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Background: Despite availability of effective treatment regimens for
drug-susceptible Tuberculosis (TB), some patients still experience poor
treatment outcomes. Currently tools for monitoring treatment outcomes are
dependent on detection of mycobacteria in sputum, which are slow, expensive
and poor at predicting relapse and failure. This study aims to identify new
blood-derived markers for predicting treatment response and outcomes.
Methods: Whole blood was collected in PAXgene tubes from patients with
microbiologically confirmed TB at diagnosis, week 2, and at months 2, 4, and
6. Treatment response and outcomes were determined by culture and gene
expression was compared between slow and fast responders; and between
patients with good (cured) and poor treatment outcomes (failure and recurrent
TB) using targeted RNA gene expression. Gene signatures were developed using
random forest classification models.

Results: Significant changes in gene expression were detected over the course
of the TB treatment. Notably, major gene expression differences were observed
at diagnosis between subsequently cured patients and patients who experienced
poor treatment outcomes while minimal changes were detected between slow
and fast responders among cured patients at diagnosis. A 7-gene end of
treatment signature distinguished patients with good outcomes from those with
poor treatment outcomes with area under the curve (AUC) of 0.91 (95% CI 0.85-
0.99), 0.98 (95% CI 0.96-0.99), and 1.0 (95% CI 0.99-1.00), at baseline, month
2 and 6, respectively. Additionally, a 6-gene month 2 signature discriminates
slow from fast responders with AUCs of 0.49 (95% CI 0.33-0.64), 0.58 (95%
Cl 0.07-1.00), and 0.93 (95% Cl 0.78-1.00) at diagnosis, week 2 and month
2, respectively.
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Conclusion: The study identified genes signatures associated with TB treatment
response and outcomes suggesting potential utility for treatment monitoring.
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Introduction

Tuberculosis (TB) remains the leading cause of death from
a single infectious disease, despite the availability of a vaccine
and effective treatments (1). Timely diagnosis and treatment
are paramount for optimal case management and to reduce
transmission, mortality and the development of resistance (1, 2).
Standard treatment for drug-susceptible TB consists of a 6-
month multi-drug regimen, beginning with a 2-month intensive
phase using Isoniazid, rifampicin, pyrazinamide and ethambutol to
kill highly replicating bacteria, followed by a 4-month continuation
phase of Isoniazid and rifampicin to kill the dormant bacteria (2, 3).
While successful treatment is achieved in most drug-susceptible
TB patients, some patients do not achieve complete clearance of
the bacteria and have an increased risk of relapse and treatment
failure (4, 5). Furthermore, the prolonged duration of treatment
is associated with significant challenges with treatment adherence,
drug toxicity and the development of drug resistance (2, 6).
Current tools for monitoring treatment response are based
on detection of the pathogen, Mycobacterium tuberculosis (Mtb)
in patients sputum, using culture and smear microscopy (4, 7).
However, both culture and smear microscopy have significant
limitations. Culture is limited by long turnaround times, high costs,
susceptibility to contamination and low accuracy in predicting
relapse and treatment failure while smear microscopy has poor
sensitivity (4). Moreover, these tests rely on quality sputum
specimens, which can be difficult to obtain from people with
paucibacillary disease such as children, people with HIV or those
with extrapulmonary TB (4, 7). Consequently, new tools are needed
for monitoring and predicting TB treatment response and outcome.
WHO has prioritized the search for cost-effective, user-
friendly non-sputum tests for TB diagnosis and treatment
response, establishing target product profiles for such tests (8-
10). Several studies have reported host blood gene expression
patterns capable of distinguishing TB patients from latently
infected or healthy people underscoring the potential of blood as a
suitable specimen for TB diagnosis (11-14). Some transcriptomic
signatures including Sweeney3 (15), Risk6 (16), TB22 (17), and
Thompson5 (18) exhibit dynamic changes during treatment that
suggest potential for also monitoring treatment response.
Although blood-derived gene markers hold promise as
surrogates for monitoring treatment response, few studies have
specifically focused on identifying markers that differentiate
between fast and slow treatment responders who are at greater risk
of treatment failure or distinguish cured patients from those with
unfavorable treatment outcomes. Additionally, many studies focus
only on diagnostic and end-of-treatment timepoints, potentially
overlooking critical gene expression changes that could explain the
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variability in treatment responses. Patients with poor outcomes,
including treatment failure and relapse, require longer treatment
regimens, increasing their risk of drug toxicity and contributing to
transmission (6, 19). Identifying slow responders and patients at
risk of poor outcomes early in treatment is essential for developing
shorter, and more personalized regimens. Thus, we aimed to
describe gene expression dynamics in blood of TB patients during
treatment and to identify gene signatures that distinguish slow
from fast responders; and between cured patients and those who
experience treatment failure and recurrent TB.

