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Background: Despite availability of effective treatment regimens for 
drug-susceptible Tuberculosis (TB), some patients still experience poor 
treatment outcomes. Currently tools for monitoring treatment outcomes are 
dependent on detection of mycobacteria in sputum, which are slow, expensive 
and poor at predicting relapse and failure. This study aims to identify new 
blood-derived markers for predicting treatment response and outcomes. 
Methods: Whole blood was collected in PAXgene tubes from patients with 
microbiologically confirmed TB at diagnosis, week 2, and at months 2, 4, and 
6. Treatment response and outcomes were determined by culture and gene 
expression was compared between slow and fast responders; and between 
patients with good (cured) and poor treatment outcomes (failure and recurrent 
TB) using targeted RNA gene expression. Gene signatures were developed using 
random forest classification models. 
Results: Significant changes in gene expression were detected over the course 
of the TB treatment. Notably, major gene expression differences were observed 
at diagnosis between subsequently cured patients and patients who experienced 
poor treatment outcomes while minimal changes were detected between slow 
and fast responders among cured patients at diagnosis. A 7-gene end of 
treatment signature distinguished patients with good outcomes from those with 
poor treatment outcomes with area under the curve (AUC) of 0.91 (95% CI 0.85– 
0.99), 0.98 (95% CI 0.96–0.99), and 1.0 (95% CI 0.99–1.00), at baseline, month 
2 and 6, respectively. Additionally, a 6-gene month 2 signature discriminates 
slow from fast responders with AUCs of 0.49 (95% CI 0.33–0.64), 0.58 (95% 
CI 0.07–1.00), and 0.93 (95% CI 0.78–1.00) at diagnosis, week 2 and month 
2, respectively. 
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Conclusion: The study identified genes signatures associated with TB treatment 
response and outcomes suggesting potential utility for treatment monitoring. 

KEYWORDS 

Mycobacterium tuberculosis disease, treatment response, treatment outcome, 
tuberculosis, gene expression 

Introduction 

Tuberculosis (TB) remains the leading cause of death from 
a single infectious disease, despite the availability of a vaccine 
and effective treatments (1). Timely diagnosis and treatment 
are paramount for optimal case management and to reduce 
transmission, mortality and the development of resistance (1, 2). 

Standard treatment for drug-susceptible TB consists of a 6-
month multi-drug regimen, beginning with a 2-month intensive 
phase using Isoniazid, rifampicin, pyrazinamide and ethambutol to 
kill highly replicating bacteria, followed by a 4-month continuation 
phase of Isoniazid and rifampicin to kill the dormant bacteria (2, 3). 
While successful treatment is achieved in most drug-susceptible 
TB patients, some patients do not achieve complete clearance of 
the bacteria and have an increased risk of relapse and treatment 
failure (4, 5). Furthermore, the prolonged duration of treatment 
is associated with significant challenges with treatment adherence, 
drug toxicity and the development of drug resistance (2, 6). 

Current tools for monitoring treatment response are based 
on detection of the pathogen, Mycobacterium tuberculosis (Mtb) 
in patients sputum, using culture and smear microscopy (4, 7). 
However, both culture and smear microscopy have significant 
limitations. Culture is limited by long turnaround times, high costs, 
susceptibility to contamination and low accuracy in predicting 
relapse and treatment failure while smear microscopy has poor 
sensitivity (4). Moreover, these tests rely on quality sputum 
specimens, which can be difficult to obtain from people with 
paucibacillary disease such as children, people with HIV or those 
with extrapulmonary TB (4, 7). Consequently, new tools are needed 
for monitoring and predicting TB treatment response and outcome. 

