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Chronic wasting disease (CWD) is a fatal neurodegenerative disease among 
cervids that has steadily spread across the United States and Canada. The year-
to-year increase in the geographic spread of this disease among white-tailed 
deer and mule deer have raised concerns about conserving these species and 
sustainable big-game hunting. Knowledge of the spatial variation in CWD risk in 
Kansas, a state that attracts big game hunters nationwide is not fully understood. 
We explored the spatial variation in CWD risk and the potential effects of habitat-
level covariates using surveillance data collected in Kansas from 2005 to 2023, 
with a Poisson log-Gaussian model in a Bayesian framework. Two models 
were considered; Model 1 included only spatial random effects and Model 2 
included spatial random effects plus non-linear effects of habitat-level covariate. 
Following satisfactory convergence of model parameters, choropleth maps of 
posterior mean estimates for the risk of CWD presence, and measures of spatial 
heterogeneities were plotted. The impacts of the habitat-level covariates were 
deemed important predictors of CWD as Model 2 outperformed Model 1. The 
risk of CWD in the northwestern and southcentral portions of the state is likely 
driven by similar underlying spatial processes; however, no global smoothing 
effect was observed. The northwestern region is at higher risk for CWD presence 
but a gradual increase in risk toward the south and eastern sides of the state 
is apparent. We conclude that the data-driven Poisson log-Gaussian model is 
useful in assessing CWD and potentially other wildlife diseases from surveillance 
sources, and the different spatial patterns and habitat-level covariate association 
have relevance to CWD management in Kansas.
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1 Introduction

Chronic wasting disease (CWD) is a neurodegenerative prion 
disease of cervids that has steadily increased in its spatial distribution 
in N. America since it was first described among wild deer in 1981 (1, 
2). Its spread and establishment among white-tailed deer (Odocoileus 
virginianus) and other common cervid species threaten big-game 
hunting, which is often the economic backbone for many rural 
communities in N. America (3, 4). It has been suggested that if 
uncontrolled, CWD could irrevocably negatively affect cervid 
population stability in its enzootic region, which is currently spread 
across 36 states in the US and 6 provinces in Canada (5–7). 
Furthermore, although currently not confirmed by clinical evidence, 
there is a concern that CWD prions could at some point in the future 
adversely affect those who consume contaminated venison, as was the 
case with consumption of contaminated beef and bovine spongiform 
encephalopathy (BSE, or mad cow disease), a different prion 
disease (8).

To monitor and manage CWD, state wildlife agencies conduct 
spatiotemporal surveillance for the presence of CWD prions among 
different cervid species, primarily the white-tailed deer and mule deer 
(Odocoileus hemionus) but also Elk (Cervus canadensis), and Moose 
(Alces alces), where they are present in higher numbers. In Kansas, the 
study region for the present work, the Kansas Department of Wildlife 
and Parks (KDWP) has conducted such surveillance annually since 
1996, most years during the deer hunting season (mid-November 
through mid-January). Surveillance in most wildlife management 
jurisdictions, including those in Kansas, is conducted irregularly with 
different focus areas each year and in a non-probabilistic manner. 
Diagnostic samples used in surveillance are acquired from 
taxidermists, meat processors, vehicle-killed deer, and hunter-
harvested deer, sick/suspect deer, and private vendors (collectors) are 
often compensated for their efforts.

One of the goals of such surveillance is to detect the disease spatial 
clusters [e.g., (9)] or spatial variations in CWD risk and to identify 
their potential environmental drivers so that the disease can 
be managed efficiently. The Habitat Risk software (10) for instance 
allows users to derive localized predictions of CWD risk using disease 
testing data, the environment (land cover/land use, soil properties) 
and host-level factors (age, sex). The majority of the samples diagnosed 
through such surveillance efforts particularly outside epizootic areas, 
however, test negative for CWD, with only rare occurrences of positive 
diagnosis. These characteristics, viz., spatiotemporally irregular, and 
non-probabilistic sampling, outcome class imbalance (i.e., over-
representation of one of the two diagnostic outcomes, positive or 
negative), low background prevalence (i.e., rare events) in some 
surveillance areas vs. others, among other artifacts such as 
spatiotemporal heterogeneity in prevalence, warrant the development 
of data-driven spatial models that can accommodate for such data 
artifacts. A Poisson log-Gaussian model is a hierarchical model used 
to analyze count data that exhibit overdispersion and spatial or 
spatiotemporal correlation. It combines a Poisson likelihood for 
observed counts with a latent Gaussian random field (GRF) on the 
log-scale of the intensity. It captures the extra-Poisson variation 
(overdispersion) through the latent field, and accounts for spatial 
autocorrelation in residual risk that are not explained by the random 
effects or covariates.

