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of healthy domestic short-hair
cats in South Korea
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!Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of

Veterinary Medicine, Seoul National University, Seoul, Republic of Korea, 2UB Animal R&D Center,
GRASSMEDI Co., Ltd., Seoul, Republic of Korea

Background: The gut microbiome is a vital component of an organism’s health,
influencing metabolism, immune function, and overall homeostasis. In this
study, we aimed to characterize the gut microbiota of healthy domestic short-
hair cats in South Korea and evaluate the effects of age, body condition score
(BCS), sex, and diet on microbial composition.

Methods: From August to December 2023, 40 healthy cats aged 1-14 years
with a body condition score (BCS) of 5-9 were selected. Cats were excluded
if they had taken probiotics or antibiotics, exhibited gastrointestinal symptoms
within the last 6 months, or had blood work abnormalities. DNA quantification
was performed, and libraries targeting the V3 and V4 regions were prepared
according to the lllumina 16S metagenomic sequencing protocol with a read
length of 2 X 300 bp. The relative abundance of bacteria at the phylum, genus,
and species levels was assessed according to the age, sex, diet, and BCS of the
cats, with major bacterial groups selected for chart analysis.

Results: Examination of the fecal samples from 40 healthy cats (aged 0.5-
14 years) using 16S rRNA gene sequencing revealed 2,721 bacterial amplicon
sequence variants. The predominant phyla were Bacillota, Bacteroidota, and
Actinomycetota. Although age did not significantly affect alpha diversity, a trend
toward increased diversity was observed in cats aged 7-14 years. Phocaeicola
was more abundant in older cats, suggesting a possible association with age-
related conditions. Furthermore, Verrucomicrobiota was enriched in cats with
a BCS of 8-9, and Ruminococcus torque was positively correlated with higher
BCS. Sex-based differences indicated increased levels of Pseudomonadota,
Finegoldia magna, and Sutterella massiliensis in neutered males, potentially
linked to inflammatory pathways. Dietary analysis revealed an increased
abundance of Blautia and Lachnoclostridium following a combination of dry
and wet food.

Conclusion: Our findings provide critical insights into the core microbiota
of domestic short-hair cats in South Korea, emphasizing the influence of
geographic, physiological, and environmental factors on gut microbial diversity.
The results offer a valuable foundation for advancing feline gut health research
and enhancing health management strategies for felines, particularly in South
Korea.
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1 Introduction

The gut microbiota plays a pivotal role in maintaining an animal’s
overall health and physiological functions by regulating key processes
such as metabolism and immune modulation (1-3). During the
metabolic activity of gut microbiota, short-chain fatty acids (SCFAs),
including butyrate, propionate, and acetate, are produced through the
fermentation of dietary fibers. These SCFAs influence host energy
balance and lipid and glucose metabolism by interacting with various
metabolic pathways in the liver and peripheral tissues (4). Gut
microbial immune modulation is mediated by mechanisms wherein
commensal microbes regulate systemic immune responses, mitigate
inflammation, support long-term immune development through
early-life microbiota interactions, prevent dysbiosis, and enhance anti-
tumor immunity (5-7). Furthermore, the gut microbiome significantly
impacts the digestive system and the health of various organs,
including the immune system, skin, kidneys, brain, lungs, and liver,
contributing to overall health and maintaining physiological balance
across the body (8-13).

Considering these complex interactions, several factors including
age, sex, diet, and environment shape the gut microbial landscape in
dogs and cats, thereby influencing metabolic and immune functions
(14-17). Several studies have investigated how factors like age, sex,
body condition score (BCS), and diet relate to the diversity of gut
microbiomes in domestic cats. One study demonstrated that overall
alpha- and beta-diversity remain relatively stable across different age
groups, though the number of core microbial taxa may decline with
age (18). Regarding sex, no clear patterns have emerged indicating
significant difference in microbial composition or diversity (19). Body
condition appears to have a more pronounced influence; obese cats
show decreased alpha diversity and distinct microbial composition
compared to lean cats, indicating the impact of obesity on gut
microbiome (20). Diet also play a critical role, as differences in
macronutrient intake, such as protein-to-carbohydrate ratios, and
feeding type have been linked to notable changes in microbial diversity
and bacterial population (21, 22). The rising popularity of companion
cats in South Korea has significantly increased their numbers, with
domestic short-hair cats, commonly referred to as Korean short-hair
(KSH) cats, being the most widely kept breed (23). Despite their
prevalence, studies investigating the gut microbiome of healthy KSH
cats are limited. Understanding the gut microbiome of this specific
population is essential for developing targeted health management
strategies and advancing knowledge in feline microbiology.

