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Estela Gonzalez,
Animal and Plant Health Agency
(United Kingdom), United Kingdom

*CORRESPONDENCE

Mohamed Daoudi

mohamed.daoudi@mail.mcgill.ca

RECEIVED 15 May 2025
ACCEPTED 27 August 2025

PUBLISHED 26 September 2025

CITATION

Daoudi M, Outammassine A, Olivier D,
Amane M, Beaulieu M, Akarid A, Ndao M,
Hafidi M, Boussaa S and Boumezzough A
(2025) Modeling the impact of climate
change for the potential distribution of the
main vector and reservoirs of zoonotic
cutaneous leishmaniasis due to leishmania
major in Morocco.
Front. Trop. Dis. 6:1629454.
doi: 10.3389/fitd.2025.1629454

COPYRIGHT

© 2025 Daoudi, Outammassine, Olivier,
Amane, Beaulieu, Akarid, Ndao, Hafidi, Boussaa
and Boumezzough. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 26 September 2025

DOI 10.3389/fitd.2025.1629454
Modeling the impact of
climate change for the
potential distribution of
the main vector and
reservoirs of zoonotic
cutaneous leishmaniasis
due to leishmania major
in Morocco
Mohamed Daoudi1,2*, Abdelkrim Outammassine3,
David Olivier1, Mounia Amane4, Myriam Beaulieu1,2,
Abdellatif Akarid5, Momar Ndao1,2,6,7, Mohamed Hafidi8,
Samia Boussaa9 and Ali Boumezzough8

1Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill
University Health Centre, Montreal, QC, Canada, 2Department of Microbiology and Immunology,
McGill University, Montreal, QC, Canada, 3Laboratory of Microbiology and Virology, Faculty of
Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco, 4Higher Institute of Nursing
Professions and Health Techniques of Marrakech, Ministry of Health and Social Protection,
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Climate change is reshaping the epidemiology of vector-borne diseases, with

zoonotic cutaneous leishmaniasis (ZCL) caused by Leishmania major emerging as

a growing public health concern in Morocco. This study employs ecological niche

modeling (ENM) to assess the current distribution and project future impacts of

climate change on L. major, its primary vector (Phlebotomus papatasi), and reservoir

host (Meriones shawi) under four Representative Concentration Pathway (RCP)

scenarios (2.6, 4.5, 6.0 and 8.5). Under present climate conditions, our models

reveal distinct distribution patterns: L. major is concentrated in southeastern

Morocco, P. papatasi is widespread across central regions, and M. shawi occupies

nearly nationwide distribution except Western Sahara. Projections indicate L. major

will extend its range into eastern, High Atlas, and Rif regions (1.5–1.6% habitat gain),

while P. papatasi and M. shawi will expand across central and southern Morocco

(3.5–5.9% gain), with minimal habitat loss (<0.6%). These findings demonstrate a

possible climate-driven shift in ZCL transmission geography, with current endemic

areas expanding and new risk zones emerging in previously unaffected regions. The

projections underscore the urgent need for integrated surveillance and climate-
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adaptive control strategies to mitigate outbreaks in vulnerable regions. By linking

observed distributions to future environmental shifts, this work provides a framework

for proactive public health interventions in Morocco and similar endemic areas

facing climate change impacts.
KEYWORDS

Leishmania major, Meriones shawi, Phlebotomus papatasi, ecological niche modeling,
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1 Introduction

Climate change, through altered temperature, precipitation, and

extreme weather, is reshaping the distribution and dynamics of vectors

and vector-borne diseases globally (1). Among these, zoonotic

cutaneous leishmaniasis (ZCL), caused by Leishmania major and

transmitted by infected female Phlebotomus sandflies, has shown

notable shifts in incidence and geographic range (2). In Morocco,

ZCL continues to pose a public health challenge, particularly in arid

and semi-arid regions, where ecological conditions strongly influence

both vector and reservoir host populations (3). Climatic factors such as

increased temperature and reduced rainfall have been correlated with

higher sandfly densities and extended transmission seasons (4). Changes

in land use, agricultural practices, and urbanization are further

contributing to sandfly habitat expansion and increased human-

vector contact (5). Moreover, human migration and mobility, coupled

with animal trade and environmental disruption, facilitate the

introduction and spread of infected vectors and hosts to new areas

(6). The One Health approach is increasingly recognized as critical to

understanding and managing ZCL, highlighting the interconnectedness

of human, animal, and environmental health (7).