This objective of this study was to examine the Kansas statewide 
spatial variation in CWD risk and the potential contribution of habitat 
(land cover/land use) variables using a Poisson log-Gaussian model in 
a Bayesian framework. Specifically, our goals were to analyze the 
spatial distribution of CWD counts over regularly sized 20 km2 grids 
in Kansas with a focus on quantifying the spatial variation in risk and 
the effects of habitat-level covariates on the rare counts. The methods 
we describe here could have broad applicability for wildlife disease 
modeling as many such diseases share similar data characteristics.

2 Materials and methods

2.1 Data

2.1.1 Disease data
Surveillance data representing the diagnostic test results of CWD 

presence by means of immunohistochemistry analysis (11) of tissue 
samples from harvested deer, corresponding species, demographic 
characteristics (sex, age-group), and harvest locations (approximated 
within 5 kms) were available from KDWP for years 2005–2018. 
Identical data collected by means of a surveillance project led by the 
authors in the present study (2019–2023) were added to this dataset 
and curated in sequential steps to render them ready for statistical 
modeling. Curation steps broadly included the exclusion of incomplete 
or redundant records. Subsequently, the data were geocoded with the 
longitude/latitude data in ArcMap 10.8.2 (ESRI, Redlands, CA). A 
20 km2 grid was created covering the entire state of Kansas. In the 
present study, we  grouped white-tailed deer, mule deer and the 
different demographic groups as a single dependent variable with 
potentially two outcomes for disease status; not-detected (coded 0) 
and detected (coded 1). Their counts were aggregated within the 
individual 20 km2 grid cells across the study region.

There were 28,754 CWD diagnostic test records in the surveillance 
dataset available to us, of which 316 records had test results marked as 
“Unknown,” and 93 records were marked “Unsuitable samples.” There 
were 6,494 that lacked geographic coordinates (either or both latitude 
and longitude), and 236 records were with coordinates outside Kansas. 
These records were sequentially removed, which resulted in 21,615 
total unique spatially referenced records for spatial analysis. Of these, 
the presence of CWD was not detected in 20,905 samples (96.71%) 
and detected in 711 (3.28%). This dataset represents data collected 
during the annual deer hunting season from 2005 till 2023.

2.1.2 Environmental data
Land cover and land use characteristics are good substitute 

variables for wildlife habitats and have been previously shown to 
be associated with CWD epizootiology [e.g., (12, 13)]. In an automated 
routine in R-Studio, we calculated the total area and proportion of 
different land cover classes within each grid cell from the 2016 
National Land Cover Dataset (NLCD) (14). The NLCD is a source of 
complete, consistent information of the US land cover, released by the 
US Geological Survey and a consortium of US federal agencies, once 
approximately every 5 years. We used the 2016 dataset in the present 
study as it corresponded approximately with the mid-point of the 
surveillance period. For the study region, 13 land cover variables 
present in the NLCD were summarized for each grid cell (Table 1). 
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Developed, low intensity, developed, medium intensity, and 
developed, high Intensity were not associated with the disease status 
in a univariate screening (p ≥ 0.2) and were removed from analysis. 
Additionally, the observations for the variable deciduous forest were 
empty in > 80% of the 20 km2 grid cell, and therefore not included in 
the analysis.

