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Chronic wasting disease (CWD) is a fatal neurodegenerative disease among
cervids that has steadily spread across the United States and Canada. The year-
to-year increase in the geographic spread of this disease among white-tailed
deer and mule deer have raised concerns about conserving these species and
sustainable big-game hunting. Knowledge of the spatial variation in CWD risk in
Kansas, a state that attracts big game hunters nationwide is not fully understood.
We explored the spatial variation in CWD risk and the potential effects of habitat-
level covariates using surveillance data collected in Kansas from 2005 to 2023,
with a Poisson log-Gaussian model in a Bayesian framework. Two models
were considered; Model 1 included only spatial random effects and Model 2
included spatial random effects plus non-linear effects of habitat-level covariate.
Following satisfactory convergence of model parameters, choropleth maps of
posterior mean estimates for the risk of CWD presence, and measures of spatial
heterogeneities were plotted. The impacts of the habitat-level covariates were
deemed important predictors of CWD as Model 2 outperformed Model 1. The
risk of CWD in the northwestern and southcentral portions of the state is likely
driven by similar underlying spatial processes; however, no global smoothing
effect was observed. The northwestern region is at higher risk for CWD presence
but a gradual increase in risk toward the south and eastern sides of the state
is apparent. We conclude that the data-driven Poisson log-Gaussian model is
useful in assessing CWD and potentially other wildlife diseases from surveillance
sources, and the different spatial patterns and habitat-level covariate association
have relevance to CWD management in Kansas.
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1 Introduction

Chronic wasting disease (CWD) is a neurodegenerative prion
disease of cervids that has steadily increased in its spatial distribution
in N. America since it was first described among wild deer in 1981 (1,
2). Its spread and establishment among white-tailed deer (Odocoileus
virginianus) and other common cervid species threaten big-game
hunting, which is often the economic backbone for many rural
communities in N. America (3, 4). It has been suggested that if
uncontrolled, CWD could irrevocably negatively affect cervid
population stability in its enzootic region, which is currently spread
across 36 states in the US and 6 provinces in Canada (5-7).
Furthermore, although currently not confirmed by clinical evidence,
there is a concern that CWD prions could at some point in the future
adversely affect those who consume contaminated venison, as was the
case with consumption of contaminated beef and bovine spongiform
encephalopathy (BSE, or mad cow disease), a different prion
disease (8).

To monitor and manage CWD, state wildlife agencies conduct
spatiotemporal surveillance for the presence of CWD prions among
different cervid species, primarily the white-tailed deer and mule deer
(Odocoileus hemionus) but also Elk (Cervus canadensis), and Moose
(Alces alces), where they are present in higher numbers. In Kansas, the
study region for the present work, the Kansas Department of Wildlife
and Parks (KDWP) has conducted such surveillance annually since
1996, most years during the deer hunting season (mid-November
through mid-January). Surveillance in most wildlife management
jurisdictions, including those in Kansas, is conducted irregularly with
different focus areas each year and in a non-probabilistic manner.
Diagnostic samples used in surveillance are acquired from
taxidermists, meat processors, vehicle-killed deer, and hunter-
harvested deer, sick/suspect deer, and private vendors (collectors) are
often compensated for their efforts.

One of the goals of such surveillance is to detect the disease spatial
clusters [e.g., (9)] or spatial variations in CWD risk and to identify
their potential environmental drivers so that the disease can
be managed efficiently. The Habitat Risk software (10) for instance
allows users to derive localized predictions of CWD risk using disease
testing data, the environment (land cover/land use, soil properties)
and host-level factors (age, sex). The majority of the samples diagnosed
through such surveillance efforts particularly outside epizootic areas,
however, test negative for CWD, with only rare occurrences of positive
diagnosis. These characteristics, viz., spatiotemporally irregular, and
non-probabilistic sampling, outcome class imbalance (i.e., over-
representation of one of the two diagnostic outcomes, positive or
negative), low background prevalence (i.e., rare events) in some
surveillance areas vs. others, among other artifacts such as
spatiotemporal heterogeneity in prevalence, warrant the development
of data-driven spatial models that can accommodate for such data
artifacts. A Poisson log-Gaussian model is a hierarchical model used
to analyze count data that exhibit overdispersion and spatial or
spatiotemporal correlation. It combines a Poisson likelihood for
observed counts with a latent Gaussian random field (GRF) on the
log-scale of the intensity. It captures the extra-Poisson variation
(overdispersion) through the latent field, and accounts for spatial
autocorrelation in residual risk that are not explained by the random
effects or covariates.
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This objective of this study was to examine the Kansas statewide
spatial variation in CWD risk and the potential contribution of habitat
(land cover/land use) variables using a Poisson log-Gaussian model in
a Bayesian framework. Specifically, our goals were to analyze the
spatial distribution of CWD counts over regularly sized 20 km? grids
in Kansas with a focus on quantifying the spatial variation in risk and
the effects of habitat-level covariates on the rare counts. The methods
we describe here could have broad applicability for wildlife disease
modeling as many such diseases share similar data characteristics.