WHO has prioritized the search for cost-effective, user-
friendly non-sputum tests for TB diagnosis and treatment 
response, establishing target product profiles for such tests (8– 
10). Several studies have reported host blood gene expression 
patterns capable of distinguishing TB patients from latently 
infected or healthy people underscoring the potential of blood as a 
suitable specimen for TB diagnosis (11–14). Some transcriptomic 
signatures including Sweeney3 (15), Risk6 (16), TB22 (17), and 
Thompson5 (18) exhibit dynamic changes during treatment that 
suggest potential for also monitoring treatment response. 

Although blood-derived gene markers hold promise as 
surrogates for monitoring treatment response, few studies have 
specifically focused on identifying markers that differentiate 
between fast and slow treatment responders who are at greater risk 
of treatment failure or distinguish cured patients from those with 
unfavorable treatment outcomes. Additionally, many studies focus 
only on diagnostic and end-of-treatment timepoints, potentially 
overlooking critical gene expression changes that could explain the 

variability in treatment responses. Patients with poor outcomes, 
including treatment failure and relapse, require longer treatment 
regimens, increasing their risk of drug toxicity and contributing to 
transmission (6, 19). Identifying slow responders and patients at 
risk of poor outcomes early in treatment is essential for developing 
shorter, and more personalized regimens. Thus, we aimed to 
describe gene expression dynamics in blood of TB patients during 
treatment and to identify gene signatures that distinguish slow 
from fast responders; and between cured patients and those who 
experience treatment failure and recurrent TB. 

Materials and methods 

Ethical approval 

The study was approved by the London School of Hygiene 
and Tropical Medicine (LSHTM) Ethics Committee and the Joint 
Gambia Government–MRC Unit Ethics Committee (LEO 21727). 

Study design 

This study was nested within a prospective multi-center 
observational cohort study, TB Sequel, in which adult patients 
with microbiologically confirmed tuberculosis diagnosed using 
GeneXpert MTB/RIF Ultra assay (Cepheid, USA) were enrolled 
(20). Participants were followed up at week 2 and at months 2, 4, 
and 6 of treatment, during which sputum samples were collected for 
Mycobacteria Growth Indicator Tubes culture and whole blood was 
collected in PAXgene R  Blood RNA Tube (BD Bioscience, USA) for 
transcriptomic analyses. Patients were followed up for 18 months 
after treatment completion to confirm their TB treatment outcome. 
Participants included in this sub-study were selected based on their 
treatment response outcome and sample availability. 

Classifications 

Patients were defined as microbiologically cured if they had 
a negative sputum culture upon completion of treatment and 
remained disease-free for at least 1-year after standard 6-month 
anti-tuberculosis treatment. Those with positive cultures at the end 
of 6-month treatment were deemed treatment failures. Patients 
who presented with clinical or microbiologically confirmed TB 
within 1 year of standard TB treatment completion despite having 
a negative culture at the end of treatment were classified as 
having recurrent TB, without distinguishing between relapse and 
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reinfection. Patients were grouped into fast and slow treatment 
responders based on sputum culture conversion at month 2 of 
treatment. Fast responders were defined as those achieving negative 
cultures by month 2, while slow responders were defined as those 
that achieved negative cultures only after month 2. 

Sample collection and total RNA extraction 

At diagnosis and at week 2, months 2, 4, and 6 of treatment, 
2.5 ml of whole blood was collected from all study participants 
in a PAXgene tube and stored at −80◦C until needed. RNA 
was extracted from selected participants using the PAXgene 
Blood RNA Kit (Qiagen, Switzerland) following manufacturer’s 
instructions. The quality and concentration of the extracted RNA 
were assessed using Agilent ScreenTape (Agilent Technologies, 
Europe) and Qubit fluorometer (Thermo Fisher Scientific, Europe). 
RNA input for gene expression analyses was determined based 
on fragments of RNA >200 nucleotides (DV200) measured with 
Agilent ScreenTape. 