The potential distribution of L. major vectors and reservoirs is

influenced by various climatic factors, including temperature,

humidity, and precipitation, which affect the life cycles and

habitats of these organisms (8). As climate change continues to

alter these environmental parameters, the geographical range of

ZCL may expand or contract, leading to changes in the

epidemiology of the disease (9). This necessitates a thorough

understanding of how climate change may impact the

distribution of the main vectors and reservoirs of ZCL in Morocco.

Previous studies have demonstrated that climate change can

significantly impact the distribution of sandflies and reservoirs. For

instance, Paz, 2024 found that climate change scenarios projected an

increase in suitable habitats for sandflies in Europe, while other studies

have highlighted the role of climate variables in influencing the

distribution of sandfly species in the Mediterranean region (10–12).

Similarly, Elith et al., 2010 and Peterson, 2006 have discussed the

utility of Ecological niche modeling (ENM) in predicting shifts in

species distributions under changing climatic conditions (13, 14).

ENM has emerged as a critical tool in predicting the spatial and

temporal dynamics of vector-borne diseases in response to
02
environmental and anthropogenic changes. As global mobility

increases and climate change continues to reshape ecological

boundaries, the distribution of vector species and associated

pathogens is shifting at unprecedented rates (15, 16). This is

particularly evident in North Africa, where zoonotic cutaneous

leishmaniasis (ZCL), primarily caused by L. major and

transmitted by P. papatasi, is becoming increasingly prevalent.

Morocco has reported a significant rise in ZCL cases over recent

decades, with outbreaks often occurring in newly affected areas due

to environmental changes, urban expansion, and movement of

people and animals (11, 17).

ENM allows researchers and policymakers to map areas of

potential risk by integrating climatic variables (e.g., temperature,

humidity, precipitation), land use, host distribution, and vector

biology (14, 18). In Morocco, ENM has been successfully applied to

anticipate the spread of P. papatasi and its reservoir hosts, thereby

identifying vulnerable regions before outbreaks occur (19). These

predictive tools are vital, as it help in anticipating new foci due to

human migration, conflict, and ecological disturbance (20, 21).

Moreover, the psychosocial consequences of ZCL particularly

the disfiguring scars it leaves on affected individuals, many of whom

are women and children are profound in Moroccan society and

often overlooked in public health discourse (22, 23).

This study aims to model the potential distribution of the primary

vectors and reservoirs of zoonotic cutaneous leishmaniasis in Morocco

under different climate change scenarios. By utilizing ENM and climate

projection data, we seek to predict future changes in the habitats

suitable for sandflies and reservoir hosts. These predictions are crucial

for public health planning and for the implementation of effective

control measures to mitigate the impact of ZCL in a changing climate.
2 Materials and methods

2.1 Occurrence data

Comprehensive occurrence records for P. papatasi and M.

shawi were compiled through multiple complementary

approaches to ensure robust spatial representation across

Morocco. Field collections conducted between 2003 and 2020

targeted known ZCL foci in northern and central regions, as
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identified in Moroccan Ministry of Health (MMH) surveillance

reports (MMH, 2017). These field efforts employed standardized

trapping protocols for sandflies and rodent surveys in endemic

areas. To augment field data, we systematically reviewed literature

from 1991–2020 through searches of PubMed and Scopus using the

terms “P. paptasi” and “Morocco,” yielding additional

georeferenced occurrence points. For L. major case locations, we

extracted epidemiological data from MMH reports (2010-2017)

supplemented by published case studies to ensure coverage of

emerging transmission zones. All occurrence data underwent

rigorous quality control, including removal of duplicate records

and verification of coordinate precision to <1 km resolution. Spatial

filtering was applied to minimize sampling bias, particularly around

health facilities and easily accessible sites. The final curated dataset

comprised 143 P. papatasi, 111 M. shawi, and 69 L. major

occurrences (Figure 1), which we partitioned using a stratified

random approach - allocating 70% for model calibration and 30%

for evaluation. The full data set is available at Supplementary

Material S1.
2.2 Climatic data

Data from WorldClim (www.worldclim.org, version 1.4) were

used to characterize current global climates, including 19

bioclimatic variables originally derived from monthly temperature

and rainfall values collected from weather stations in 1950–2000

(Hijmans et al., 2005). We selected data coarsest at the higher spatial

resolutions (i.e., 30 arcsecond). To characterize influences of climate

change on the distribution of each species modeled, we selected
Frontiers in Tropical Diseases 03
parallel data sets for four representative concentration pathways