2 Materials and methods
2.1 Data

2.1.1 Disease data

Surveillance data representing the diagnostic test results of CWD
presence by means of immunohistochemistry analysis (11) of tissue
samples from harvested deer, corresponding species, demographic
characteristics (sex, age-group), and harvest locations (approximated
within 5 kms) were available from KDWP for years 2005-2018.
Identical data collected by means of a surveillance project led by the
authors in the present study (2019-2023) were added to this dataset
and curated in sequential steps to render them ready for statistical
modeling. Curation steps broadly included the exclusion of incomplete
or redundant records. Subsequently, the data were geocoded with the
longitude/latitude data in ArcMap 10.8.2 (ESRI, Redlands, CA). A
20 km? grid was created covering the entire state of Kansas. In the
present study, we grouped white-tailed deer, mule deer and the
different demographic groups as a single dependent variable with
potentially two outcomes for disease status; not-detected (coded 0)
and detected (coded 1). Their counts were aggregated within the
individual 20 km? grid cells across the study region.

There were 28,754 CWD diagnostic test records in the surveillance
dataset available to us, of which 316 records had test results marked as
“Unknown,” and 93 records were marked “Unsuitable samples.” There
were 6,494 that lacked geographic coordinates (either or both latitude
and longitude), and 236 records were with coordinates outside Kansas.
These records were sequentially removed, which resulted in 21,615
total unique spatially referenced records for spatial analysis. Of these,
the presence of CWD was not detected in 20,905 samples (96.71%)
and detected in 711 (3.28%). This dataset represents data collected
during the annual deer hunting season from 2005 till 2023.

2.1.2 Environmental data

Land cover and land use characteristics are good substitute
variables for wildlife habitats and have been previously shown to
be associated with CWD epizootiology [e.g., (12, 13)]. In an automated
routine in R-Studio, we calculated the total area and proportion of
different land cover classes within each grid cell from the 2016
National Land Cover Dataset (NLCD) (14). The NLCD is a source of
complete, consistent information of the US land cover, released by the
US Geological Survey and a consortium of US federal agencies, once
approximately every 5 years. We used the 2016 dataset in the present
study as it corresponded approximately with the mid-point of the
surveillance period. For the study region, 13 land cover variables
present in the NLCD were summarized for each grid cell (Table 1).

frontiersin.org


https://doi.org/10.3389/fvets.2025.1568468
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Raghavan et al.

TABLE 1 Land cover classes found in 2016 National Land Cover Dataset
corresponding to the study region (Kansas).

Dataset (source) Classes

National Land Cover

Dataset (MRLC)

Water; Developed, open space; Developed, low intensity;
Developed, medium intensity; Developed, high
intensity; Bare rock/Sand/Clay Deciduous Forest; Shrub/
Scrub; Grassland/Herbaceous; Pasture/Hay; Cultivated

crops; Woody wetlands; Emergent herbaceous wetlands.

Developed, low intensity, developed, medium intensity, and
developed, high Intensity were not associated with the disease status
in a univariate screening (p > 0.2) and were removed from analysis.
Additionally, the observations for the variable deciduous forest were
empty in > 80% of the 20 km? grid cell, and therefore not included in
the analysis.