Gene expression analysis 

Gene expression was analyzed using targeted RNA sequencing 
with nCounter host response panel (NanoString Technologies, 
USA). This panel included 12 housekeeping genes and 773 host 
response transcripts spanning 50 different pathways. A total of 
100 ng of RNA was mixed with a Mastermix containing barcoded 
capture and reporter probe pairs specific to each transcript and 
hybridized for 16 h at 65 ◦C in a thermocycler. After hybridization, 
samples were transferred to the nCounter Prep-Station were 
unhybridized probes were removed and purified RNA was loaded 
onto an analysis cartridge. Quantitative measurement of hybridized 
RNA was obtained by scanning reporter probes on the cartridge 
using the nCounter digital Analyzer (NanoString Technologies, 
USA). Signal values were background subtracted and normalized to 
the most stable housekeeping probes, identified using the geNorm 
algorithm from the NormqPCR package (version 1.50) (21). 

Statistical analysis 

Gene expression data was analyzed using ROSALIND R 

(versionv3.16; https://rosalind.bio/). Differential expression was 
assessed using a negative binomial mixture model for low-
expression genes and a simplified negative binomial model for 
high-expression genes, defined by a threshold set at 10 times 
the background noise. Significance was set at a fold change (FC) 
in expression of ≥1.5 and p-values ≤0.05, adjusted for false 
discovery rate (FDR) using the Benjamini–Hochberg method (22). 
When no differentially expressed genes (DEGs) were detected at 
this threshold, the cutoff was relaxed to an FC of ≥1.25 and 
an unadjusted p-value ≤0.05 to further explore gene expression 
differences. Cell type profiling was performed using immune 
cell typing module in nSolver (version 4.0). Functional analysis 
of DEGs was performed using nSolver and the database for 
annotation, visualization, and integrated discovery (DAVID) (23). 

TABLE 1 Patients’ demographic characteristics. 

Characteristics Cured 
N 

= 59 

Treatment 
failure 
N = 7 

Recurrent 
TB 

N = 3 

p-
value 

GeneXpert ultra 
positive 

57 (97) 7 (100) 3 (100) >0.999 

Trace 1 (2)  0 (0)  0 (0)  

Low 3 (5)  0 (0)  0 (0)  

Medium 15 (25) 3 (43) 1 (33) 

High 38 (64) 4 (57) 2 (66) 

Responder status 

Slow responder 29 (49) 3 (43) 1 (33) >0.999 

Fast responder 30 (51) 4 (57) 1 (33) 

Age, median (IQR) 32 
(27.5– 
40) 

44 
(40.5–52.5) 

37 (36–46.5) 0.045a 

Male 43 
(62%) 

5 (71%) 2 (66%) >0.999 

HIV 0 (0)  0 (0)  1 (33) 0.043 

Active smoker 6 (0)  2 (29) 0 (0)  0.327 

TB History 2 (3.4) 0 (0)  0 (0)  >0.999 

N, number of patients; Parenthesis, percentages; IQR, interquartile range; P value, Fisher 
exact test. 
aKruskal Wallis test. 

Data was visualized using heatmaps and volcano plots generated 
using ComplexHeatmap (24), and ggplot2 (25) packages in R 
programming language (version 4.4.0). 

Categorical patient characteristics were compared using Chi-
square or Fisher’s exact test, while continuous variables were 
analyzed using Wilcoxon rank-sum test in base R. Longitudinal 
analysis of gene expression during treatment were analyzed using 
the MaSigPro R package (version 1.76.0) (26). Random Forest 
classification models were constructed to identify gene signatures 
using the Caret R package (version 6.0-94) (27). Random Forest 
models were built using 500 iterations of 80/20 train-test splits, 
following preprocessing to remove near-zero variance and highly 
correlated features (cutoff = 0.8). In each iteration, models 
were trained with five-fold cross-validation using 500 trees, and 
performance was assessed using accuracy and AUC on the held-
out test sets. Features appearing consistently (100%) in models 
achieving ≥70% accuracy were selected to construct a simplified 
Random Forest model. Model performance was evaluated using 
area under the receiver operating characteristic curve (ROC AUC) 
calculated using the pROC R package (version 1.18.5) (28). 

