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Introduction: This study evaluates the ecotoxicity of micro- and nano-sized
titanium dioxide (TiO2), either as active ingredients or incorporated into
sunscreen formulations in the aquatic environment, by proposing a leaching
protocol simulating a realistic scenario of human immersion in freshwater
and seawater.
Methods: To this aim, an ecotoxicological screening of micro- and nano-TiO2

active ingredients and incorporated into sunscreens was applied, by evaluating
acute and sub-acute responses (bioluminescence and growth inhibition,
immobilization, behaviour) in freshwater and marine bacteria, microalgae and
crustaceans. Then, Ti concentration wasmeasured in the leachates of sunscreens
through Inductively Coupled Plasma mass spectrometry (ICP-MS).
Results and discussion: Toxic effects (EC50s) were only found in microalgae and
crustaceans exposed to TiO2 active ingredients. No toxicity occurred with
sunscreens formulations, although significant algal growth inhibition was
determined, likely due to TiO2 size rather than Ti concentration. By integrating
a sunscreen leachate based methodology with a multi-species and multi-
endpoint approach, this study introduces a novel ecosafety-oriented
assessment of TiO2 providing realistic ecotoxicological evidence relevant to
freshwater and marine environments.
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1 Introduction

In 2015, the United Nations Member States adopted the
2030 Agenda for Sustainable Development, designed to serve as
both a roadmap and a plan of action for achieving peace and
prosperity through the fulfilment of 17 Sustainable Development
Goals (SDGs). Specifically, SDG six focuses on ensuring the
availability and sustainable management of water and sanitation
(UN General Assembly, 2015). Moreover, the UN Water report
(2018) highlights that the quality and availability of water are
necessary for the improvement of society, environmental health,
and economic wealth. However, it is widely recognized that the
aquatic ecosystem is profoundly affected by the presence of
emerging contaminants (Rathi et al., 2021; Prajapati et al., 2023;
Sultan et al., 2024; Ghosh et al., 2024). Pharmaceutical compounds,
micro- and nanoplastics, pesticides, nanomaterials and personal
care products included cosmetics, skin and hair care products,
household cleaners, and sunscreen are considered some of the
most concerning pollutants (Barreto et al., 2023; Sudarsan
et al., 2024).

In this scenario, the increasing awareness of the negative effects
of solar radiation on human skin such as reactive oxygen species
production, photoaging, DNA damage and skin cancer (Tang et al.,
2024) has led to a heightened use of sunscreens (Heerfordt et al.,
2017; Zou et al., 2020). Ultraviolet (UV) filters, contained in
sunscreens and responsible for protecting the skin (Sabzevari
et al., 2021), are divided into organic and inorganic compounds.
The first ones (i.e., octocrylene and benzophenone-3) absorb UV
light, while the second ones (i.e., TiO2 or ZnO) reflect and scatter
UV light (Ramos et al., 2016). Nowadays, the number of UV filters
approved for use in sunscreens depends on the geographical area:
29 in Europe, 16 in the United States, 22 in Canada, 27 in China and
31 in Australia. Nevertheless, their concentration in sunscreens
always varies from 0.1% to 10% (Lavorgna et al., 2024).

The European Cosmetic Product Regulation 1223/2009 stands
as a comprehensive framework governing the production and
market placement of cosmetic products within the European
Union. Its core premise is grounded in the belief that all
cosmetics must be inherently safe for their normal and
reasonably foreseeable use. This regulation, while not prescriptive
in terms of permissible ingredients, relies on a structured system
consisting of five annexes to enforce its provisions. These annexes
comprise a list of forbidden ingredients and another set outlining
restrictions on certain substances. Among these annexes, Annex V
plays a critical role in regulating the use of UV-filters within
cosmetic products, a vital aspect of skin protection.

The integration of ingredients into these annexes is contingent
upon the issuance of an opinion by the Scientific Committee on
Consumer Safety (SCCS), underscoring the importance of rigorous
scientific assessment in cosmetic product safety. The EU Regulation
specifically defines “UV-filters” as substances predominantly
intended for shielding the skin against specific UV radiation,
either through absorption, reflection, or scattering of UV rays.