2.2 Statistical modeling

In this study, we excluded explicit temporal random effects from
the model due to irregular and inconsistent sampling of spatial units
across years. Under such conditions, temporal structures are often
poorly identified and can result in posterior inference that is driven
more by prior assumptions than by the data (15, 16). This is especially
relevant in Bayesian hierarchical models, where latent temporal terms
(e.g., autoregressive or random walk priors) require sufficient and
consistent coverage across both space and time to yield reliable
estimates. Further, the environmental covariates included in our model
are relatively stable over time, and the primary objective of the study
was to characterize the long-term spatial patterns rather than short-
term temporal dynamics. In such cases, incorporating temporal
random effects may add complexity without improving model
performance or interpretability (17). From a computational
perspective, omitting the temporal component also reduces the risk of
convergence issues, which are more common in complex hierarchical
models with zero-inflation or sparse observations such as in our dataset
(18). Focusing on spatial random effects and covariate associations,
therefore, provides a more robust and interpretable framework for
identifying persistent spatial heterogeneity under conditions of
temporally sparse and uneven sampling. Additionally, a number of
progressively complex exploratory models with host-level and
surveillance source factors were constructed to quantify their potential
effect on the spatial distribution of CWD in the study area. However,
their inclusion did not significantly improve model performance
(Supplementary File 1). Therefore, we proceeded to fit Poisson
log-Gaussian spatial model as described below.

2.2.1 The Poisson log-Gaussian spatial model

We fitted a Poisson log-Gaussian spatial model to (1) explore the
spatial variation of CWD risk and (2) evaluate the patterns of
environmental exposures on the spatial variation. We considered the
CWD detected counts y;, i=1,...,N as rare Poisson outcomes, i.e.,
y; ~ Pois ( y ), with a spatially varying mean z4. The intensity 4;, which
is controlled by spatial heterogeneity and environmental exposures is
of infection and is deduced as

used to infer the risk

Hi =0k
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log 4; =7
77i~N(77i)0'%)

= J J K .
=5 +Z]ﬁjxij +Zj:12k 7 jkZijk +U;

Here, the offset term o; is meant to normalize the varying sampling
sizes during the data collection. In this model, we have imposed a
non-structured Gaussian heterogeneity on the log intensity and refer
to this model as the Poisson log-Gaussian spatial model. The Poisson
log-Gaussian and log-linear models are inferentially the same.
However, the MCMC implementation of the log-Gaussian model
results in better convergence than the log-linear parameterization
(19-21). The variance parameter 0',% captures the non-structured
spatial heterogeneity, also referred to as global spatial smoothing. The
local counterpart U;, which borrows information from neighboring
observations, is modeled via conditional autoregressive (CAR)
smoothing (22). That is, U; ~ CAR(O’%] ), where its variance parameter
oy controls the amount of smoothing. The partial covariance of the
CAR smoothing model is derived from the spatial adjacency of the
contiguous spatial entities of the observations. For this, the convention
is that the spatial entities that share common boundaries receive an
entry of —1; those that do not share common boundaries receive 0.
The unequal number of neighbors is assigned as the diagonal elements
in the partial precision matrix to ensure unbiased smoothing. The
coefficients ffy and S are the fixed effects, where f is the overall
intercept and ﬂj, j=L...,], are the mean fixed effects of the J
covariates x;;. The random parameters y j; are the coefficients of the
non-linear penalized basis functions 2ijk = Ziij]_‘kl /2. We chose
think-plate

3 3
ij :{|xij—K]’1| ,...,|xij—K‘jK| }

o 3
knots xj; <xjp <...<kjk . The penalty matrix Ujkl/2 =|Kﬂ —K'jk|

low-rank cubic  spline  basis  functions

based on the equally spaced fixed K

penalizes the coefficients of successive basis functions to avoid over-
fitting. We chose the knots to correspond with the sample quantiles of
the exposure factors, considering 20 knots for each exposure factor to
ensure flexibility (45).

To complete the model using Bayesian inference, we assign prior
parameters to the fixed effects and hyper-priors to the variance
parameters. We assigned highly diffuse priors, fy ~ N (0,0.001) and
,Bj ~N (0,0.001), to the fixed effects. To the random effects of the

. . . . 2 .
non-linear basis functions, ie., 7jk~N (O)U},k), we assigned

independent normal distributions. We assigned Gamma priors on the

inverse of their variances, i.e., 0(2,) =t o~ Gamma(O.S,0.0000l) .

This is equivalent to Jeffrey’s non-informative priors (23, 24).
We generated 100,000 posterior samples each for two Markov chain
Monte Carlo (MCMC) simulation chains. With different starting
values for each chain, the first 50,000 posterior samples were
discarded. We retained every 10th simulation of the remaining 50,000
MCMC simulations for posterior summaries and were left with 10,000
simulations from the two chains to make inferences. We checked for
convergence based on visual observations of the simulation trace
plots. For certainty, we computed the Gelman-Rubin statistic, a formal
assessment of MCMC convergence checks (25).

frontiersin.org


https://doi.org/10.3389/fvets.2025.1568468
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Raghavan et al.