2.2 Statistical modeling

In this study, we excluded explicit temporal random effects from 
the model due to irregular and inconsistent sampling of spatial units 
across years. Under such conditions, temporal structures are often 
poorly identified and can result in posterior inference that is driven 
more by prior assumptions than by the data (15, 16). This is especially 
relevant in Bayesian hierarchical models, where latent temporal terms 
(e.g., autoregressive or random walk priors) require sufficient and 
consistent coverage across both space and time to yield reliable 
estimates. Further, the environmental covariates included in our model 
are relatively stable over time, and the primary objective of the study 
was to characterize the long-term spatial patterns rather than short-
term temporal dynamics. In such cases, incorporating temporal 
random effects may add complexity without improving model 
performance or interpretability (17). From a computational 
perspective, omitting the temporal component also reduces the risk of 
convergence issues, which are more common in complex hierarchical 
models with zero-inflation or sparse observations such as in our dataset 
(18). Focusing on spatial random effects and covariate associations, 
therefore, provides a more robust and interpretable framework for 
identifying persistent spatial heterogeneity under conditions of 
temporally sparse and uneven sampling. Additionally, a number of 
progressively complex exploratory models with host-level and 
surveillance source factors were constructed to quantify their potential 
effect on the spatial distribution of CWD in the study area. However, 
their inclusion did not significantly improve model performance 
(Supplementary File 1). Therefore, we  proceeded to fit Poisson 
log-Gaussian spatial model as described below.

2.2.1 The Poisson log-Gaussian spatial model
We fitted a Poisson log-Gaussian spatial model to (1) explore the 

spatial variation of CWD risk and (2) evaluate the patterns of 
environmental exposures on the spatial variation. We considered the 
CWD detected counts iy , = …1, ,i N  as rare Poisson outcomes, i.e., 

( )µ~i iy Pois , with a spatially varying mean µi. The intensity λi , which 
is controlled by spatial heterogeneity and environmental exposures is 
used to infer the risk of infection and is deduced as  

		              µ λ=i i io 			 

	 λ η=log i i

	 ( )ηη η σ 2~ ,i iN

	
η β β γ

=
= + + +∑ ∑ ∑0 1

ˆJ J K
i j ij jk ijk ij j kx z U

Here, the offset term io  is meant to normalize the varying sampling 
sizes during the data collection. In this model, we have imposed a 
non-structured Gaussian heterogeneity on the log intensity and refer 
to this model as the Poisson log-Gaussian spatial model. The Poisson 
log-Gaussian and log-linear models are inferentially the same. 
However, the MCMC implementation of the log-Gaussian model 
results in better convergence than the log-linear parameterization 
(19–21). The variance parameter ησ

2  captures the non-structured 
spatial heterogeneity, also referred to as global spatial smoothing. The 
local counterpart iU , which borrows information from neighboring 
observations, is modeled via conditional autoregressive (CAR) 
smoothing (22). That is, ( )σ 2~i UU CAR , where its variance parameter 
σ 2

U  controls the amount of smoothing. The partial covariance of the 
CAR smoothing model is derived from the spatial adjacency of the 
contiguous spatial entities of the observations. For this, the convention 
is that the spatial entities that share common boundaries receive an 
entry of −1; those that do not share common boundaries receive 0. 
The unequal number of neighbors is assigned as the diagonal elements 
in the partial precision matrix to ensure unbiased smoothing. The 
coefficients β0 and β j are the fixed effects, where β0 is the overall 
intercept and β j, = …1, ,j J , are the mean fixed effects of the J
covariates ijx . The random parameters γ jk  are the coefficients of the 
non-linear penalized basis functions −= 1/2ˆ Ùijk ijk jkz z . We  chose 
low-rank think-plate cubic spline basis functions 

{ }κ κ= − … −
3 3

1 , ,jk ij j ij jKz x x  based on the equally spaced fixed K  

knots κ κ κ< <…<1 2j j jK . The penalty matrix κ κ− = −
31/2Ù jl jkjk  

penalizes the coefficients of successive basis functions to avoid over-
fitting. We chose the knots to correspond with the sample quantiles of 
the exposure factors, considering 20 knots for each exposure factor to 
ensure flexibility (45).

