expressed in fast-twitch 
fibers (Figure 3B) (48, 49). Given that secondary myofibers exhibit 
fast-twitch characteristics (50), the progressively increasing expression 
of ATP2A1 in LTP muscle suggests a potential correlation with the 
expanding population of secondary myofibers.

CDK1 (Cyclin-dependent kinase 1), a core regulator of the cell 
cycle, promotes myoblast proliferation when highly expressed (51, 52). 
SKA3 (Spindle and kinetochore-associated complex subunit 3) is a 
microtubule-binding component of the outer kinetochore and plays a 
critical role in cell division; studies indicate that SKA3 expression 
drives cellular proliferation (53, 54). ESPL1 (Extra spindle pole bodies 
like 1) functions primarily in initiating the final separation of sister 
chromatids, thereby sustaining cell cycle progression (55). KIF11 
(Kinesin family member 11), a motor protein involved in spindle 
formation and chromosome segregation (56), has been widely 
reported to promote cell proliferation (57, 58). KIFC1 (Kinesin family 
member C1) contributes to centrosome integrity (59), and its 
knockdown has been shown to suppress cancer cell proliferation (60). 
ANLN (Anillin) encodes a key regulator of cytokinesis that acts as a 

FIGURE 3

Expression changes of key pathway genes in LTP during development. (A) GO enrichment analysis of DEGs shared among the three comparisons. 
(B) Expression changes of key pathway genes during development.
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scaffold protein to facilitate RhoA pathway activation and contractile 
ring assembly, ensuring successful cell division (61, 62); ANLN 
overexpression promotes proliferation in cancer cells (63). KIF4A 
(Kinesin family member 4A) is essential for proper chromosome 
segregation (64), and multiple studies demonstrate that its 
overexpression significantly enhances cell proliferation (65, 66). CIT 
(Citron rho-interacting serine/threonine kinase) regulates critical 
steps in cytokinesis, and its overexpression promotes cancer cell 
proliferation (67). Under physiological conditions, loss of CIT leads to 
cytokinesis failure and impaired proliferation (68). Upregulation of 
CKAP2 (Cytoskeleton-associated protein 2) has been shown to 
directly stimulate cell proliferation in multiple cancer types (69, 70). 
KIF20A (Kinesin family member 20A), a kinesin superfamily protein, 
functions primarily during mitosis by participating in cell cycle 
regulation, microtubule dynamics, and cytokinesis; its overexpression 
enhances tumor cell proliferation (71, 72). ZWINT (ZW10 interacting 
kinetochore protein) plays an essential role in maintaining genomic 
stability, and its suppression significantly reduces proliferative capacity 
(73). WEE1 (WEE1 G2 checkpoint kinase) expression facilitates cell 
cycle progression, while its inhibition suppresses cancer cell 

proliferation both in vitro and in vivo (74, 75). CHEK1 (Checkpoint 
kinase 1) encodes a checkpoint kinase involved in DNA damage 
response, cell cycle control, and cell survival pathways. Its 
overexpression, primarily studied in cancer models, significantly 
promotes cell proliferation (76). During myofiber formation in STP, 
the progressive downregulation of the aforementioned genes 
(Figure 5B) suggests a potential shift in myoblasts from a proliferation-
dominant state toward a differentiation phase, a trend consistent with 
observations in LTP. During embryonic muscle development in pigs, 
the early stage is primarily characterized by cell proliferation, followed 
by a transition to differentiation and fiber formation (77, 78). Thus, 
from E55 to D0, skeletal muscle development in both STP and LTP 
likely exits the rapid myoblast proliferation stage and enters a 
differentiation-dominant phase.

In STP, we  also found that the expression level of MYF5 
gradually decreased with developmental time, while the expression 
levels of MEF2C and TNNT1 continued to increase. MYF5 
(Myogenic factor 5) regulates the differentiation process of 
myogenic cells, and its enhanced expression promotes myogenic 
differentiation and functional improvement (79). The decreased 

FIGURE 4

DEGs at three different developmental stages in STP. (A) Volcano map of DEGs between E55 and E75. (B) Volcano map of DEGs between E75 and D0. 
(C) Volcano map of DEGs between E55 and D0. (D) Venn maps of the number of DEGs at three different developmental stages in STP.
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expression of MYF5 (Figure 5C) during myofiber formation in STP 
may consequently impair the capacity for secondary myofiber 
formation. MEF2C (Myocyte enhancer factor 2C) plays a pivotal 
role in regulating the formation and function of oxidative muscle 
fibers, facilitating the transition from glycolytic to oxidative fiber 
types (80, 81). TNNT1 (Troponin T1, slow skeletal type) is a key 
regulatory factor in slow-twitch fiber development, involved in 
myofibril assembly, determination of contractile properties, and 
regulation of energy metabolism (82). During the embryonic 
period, primary myofibers are structurally predisposed to express 
slow-twitch-specific proteins (83), the continuous upregulation of 
MEF2C and TNNT1 (Figure 5C) suggests a gradual enhancement 
in primary myofiber formation capability and an increasing 
abundance of primary myofibers in STP. These gene expression 
trends indicate that from E55 to D0, muscle development in STP 
appears to be primarily oriented toward the generation of primary 
myofibers. Primary myofibers form during the early embryonic 