(RCPs; RCP 2.6 and RCP 8.5) accounting for different future

emission scenarios from the Coupled Model Intercomparison

Project Phase 5 (CMIP5) available in WorldClim archive (version

1.4, 30 arcsecond). Each RCP leading to specific radiative forcing

characteristics (https://www.ipcc-data.org); RCP 2.6 is lowest, RCP

4.5 and RCP 6.0 intermediate, RCP 8.5 high greenhouse gas

emissions and higher resulting radiative forcing. For each RCP,

we included 9 General Circulation Models (GCMs): BCC-CSM1-1,

CCSM4, GISS-E2-R,HadGEM2-AO, HadGEM2-ES, IPSL-CM5A-

LR, MIROC-ESM-CHEM, MIROC5, and MRICGCM3, for a total

of 18 combinations (9 x 2 RCPs). Bioclimatic variables 8–9 and 18–

19 was omitted from analysis, considering known spatial artifacts in

those variables. The remaining of 15 variables was submitted to a

principal component analysis (PCA) to reduce the dimensionality

and avoid multicollinearity between variables (S2a) (Supplementary

Material S2) (24). The component loadings in the present-day data

were used to transform future-climate data using the PCA

Projection function in Niche Analyst software version 3.0 (25, 26).
2.3 Ecological niche modeling

Modeling was carried out using Maxent version 3.4.1, which

uses an optimization procedure that compares records of species in

presence only to a “background” sample of environments across the

region of concern, using the maximum entropy principle (27).

Maxent typically outperforms other methods based on predictive

accuracy, even for species with scarce occurrence records (28, 29).

For each modeled species, we used a combination of different
FIGURE 1

Species occurrences used for predictions.
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features (linear, quadratic, product, threshold, and hinge), and

regularizations multiplier values; we used cross-validation to

select optimal settings. The models were calibrated based on the

first eight components of the PCA analyses described above,

summarizing cumulatively 99.99% of total climate variance (S2b).

The extrapolation and clamping options were deactivated to avoid

any over-prediction risk in heterogeneous environments (24). To

overcome the lack of occurrence records in some areas and the non-

availability of absence data, a bias file was used to fine-tune

background point selection in Maxent to a maximum radial

distance of 50 km from observation points, using SDMtoolbox

(30). We ran 50 bootstrap replicates in MaxEnt, and the median

output was used in analyses. The median of medians across all

GCMs for each RCP was used as an estimation of conditions under

that RCP, and final models were threshold based on a maximum

allowable omission error rate of 5% (29), assuming that up to 5% of

occurrence data may include errors that misrepresented

environmental values. Model performance was evaluated using

two different metrics: area under the curve (AUC) and partial

receiver operating characteristic (pROC) approach. Occurrence

datasets and obtained binary maps were subjected to over 1000

bootstrap iterations analyses, each based on 50% random points

resampling with replacement and with an omission error threshold

of 1% (p < 0.01). The pROC statistic test was calculated using the

pROC function available in package NicheToolBox under R.
2.4 Niche visualization

The overlapping niches of the three considered species were

visualized in a 3D environmental space, using NicheA software

version 3.0 (25). We used the first three principal components, out

of the 8 PC generated in the previous section, to draw the

environmental background cloud under current and future-

climate conditions separately (26). Then we created a virtual

niche from occurrence data sets of each species in that

environmental background cloud.
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3 Results

Models have demonstrated proficiency in accurately depicting

the geographical range of observed occurrence records under

current climate conditions, surpassing mere representation. The

potential distribution of the three species considered exhibited a

high level of suitability across a significant portion of the center and

the northern region of the country (Figure 2). The areas with the

greatest risk of L. major potential distribution are limited in the

center-estern side (Figure 2A). Currently, suitable habitats for P.

papatasi were predominantly situated to the central and north part

of the country (Figure 2B). As for M. shawi, the environmental

conditions in Morocco, which encompass up to half of the country’s

land area, appear to align with its potential distribution

requirements (Figure 2C). The areas classified as highly suitable

were primarily concentrated in the central and northern parts, as

well the southern part, inhabiting the dry and hot deserts.