Results 

Patients demographic information 

Samples from 69 microbiologically confirmed TB patients 
who completed standard 6-month anti-tuberculosis treatment were 
included in the study. Of these, 59 (85.5%) achieved cure, 7 
(10%) experienced treatment failure and three patients (4.3%) 
had recurrent TB (Table 1). All cured patients exhibited culture 
conversion at the end of 6 months of treatment. Of the cured 
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FIGURE 1 

Differentially expressed genes at month 2 of TB treatment among cured patients. Volcano plot of DEGs at month 2 of treatment relative to baseline 
among cured patients. Plot displays the log2 fold changes (x-axis) against -log10 adjusted p-values (y-axis) for genes analyzed. The top 20 most 
differentially expressed genes are labeled. Horizontal dashed lines indicate the significance thresholds for adjusted p-values <0.05, while vertical 
dashed lines represent the fold change thresholds of ±1.5 FC. Downregulated genes are shown in purple, and upregulated genes are shown in green. 

patients, 29 (49%) were identified as slow responders (culture 
positive at 2 months but negative by 6 months) while 30 (51%) 
were termed fast responders based on sputum culture conversion 
results at month 2 of treatment. There was no significant difference 
in the median ages of patients with treatment failure (44 years, 
IQR 40.5–52.5), recurrent TB (37 years, IQR 36–46.5) and cured 
patients (32 years, IQR 27.5–40). Most study subjects were males, 
constituting 62%, 71%, and 66% of cured, failure and recurrent TB 
patients, respectively. Among cured patients, two had a history of 
TB while one recurrent TB case was coinfected with HIV. There 
was no association between culture, GeneXpert Ultra result and 
GeneXpert grade with treatment response and outcomes. 

Gene expression changes were detected as 
early as week 2 of treatment 

To analyse changes in gene expression during treatment, 
we performed pairwise comparison of gene expression across 
treatment time points relative to baseline expression in cured, 
treatment failure and recurrent TB patients. Significant changes in 

gene expression were detected as early as week 2 and increased 
further with longer treatment duration. At week 2, and months 
2, 4, and 6 a total of 23, 94, 161, and 175 genes were differentially 
expressed (DEGs) in cured patients, respectively. Figure 1 depicts 
differentially expressed genes detected at month 2. A similar pattern 
of expression changes was observed in patients with treatment 
failure and recurrent TB but with a smaller number of DEGs. 
A total of, 41, 31, and 27 DEGs were observed at months 2, 4, 
and 6, respectively in patients with treatment failure, while 6, 11, 
and 13 DEGs were detected at months 2, 4, and 6, respectively 
in recurrent TB patients (Supplementary Tables S1–S3). To capture 
the dynamic changes in gene expression during treatment, we used 
the maSigPro package (26) for time course analyses of longitudinal 
data collected from cured, failed and recurrent TB patients. 
maSigPro identified patterns in DEGs across the three datasets 
and grouped them into six clusters based on their patterns of 
expression over time (Figure 2; Supplementary Table S4). Clusters 
2, 3, 4 and 6 were downregulated during treatment while genes 
in cluster 5 were upregulated. Cluster 1 genes did not vary 
much during treatment. The expression level of downregulated 
genes was relatively higher in cured patients than in treatment 
failure and recurrent TB patients, while the expressions of the 
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FIGURE 2 

Distinct longitudinal gene expression patterns differentiate cured, recurrent, and treatment failure TB patients. MaSigPro identified six gene clusters 
with shared expression trajectories during treatment in patients who were cured, had recurrent TB, or experienced treatment failure. Gene 
expression data collected at baseline and months 2, 4, and 6 are plotted over time. Cured (n = 59) are shown in red, treatment failure (n = 7) in green, 
and recurrent TB (n = 3) in blue. Dots represent individual gene values; dashed lines show median expression per cluster at each time point. 

relatively stable and upregulated genes were relatively higher 
in patients with treatment failure or recurrent TB. Notably, 
dysregulated clusters include genes involved in innate immune and 
inflammatory responses (Supplementary Figure S1), suggesting 
that variation in host immune response to Mtb infection may 
influence treatment outcomes. 