Materials and methods

Ethical approval

The study was approved by the London School of Hygiene
and Tropical Medicine (LSHTM) Ethics Committee and the Joint
Gambia Government-MRC Unit Ethics Committee (LEO 21727).

Study design

This study was nested within a prospective multi-center
observational cohort study, TB Sequel, in which adult patients
with microbiologically confirmed tuberculosis diagnosed using
GeneXpert MTB/RIF Ultra assay (Cepheid, USA) were enrolled
(20). Participants were followed up at week 2 and at months 2, 4,
and 6 of treatment, during which sputum samples were collected for
Mycobacteria Growth Indicator Tubes culture and whole blood was
collected in PAXgene® Blood RNA Tube (BD Bioscience, USA) for
transcriptomic analyses. Patients were followed up for 18 months
after treatment completion to confirm their TB treatment outcome.
Participants included in this sub-study were selected based on their
treatment response outcome and sample availability.

Classifications

Patients were defined as microbiologically cured if they had
a negative sputum culture upon completion of treatment and
remained disease-free for at least 1-year after standard 6-month
anti-tuberculosis treatment. Those with positive cultures at the end
of 6-month treatment were deemed treatment failures. Patients
who presented with clinical or microbiologically confirmed TB
within 1 year of standard TB treatment completion despite having
a negative culture at the end of treatment were classified as
having recurrent TB, without distinguishing between relapse and
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reinfection. Patients were grouped into fast and slow treatment
responders based on sputum culture conversion at month 2 of
treatment. Fast responders were defined as those achieving negative
cultures by month 2, while slow responders were defined as those
that achieved negative cultures only after month 2.

Sample collection and total RNA extraction

At diagnosis and at week 2, months 2, 4, and 6 of treatment,
2.5ml of whole blood was collected from all study participants
in a PAXgene tube and stored at —80°C until needed. RNA
was extracted from selected participants using the PAXgene
Blood RNA Kit (Qiagen, Switzerland) following manufacturer’s
instructions. The quality and concentration of the extracted RNA
were assessed using Agilent ScreenTape (Agilent Technologies,
Europe) and Qubit fluorometer (Thermo Fisher Scientific, Europe).
RNA input for gene expression analyses was determined based
on fragments of RNA >200 nucleotides (DV200) measured with
Agilent ScreenTape.

Gene expression analysis

Gene expression was analyzed using targeted RNA sequencing
with nCounter host response panel (NanoString Technologies,
USA). This panel included 12 housekeeping genes and 773 host
response transcripts spanning 50 different pathways. A total of
100 ng of RNA was mixed with a Mastermix containing barcoded
capture and reporter probe pairs specific to each transcript and
hybridized for 16 h at 65 °C in a thermocycler. After hybridization,
samples were transferred to the nCounter Prep-Station were
unhybridized probes were removed and purified RNA was loaded
onto an analysis cartridge. Quantitative measurement of hybridized
RNA was obtained by scanning reporter probes on the cartridge
using the nCounter digital Analyzer (NanoString Technologies,
USA). Signal values were background subtracted and normalized to
the most stable housekeeping probes, identified using the geNorm
algorithm from the NormqPCR package (version 1.50) (21).

Statistical analysis

Gene expression data was analyzed using ROSALIND®
(versionv3.16; https://rosalind.bio/). Differential expression was
assessed using a negative binomial mixture model for low-
expression genes and a simplified negative binomial model for
high-expression genes, defined by a threshold set at 10 times
the background noise. Significance was set at a fold change (FC)
in expression of >1.5 and p-values <0.05, adjusted for false
discovery rate (FDR) using the Benjamini-Hochberg method (22).
When no differentially expressed genes (DEGs) were detected at
this threshold, the cutoff was relaxed to an FC of >1.25 and
an unadjusted p-value <0.05 to further explore gene expression
differences. Cell type profiling was performed using immune
cell typing module in nSolver (version 4.0). Functional analysis
of DEGs was performed using nSolver and the database for
annotation, visualization, and integrated discovery (DAVID) (23).
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TABLE 1 Patients’ demographic characteristics.