Characterizing the microbial composition of healthy cats in South
Korea may facilitate a better understanding of microbiota shift relative
to changes in the animal’s health. Consequently, in this study,
we aimed to analyze the gut microbiota of healthy KSH cats living in
South Korea and evaluate whether age, sex, BCS, and diet significantly
impact its composition, providing insights into factors that influence
the composition of the feline gut microbiome.

2 Materials and methods
2.1 Animals and metadata collection

All experimental procedures were approved by the Seoul National
University Institutional Animal Care and Use Committee (approval
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number: SNU-231010-4) and adhered to the university’s ethical
guidelines for the care and use of laboratory animals. This study was
designed as a cross-sectional observational study to assess the gut
microbiome of healthy KSH cats.

To identify suitable healthy cats, approximately 600 cat owners
completed a detailed survey. The survey collected metadata on
each cat’s identity, including name, age, neutering status, fecal
consistency score, diet, gastrointestinal-related clinical signs,
history of antibiotic or medication use, and the presence of
comorbidities. Stool consistency was assessed using the 7-point
Nestlé Purina Fecal Scoring System (1 = very hard/dry; 7 = watery
diarrhea) (24). Scores of 2-3 were classified as normal (well-
formed, pliable, segmented, and easy to pick up). For most cats,
exact birth dates were unavailable; therefore, age was classified
into categories (0.5-1 year, 2-6 years, and 7-14 years) based on
owner-reported information.

Based on the survey responses, 50 cats were initially shortlisted.
These cats subsequently underwent thorough physical examinations
and hematological assessments. Following these evaluations, 40 cats
that met the inclusion criteria were enrolled in the study. The inclusion
criteria were as follows: (1) fecal score between 2 and 3; (2) body
condition score between 4 and 9; (3) no gastrointestinal signs within
the past 6 months; (4) no history of antibiotics, steroid, GI protectants,
or probiotics administration within the past 6 months; (5) normal
hematological and biochemical parameters; (6) up to date on
vaccinations and parasite control; and (7) no evidence of
systemic illness.

The final 40 enrolled cats included 4 intact females, 13 spayed
females, and 23 neutered males, aged 0.5-14 years, with a BCS range
of 4 to 9. The BCS of each cat was assessed by a professional
veterinarian (Figure 1).

2.2 Sample collection and DNA extraction

Participants in the study were provided with standardized kits to
collect small fecal samples, which were subsequently returned by mail.
Each kit included 2 mL screw-cap tubes containing 100% molecular-
grade ethanol and silica beads to preserve the sample integrity during
transportation. Upon arrival, the samples were transported to the
laboratory and stored at temperatures below —80°C to ensure
microbial DNA stability until DNA extraction.

DNA was extracted using the DNeasy PowerSoil Kit (Qiagen,
Hilden, Germany), following the manufacturer’s protocol. Quantitative
DNA analysis was performed using the Quant-IT PicoGreen assay
(Invitrogen, Waltham, MA, United States).

2.3 Library construction and sequencing

To target the V3 and V4 hypervariable regions of the 16S rRNA
gene, sequencing libraries were constructed following the Illumina
16S Metagenomic Sequencing Library Preparation protocol. During
the first PCR, 5 ng of genomic DNA was amplified in a reaction
mixture containing 5x reaction buffer, 1 mM dNTPs, 500 nM
universal forward and reverse primers, and Herculase II fusion DNA
polymerase. The thermal cycling conditions for the initial PCR
involved denaturation at 95°C for 3 min and 25 amplification cycles
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Patient Selection
Online survey
from August to December 2023
(n=600)
- Excluded remaining patients
l " (n=550)
Inclusion Criteria
» Fecal score between 2-3
+ Body condition score between 4-9
* No Gl signs within the past 6
months
» No history of antibiotics, steroid, Gl
protectant, probiotic within the past
6 months
» Up to date with vaccination and
internal/external parasite control Excluded
* No other underlying disease « Liver enzyme levels exceed 3x
(n=50) the upper reference range
» Total Ca level exceed 1.5x the
» upper reference range
+ Creatinine level exceed 2.0
mg/dL
Included remaining patients * Positive FeLV/FIV
(n=40) (n=10)
FIGURE 1