To complete the model using Bayesian inference, we assign prior 
parameters to the fixed effects and hyper-priors to the variance 
parameters. We assigned highly diffuse priors, ( )β0 ~ 0,0.001N  and 

( )β ~ 0,0.001j N , to the fixed effects. To the random effects of the 

non-linear basis functions, i.e., ( )γγ σ 2~ 0,  
jk

jk N , we  assigned 

independent normal distributions. We assigned Gamma priors on the 

inverse of their variances, i.e., ( )σ τ −
⋅
=2 1 , ( )τ ~ 0.5,0.00001Gamma . 

This is equivalent to Jeffrey’s non-informative priors (23, 24). 
We generated 100,000 posterior samples each for two Markov chain 
Monte Carlo (MCMC) simulation chains. With different starting 
values for each chain, the first 50,000 posterior samples were 
discarded. We retained every 10th simulation of the remaining 50,000 
MCMC simulations for posterior summaries and were left with 10,000 
simulations from the two chains to make inferences. We checked for 
convergence based on visual observations of the simulation trace 
plots. For certainty, we computed the Gelman-Rubin statistic, a formal 
assessment of MCMC convergence checks (25).

TABLE 1  Land cover classes found in 2016 National Land Cover Dataset 
corresponding to the study region (Kansas).

Dataset (source) Classes

National Land Cover 

Dataset (MRLC)

Water; Developed, open space; Developed, low intensity; 

Developed, medium intensity; Developed, high 

intensity; Bare rock/Sand/Clay Deciduous Forest; Shrub/

Scrub; Grassland/Herbaceous; Pasture/Hay; Cultivated 

crops; Woody wetlands; Emergent herbaceous wetlands.
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We implemented the model using the JAGS software via the 
R2JAGS package (26) of the R statistical software (27). For 
epidemiological analysis, we  implemented two models whose 
differences are based on the structures of the linear predictors.

	 η β= +0Model 1: i iU

	
η β β γ

=
= + + +∑ ∑ ∑0 1el 2 : ˆMod J J K

i j ij jk ijk ij j kx z U

Model 1 includes only the random effects to evaluate the spatial 
distribution of the risk. The global smoothing or the unstructured spatial 
random effects term iV  can either be simulated at each step of the MCMC, 
i.e., ( )ησ

2~ 0,iV N , or can be deduced as η η= −i i iV . Model 2 extends 
Model 1 by including the non-linear impacts of the exposure factors. That 
is, β j are the fixed effects of the exposure factors ijx , while γ jk  are the 
coefficients of the basis functions ˆijkz . We used the proportion of nine 
land cover classes as our exposure factors.

An R markup file that was used to fit the Poisson log-Gaussian 
spatial model is provided in Supplementary File 2.

3 Results

The long-term aggregated spatial pattern of CWD detected and 
not-detected sample locations in Kansas is present in Figure 1. The 

vast majority of the samples for this study (74% over the entire study 
period, and up to 85% in some years) came from hunter harvested 
(taxidermy) source, and this trend was more or less consistent over the 
time. A relatively higher proportion of CWD detected as well as 
not-detected sample locations is found distributed in a northwest to 
southeast gradient, with much of the detected samples concentrated 
in the western half of the state. Samples of CWD detected samples 
recorded in the central and eastern parts of the state are diagnosed 
among deer much more recently and were found since the year 2019. 
The apparent prevalence of CWD break down by different cervid 
species, age group, and sex are in Figure 2.

The Gelman-Rubin statistic for model convergence was noted as 
< 1.05 for all model parameters in both Model 1 and Model 2, 
indicating satisfactory MCMC convergence. The Deviance 
Information Criterion (DIC) for Model 1 was 1283.75, which was 
reduced to 1022.71 after including the habitat-level covariates in 
Model 2. This decrease in DIC value indicated a clear improvement in 
the model fit and implied the importance of the habitat factors as 
potential predictors of CWD risk over the geographic extent. When 
exponentiated, the intercept (exp(𝛽₀) = 0.747) reflects the overall risk 
of CWD infection, which far exceeds the crude estimate of 0.032. It 
further suggests that our model, which accounts for fixed and 
non-linear random effects as well as spatial random effects, effectively 
captures the variation in CWD risk across the study area.