Comparison of gene expression profiles 
between slow and fast treatment 
responders 

When gene expression levels were compared at baseline, week 
2 and month 2 between slow and fast treatment responders, no 

DEGs were detected that met a predefined stringent criterion of 
FDR <0.05 and > ± 1.5-fold. However, upon relaxation of this 
criteria to a fold difference of ≥1.25 and unadjusted p-value ≤0.05, 
two DEGs were observed, with one gene upregulated (IFIT1), and 
one gene downregulated (CTSW) in slow responders at diagnosis 
(Figure 3A). Similarly, application of these criteria at week 2 and 
month 2, yielded one DEG (TCLA1) and three DEGs (GBP5, GBP1, 
and CASP5), respectively (Figure 3B; Supplementary Table S5). 
However, these genes were individually poor predictors of slow 
and fast responders (AUC ≤ 0.50) at their respective timepoints. 
Random forest modeling to identify the optimal combinations of 
genes that distinguished slow from fast responders resulted in a 6-
gene signature (BCR, GNLY, IL11RA, KLRC1, MAP3K7, and TBK1) 
derived from month 2 data that discriminated between the two 
groups with an AUC of 0.93 (95% CI 0.78–1.00; Figure 3C). The 
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FIGURE 3 

Early treatment gene expression signatures distinguish fast from slow treatment responders. (A) Heatmap of DEGs between slow (n = 29) and fast 
responders (n = 30) at diagnosis. (B) Heatmap of DEGs between the two groups at month 2 of treatment. For these explorative analyses, cut off for 
DEGs was set at p value ≤0.05 and a fold change of 1.25. Green labeled rows represent upregulated genes; purple rows represent downregulated 
genes; blue labeled columns are slow responder and orange labeled column are fast responders. (C) ROC curves with AUC values for a six-transcript 
signature distinguishing between slow and fast responders at baseline, week 2, and month 2. 

model failed to predict slow from fast responders at baseline and 
week 2, attaining AUCs of 0.49 (95% CI 0.33–0.64) and 0.58 (95% 
CI 0.07–1.00), respectively. 

Cured patients showed distinct expression 
profile from patients with poor treatment 
outcomes at diagnosis 

Comparative analyses of gene expression profiles of cured 
patients and patients who experienced treatment failure at 

the end of treatment yielded a total of 494 DEGs of which 
198 genes were upregulated and 296 downregulated. Similarly, 
a total of 360 DEGs were found in recurrent TB when 
compared to cured patients, comprising 99 upregulated and 
261 downregulated genes (Figure 4A; Supplementary Table S6). 
Gene pathway analysis using KEGG pathways underscores 
the critical role of cellular signaling and receptor-mediated 
interactions, particularly chemokine and cytokine signaling, JAK-
STAT signaling, and IL-17 signaling pathways, in the shared 
differentially expressed genes (DEGs) associated with treatment 
failure and recurrent TB (Supplementary Figure S2). Interestingly, 
we found no differentially expressed genes between patients with 
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FIGURE 4 

Gene expression signatures distinguish good and poor treatment outcomes. (A) Venn diagram illustrating overlapping DEGs in treatment failure and 
recurrent TB relative to cured patients at month 6 of treatment. (B) Heatmap showing DEGs between patients with good treatment outcomes (cured; 
n = 59) and those with poor outcomes (treatment failure and recurrent TB; n = 10) at baseline. Green labeled rows are upregulated genes; purple 
rows are downregulated genes; orange labeled column are patients with good treatment outcome and blue column are patient with poor outcomes 
(C) ROC curves with AUC values for transcript set that distinguish between good and poor treatment outcomes at baseline, month 2, and month 6. 