We implemented the model using the JAGS software via the
R2JAGS package (26) of the R statistical software (27). For
epidemiological analysis, we implemented two models whose
differences are based on the structures of the linear predictors.

Model 1:77; = By +U;
_ ] ] K .
Model 2:7; = Sy + Z],,Bjx,-j + ijlzk 7 jkZijk + Ui

Model 1 includes only the random effects to evaluate the spatial
distribution of the risk. The global smoothing or the unstructured spatial
random effects term V; can either be simulated at each step of the MCMC,
ie,V;~ N(0,0',z), or can be deduced as V; =#; —17;. Model 2 extends
Model 1 by including the non-linear impacts of the exposure factors. That
is, B; are the fixed effects of the exposure factors x;;, while y j are the
coefficients of the basis functions Z;;x. We used the proportion of nine
land cover classes as our exposure factors.

An R markup file that was used to fit the Poisson log-Gaussian
spatial model is provided in Supplementary File 2.

3 Results

The long-term aggregated spatial pattern of CWD detected and
not-detected sample locations in Kansas is present in Figure 1. The

10.3389/fvets.2025.1568468

vast majority of the samples for this study (74% over the entire study
period, and up to 85% in some years) came from hunter harvested
(taxidermy) source, and this trend was more or less consistent over the
time. A relatively higher proportion of CWD detected as well as
not-detected sample locations is found distributed in a northwest to
southeast gradient, with much of the detected samples concentrated
in the western half of the state. Samples of CWD detected samples
recorded in the central and eastern parts of the state are diagnosed
among deer much more recently and were found since the year 2019.
The apparent prevalence of CWD break down by different cervid
species, age group, and sex are in Figure 2.
The Gelman-Rubin statistic for model convergence was noted as

< 1.05 for all model parameters in both Model 1 and Model 2,
indicating satisfactory MCMC convergence. The Deviance
Information Criterion (DIC) for Model 1 was 1283.75, which was

reduced to 1022.71 after including the habitat-level covariates in

Model 2. This decrease in DIC value indicated a clear improvement in

the model fit and implied the importance of the habitat factors as

potential predictors of CWD risk over the geographic extent. When

exponentiated, the intercept (exp(fo) = 0.747) reflects the overall risk

of CWD infection, which far exceeds the crude estimate of 0.032. It

further suggests that our model, which accounts for fixed and

non-linear random effects as well as spatial random effects, effectively

captures the variation in CWD risk across the study area.

A choropleth map of the posterior means of spatially structured

heterogeneity U; (Figure 3) revealed two independent but contiguous
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Spatial distribution of cervid tissue sampling sites for chronic wasting disease (CWD) in Kansas, United States, from 2005 to 2023. Sample locations are
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prions were not detected (n = 20,905; 96.71%) are shown as grey open circles. This map highlights the spatial coverage of surveillance and the
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FIGURE 2

Apparent prevalence of chronic wasting disease (CWD) in cervids
sampled in Kansas, United States, from 2005 to 2023, stratified by
species, age, and sex. Bars show the number of samples tested in
each category, and fractions above each bar indicate the proportion
of samples in which CWD prions were detected. This figure
illustrates how prevalence varies across demographic groups and
species over the study period.

areas in the northwestern and southcentral portions of the state with
closer values, indicating same or similar underlying spatial processes
driving CWD distribution in these clusters. A choropleth map of the
posterior mean of non-structured spatial heterogeneity V; shows a
heterogeneous distribution of lower and higher values throughout the
state (Figure 4) without any clusters, indicating that in some of the
20 km? grid cells, there are habitat-level factors that influence CWD
presence more than others while global trends are absent.

The variation in CWD risk within a given 20 km?* grid cell is
plotted in Figure 5A. The northwestern areas of the state, followed by
the southern regions, clearly face a higher risk compared to the eastern
part, while the central region experiences a moderate level of risk. A
general sense of directionality of disease spread is visible in this plot,
indicating that the infection among cervids decreases in intensity
when moving away from the northwestern areas toward the central
and eastern portions. The uncertainty (Std. dev) associated with the
posterior mean of risk estimates are presented in Figure 5B, and
indicate no major concern except for the observance of higher
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deviations in two 20 km? grid cells in the northwestern portion of the
state. This suggests that the model predicts the risk of CWD presence
in the study region to a satisfactory extent.