Cured Treatment Recurrent

Characteristics

N failure TB
=59 N=7 N=3
GeneXpert ultra 57 (97) 7 (100) 3(100) >0.999
positive
Trace 1(2) 0(0) 0(0)
Low 3(5) 0(0) 0(0)
Medium 15 (25) 3 (43) 1(33)
High 38 (64) 4(57) 2 (66)
Responder status
Slow responder 29 (49) 3(43) 1(33) >0.999
Fast responder 30 (51) 4(57) 1(33)
Age, median (IQR) 32 44 37 (36-46.5) 0.045°
(27.5- (40.5-52.5)
40)
Male 43 5(71%) 2 (66%) >0.999
(62%)
HIV 0(0) 0(0) 1(33) 0.043
Active smoker 6(0) 2(29) 0(0) 0.327
TB History 2(34) 0(0) 0(0) >0.999

N, number of patients; Parenthesis, percentages; IQR, interquartile range; P value, Fisher
exact test.
#Kruskal Wallis test.

Data was visualized using heatmaps and volcano plots generated
using ComplexHeatmap (24), and ggplot2 (25) packages in R
programming language (version 4.4.0).

Categorical patient characteristics were compared using Chi-
square or Fisher’s exact test, while continuous variables were
analyzed using Wilcoxon rank-sum test in base R. Longitudinal
analysis of gene expression during treatment were analyzed using
the MaSigPro R package (version 1.76.0) (26). Random Forest
classification models were constructed to identify gene signatures
using the Caret R package (version 6.0-94) (27). Random Forest
models were built using 500 iterations of 80/20 train-test splits,
following preprocessing to remove near-zero variance and highly
correlated features (cutoff = 0.8). In each iteration, models
were trained with five-fold cross-validation using 500 trees, and
performance was assessed using accuracy and AUC on the held-
out test sets. Features appearing consistently (100%) in models
achieving >70% accuracy were selected to construct a simplified
Random Forest model. Model performance was evaluated using
area under the receiver operating characteristic curve (ROC AUC)
calculated using the pROC R package (version 1.18.5) (28).

Results

Patients demographic information

Samples from 69 microbiologically confirmed TB patients
who completed standard 6-month anti-tuberculosis treatment were
included in the study. Of these, 59 (85.5%) achieved cure, 7
(10%) experienced treatment failure and three patients (4.3%)
had recurrent TB (Table 1). All cured patients exhibited culture
conversion at the end of 6 months of treatment. Of the cured
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FIGURE 1

Differentially expressed genes at month 2 of TB treatment among cured patients. Volcano plot of DEGs at month 2 of treatment relative to baseline
among cured patients. Plot displays the log, fold changes (x-axis) against -logio adjusted p-values (y-axis) for genes analyzed. The top 20 most
differentially expressed genes are labeled. Horizontal dashed lines indicate the significance thresholds for adjusted p-values <0.05, while vertical
dashed lines represent the fold change thresholds of £1.5 FC. Downregulated genes are shown in purple, and upregulated genes are shown in green.

patients, 29 (49%) were identified as slow responders (culture
positive at 2 months but negative by 6 months) while 30 (51%)
were termed fast responders based on sputum culture conversion
results at month 2 of treatment. There was no significant difference
in the median ages of patients with treatment failure (44 years,
IQR 40.5-52.5), recurrent TB (37 years, IQR 36-46.5) and cured
patients (32 years, IQR 27.5-40). Most study subjects were males,
constituting 62%, 71%, and 66% of cured, failure and recurrent TB
patients, respectively. Among cured patients, two had a history of
TB while one recurrent TB case was coinfected with HIV. There
was no association between culture, GeneXpert Ultra result and
GeneXpert grade with treatment response and outcomes.