A choropleth map of the posterior means of spatially structured 
heterogeneity iU  (Figure 3) revealed two independent but contiguous 

FIGURE 1

Spatial distribution of cervid tissue sampling sites for chronic wasting disease (CWD) in Kansas, United States, from 2005 to 2023. Sample locations are 
approximated within 5 km of deer harvest sites. Samples detecting CWD prions (n = 711; 3.28%) are shown as red circles, and samples where CWD 
prions were not detected (n = 20,905; 96.71%) are shown as grey open circles. This map highlights the spatial coverage of surveillance and the 
geographic distribution of positive and negative samples across the state and study period.
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areas in the northwestern and southcentral portions of the state with 
closer values, indicating same or similar underlying spatial processes 
driving CWD distribution in these clusters. A choropleth map of the 
posterior mean of non-structured spatial heterogeneity iV  shows a 
heterogeneous distribution of lower and higher values throughout the 
state (Figure 4) without any clusters, indicating that in some of the 
20 km2 grid cells, there are habitat-level factors that influence CWD 
presence more than others while global trends are absent.

The variation in CWD risk within a given 20 km2 grid cell is 
plotted in Figure 5A. The northwestern areas of the state, followed by 
the southern regions, clearly face a higher risk compared to the eastern 
part, while the central region experiences a moderate level of risk. A 
general sense of directionality of disease spread is visible in this plot, 
indicating that the infection among cervids decreases in intensity 
when moving away from the northwestern areas toward the central 
and eastern portions. The uncertainty (Std. dev) associated with the 
posterior mean of risk estimates are presented in Figure  5B, and 
indicate no major concern except for the observance of higher 

deviations in two 20 km2 grid cells in the northwestern portion of the 
state. This suggests that the model predicts the risk of CWD presence 
in the study region to a satisfactory extent.

The following results describe statistical associations between 
land cover covariates and the predicted probability of CWD 
presence. These associations should not be  interpreted as causal 
effects, since the model does not establish mechanistic pathways 
linking habitat features to disease dynamics. Instead, the observed 
patterns may reflect underlying ecological, host, or surveillance 
processes not directly measured in this study. The relationships 
between habitat covariates and the risk of CWD presence display a 
range of patterns, from strong and consistent to subtle and uncertain 
(Figure 6). Some land cover types, like Bare rock/Sand/Clay and 
cultivated crops, show a clear and steep increase in risk as their 
presence grows, indicating a strong and well-defined association 
with higher disease occurrence. Pasture and hay follow a similar 
trajectory, with risk rising sharply in a non-linear fashion. However, 
this relationship carries greater uncertainty at more extreme values, 
suggesting variability in their effect. Other covariates exhibit more 
moderate or complex patterns. Shrub and scrub areas, for example, 
are associated with a gradual increase in risk, though the strength of 
this relationship becomes less certain as their extent increases. 
Grassland and herbaceous cover show a modest rise in risk that 
tends to flatten at higher levels, reflecting a diminishing return effect. 
Woody wetlands reveal a nuanced pattern: they appear to reduce risk 
at lower values but contribute to increased risk as they become more 
prominent, with the overall relationship marked by considerable 
uncertainty at the extremes.

In contrast, the presence of water bodies like lakes and streams 
seems to have only a marginal impact. The risk rises slightly at first 
but quickly plateaus, indicating a limited and stable influence. 
Developed open space shows a subtle negative relationship, where 
risk decreases slightly and then levels off, suggesting that such areas 
may slightly deter disease presence. Emergent herbaceous wetlands 
have the least impact, with a nearly flat relationship that hints at 
minimal influence on risk, regardless of their abundance. 
Collectively, these patterns reflect the diverse ways in which different 
land cover types shape the spatial distribution of CWD, with some 
exerting strong, direct effects and others contributing little or 
introducing greater uncertainty.