The following results describe statistical associations between
land cover covariates and the predicted probability of CWD
presence. These associations should not be interpreted as causal
effects, since the model does not establish mechanistic pathways
linking habitat features to disease dynamics. Instead, the observed
patterns may reflect underlying ecological, host, or surveillance
processes not directly measured in this study. The relationships
between habitat covariates and the risk of CWD presence display a
range of patterns, from strong and consistent to subtle and uncertain
(Figure 6). Some land cover types, like Bare rock/Sand/Clay and
cultivated crops, show a clear and steep increase in risk as their
presence grows, indicating a strong and well-defined association
with higher disease occurrence. Pasture and hay follow a similar
trajectory, with risk rising sharply in a non-linear fashion. However,
this relationship carries greater uncertainty at more extreme values,
suggesting variability in their effect. Other covariates exhibit more
moderate or complex patterns. Shrub and scrub areas, for example,
are associated with a gradual increase in risk, though the strength of
this relationship becomes less certain as their extent increases.
Grassland and herbaceous cover show a modest rise in risk that
tends to flatten at higher levels, reflecting a diminishing return effect.
Woody wetlands reveal a nuanced pattern: they appear to reduce risk
at lower values but contribute to increased risk as they become more
prominent, with the overall relationship marked by considerable
uncertainty at the extremes.

In contrast, the presence of water bodies like lakes and streams
seems to have only a marginal impact. The risk rises slightly at first
but quickly plateaus, indicating a limited and stable influence.
Developed open space shows a subtle negative relationship, where
risk decreases slightly and then levels off, suggesting that such areas
may slightly deter disease presence. Emergent herbaceous wetlands
have the least impact, with a nearly flat relationship that hints at
minimal influence on risk, regardless of their abundance.
Collectively, these patterns reflect the diverse ways in which different
land cover types shape the spatial distribution of CWD, with some
exerting strong, direct effects and others contributing little or
introducing greater uncertainty.

4 Discussion

This study has analyzed the spatial variation of CWD risk in
Kansas using an innovative modeling approach that accounts for rare
occurrence of positive events, and imbalance in class outcomes that
are typically seen with wildlife disease surveillance datasets. Our
Poisson log-Gaussian spatial model explicitly accounted for these
shortcomings by incorporating an offset term to normalize varying
sample sizes, modeling both structured and unstructured spatial
heterogeneity to borrow strength across neighboring areas, and
including non-linear covariate effects to capture complex habitat—
disease relationships. This framework allowed us to disentangle true
spatial risk patterns from sampling artifacts, improve model
convergence and fit, and generate robust risk estimates despite the
inherent imbalances of opportunistic data (19, 22, 28). By doing so,
our framework disentangled true spatial risk patterns from sampling
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FIGURE 3

Posterior mean of correlated spatial heterogeneity (U;) in chronic wasting disease (CWD) risk across 20 km? grid cells in Kansas, United States, based on
surveillance data from 2005 to 2023. Higher values in the northwest indicate local clusters of elevated risk among neighboring areas.
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FIGURE 4
Posterior mean of unstructured spatial heterogeneity (Vi) in CWD risk across 20 km? grid cells in Kansas, United States, from 2005 to 2023. Values vary
locally without broad clustering, indicating independent deviations from spatially structured risk.
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FIGURE 5

(A) Posterior mean of CWD risk across Kansas, United States, from 2005 to 2023, showing highest predicted risk in the northwest, decreasing toward
central and eastern regions. (B) Standard deviation of the posterior mean CWD risk across Kansas, United States, from 2005 to 2023, indicating
uncertainty in grid-cell level predictions; most areas show low variability.
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FIGURE 6 B
Relationships between deviations (XI'K =Xk) of habitat-level covariates from their mean and the log risk of chronic wasting disease (CWD) along with
their corresponding 95% credible intervals (red dotted lines) of CWD, in 20 km? grid cells across Kansas, United States, based on surveillance data from
2005 to 2023. These plots show how variation in land cover and habitat features is associated with spatial risk.

artifacts, improved model convergence and fit, and generated robust
risk estimates despite data limitations.