Scheme of animal selection. For the body condition score, a 9-point scale was used, while for the fecal core assessment, a 7-point scale was utilized.
Gl, gastrointestinal; BCS, body condition score; FelV, feline leukemia virus; FIV, feline immunodeficiency virus.

at 95°C for 30's, 55°C for 30's, and 72°C at 30 s, followed by final
extension at 72°C for 5 min. This initial amplification, using Illumina
adapter overhangs, utilized a universal primer pair consisting of V3-E.
5-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGG
GNGGCWGCAG-3" and V4-R: 5-GTCTCGTGGGCTCGGAGA
TGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3".
Following amplification, AMPure XP beads (Agencourt Bioscience,
Beverly, MA) were used to purify the PCR products.

For the second PCR, the final sequencing library was constructed
using Nextera XT Index primers with 2 pL of the purified product
from the first PCR. The second PCR followed the same conditions as
the above; instead, 25 cycles were used. PCR products were purified
using AMPure XP beads to remove contaminants and ensure high-
quality libraries.

Quantitative analysis of the purified library was conducted using
qPCR following the KAPA Library Quantification Kit (KAPA
Biosystems) protocol, optimized for Illumina platforms. The quality
and size of the library were assessed using the TapeStation D1000
ScreenTape system (Agilent Technologies, Waldbronn, Germany).
Paired-end sequencing (2 x 300 base pairs) was performed on the
MiSeq™ platform (Illumina, San Diego, United States) by Macrogen
(Seoul, South Korea), generating high-resolution data suitable for
downstream microbial community analysis.

Frontiers in

2.4 Gut microbial analysis

The raw sequencing data generated using the MiSeq platform
were converted into FASTQ files using index sequences. Adapter and
primer sequences were trimmed using Cutadapt (v3.2) with default
parameter (25), whereas sequencing errors were corrected with
DADA2 (v1.18.0) in R (v4.0.3) (
and chimeric sequences were identified and removed using the

). Paired-end reads were merged,

consensus method in DADA?2 to generate high-resolution amplicon
sequence variants (ASVs).

Taxonomic classification of ASVs was performed using BLAST+
(v2.9.0) (27) against the NCBI 16S Microbial Database, requiring a
minimum of 85% query coverage and identity to ensure reliable
classification. To standardize sequencing depth and reduce potential
biases, subsampling was conducted using QIIME (v1.9) at a threshold
of 47,916 reads per sample (28).

2.5 Statistical analysis

Microbial diversity (alpha diversity) within groups was calculated
based on ASVs using the Shannon index, Inverse Simpson index
(Gini-Simpson), Chaol estimator, and Faith’s Phylogenetic Diversity
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TABLE 1 Twenty-two core microbiome genera identified in healthy KSH cats.

10.3389/fvets.2025.1571107

Phylum Class Order Family Genus Mean @SEM  Median IQR
Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Segatella 9.35 2.03 1.34 18.17
Bacillota Clostridia Eubacteriales Lachnospiraceae Blautia 9.15 1.37 7.22 9

Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Phocaeicola 8.43 1.52 52 9.77
Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 6.06 1.28 291 6.21
Bacillota Clostridia Eubacteriales Peptostreptococcaceae Peptacetobacter 5.14 1.17 2.54 5.46
Actinomycetota Coriobacteriia Coriobacteriales Coriobacteriaceae Collinsella 4.39 0.85 2.47 4.79
Bacillota Tissierellia Tissierellales Peptoniphilaceae Anaerococcus 4.34 1.39 0 4.96
Bacillota Negativicutes Selenomonadales Selenomonadaceae Megamonas 3.73 0.91 0.48 6.03
Pseudomonadota Gammaproteobacteria Enterobacterales Enterobacteriaceae Escherichia 3.47 1.06 0.07 3.99
Fusobacteriota Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 3.42 0.68 1.32 4.87
Actinomycetota Actinomycetes Bifidobacteriales Bifidobacteriaceae Bifidobacterium 2.97 1.29 0.23 1.08
Bacteroidota Bacteroidia Bacteroidales Porphyromonadaceae Porphyromonas 2.94 1.23 0 0.01
Bacillota Tissierellia Tissierellales Peptoniphilaceae Peptoniphilus 2.79 0.77 0 4.08
Bacillota Erysipelotrichia Erysipelotrichales Coprobacillaceae Catenibacterium 2.37 0.77 0 2.78
Bacillota Clostridia Eubacteriales Lachnospiraceae Mediterraneibacter 2.19 0.41 1.43 1.65
Bacillota Tissierellia Tissierellales Peptoniphilaceae Finegoldia 2.17 0.74 0 0.28
Pseudomonadota Betaproteobacteria Burkholderiales Sutterellaceae Sutterella 2.02 0.5 0.74 2.47
Bacillota Clostridia Eubacteriales Clostridiaceae Clostridium 1.34 0.35 0.47 1.55
Bacillota Clostridia Eubacteriales Lachnospiraceae Lachnoclostridium 1.28 0.14 1.31 1.35
Bacillota Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Holdemanella 1.27 0.61 0 0.89
Bacillota Negativicutes Veillonellales Veillonellaceae Megasphaera 1.12 0.28 0.05 1.68
Campylobacterota Epsilonproteobacteria Campylobacterales Helicobacteraceae Helicobacter 1.08 0.47 0 0.41
Core microbiome total 81.03 1.55 82.74 10.19

Values are expressed as % relative abundance (mean + SEM; median and IQR).
(PD_whole_tree), all implemented in QIIME (v1.9). Unless otherwise 3 Results

specified, all values are reported as mean + standard error of the mean
(SEM). Beta diversity, reflecting differences in microbial community
composition between groups, was assessed using weighted UniFrac
distances. Principal coordinate analysis was used to visualize
community composition. All statistical analyses were performed in R
(v4.0.3) and visualized using ggplot2 (v3.2.1) for box plot generation.
Predictor variables included age group (categorized as 0.5-1 year,
2-6 year, and 7-14 year), sex (neutered male and spayed female), BCS,
and diet (dry food and dry + wet food). Statistical significance was set
at p < 0.05, and all p-values were corrected for multiple comparisons
using the Benjamini-Hochberg false discovery rate (FDR) method,
unless otherwise specified.

Significant variations in microbial diversity indices and relative
abundances were compared between groups using the Wilcoxon Rank
Sum Test or Kruskal-Wallis test, followed by Dunn’s post-hoc test.
Kruskal-Wallis tests were performed at both the phylum and genus
levels to examine associations between bacterial taxon abundance and
predictor variables, including age, sex, BCS, and diet. Beta diversity
differences between groups were analyzed using UniFrac distance
matrices and tested statistically by PERMANOVA.

The core microbiome was calculated by identifying taxa present
in at least 50% of samples with a minimum relative abundance of
0.1%, to define prevalent and biologically meaningful microbial taxa
representative of the healthy cat population studied.

Frontiers in Veterinary Science

3.1 Core microbiome of healthy KSH cats

Fecal samples from 40 healthy KSH cats, aged 0.5-14 years and
with a BCS 4-9, were analyzed for their gut microbiome composition
(Table 1). A total of 2,721 bacterial ASVs, classified into 15 phyla, 25
classes, 47 orders, 96 families, 299 genera, and 556 species
were identified.

The predominant bacterial phyla (>1% of total sequences) were
Bacillota (50%), Bacteroidota (30%), Actinomycetota (8%) at the phylum
level (Figure 2 and Supplementary Table S1), with other major phyla
including Pseudomonadota, Fusobacteriota, and Campylobacterota. The
overall alpha diversity metrics for the 40 healthy KSH cats showed a
mean Chaol index of 245.7 (+89.3) and a mean Shannon diversity index
of 4.8 (+0.7), indicating substantial microbial richness and diversity
within this cohort (Supplementary Table S1).