4 Discussion

This study has analyzed the spatial variation of CWD risk in 
Kansas using an innovative modeling approach that accounts for rare 
occurrence of positive events, and imbalance in class outcomes that 
are typically seen with wildlife disease surveillance datasets. Our 
Poisson log-Gaussian spatial model explicitly accounted for these 
shortcomings by incorporating an offset term to normalize varying 
sample sizes, modeling both structured and unstructured spatial 
heterogeneity to borrow strength across neighboring areas, and 
including non-linear covariate effects to capture complex habitat–
disease relationships. This framework allowed us to disentangle true 
spatial risk patterns from sampling artifacts, improve model 
convergence and fit, and generate robust risk estimates despite the 
inherent imbalances of opportunistic data (19, 22, 28). By doing so, 
our framework disentangled true spatial risk patterns from sampling 

FIGURE 2

Apparent prevalence of chronic wasting disease (CWD) in cervids 
sampled in Kansas, United States, from 2005 to 2023, stratified by 
species, age, and sex. Bars show the number of samples tested in 
each category, and fractions above each bar indicate the proportion 
of samples in which CWD prions were detected. This figure 
illustrates how prevalence varies across demographic groups and 
species over the study period.
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FIGURE 3

Posterior mean of correlated spatial heterogeneity (Uᵢ) in chronic wasting disease (CWD) risk across 20 km2 grid cells in Kansas, United States, based on 
surveillance data from 2005 to 2023. Higher values in the northwest indicate local clusters of elevated risk among neighboring areas.

FIGURE 4

Posterior mean of unstructured spatial heterogeneity (Vᵢ) in CWD risk across 20 km2 grid cells in Kansas, United States, from 2005 to 2023. Values vary 
locally without broad clustering, indicating independent deviations from spatially structured risk.
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FIGURE 5

(A) Posterior mean of CWD risk across Kansas, United States, from 2005 to 2023, showing highest predicted risk in the northwest, decreasing toward 
central and eastern regions. (B) Standard deviation of the posterior mean CWD risk across Kansas, United States, from 2005 to 2023, indicating 
uncertainty in grid-cell level predictions; most areas show low variability.
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FIGURE 6

Relationships between deviations ( )x xik k−  of habitat-level covariates from their mean and the log risk of chronic wasting disease (CWD) along with 
their corresponding 95% credible intervals (red dotted lines) of CWD, in 20 km2 grid cells across Kansas, United States, based on surveillance data from 
2005 to 2023. These plots show how variation in land cover and habitat features is associated with spatial risk.

artifacts, improved model convergence and fit, and generated robust 
risk estimates despite data limitations.

We excluded temporal random effects in our modeling framework 
because spatial units in Kansas were sampled inconsistently across 
years, making temporal structures weakly identifiable and overly 
influenced by priors rather than data (15, 16). Given that our 
covariates were relatively stable over time and the study’s objective was 
to characterize long-term spatial patterns, temporal terms would have 
added unnecessary complexity without improving inference (17). 
Their exclusion also reduced computational burden and convergence 
issues common in hierarchical models with sparse, zero-inflated data 
(18). Accordingly, our results should be interpreted as reflecting long-
term aggregated spatial patterns of disease risk, not short-term 
fluctuations. This time-aggregated perspective emphasizes persistent 
spatial heterogeneity and enduring geographic hotspots that can 
inform long-term management, but it does not capture year-to-year 
changes, seasonal dynamics, or the timing of disease spread, which 
would require more temporally balanced data.

Together with our prior modeling of this data (29), the random 
spatial factors, and the habitat-level covariates included in our present 
analysis help explain variability in the surveillance data, indicating 
that understanding how these covariates interact with disease risk can 
provide some insights for development of CWD management options 
(e.g., disease hot spots, impact of hunter-deer interaction, movement 
pathways, etc.) (30–32). Further, this study has calculated various 

spatial metrics, which, when plotted, allow us to visualize how the risk 
of CWD presence fluctuates across Kansas. It also demonstrates how 
different covariates influence this spatial distribution through 
measures of both correlated and uncorrelated spatial heterogeneities, 
while identifying specific non-linear patterns in habitat-level covariate 
associations with CWD risk.