We excluded temporal random effects in our modeling framework
because spatial units in Kansas were sampled inconsistently across
years, making temporal structures weakly identifiable and overly
influenced by priors rather than data (15, 16). Given that our
covariates were relatively stable over time and the study’s objective was
to characterize long-term spatial patterns, temporal terms would have
added unnecessary complexity without improving inference (17).
Their exclusion also reduced computational burden and convergence
issues common in hierarchical models with sparse, zero-inflated data
(18). Accordingly, our results should be interpreted as reflecting long-
term aggregated spatial patterns of disease risk, not short-term
fluctuations. This time-aggregated perspective emphasizes persistent
spatial heterogeneity and enduring geographic hotspots that can
inform long-term management, but it does not capture year-to-year
changes, seasonal dynamics, or the timing of disease spread, which
would require more temporally balanced data.

Together with our prior modeling of this data (29), the random
spatial factors, and the habitat-level covariates included in our present
analysis help explain variability in the surveillance data, indicating
that understanding how these covariates interact with disease risk can
provide some insights for development of CWD management options
(e.g., disease hot spots, impact of hunter-deer interaction, movement
pathways, etc.) (30-32). Further, this study has calculated various
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spatial metrics, which, when plotted, allow us to visualize how the risk
of CWD presence fluctuates across Kansas. It also demonstrates how
different covariates influence this spatial distribution through
measures of both correlated and uncorrelated spatial heterogeneities,
while identifying specific non-linear patterns in habitat-level covariate
associations with CWD risk.

Correlated spatial heterogeneity U; (Figure 3) implies that the
variations in CWD presence within the different 20 km? grid cells are not
independent but are spatially correlated. In other words, the outcome in
neighboring areal units is likely to be similar due to one or more
underlying spatial process or structure. The correlated heterogeneity U;
in this study, based on Model 2, shows a noticeable cluster on the
northwestern portion of Kansas, extending toward the southcentral
region. A second cluster of higher values of U; is also prominent in the
southcentral region, although the size of this cluster is relatively small.
These results are consistent with prior work showing that CWD often
clusters within localized foci and spreads outwardly, influenced by deer
movement and landscape connectivity (30,32). These clusters indicate
that the spatial processes influencing CWD presence among cervids such
as deer dispersal, social group interactions, or environmental reservoirs
of prions in these areas is continuous, and spreads over space, affecting
the nearby locations similarly (33, 34). Further, the values surrounding
these two clusters do change abruptly, and high and low-value grid cells
are randomly scattered throughout the rest of the study area, often close
to each other. This suggests that, while our model successfully identifies
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regions with similar habitat characteristics that influence CWD presence,
there are still unknown or yet to be analyzed factors, which may include
soil mineral composition (34, 35), land use intensity (46), or human
mediated transport (47) that contribute to the
distribution of CWD.

The uncorrelated heterogeneity or spatially unstructured

spatial

heterogeneity V; (Figure 4) helps identifying variations in the risk of
CWD presence at different 20 km? grid cells independent of each other,
without any spatial correlation with neighboring spatial units. In other
words, those grid cell areas with higher values indicate that their CWD
presence is influenced by habitat-level factors that are unique to them
alone, rather than those that are continuous over space. While V; values
widely vary across the study area, clear clusters are absent. This suggests
that despite the presence of global trends, there are also local deviations
from these global trends, where potentially some habitat-level factor(s)
influence the variation in each grid cell differently. Similar findings have
been reported in Wisconsin and Illinois, where fine-scale land use and
habitat features influenced CWD distribution in ways not fully explained
by global spatial trends (36, 37). A further identification of such spatially
varying influence of habitat factors would require additional analysis
with a different model specification and incorporation of soil chemistry,
hydrology, and deer density estimates, which have been implicated in
prion persistence and disease spread elsewhere (38, 39).

A plot of exponentiated intercept additively calculated along with
U; and V; reflects the overall risk of CWD presence. When plotted for
each grid cell, it is evident that the risk of CWD presence varies
greatly over Kansas (Figures 5A,B), with higher risk of CWD presence
in the northwestern portion of the state and progressively lower risk
in the remainder areas; Rivers and streams in Kansas generally flow
from northwest to southeast, suggesting that the disease is spreading
along these waterways, which deer use for movement and foraging.
Such influence of rivers and stream corridors in the spread of CWD
have previously suggested by others (34, 40). Although the overall
statistical effect of water bodies on CWD risk is marginal and levels
off quickly, the directional flow and ecological role of rivers may still
promote localized transmission by connecting habitat patches and
concentrating deer activity, highlighting the complex multi-factorial
nature of landscape-disease interactions.