Gene expression changes were detected as
early as week 2 of treatment

To analyse changes in gene expression during treatment,
we performed pairwise comparison of gene expression across
treatment time points relative to baseline expression in cured,
treatment failure and recurrent TB patients. Significant changes in
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gene expression were detected as early as week 2 and increased
further with longer treatment duration. At week 2, and months
2, 4, and 6a total of 23, 94, 161, and 175 genes were differentially
expressed (DEGs) in cured patients, respectively. Figure 1 depicts
differentially expressed genes detected at month 2. A similar pattern
of expression changes was observed in patients with treatment
failure and recurrent TB but with a smaller number of DEGs.
A total of, 41, 31, and 27 DEGs were observed at months 2, 4,
and 6, respectively in patients with treatment failure, while 6, 11,
and 13 DEGs were detected at months 2, 4, and 6, respectively
in recurrent TB patients (Supplementary Tables S1-53). To capture
the dynamic changes in gene expression during treatment, we used
the maSigPro package (26) for time course analyses of longitudinal
data collected from cured, failed and recurrent TB patients.
maSigPro identified patterns in DEGs across the three datasets
and grouped them into six clusters based on their patterns of
expression over time (Figure 2; Supplementary Table S4). Clusters
2, 3, 4 and 6 were downregulated during treatment while genes
in cluster 5 were upregulated. Cluster 1 genes did not vary
much during treatment. The expression level of downregulated
genes was relatively higher in cured patients than in treatment
failure and recurrent TB patients, while the expressions of the
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FIGURE 2
Distinct longitudinal gene expression patterns differentiate cured, recurrent, and treatment failure TB patients. MaSigPro identified six gene clusters
with shared expression trajectories during treatment in patients who were cured, had recurrent TB, or experienced treatment failure. Gene
expression data collected at baseline and months 2, 4, and 6 are plotted over time. Cured (n = 59) are shown in red, treatment failure (n = 7) in green,
and recurrent TB (n = 3) in blue. Dots represent individual gene values; dashed lines show median expression per cluster at each time point.

relatively stable and upregulated genes were relatively higher
in patients with treatment failure or recurrent TB. Notably,
dysregulated clusters include genes involved in innate immune and
inflammatory responses (Supplementary Figure S1), suggesting
that variation in host immune response to Mtb infection may
influence treatment outcomes.

Comparison of gene expression profiles
between slow and fast treatment
responders

When gene expression levels were compared at baseline, week
2 and month 2 between slow and fast treatment responders, no
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DEGs were detected that met a predefined stringent criterion of
FDR <0.05 and > =+ 1.5-fold. However, upon relaxation of this
criteria to a fold difference of >1.25 and unadjusted p-value <0.05,
two DEGs were observed, with one gene upregulated (IFITI), and
one gene downregulated (CTSW) in slow responders at diagnosis
(Figure 3A). Similarly, application of these criteria at week 2 and
month 2, yielded one DEG (TCLA1) and three DEGs (GBP5, GBPI,
and CASP5), respectively (Figure 3B; Supplementary Table S5).
However, these genes were individually poor predictors of slow
and fast responders (AUC < 0.50) at their respective timepoints.
Random forest modeling to identify the optimal combinations of
genes that distinguished slow from fast responders resulted in a 6-
gene signature (BCR, GNLY, ILI11RA, KLRCI, MAP3K7, and TBK1)
derived from month 2 data that discriminated between the two
groups with an AUC of 0.93 (95% CI 0.78-1.00; Figure 3C). The
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model failed to predict slow from fast responders at baseline and
week 2, attaining AUCs of 0.49 (95% CI 0.33-0.64) and 0.58 (95%
CI 0.07-1.00), respectively.

Cured patients showed distinct expression
profile from patients with poor treatment
outcomes at diagnosis

Comparative analyses of gene expression profiles of cured
patients and patients who experienced treatment failure at
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the end of treatment yielded a total of 494 DEGs of which
198 genes were upregulated and 296 downregulated. Similarly,
a total of 360 DEGs were found
compared to cured patients, comprising 99 upregulated and
261 downregulated genes (Figure 4A; Supplementary Table S6).
Gene pathway analysis using KEGG pathways underscores

in recurrent TB when

the critical role of cellular signaling and receptor-mediated
interactions, particularly chemokine and cytokine signaling, JAK-
STAT signaling, and IL-17 signaling pathways, in the shared
differentially expressed genes (DEGs) associated with treatment
failure and recurrent TB (Supplementary Figure S2). Interestingly,
we found no differentially expressed genes between patients with
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recurrent TB and those with treatment failure at diagnosis. Due
to the similarity in gene expression profiles observed between
treatment failure and recurrent TB patients, we pragmatically
combined these two outcomes into a single group termed “poor
outcome,” in contrast to cured patients, who were categorized as
having a “good outcome” (Figure 4B). Using random forest to
identify optimal gene combinations that classify good treatment
from poor treatment outcomes, a 7-gene signature was identified
that perfectly discriminated between the two outcomes at end of
treatment [AUC 1.0 (95% CI 0.99-1.00)] (Figure 4C). This gene
panel consist of CCR6, CTSW, GADD45B, GZMH, LEF1, MARCKS,
and NLRC4. The signature predicted poor from good treatment
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outcome at baseline and month 2 with AUCs of 0.91 (95% CI
0.85-0.99), and 0.98 (95% CI 0.96-0.99), respectively.