Correlated spatial heterogeneity iU  (Figure  3) implies that the 
variations in CWD presence within the different 20 km2 grid cells are not 
independent but are spatially correlated. In other words, the outcome in 
neighboring areal units is likely to be  similar due to one or more 
underlying spatial process or structure. The correlated heterogeneity iU  
in this study, based on Model 2, shows a noticeable cluster on the 
northwestern portion of Kansas, extending toward the southcentral 
region. A second cluster of higher values of iU  is also prominent in the 
southcentral region, although the size of this cluster is relatively small. 
These results are consistent with prior work showing that CWD often 
clusters within localized foci and spreads outwardly, influenced by deer 
movement and landscape connectivity (30,32). These clusters indicate 
that the spatial processes influencing CWD presence among cervids such 
as deer dispersal, social group interactions, or environmental reservoirs 
of prions in these areas is continuous, and spreads over space, affecting 
the nearby locations similarly (33, 34). Further, the values surrounding 
these two clusters do change abruptly, and high and low-value grid cells 
are randomly scattered throughout the rest of the study area, often close 
to each other. This suggests that, while our model successfully identifies 
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regions with similar habitat characteristics that influence CWD presence, 
there are still unknown or yet to be analyzed factors, which may include 
soil mineral composition (34, 35), land use intensity (46), or human 
mediated transport (47) that contribute to the spatial 
distribution of CWD.

The uncorrelated heterogeneity or spatially unstructured 
heterogeneity iV  (Figure 4) helps identifying variations in the risk of 
CWD presence at different 20 km2 grid cells independent of each other, 
without any spatial correlation with neighboring spatial units. In other 
words, those grid cell areas with higher values indicate that their CWD 
presence is influenced by habitat-level factors that are unique to them 
alone, rather than those that are continuous over space. While iV  values 
widely vary across the study area, clear clusters are absent. This suggests 
that despite the presence of global trends, there are also local deviations 
from these global trends, where potentially some habitat-level factor(s) 
influence the variation in each grid cell differently. Similar findings have 
been reported in Wisconsin and Illinois, where fine-scale land use and 
habitat features influenced CWD distribution in ways not fully explained 
by global spatial trends (36, 37). A further identification of such spatially 
varying influence of habitat factors would require additional analysis 
with a different model specification and incorporation of soil chemistry, 
hydrology, and deer density estimates, which have been implicated in 
prion persistence and disease spread elsewhere (38, 39).

A plot of exponentiated intercept additively calculated along with 
iU  and iV  reflects the overall risk of CWD presence. When plotted for 

each grid cell, it is evident that the risk of CWD presence varies 
greatly over Kansas (Figures 5A,B), with higher risk of CWD presence 
in the northwestern portion of the state and progressively lower risk 
in the remainder areas; Rivers and streams in Kansas generally flow 
from northwest to southeast, suggesting that the disease is spreading 
along these waterways, which deer use for movement and foraging. 
Such influence of rivers and stream corridors in the spread of CWD 
have previously suggested by others (34, 40). Although the overall 
statistical effect of water bodies on CWD risk is marginal and levels 
off quickly, the directional flow and ecological role of rivers may still 
promote localized transmission by connecting habitat patches and 
concentrating deer activity, highlighting the complex multi-factorial 
nature of landscape-disease interactions.

While eastern Kansas could be expected to show higher risk if 
it were simply the advancing edge of the invasion front from the 
northwest, our spatial model results indicate otherwise. The 
correlated heterogeneity ( iU ) identified persistent clusters of higher 
risk in the northwest and central regions but similar clusters were 
not found in the east. Likewise, the uncorrelated heterogeneity ( iV ) 
showed no localized clusters in the east that would suggest recent 
establishment of the disease. Instead, the posterior risk surface 
revealed consistently lower risk estimates in the eastern portion of 
the state. Such patterns suggest that the current distribution of 
CWD risk in the state is not explained by directional spread alone 
but is relatively strongly influenced by habitat-level features, such 
as land cover, fragmentation, or hydrography, which may limit 
disease persistence and spread in the east.