The anticipated range changes for the three species under

various climatic assumptions are depicted in Figure 3. By 2050, it

is expected that L. major will exhibit a considerably broader

potential distribution across the central-eastern side of the

country, regardless of the RCP scenarios (Figure 3A). Moreover,

there is a likelihood of the species expanding its habitat range to

new areas in the central and south-eastern parts. Transitioning from

RCP 2.6 to RCP 8.5, the three species are projected to persist and

further increase its range in many similar areas as predicted under

RCP 2.6, with same level of certainty under RCP 8.5, except for M.

shawi were expanded under RCP 2.6 slightly more than under RCP

8.5 (Figure 3B). The model indicates an extension of the suitable

habitat for P. papatasi towards central areas under RCP 8.5

(Figure 3C). The species has also expanded its range to

encompass newly discovered areas on the northern and southern

side. It is anticipated that the areas with suitable habitat will

continue to expand under all the considered RCPs. Looking

ahead, the climatic conditions most favorable for M. shawi are

projected to prevail across the entire country, except for the extreme

eastern central part of Morocco. The expansion of suitable habitats
FIGURE 2

Predicted potential distribution for L. major (A), P. papatasi (B), and M. shawi (C) under current climat conditions.
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is predicted to persist under RCP 2.6 and RCP 8.5. Figure 4 illustrate

the changes in distribution between current conditions and

future projections. These figures also demonstrate the consensus

among all GCMs in predicting areas where no changes are expected.

The maps display varying degrees of expansion and contraction of

habitat for each species under consideration. Detailed calculations

regarding the changes in distribution can be found in

Supplementary File 3. In the case of L. major, the potential

distributional areas are projected to increase from current

conditions to RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 by

1.548%, 1.556%, 1.572%, and 1.637%, respectively (Figure 4A).

Among these scenarios, RCP 8.5 results in the most expansion. In

general, the areas potentially suitable for P. papatasi are projected to

increase from the present-day to 2050. Specifically, under RCP 2.6,

RCP 4.5, RCP 6.0, and RCP 8.5, the increase is estimated to be

3.489%, 3.721%, 3.807%, and 3.807%, respectively (Figure 4B).
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However, the species is expected to experience a contraction of

only 0.590%, 0.465%, 0.506%, and 0.506% under the respective

RCPs mentioned above. Among the four modeled RCPs, RCP 8.5

and RCP 6.0 present the most favorable scenarios for habitat

expansion, while RCP 2.6 results in a significant loss of predicted

habitat suitability. Regarding M. shawi, the potential distribution

areas are anticipated to increase under all RCPs (Figure 4C).

Specifically, the increases are projected to be 5.711% (RCP 2.6),

5.802% (RCP 4.5), 5.562% (RCP 6.0), and 5.872% (RCP 8.5).

However, there is also an expected reduction of 0.067% (RCP

2.6), 0.067% (RCP 4.5), 0.084% (RCP 6.0), and 0.124% (RCP 8.5).

Notably, RCP 8.5 exhibits both the largest gained area and the

largest reduction area.

According to partial ROC tests (Table 1), all models made

predictions with statistically significant results (p < .05).

Uncertainty estimates associated with different GCMs in each
FIGURE 3

Predicted potential distribution for L. major (A), P. papatasi (B), and M. shawi (C) under RCP 2.6 (1), RCP 4.5 (2), RCP 6.0 (3) and RCP 8.5 (4).
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RCP overall showed few differences between the four modeled

scenarios for all three specie.

The 3D ecological niche visualization of L. major, its primary

vector P. papatasi, and reservoir host M. shawi (Figure 5)

demonstrated significant overlap in their environmental

tolerances under both current and projected climate scenarios.