Cell-type profiling reveals a relative
abundance of T-helper 1 (Th1l) related
genes in cured TB patients

Relative cell-type abundance was determined from the gene

scores of DEGs calculated using NanoString’s Cell type profiling
module as previously described (29). Cell type analyses showed
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relative expression of leucocyte subsets between groups including T
cells, B cells, macrophages, cytotoxic cells, neutrophils, B cells, and
NK cells based on expression of cell-type specific markers. Patients
with good outcomes showed a relative higher cell expression score
for CD4 Thl profile (TBX21) and neutrophil genes (CEACAMS3,
CSF3R, FCAR, FCGR3A/B, FPR1, S100A12, and SIGLEC5) and
NK cell genes (NCRI, XCL1/2) while poor treatment outcome was
associated with relatively higher expression of Treg (FOXP3), B cell
(BLK, CD19, FAM30A, FCRL2, MS4A1, PNOC, SPIB, TCL1A, and
TNFRSF17) and exhausted CD8 T cell genes (CD244, EOMES, and
LAG3; Figure 5).

Discussion

Developing new non-sputum-based tools for monitoring
TB treatment is a critical priority, as current sputum-based
methods which rely on Mtb detection have significant limitations
including poor sensitivity (smear) and long turnaround times
(culture) (4, 7). In this study, we explored the potential of
blood host transcriptomics for monitoring treatment response
through targeted RNA gene expression profiling. We identified
gene signatures associated with slow treatment response and poor
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outcomes suggesting the possibility of providing personalized
treatment regimens that could improve treatment success.

Previous studies have shown that detectable gene expression
changes occur early in the course of anti-TB treatment, particularly
by week 2 (30, 31). However, in this study, we observed an
incremental increase in the number of differentially expressed
genes (DEGs) over time, with significant changes already
detectable at week 2 and continuing through subsequent treatment
timepoints. These differences compared to previous studies are
likely because we used a targeted sequencing approach which
analyses a defined set of host-response genes, rather than providing
bulk analysis of all genes. Notably, the expression levels of
upregulated genes were relatively higher in patients with treatment
failure and recurrent TB suggesting ongoing inflammation, while
downregulated gene clusters were relatively more highly expressed
in patients who were cured. These dysregulated clusters were
enriched in genes involved in innate immune responses to
pathogens and inflammation, suggesting that differences in the
innate immune response to Mtb infection may contribute to
treatment outcomes.

We identified a combination of six genes, which accurately
classified slow responders from fast responders at month 2 with
an AUC of 0.93 (95% CI 0.78-1.00) at month 2, demonstrating
potential value for treatment monitoring. However, its predictive
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accuracy at earlier timepoints was poor. The genes in this signature,
BCR, GNLY, IL11RA, KLRCI1, MAP3K7, and TBKI are involved
in innate immune signaling pathways including host-pathogen
interactions, again suggesting that differences in innate immune
response to infection may contribute to the short-term treatment
outcome. Slow responders have higher risk of poor outcomes
following treatment (19). Therefore, early identification of high-
risk patients during treatment could facilitate the development of
more personalized treatment strategies (32). The limited differences
in gene expression between slow and fast responders observed
in our study may be partly due to the relatively low number of
target genes analyzed. Previous studies have reported significant
differences in various cytokines and acute phase proteins such as
IL-8, IL-1ra, CRP, IL-2Ra, VEGFR2, and MCP-3 between slow
and fast treatment responders (33). However, we did not detect
these differences at the transcriptional level, which may suggest the
involvement of post-transcriptional regulation or other molecular
mechanisms. While a fast response to therapy is currently the
best surrogate for early treatment success, findings from trials
involving shorter anti-tuberculosis regimens have revealed that
early conversion does not eliminate the risk of relapse (34).
Moreover, it is unclear if early conversion among cured patients
correlates with improved lung function following treatment.