stages, while secondary myofibers develop at a later phase; the 
combined number of both determines the total myofiber count in 
postnatal individuals (84). Secondary myofibers serve as the main 
source of muscle mass increase, and a higher proportion of 
secondary myofibers is associated with greater meat yield (85–87). 
Integrating these findings with previous results from LTP, 
we  propose that LTP likely possesses a stronger capacity for 
secondary myofiber generation compared to STP, which may 
contribute to its higher postnatal meat yield.

4.2 Developmental stage-specific gene 
expression profiles underlie enhanced 
myogenesis in LTP

INS promotes skeletal muscle protein synthesis by activating 
the PI3K/AKT/mTOR signaling pathway (88) and can also 

FIGURE 5

Expression changes of key pathway genes in STP during development. (A) GO enrichment analysis of DEGs shared among the three comparisons. 
(B) Expression changes of key pathway genes during development. (C) Expression changes of other key genes during development.
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upregulate the activity of glucose transporters in muscle cells 
enhancing glucose uptake efficiency to support energy metabolism 
(89). KNG1 is known to inhibit the proliferation of gliomas (90) 
and mediates pro-inflammatory responses apoptosis and the 
generation of reactive oxygen species by activating the bradykinin 

system thereby influencing oxidative stress levels in livestock and 
poultry (91). ACAN as a core proteoglycan in cartilage regulates 
skeletal growth (92, 93) and may indirectly affect muscle 
development through the growth hormone signaling pathway (94). 
SST plays a crucial role in growth regulation and metabolism with 

FIGURE 6

Identification of co-expression modules by WGCNA. (A) The determination of soft thresholding power. (B) The gene clustering dendrogram was 
obtained according to hierarchic clustering of adjacency based dissimilarity. Each module contains a different gene cluster and is marked with a 
different color.
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maternal gene knockout leading to metabolic disorders and 
obesity in offspring (95). The expression of the aforementioned 
genes shows a significant positive correlation with LTP-E55, 
indicating that LTP at E55 may undergo enhanced energy 
metabolism to meet the energy requirements for rapid 
muscle development.

PAX6 may promote the growth and differentiation of LTP muscle 
cells by participating in the regulation of the MAPK signaling pathway 
(96). FABP6 interacts with the KLF5 transcription factor, which may 
regulate muscle energy metabolism and cell proliferation by 
influencing cellular proliferation and lipid storage and utilization in 
muscle cells (97). GNAT2 is primarily associated with light signal 

transduction in retinal cone cells (98), and currently, no studies have 
been found that directly investigate the relationship between GNAT2 
and skeletal muscle development. The significant positive correlation 
between the expression of PAX6, FABP6, and KLF5 with LTP-E75 
indicates that LTP at the E75 stage may undergo enhanced myocyte 
proliferation and differentiation.

CYC1, UQCRFS1, and NDUFS3 are critical components of the 
mitochondrial electron transport chain and energy metabolism (96, 
99–101). Their significant positive correlation with LTP-D0 indicates 
that LTP at the D0 stage may undergo enhanced energy metabolism 
to meet the energy demands required for rapid muscle 
development in LTP.

FIGURE 7

Module-trait relationships in large and small Diqing Tibetan pigs across three developmental stages (E55, E75, and D0). Abscissa is the trait, the ordinate 
is the module, the number of each grid represents the correlation between the module and the trait, and the number in parentheses represents 
p-value, red represents positive correlation and green represents negative correlation.
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5 Conclusion

Through transcriptomic analysis of embryonic muscle tissue 
from Diqing Tibetan pigs exhibiting significant size variation within 
the same breed, we discovered that the higher postnatal meat yield 

in larger individuals may be attributed to their enhanced secondary 
myofiber formation capacity during embryonic development. 
Specifically, the developmental downregulation of CAPN6 and 
STMN1 expression promoted myoblast differentiation, while the 
concurrent upregulation of ATP2A1 expression further facilitated 

FIGURE 8

The interaction network of co-expression module genes significantly associated with three developmental stages of large Diqing Tibetan pigs. (A) The 
interaction network of LTP-E55. (B) The interaction network of LTP-E75. (C) The interaction network of LTP-D0. The intensity of the color corresponds 
to the degree of regulation.
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secondary myofiber formation, collectively enhancing the secondary 
myofiber generative potential in large Diqing Tibetan pigs. 
Collectively, our findings provide a substantial theoretical 
foundation for genetic improvement and strategic utilization of local 
pig breeds.
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