This convergence suggests shared habitat suitability across

Morocco’s arid and semi-arid regions, where temperature and

precipitation range simultaneously support parasite development,

vector survival, and reservoir activity. Notably, the niche overlap

was most pronounced in existing endemic zones (e.g., southeastern

Morocco), but expanded under RCP scenarios toward the High

Atlas and Rif Mountains regions where climatic conditions may

become concurrently favorable for all three transmission cycle

components by 2050.
Frontiers in Tropical Diseases 06
4 Discussion

This study is the first to look at the full ecological niche of the L.

major transmission cycle in Morocco. It combines current and future

locations of the parasite, its sand fly vector (P. papatasi), and its rodent

reservoir host (M. shawi). Our findings reveal significant spatiotemporal

shifts in habitat suitability, which are driven by climate change. These

shifts have implications for the future epidemiology of zoonotic

cutaneous leishmaniasis (ZCL) in North Africa.

In line with previous reports, the current prevalence of ZCL is

predominantly concentrated in the southeastern and eastern

regions of Morocco (17, 31). However, the models indicate a

considerable future expansion of suitable habitats for L. major,

particularly under higher-emission RCP scenarios (RCP 6.0 and

8.5). This suggests that warming temperatures and altered
FIGURE 4

Distribution changes between present-day conditions and future projections for L. major (A), P. papatasi (B), and M. shawi (C). 1= RCP 2.6; 2= RCP
4.5; 3= RCP 6.0; 4= RCP 8.5. Bleu = suitble areas indicating model stability under both current and future conditions. Gray = unsuitable areas
indicating model stability under both current and future conditions. Red= Areas of expansion in future. Yellow= Areas of contraction in future.
frontiersin.org

https://doi.org/10.3389/fitd.2025.1629454
https://www.frontiersin.org/journals/tropical-diseases
https://www.frontiersin.org


Daoudi et al. 10.3389/fitd.2025.1629454
precipitation patterns may facilitate the establishment of

transmission cycles in currently non-endemic areas, including

parts of the High Atlas and Rif Mountains (32, 33).

Projections of the habitat expansion of P. papatasi, particularly

under RCP 6.0 and 8.5, are congruent with the prevailing ecological

hypothesis that sand flies exhibit enhanced vitality in warmer, more

humid environments (34, 35). Notably, the relatively low

contraction rates and consistent gains across all Representative

Concentration Pathways (RCPs) suggest that this species

possesses ecological plasticity, supporting its potential as a
Frontiers in Tropical Diseases 07
persistent and expanding vector in a warming climate. These

findings are consistent with the findings of studies that

demonstrate the northward movement of phlebotomine species in

Europe and North Africa under climate change (36, 37).

Furthermore, the potential distribution of M. shawi, a crucial

reservoir host, exhibits substantial ecological resilience, with forecasts

indicating expansion under all simulated climate scenarios. These

trends are particularly worrisome, as they imply that the three

components of the ZCL transmission cycle parasite, vector, and

reservoir may converge spatially in broader geographic zones,
FIGURE 5

Visualization of L. major, P. papatasi, and M. shawi virtual ecological niches in 3D environmantal space (PC1, PC2, and PC3). Gray points represents
environmental background under present-day (A) and future climate conditions (B). Bleu ellipsoid represents L. major, Yelow ellipsoid represent M.
shawi and Green ellipsoid represent P. papatasi.
TABLE 1 Area under the curve (AUC) measures and partial receiver operating characteristic (pROC) ratios summarizing the performance of ecological
niche models (average over 50 runs).