Our results show large expression differences between cured
patients and those with treatment failure and recurrent TB
disease at end of treatment. Dysregulated genes in patients with
treatment failure and recurrent TB compared to those who were
cured, show increased expression of chemokine signaling, IL-17
signaling, and JAK-STAT signaling pathways which play key roles
in immune regulation during TB. IL-17 and chemokine signaling
are associated with neutrophil recruitment and inflammation (35),
while JAK-STAT signaling is involved in interferon responses
(36). The heightened activity of these pathways may reflect
persistent or unresolved inflammation, potentially contributing
to poor treatment outcomes. From a clinical perspective, small
signatures are more desirable for patient stratification as they
are easier to translate into rapid diagnostic applications. Using
random forest, we identified a 7-gene signature that accurately
discriminates between patients with good and poor treatment
outcomes. However, this finding should be validated in a larger and
more diverse cohort to assess for robustness and generalizability.
There have been some studies that identified gene signatures that
adequately predict treatment response at initiation of treatment. A
10-gene signature was recently described that adequately predicted
relapse at diagnosis with an AUC of 0.85 but was poor at predicting
treatment failure in the discovery dataset (37). Two prognostic
signatures, RISK6 (16) and RESPONSE5 (18), described in South
African TB patients showed good prediction for treatment failure at
the end of treatment with an AUC of 0.88 and 0.99%, respectively.
Future studies should explore the combination of transcriptomic
biomarkers and other markers such as proteomics, metabolomics,
cellular markers and patients’ clinical presentations for better
biosignatures of treatment outcomes.

Cell type analyses using NanoString immune cell type profiling
(29) revealed a significant difference in relative cell type abundance
in T cells between patients with good and poor treatment
outcomes. For example, we saw a relatively higher expression
score for Thl cells and Neutrophil related genes in cured patients
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suggesting the on-going inflammation in poor outcome is not
related to these cell types. Tuberculosis has been associated with
a neutrophil-driven gene expression profile (38) and Thl cells
produce pro-inflammatory cytokines such as IFN-y, TNF, and IL-
1 which activate the antimycobacterial function of macrophages
(39, 40). Previous studies have found lower expression of Thl
associated genes and other adaptive immune system effectors cells
in peripheral blood of active TB patients compared to healthy
controls, associating it with migration of immune effector cells to
the lung tissue in response to infection (41, 42). Therefore, the
relatively higher Th1 gene expression in cured patients may suggest
a better capacity to mount a protective Thl immune response
in this group. Our data also show that poor treatment outcome
was associated with higher relative expression of exhausted
CDS8, Tregs, and B cell profiles. This may suggest a reduced
effector functionalities of CD8 cells and a dampened immune
response in patients with poor treatment outcomes, potentially
favoring bacteria persistence. Future studies should investigate this
hypothesis with flow cytometry or single cell sequencing which was
not possible in the current study.

Our study found very little gene expression differences between
patients with recurrent TB and those with treatment failure. The
few dysregulated genes detected were genes involved in antigen
recognition and immune response and suggests some differences
in innate immunity response. However, due to the small number
of patients in our study, we were unable to determine if this
difference alone could influence treatment outcome. Although
whole genome sequencing was performed to identify TB strains
from all study participants, the small number of recurrent TB cases
was insufficient to allow stratification into relapse and reinfection
for any meaningful comparisons.

The study was limited by the small number of patients
with poor treatment outcomes which limited our ability to
validate signature models using a holdout validation set. As
poor treatment outcomes are rare, future studies should consider
pooling together biospecimens from different cohorts to overcome
this challenge. Computational approaches have demonstrated the
feasibility of developing TB signatures using multiple datasets
from different studies and populations for both diagnosis (15)
and treatment response monitoring (43). While targeted RNA
sequencing may overlook some potentially important genes in a
broader discovery effort, it offers significant advantages in signature
validation, including cost-effectiveness, increased sensitivity and
more streamlined data processing (44). Future research should
focus on validating gene signatures identified in this and similar
studies using a targeted sequencing approach, leveraging custom
gene panels for more precise and focused evaluations.

In summary, our study identified sets of genes that adequately
predict treatment outcomes in our cohort early in during treatment.
The diagnostic utility of these gene signatures should now be
validated in a different and larger cohort. A prognostic test that can
effectively stratify TB patients at risk of poor treatment outcomes
would greatly impact TB treatments. Given the relatively low
occurrence of treatment failure and relapse in most TB studies,
future studies should consider integrating samples from different
cohorts to increase sample size, diversity, and generalizability of
study findings.
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