At the genus level, 22 taxa were identified as predominant (>1%
of total sequences) bacterial genera (Figure 2), with the top five most
abundant genera being Segatella, Blautia, Phocaeicola, Bacteroides,
and Peptacetobacter. At the species level, 28 predominant species were
identified, including Segatella copri (formerly Prevotella corpi),
Peptacetobacter hiranonis, Megamonas funiformis, Escherichia
fergusonii, Collinsella intestinalis, and Anaerococcus octavius
(Supplementary Table S1).
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Gut microbiome composition of 40 healthy KSH cats. Comprehensive gut microbiome composition of 40 healthy KSH cats. Relative abundances of
phyla accounting for 0.01% or more of the total sequences (a). Relative abundances of genera accounting for 1% or more of the total sequences from

the eight major phyla (b).

The general characteristics of the gut microbiome in all 40 healthy
cats are presented (Figure 2), which shows the relative abundances of
major phyla and genera. In addition, the gut microbial composition
stratified by age, BCS, sex, and diet is illustrated (Figures 3-6;
Supplementary Figures S1-54). Detailed abundance data are provided
(Supplementary Tables S1-S5).

3.2 Age

Comparative analysis across age groups, categorized as 0.5-1 year,
2-6 year, and 7-14 years, revealed no significant differences in alpha
diversity measures (ASVs, Shannon, Gini-Simpson, PD_whole_tree).
However, most indices exhibited a trend toward increased microbial
diversity with age (Figure 3A). Similarly, beta diversity analysis
indicated no significant changes in the microbial community
structure, and no clear clustering patterns were observed according to
age (Figure 3B). Although no significant differences were detected at
the phylum level, Verrucomicrobiota exhibited a trend of increasing

Frontiers in Veterinary Science

abundance with age (Kruskal-Wallis test, p = 0.095). At the genus
level, a significant difference was observed for Phocaeicola (Kruskal-
Wallis test, p = 0.023), with cats aged 7-14 years harboring its higher
abundance compared with those aged 2-6 years. By contrast, Segatella
showed a non-significant decrease in abundance with age (Kruskal-
Wallis test, p = 0.695; Supplementary Table S2). At the species level,
none of the taxa exhibited significant differences after correction for
multiple testing. However, some notable trends were observed.
Phocaeicola vulgatus (Kruskal-Wallis test, p = 0.357) and Phocaeicola
coprocola (Kruskal-Wallis test, p = 0.344) tended to increase with age,
whereas Bacteroides stercoris demonstrated a trend toward decreased
abundance (Kruskal-Wallis test, p = 0.057; Figure 3C).

3.3 BCS

Neither alpha nor beta diversity measures demonstrated
significant differences between the BCS groups. However, an
increasing trend in diversity was observed for the ASV index

frontiersin.org
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(Kruskal-Wallis test, p = 0.054; Figures 4A, B). At the phylum level,
Verrucomicrobiota exhibited a significant increase in abundance in
the BCS 8-9 group compared with other groups (Kruskal-Wallis test,
p=0.009). At the genus level, Phocaeicola displayed a higher
abundance in the BCS 8-9 group (Kruskal-Wallis test, p = 0.057),
whereas Segatella exhibited a decrease with higher BCS (Kruskal-
Wallis test, p = 0.754), although neither finding was significant. At the
species level, several taxa showed patterns associated with
BCS. Notably, Ruminococcus gnavus was significantly more abundant
in the BCS 8-9 group compared with those with lower BCS (Kruskal-
Wallis test, p = 0.023), suggesting a positive correlation with body
condition (Figure 4C).

Other species exhibited trends, though not significant, with
Bacteroides stercoris decreasing in abundance as BCS increased
(Kruskal-Wallis test, p = 0.117), whereas Phocaeicola copri (Kruskal-
Wallis test, p = 0.344) and Phocaeicola vulgatus (Kruskal-Wallis test,
p =0.357) demonstrated slight increases in abundance with higher
BCS (Supplementary Table S3).

3.4 Sex

Alpha and beta diversity measures showed no significant
differences between spayed females and neutered males, indicating
similar microbial richness and evenness between the two groups
(Figures 5A, B). At the phylum level, Pseudomonadota demonstrated
a higher relative abundance in neutered males compared with spayed
females, with marginal statistical significance (Wilcoxon rank-sum
test, p = 0.050).