Species Mean AUC*
Bootstrap
iterations

pROC ratio
P < 0.01

Minimum Maximum Mean Median

L. major

Current 0.973 ± 0.013 1000 1.97 1.98 1.98 1.98 0 ***

RCP 2.6 0,876 ± 0,007 1000 1.70 1.74 1.72 1.72 0 ***

RCP 4.5 0,879 ± 0,004 1000 1.70 1.74 1.72 1.72 0 ***

RCP 6.0 0,800 ± 0,006 1000 1.49 1.52 1.50 1.50 0 ***

RCP 8.5 0,875 ± 0,019 1000 1.49 1.53 1.51 1.51 0 ***

P. papatasi

Current 0.956 ± 0.006 1000 1.93 1.94 1.93 1.93 0 ***

RCP 2.6 0,880 ± 0,005 1000 1.79 1.83 1.81 1.81 0 ***

RCP 4.5 0,878 ± 0,004 1000 1.79 1.83 1.81 1.81 0 ***

RCP 6.0 0,878 ± 0,007 1000 1.79 1.83 1.81 1.81 0 ***

RCP 8.5 0,874 ± 0,008 1000 1.79 1.83 1.81 1.81 0 ***

M. shawi

Current 0.932 ± 0.011 1000 1.85 1.89 1.87 1.87 0 ***

RCP 2.6 0,870 ± 0,005 1000 1.71 1.78 1.75 1.75 0 ***

RCP 4.5 0,870 ± 0,005 1000 1.72 1.77 1.75 1.75 0 ***

RCP 6.0 0,868 ± 0,012 1000 1.70 1.78 1.74 1.74 0 ***

RCP 8.5 0,863 ± 0,012 1000 1.72 1.78 1.75 1.75 0 ***
fr
*0.5 (random) < AUC < 1 (perfect).
***Highly significant.
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increasing the risk of sustained local transmission (38, 39). The 3D

niche visualization employed in this study underscores the observed

overlap, particularly within the geographical regions of central and

southern Morocco. This observation serves to reinforce the prevailing

concern that the phenomenon of climate convergence is likely to favor

the co-occurrence of the three species, thereby giving rise to

transmission zones characterized by elevated levels of risk.

These findings underscore the importance of ecological niche

modeling in public health forecasting, particularly in regions like

Morocco where zoonotic diseases intersect with vulnerable ecological

systems. The outcomes of this study align with the mounting

imperative for One Health surveillance strategies that integrate

environmental monitoring with epidemiological and entomological

data to proactively identify emerging disease hotspots (40, 41).

In addition, the utilization of a multifaceted modeling approach,

encompassing partial ROC (receiver operating characteristic) validation,

consensus among multiple GCMs, and fine-scale regional analysis,

substantiates the reliability of our projections with a high degree of

confidence (26). The limited uncertainty across the scenarios examined

herein underscores the pressing need for prompt policy responses. Such

responses must prioritize the implementation of effective vector control

measures, the cultivation of community awareness programs, and the

construction of essential infrastructure for the timely diagnosis and

treatment of emerging cases in previously unaffected regions.

It is imperative to acknowledge the profound psychological and

socioeconomic ramifications of ZCL in Morocco, which underscore

the necessity for comprehensive policy interventions and social

interventions to mitigate the adverse impact of this phenomenon.

As numerous studies have previously documented, visible skin

lesions frequently result in stigmatization, particularly among

women and children, with long-term mental health consequences

(22, 23, 42). It is imperative to acknowledge that anticipating the

expansion of ZCL risk is not solely a matter of infectious disease

control; it is also a matter of protecting community well-being.
5 Conclusion

Our study provides robust projections on how climate change

will reshape the distribution of L. major and its vector P. papatasi

and reservoir host M. shawi, across Morocco under all climate

scenarios (RCP 2.6, 4.5, 6.0, and 8.5). The models predict a clear

expansion of suitable habitats, with L. major gaining 1.548–1.637%

in range (from RCP 2.6 to 8.5), particularly in eastern, High Atlas,

and Rif regions. Meanwhile, P. papatasi (3.489–3.807%) and M.

shawi (5.562–5.872%) show even greater adaptability across central

and southern Morocco. These shifts are most pronounced under

high-emission scenarios (RCP 6.0 and 8.5), suggesting that rising

temperatures and changing precipitation patterns will drive the

parasite, vector, and host into new overlapping zones, elevating ZCL

transmission risks in previously unaffected areas.

The ecological resilience of P. papatasi andM. shawi, evidenced

by minimal habitat loss (<0.6% across all RCPs), poses a significant

challenge for disease control. Their ability to thrive under diverse

climatic conditions implies that ZCL transmission could persist and
Frontiers in Tropical Diseases 08
even intensify in endemic regions while spreading to new territories.

This expansion is particularly concerning for Morocco’s highland

and northern regions, where human populations may have limited

immunity to L. major. Public health strategies must prioritize these

emerging risk zones through enhanced surveillance, early diagnosis,

and targeted vector control measures.

To mitigate the growing threat of ZCL, a One Health approach

is essential. Integrating environmental monitoring, veterinary

surveillance, and human health data will be critical for predicting

outbreaks and implementing timely interventions across all climate

scenarios. Future research should further refine these models by

incorporating land-use changes, urbanization trends, and human

migration patterns. By aligning predictive modeling with proactive

policy, Morocco can reduce the future burden of ZCL and safeguard

vulnerable communities from this climate-sensitive disease.
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