recurrent TB and those with treatment failure at diagnosis. Due 
to the similarity in gene expression profiles observed between 
treatment failure and recurrent TB patients, we pragmatically 
combined these two outcomes into a single group termed “poor 
outcome,” in contrast to cured patients, who were categorized as 
having a “good outcome” (Figure 4B). Using random forest to 
identify optimal gene combinations that classify good treatment 
from poor treatment outcomes, a 7-gene signature was identified 
that perfectly discriminated between the two outcomes at end of 
treatment [AUC 1.0 (95% CI 0.99–1.00)] (Figure 4C). This gene 
panel consist of CCR6, CTSW, GADD45B, GZMH, LEF1, MARCKS, 
and NLRC4. The signature predicted poor from good treatment 

outcome at baseline and month 2 with AUCs of 0.91 (95% CI 
0.85–0.99), and 0.98 (95% CI 0.96–0.99), respectively. 

Cell-type profiling reveals a relative 
abundance of T-helper 1 (Th1) related 
genes in cured TB patients 

Relative cell-type abundance was determined from the gene 
scores of DEGs calculated using NanoString’s Cell type profiling 
module as previously described (29). Cell type analyses showed 
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FIGURE 5 

Differences in baseline immune cell-type scores associate with treatment outcomes. Cell-type scores were calculated based on the relative 
expression of cell type-specific genes using NanoString cell-type modules. Box plots show the median and interquartile range of cell type specific 
genes, with individual data points overlaid. Data are shown for cured patients (n = 59), treatment failure (n = 7), and recurrent TB (n = 3). 

relative expression of leucocyte subsets between groups including T 
cells, B cells, macrophages, cytotoxic cells, neutrophils, B cells, and 
NK cells based on expression of cell-type specific markers. Patients 
with good outcomes showed a relative higher cell expression score 
for CD4 Th1 profile (TBX21) and neutrophil genes (CEACAM3, 
CSF3R, FCAR, FCGR3A/B, FPR1, S100A12, and SIGLEC5) and 
NK cell genes (NCR1, XCL1/2) while poor treatment outcome was 
associated with relatively higher expression of Treg (FOXP3), B cell 
(BLK, CD19, FAM30A, FCRL2, MS4A1, PNOC, SPIB, TCL1A, and 
TNFRSF17) and exhausted CD8 T cell genes (CD244, EOMES, and 
LAG3; Figure 5). 

Discussion 

Developing new non-sputum-based tools for monitoring 
TB treatment is a critical priority, as current sputum-based 
methods which rely on Mtb detection have significant limitations 
including poor sensitivity (smear) and long turnaround times 
(culture) (4, 7). In this study, we explored the potential of 
blood host transcriptomics for monitoring treatment response 
through targeted RNA gene expression profiling. We identified 
gene signatures associated with slow treatment response and poor 

outcomes suggesting the possibility of providing personalized 
treatment regimens that could improve treatment success. 

Previous studies have shown that detectable gene expression 
changes occur early in the course of anti-TB treatment, particularly 
by week 2 (30, 31). However, in this study, we observed an 
incremental increase in the number of differentially expressed 
genes (DEGs) over time, with significant changes already 
detectable at week 2 and continuing through subsequent treatment 
timepoints. These differences compared to previous studies are 
likely because we used a targeted sequencing approach which 
analyses a defined set of host-response genes, rather than providing 
bulk analysis of all genes. Notably, the expression levels of 
upregulated genes were relatively higher in patients with treatment 
failure and recurrent TB suggesting ongoing inflammation, while 
downregulated gene clusters were relatively more highly expressed 
in patients who were cured. These dysregulated clusters were 
enriched in genes involved in innate immune responses to 
pathogens and inflammation, suggesting that differences in the 
innate immune response to Mtb infection may contribute to 
treatment outcomes. 