At the genus level, Sutterella (Wilcoxon rank-sum test, p = 0.043)
and Finegoldia (Wilcoxon rank-sum test, p = 0.004) were significantly
more abundant in the neutered male group than in the spayed female
group. At the species level, several taxa exhibited differences between
the groups. Specifically, Finegoldia magna (Wilcoxon rank-sum test,
p=0.004) and Sutterella massiliensis (Wilcoxon rank-sum test,
p=0.037) were significantly more abundant in neutered males
compared with spayed females (Figure 5C).

3.5 Diet

No significant differences were observed in alpha or beta diversity
measures between the dry diet group and the dry + wet diet group.
Similarly, no statistical differences were observed in the phylum-level
composition of the intestinal microbial community between the two
diet groups (Figures 6A, B).

At the genus level, two taxa exhibited significant differences in
abundance between the groups. The dry + wet diet group showed a
significantly higher abundance of Blautia (Wilcoxon rank-sum test,
p =0.003) and Lachnoclostridium (Wilcoxon rank-sum test, p = 0.039)
detected in the dry diet group
(Supplementary Table S5). At the species level, several taxa

compared with that

demonstrated significant differences between the two diet groups.
Blautia hominis (Wilcoxon rank-sum test, p = 0.017), Blautia schinkii
(Wilcoxon rank-sum test, p = 0.003), Lachnoclostridium edouardi
(Wilcoxon rank-sum test, p = 0.022), and Clostridium perfringens
(Wilcoxon rank-sum test, p = 0.022) were significantly more abundant
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in the dry + wet diet group compared with the dry diet group
(Figure 6C).

4 Discussion

Studies conducted in various countries have demonstrated that
geographic location significantly influences gut microbiome
composition, resulting in differences at both the phylum and genus
levels. Previous research in healthy domestic cats from the
United States identified Bacillota, Bacteroidota, and Actinomycetota
as the predominant phyla, with Prevotella, Bacteroides, Collinsella,
Blautia, and Megasphaera being the dominant genera (18, 29).
Similarly, studies conducted in the United Kingdom reported that the
core microbiome largely comprises the phyla Bacillota and
Bacteroidetes, with Bacteroides and Prevotella as the predominant
genera (30).

In the present study, Bacillota made up 50% of the total
microbiome, whereas Bacteroidota was 30% and Actinomycetota was
8% at the phylum level, which is similar to previous findings (18, 29).
However, differences in genus-level composition were observed.
While earlier studies emphasized genera such as Segatella, Bacteroides,
Collinsella, Blautia, and Megasphaera, this study identified Segatella
(9.3%), Blautia (9.1%), Phocaeicola (8.4%), Bacteroides (6.0%), and
Peptacetobacter (5.1%) as the dominant genera. These findings
underscore both the consistency in core microbiota composition
across studies and the regional variation driven by environmental
factors such as geography, diet, and husbandry practices.

Biological aging, estimated from frailty or physiological markers,
has been linked to lower microbial diversity and richness, greater
abundances of frailty-associated bacteria, impaired SCFA pathways,
and reduced gut stability, irrespective of chronological age (31). In the
present study, we assessed age in years only when analyzing feline gut
microbiome changes. Notably, our findings are consistent with
previous research showing no significant association between age and
alpha-or beta-diversity in cats (18).

Studies on age-related gut microbiome changes in cats have
reported mixed findings influenced by health status, diet, and
external factors (32, 33). For instance, a previous Japanese study
analyzing five different age groups (juvenile, weaning, adolescent,
adult, and elderly) observed a decrease in microbial diversity during
adolescence and adulthood, followed by an increase in elderly cats,
suggesting a unique reorganization of microbial communities
during feline aging (34). This trend contrasts with the steady decline
observed in human studies, highlighting the different physiological
aging patterns in cats.

In our study, although no significant differences in alpha diversity
were observed, a decline in diversity was noted from 0-1 years to
2-6 years, followed by a slight increase in the 7-14 year age group.
This pattern aligns with prior findings, suggesting that the initial
decline could be attributed to the stabilization of the gut microbiome
during adulthood, whereas the subsequent increase may reflect
microbial adaptation to aging (34). Therefore, the feline gut
microbiome undergoes unique adaptive reorganizations with age.
Nonetheless, further comparative analyses among specific feline age
to Dbetter understand microbiome

groups are necessary

composition shifts.
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FIGURE 5

Alpha and beta diversity were assessed according to different sex groups, with microbial richness evaluated using ASV. (a) Weighted UniFrac distance
was used to conduct the PCoA analysis. (b) The relative abundances of bacteria were evaluated at the phylum, genus, and species levels based on the
sex of the cats. Major bacterial groups were visualized through charts, including phyla (>0.01%), genera (>1.0%), and species (>1.0%) representing total
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Previous research on obese cats in the United States reported
a significant decrease in microbial diversity, with a reduction in
the Firmicutes/Bacteroidetes ratio and increased relative
abundances of Bifidobacterium and Dialister at the genus level and
of Olsenella provencensis and Campylobacter upsaliensis at the
species level (15).