While eastern Kansas could be expected to show higher risk if
it were simply the advancing edge of the invasion front from the
northwest, our spatial model results indicate otherwise. The
correlated heterogeneity (U;) identified persistent clusters of higher
risk in the northwest and central regions but similar clusters were
not found in the east. Likewise, the uncorrelated heterogeneity (V;)
showed no localized clusters in the east that would suggest recent
establishment of the disease. Instead, the posterior risk surface
revealed consistently lower risk estimates in the eastern portion of
the state. Such patterns suggest that the current distribution of
CWD risk in the state is not explained by directional spread alone
but is relatively strongly influenced by habitat-level features, such
as land cover, fragmentation, or hydrography, which may limit
disease persistence and spread in the east.

The relatively higher standard deviation observed for the
posterior mean of risk in the northwestern portion of the state
compared to the other areas is unexpected, given that there is
adequate representation of surveillance data in this area. While the
deviations are not particularly concerning since they primarily fall
within the lower ranges, they may indicate potential deficiencies
in our model specification. This also suggests that we might need
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to incorporate additional habitat or environmental covariates
(such as soil type or elevation) to better account for the variability
in the current dataset (39, 41, 46). Further, our surveillance dataset
is unbalanced with overrepresentation of zeros (i.e., zero
inflation), which may have contributed to the higher levels of
deviation in the areas where they were observed.

Habitat-level covariates, like those analyzed in this study and
available in the National Land Cover Dataset, serve as valuable proxies
for understanding the ecology of wildlife diseases. In this study,
we focused on habitat-level vegetation and land cover covariates,
which have independently yielded reliable model predictions of risk
and spatial heterogeneities. Factors like habitat fragmentation (e.g.,
connectivity, edge density), soil properties (29), and hydrographic
features in the landscape however may further influence CWD
dynamics by impacting deer density and environmental conditions
that support prion survival. Including such covariates from diverse
habitat themes will potentially yield even better predictions of CWD
risk over the Kansas region and may allow for more direct
interpretations of their risk to CWD. One approach to this could be the
use of spatially varying coefficient models, that accounts for relative
differences in covariate importance over spatial and/or spatiotemporal
extents (42, 43). Further, the patterns of habitat-level covariate
association with CWD described herein (Figure 6) indicate that some,
if not all of them could be evaluated as potential drivers or risk factors
for the disease. Two modeling considerations are important for such
analysis. First, using a Bernoulli or binomial approximation to model
individual-level CWD data may provide more accurate associations.
Second, if there is class imbalance in the surveillance dataset outcomes,
it will be necessary to apply a data balancing step prior to modeling.

Land cover/land use features quantified in NLCD is fairly
consistent over time and are available at a relatively fine spatial
resolutions which make them particularly useful for designing and
implementing potential disease management strategies. For instance,
areas identified as high-risk in this study could be prioritized for
stricter regulation of hunting practices and carcass transport/disposal,
given that movement of infected carcasses is a known pathway for
disease spread (33). While targeted deer population reduction through
sharp-shooting is not currently an adopted strategy in Kansas, such
approaches have been applied in other jurisdictions to limit CWD
spread and prevalence (36, 44). If such measures were ever considered,
the results of this study could guide managers in selecting spatially
targeted locations where interventions would likely be most effective.
In this way, the integration of consistent, fine-resolution land cover
data with spatial risk modeling provides a science-based framework to
support both current and potential future CWD management strategies.

5 Conclusion

This study highlights the variations in chronic wasting disease
(CWD) risk across Kansas and identifies key habitat-level factors
influencing disease risk in the state. While previous work and surveillance
data indicate a temporal spread of CWD from Colorado into Kansas, our
findings suggest that the present-day risk distribution is not solely
explained by directional spread alone. Instead, CWD risk is now strongly
associated with specific habitat characteristics and exhibits persistent
clusters of higher risk in the northwestern, western, and central regions,
with relatively lower risk in the east. Estimating the spatial distribution
of wildlife diseases using surveillance data presents challenges, often
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requiring data-driven models that account for various complexities. The
Poisson log-Gaussian model developed in this study performed
effectively and was specifically designed to address rare events, spatial
and temporal sampling inconsistencies, and data imbalances. This model
has the potential to be adapted for analyzing similar disease datasets that
are based on surveillance efforts with non-uniform effort in sampling.
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