We identified a combination of six genes, which accurately 
classified slow responders from fast responders at month 2 with 
an AUC of 0.93 (95% CI 0.78–1.00) at month 2, demonstrating 
potential value for treatment monitoring. However, its predictive 
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accuracy at earlier timepoints was poor. The genes in this signature, 
BCR, GNLY, IL11RA, KLRC1, MAP3K7, and TBK1 are involved 
in innate immune signaling pathways including host-pathogen 
interactions, again suggesting that differences in innate immune 
response to infection may contribute to the short-term treatment 
outcome. Slow responders have higher risk of poor outcomes 
following treatment (19). Therefore, early identification of high-
risk patients during treatment could facilitate the development of 
more personalized treatment strategies (32). The limited differences 
in gene expression between slow and fast responders observed 
in our study may be partly due to the relatively low number of 
target genes analyzed. Previous studies have reported significant 
differences in various cytokines and acute phase proteins such as 
IL-8, IL-1ra, CRP, IL-2Rα, VEGFR2, and MCP-3 between slow 
and fast treatment responders (33). However, we did not detect 
these differences at the transcriptional level, which may suggest the 
involvement of post-transcriptional regulation or other molecular 
mechanisms. While a fast response to therapy is currently the 
best surrogate for early treatment success, findings from trials 
involving shorter anti-tuberculosis regimens have revealed that 
early conversion does not eliminate the risk of relapse (34). 
Moreover, it is unclear if early conversion among cured patients 
correlates with improved lung function following treatment. 

Our results show large expression differences between cured 
patients and those with treatment failure and recurrent TB 
disease at end of treatment. Dysregulated genes in patients with 
treatment failure and recurrent TB compared to those who were 
cured, show increased expression of chemokine signaling, IL-17 
signaling, and JAK-STAT signaling pathways which play key roles 
in immune regulation during TB. IL-17 and chemokine signaling 
are associated with neutrophil recruitment and inflammation (35), 
while JAK-STAT signaling is involved in interferon responses 
(36). The heightened activity of these pathways may reflect 
persistent or unresolved inflammation, potentially contributing 
to poor treatment outcomes. From a clinical perspective, small 
signatures are more desirable for patient stratification as they 
are easier to translate into rapid diagnostic applications. Using 
random forest, we identified a 7-gene signature that accurately 
discriminates between patients with good and poor treatment 
outcomes. However, this finding should be validated in a larger and 
more diverse cohort to assess for robustness and generalizability. 
There have been some studies that identified gene signatures that 
adequately predict treatment response at initiation of treatment. A 
10-gene signature was recently described that adequately predicted 
relapse at diagnosis with an AUC of 0.85 but was poor at predicting 
treatment failure in the discovery dataset (37). Two prognostic 
signatures, RISK6 (16) and RESPONSE5 (18), described in South 
African TB patients showed good prediction for treatment failure at 
the end of treatment with an AUC of 0.88 and 0.99%, respectively. 
Future studies should explore the combination of transcriptomic 
biomarkers and other markers such as proteomics, metabolomics, 
cellular markers and patients’ clinical presentations for better 
biosignatures of treatment outcomes. 

Cell type analyses using NanoString immune cell type profiling 
(29) revealed a significant difference in relative cell type abundance 
in T cells between patients with good and poor treatment 
outcomes. For example, we saw a relatively higher expression 
score for Th1 cells and Neutrophil related genes in cured patients 