In contrast, our study did not observe a significant increase in
the Firmicutes/Bacteroidetes ratio relative to BCS. Instead, the
abundance of specific microbiota such as Ruminococcus torques
increased with higher BCS, which has been implicated in the
degradation of mucin and enhancement of energy harvest and fat
accumulation (35). These findings indicate that Ruminococcus
torques may serve as an indicator of obesity-related gut microbiota
changes in cats, highlighting the potential for targeted microbial
interventions in managing obesity, though further research is
needed to support these observations. Additionally, geographic
factors may influence the composition and behavior of obesity-
associated gut microbiome.

A study conducted in the United Kingdom reported no significant
sex-specific differences in gut microbiome composition between
intact male and female cats when environmental factors were
controlled, which contrasts with the findings of our study (19).

In the present study, the relative abundances of Sutterella
massiliensis and Finegoldia magna were increased in neutered male
cats. Although research on Sutterella massiliensis is limited,
members of the genus Sutterella may exhibit pro-inflammatory
properties. Similarly, Finegoldia magna is recognized in human
medicine as an opportunistic pathogen capable of inducing
inflammation (36, 37). Experimental studies in mice have also
reported proliferation of inflammation-inducing gut microbiota
following reductions in testosterone levels after castration (38).
Although testosterone levels were not measured in our study, the
observed increase in inflammation-associated microbiota in
neutered males suggests that factors beyond testosterone may
contribute to inflammatory microbiome shifts in neutered cats.
These findings warrant further investigation into the role of sex
hormones and other contributing factors in shaping the gut
microbiome in neutered cats.

Diet significantly influences gut microbiota composition in
humans, with high-fiber diets increasing butyrate-producing bacteria,
which contribute to SCFA production and improved gut health in
humans (39). In our study, the relative abundance of Blautia was
significantly higher in the dry + wet group. Blautia, as a butyrate-
producing bacterium, exhibits an anti-inflammatory effect that is
crucial in gut health, and its higher abundance may indicate increased
SCFA production (40). At the species level, Blautia hominis and
Blautia schinkii were significantly high in the dry + wet group.
Similarly, Clostridium perfringens, a potential pathogen capable of
causing gastrointestinal symptoms, was also more prevalent in cats on
a wet + dry diet. However, as Clostridium perfringens is commonly
detected in healthy cats without diarrhea, it may still be considered
part of the normal gut microbiota (41).

Previous studies conducted across different states in the
United States have reported that commercial dry and wet food
diets differ in their protein, carbohydrate, and fat ratios, which
can promote the growth of specific bacteria and alter the gut
microbiome composition (22, 32, 42). Similarly, in our study,
dietary differences also resulted in variations in the relative
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abundance of the gut microbiome. Our findings suggest that
dry + wet food diets may support a healthier gut microbiome by
promoting beneficial butyrate-producing bacteria. However,
further research is warranted to explore the long-term health
impacts of these microbiome changes and the role of dietary
variations. The higher abundance of beneficial bacteria with
combined wet and dry food suggests that moisture levels may
influence microbial composition. Additionally, geographic factors
may influence the composition and behavior of obesity-associated
gut microbiome. Previous studies have consistently demonstrated
differences in the gut microbiota composition of healthy
companion animals based on whether they are fed kibble or
non-kibble diets (18). In the present study, all enrolled cats were
fed commercial kibble as part of their diet, which may have
limited our ability to detect microbiome differences associated
with dietary type. Notably, the higher abundance of beneficial
bacteria in cats fed a combination of wet and dry food suggests
that dietary moisture levels may also influence microbial
composition. This highlights the need to investigate the effects of
varying dietary moisture content. Furthermore, future studies are
warranted to explore the long-term health implications of these
microbiome changes and the role of dietary variation.