The relatively higher standard deviation observed for the 
posterior mean of risk in the northwestern portion of the state 
compared to the other areas is unexpected, given that there is 
adequate representation of surveillance data in this area. While the 
deviations are not particularly concerning since they primarily fall 
within the lower ranges, they may indicate potential deficiencies 
in our model specification. This also suggests that we might need 

to incorporate additional habitat or environmental covariates 
(such as soil type or elevation) to better account for the variability 
in the current dataset (39, 41, 46). Further, our surveillance dataset 
is unbalanced with overrepresentation of zeros (i.e., zero 
inflation), which may have contributed to the higher levels of 
deviation in the areas where they were observed.

Habitat-level covariates, like those analyzed in this study and 
available in the National Land Cover Dataset, serve as valuable proxies 
for understanding the ecology of wildlife diseases. In this study, 
we  focused on habitat-level vegetation and land cover covariates, 
which have independently yielded reliable model predictions of risk 
and spatial heterogeneities. Factors like habitat fragmentation (e.g., 
connectivity, edge density), soil properties (29), and hydrographic 
features in the landscape however may further influence CWD 
dynamics by impacting deer density and environmental conditions 
that support prion survival. Including such covariates from diverse 
habitat themes will potentially yield even better predictions of CWD 
risk over the Kansas region and may allow for more direct 
interpretations of their risk to CWD. One approach to this could be the 
use of spatially varying coefficient models, that accounts for relative 
differences in covariate importance over spatial and/or spatiotemporal 
extents (42, 43). Further, the patterns of habitat-level covariate 
association with CWD described herein (Figure 6) indicate that some, 
if not all of them could be evaluated as potential drivers or risk factors 
for the disease. Two modeling considerations are important for such 
analysis. First, using a Bernoulli or binomial approximation to model 
individual-level CWD data may provide more accurate associations. 
Second, if there is class imbalance in the surveillance dataset outcomes, 
it will be necessary to apply a data balancing step prior to modeling.

Land cover/land use features quantified in NLCD is fairly 
consistent over time and are available at a relatively fine spatial 
resolutions which make them particularly useful for designing and 
implementing potential disease management strategies. For instance, 
areas identified as high-risk in this study could be  prioritized for 
stricter regulation of hunting practices and carcass transport/disposal, 
given that movement of infected carcasses is a known pathway for 
disease spread (33). While targeted deer population reduction through 
sharp-shooting is not currently an adopted strategy in Kansas, such 
approaches have been applied in other jurisdictions to limit CWD 
spread and prevalence (36, 44). If such measures were ever considered, 
the results of this study could guide managers in selecting spatially 
targeted locations where interventions would likely be most effective. 
In this way, the integration of consistent, fine-resolution land cover 
data with spatial risk modeling provides a science-based framework to 
support both current and potential future CWD management strategies.

5 Conclusion

This study highlights the variations in chronic wasting disease 
(CWD) risk across Kansas and identifies key habitat-level factors 
influencing disease risk in the state. While previous work and surveillance 
data indicate a temporal spread of CWD from Colorado into Kansas, our 
findings suggest that the present-day risk distribution is not solely 
explained by directional spread alone. Instead, CWD risk is now strongly 
associated with specific habitat characteristics and exhibits persistent 
clusters of higher risk in the northwestern, western, and central regions, 
with relatively lower risk in the east. Estimating the spatial distribution 
of wildlife diseases using surveillance data presents challenges, often 

https://doi.org/10.3389/fvets.2025.1568468
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Raghavan et al.� 10.3389/fvets.2025.1568468

Frontiers in Veterinary Science 10 frontiersin.org

requiring data-driven models that account for various complexities. The 
Poisson log-Gaussian model developed in this study performed 
effectively and was specifically designed to address rare events, spatial 
and temporal sampling inconsistencies, and data imbalances. This model 
has the potential to be adapted for analyzing similar disease datasets that 
are based on surveillance efforts with non-uniform effort in sampling.
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