suggesting the on-going inflammation in poor outcome is not 
related to these cell types. Tuberculosis has been associated with 
a neutrophil-driven gene expression profile (38) and Th1 cells 
produce pro-inflammatory cytokines such as IFN-γ, TNF, and IL-
1 which activate the antimycobacterial function of macrophages 
(39, 40). Previous studies have found lower expression of Th1 
associated genes and other adaptive immune system effectors cells 
in peripheral blood of active TB patients compared to healthy 
controls, associating it with migration of immune effector cells to 
the lung tissue in response to infection (41, 42). Therefore, the 
relatively higher Th1 gene expression in cured patients may suggest 
a better capacity to mount a protective Th1 immune response 
in this group. Our data also show that poor treatment outcome 
was associated with higher relative expression of exhausted 
CD8, Tregs, and B cell profiles. This may suggest a reduced 
effector functionalities of CD8 cells and a dampened immune 
response in patients with poor treatment outcomes, potentially 
favoring bacteria persistence. Future studies should investigate this 
hypothesis with flow cytometry or single cell sequencing which was 
not possible in the current study. 

Our study found very little gene expression differences between 
patients with recurrent TB and those with treatment failure. The 
few dysregulated genes detected were genes involved in antigen 
recognition and immune response and suggests some differences 
in innate immunity response. However, due to the small number 
of patients in our study, we were unable to determine if this 
difference alone could influence treatment outcome. Although 
whole genome sequencing was performed to identify TB strains 
from all study participants, the small number of recurrent TB cases 
was insufficient to allow stratification into relapse and reinfection 
for any meaningful comparisons. 

The study was limited by the small number of patients 
with poor treatment outcomes which limited our ability to 
validate signature models using a holdout validation set. As 
poor treatment outcomes are rare, future studies should consider 
pooling together biospecimens from different cohorts to overcome 
this challenge. Computational approaches have demonstrated the 
feasibility of developing TB signatures using multiple datasets 
from different studies and populations for both diagnosis (15) 
and treatment response monitoring (43). While targeted RNA 
sequencing may overlook some potentially important genes in a 
broader discovery effort, it offers significant advantages in signature 
validation, including cost-effectiveness, increased sensitivity and 
more streamlined data processing (44). Future research should 
focus on validating gene signatures identified in this and similar 
studies using a targeted sequencing approach, leveraging custom 
gene panels for more precise and focused evaluations. 

In summary, our study identified sets of genes that adequately 
predict treatment outcomes in our cohort early in during treatment. 
The diagnostic utility of these gene signatures should now be 
validated in a different and larger cohort. A prognostic test that can 
effectively stratify TB patients at risk of poor treatment outcomes 
would greatly impact TB treatments. Given the relatively low 
occurrence of treatment failure and relapse in most TB studies, 
future studies should consider integrating samples from different 
cohorts to increase sample size, diversity, and generalizability of 
study findings. 
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SUPPLEMENTARY FIGURE S1 

Functional analyses of differentially expressed genes during treatment. 
Biological pathways enriched in dysregulated genes during treatment. a) 
Top 10 biological processes enriched in downregulated genes. b) Top 10 
biological processes enriched in downregulated genes. Biological pathways 
were ranked by decreasing p value and enrichment score; dotted line 
represents significance threshold (adjusted p value < 0.05). 

SUPPLEMENTARY FIGURE S2 

Functional analyses of differentially expressed genes in patients with poor 
treatment outcomes. KEGG, Reactome and Gene ontology (GO) terms and 
pathways enriched in DEG in patients with poor treatment outcomes. (A) 
KEGG (B) Reactome (C) GO biological processes and (D) GO molecular 
functions enriched in DEGs. All pathways were ranked by decreasing p value 
and enrichment score; dotted line represents significance threshold 
(adjusted p value < 0.05). 

SUPPLEMENTARY FIGURE S3 

Heatmap of gene set that differentiate slow and fast responders. No genes 
met the significance threshold (adjusted p < 0.05; fold change ≥±1.5). 
Green rows indicate genes with positive fold change; purple rows indicate 
negative fold change for slow vs fast comparison. Columns: slow 
responders (n = 29, blue) and fast responders (n = 30, orange). 
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