4.1 Limitations

The limitations of the present study are as follows: First, the
study involved 40 cats, which is a relatively small sample size, and
thus, the results may not be highly generalizable. However, in
previous studies showing differences between diseased and
healthy groups, the number of healthy cats was smaller than in
our study. Therefore, the healthy cats in this study could serve as
a reference group for future comparisons with diseased groups.
Second, in most cases, the exact age of the cats could not
be confirmed. Age information obtained from owner reports was
therefore classified into three broad categories (0.5-1 year,
2-6 years, and 7-14 years). This approach prevented the use of
age as a continuous variable and limited further subdivision of
the existing ranges, which may have reduced the ability to detect
subtle age-related variations in the microbiome. Sample sizes
were unequal across age groups. In addition, covariates co-varied
with age: all cats in the 7-14-year group were fed a dry-only diet,
had higher BCS, and were spayed or neutered; this constrains our
ability to isolate age effects from diet, BCS, and sex status. Third,
health status was determined by questionnaire and screening, and
detailed dietary monitoring was not performed. These factors
may have contributed to the variability observed in the
microbiome. In addition, the cross-sectional design provides only
a snapshot of the gut microbiota at a single time point, preventing
causal inference or assessment of temporal dynamics. Fourth, the
voluntary, survey-based recruitment process influenced the final
sample size and demographic composition. Most enrolled cats
were neutered males, reflecting regional ownership trends rather
than intentional selection. Although this allowed comparison
between neutered males and females, intact animals were under-
represented. Future studies should specifically evaluate the
combined effects of sex and neuter status in larger, more balanced
cohorts. Fifth, dietary information was obtained from owners,
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TABLE 2 Characteristics of the 40 healthy cats in the reference set.

10.3389/fvets.2025.1571107

Age group Age (months) Body Sex Diet
condition o o o o o
score F (%) SF (%) MN (%) Dry (%) Dry + wet (%)
0.5-1y 6 10.2 (+3.03) 5.67 (+1.22) 17 50 33 40 60
2-6y 26 35.5 (+16.11) 5.92 (+0.93) 8 27 65 65 35
7-l4y 8 129 (+21.99) 7.13 (£1.25) 0 37 63 100 0

BCS, body condition score; F (%), percentage of female cats in the age group; SF (%), percentage of spayed female cats in the age group; MN (%), percentage of neutered male cats in the age

group; dry (%), percentage of cats fed only dry food; dry + wet (%), percentage of cats fed both dry and wet food.

and comprehensive nutritional profiles (e.g., macronutrient and
fiber content) were unavailable for all commercial products. The
main diet types are summarized in Table 2, but the lack of
granular composition data limits interpretation. Future
investigations should gather detailed nutrient information and
explore how different diet formulations—particularly fiber-rich
diets—affect microbial diversity across age groups and breeds.
Finally, the small sample size and absence of longitudinal data
make it difficult to draw firm conclusions about relationships
among diet, age, body condition, and microbial composition.
Long-term, longitudinal studies with larger and more diverse
populations are needed to track microbiome shifts over time and
clarify causal links between dietary factors, microbial changes,

and feline health outcomes.

5 Conclusion

We aimed at identifying the core microbiome of KSH cats—
the most common breed living in South Korea—and analyzed the
variations according to sex, age, BCS, and diet. While the core
microbiome was defined by Bacillota, Bacteroidota, and
Actinomycetota, distinct differences were observed at the genus
level, including the distribution of Segatella, Blautia, Phocaeicola,
Bacteroides, and Peptacetobacter, potentially representing a
reference dataset of microbiome samples taken from healthy cats
living in South Korea. Additionally, differences at the genus level
in the core microbiome were observed compared with those in
other countries, along with variations in the gut microbiome with
respect to age, BCS, sex, and diet factors. Furthermore, this study
suggests that future research on the gut microbiome and the gut-
organ axis should also consider geographical background. Future
research should further explore the role of environmental factors
in shaping the feline gut microbiome, particularly focusing on the
impact of diet and region-specific variables, to develop more
targeted health interventions for cats. Overall, this study provides
crucial insights into the microbiome of KSH cats, contributing to
a deeper understanding of feline gut health and the factors that
influence it.
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