The annual production of UV filters for the global market is
estimated at around 10,000 tons (Couselo-Rodríguez et al., 2022),
resulting in potential environmental and health risks. Sunscreens
and UV filters can enter the environment directly or indirectly.
Some of the compounds could leach from the skin directly into the

aquatic ecosystem during recreational activities (surfing, snorkeling,
diving, swimming). Conversely, the remaining part could release
indirectly due to the inefficiency of wastewater treatment plants in
removing them (Miller et al., 2021; Duis et al., 2022). According to
recent findings, their presence has been detected in both fresh and
sea water (lakes, rivers, coastal waters, groundwater, seas, oceans)
(Jyoti and Sinha, 2023) at concentrations in the range ng-µg/L up to
mg/L in coastal areas (Cadena-Aizaga et al., 2020; Wong et al., 2020;
Beiras et al., 2021; Shetty et al., 2023). Several findings describe
molecular, biochemical and cellular changes with consequences in
physiological function (e.g., growth, swimming, development,
reproduction) in freshwater and seawater organisms
(Chatzigianni et al., 2022; Keller, 2023). Regarding
phytoplankton, UV filters could cause growth inhibition and
oxidative stress in marine diatom Phaeodactylum tricornutum
(Peng et al., 2011; Wang et al., 2016) and freshwater algae
Raphidocelis subcapitata and Chlorella vulgaris (Ozkaleli and
Erdem, 2018; Samei et al., 2019; Feizi et al., 2022). About
zooplankton, the exposure to UV filters impaired survival,
fertility and swimming of the crustaceans (Daphnia magna,
Artemia franciscana), echinoderm (Paracentrotus lividus)
developmental anomalies, and swimming speed of rotifer
Brachionus calyciflorus (Dong et al., 2020; Boyd et al., 2024;
Marcellini et al., 2024; Németh et al., 2024; Ortiz-Román
et al., 2024).

Among UV filters, titanium dioxide (TiO2) is one of the most
used (Labille et al., 2020). The global nanomaterials market is valued
at approximately $3 trillion, and TiO2 ranks among the top-selling
materials (Soler de la Vega et al., 2020), with an estimated annual
production of 1300 MT (Abdel-Latif et al., 2020). It is also employed
in various cosmetic products, such as lip balms, foundations, and
day creams, as well as in orthodontic compounds and as food
additives. Since 2000, TiO2 has been approved by the Scientific
Committee on Consumer Safety (SCCS) as a substance authorized
for use in sunscreen formulations at a maximum concentration of
25% (SCCS, 2014), except in spray products (Commission
Regulation, 2016).

The detection of inorganic compounds, such as TiO2 (both
nano- and microsized forms), represents a significant analytical
challenge due to their natural occurrence in the environment.
Generally, current analytical techniques lack the sensitivity to
differentiate between naturally occurring and synthetically
produced variants (Labille et al., 2020). However, in seawater,
UV filters are primarily detected in the surface layer, thereby
distinguishing them from naturally occurring substances
predominantly found in the water column or sediments. This
phenomenon may be attributed to the high salinity of seawater,
which reduces the solubility of sunscreen components. Such
behaviour has not been observed in the freshwater ecosystem
(Tovar-Sánchez et al., 2013).

Generally, limited data on TiO2 concentration report values of
µg/L in European and American aquatic environments (Menard
et al., 2011). Neal et al. (2011) observed amaximum concentration of
6.48 μg/L in English surface waters, while Gondikas et al. (2014)
reported a concentration of 4 μg/L in the Old Danube Lake in
Vienna. Conversely, higher concentrations ranging from 52 to
86 μg/L were reported in Chinese river surface waters (Shi et al.,
2016). About wastewater treatment plants, concentrations varied
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from 181 to 1233 μg/L in American tributaries (Westerhoff et al.,
2011) and from 26.9 to 43.1 μg/L in Chinese tributaries (Shi et al.,
2016). Limited data are available regarding the marine environment.
According to Boxall et al. (2007), who estimated that the
concentration of TiO2 released from cosmetics ranged from 24 to
245 μg/L, a concentration of approximately 37.6 μg/L was reported
in the coastal waters of Mallorca (Tovar-Sánchez et al., 2013). In the
Mediterranean waters near Marseille, TiO2 was found at about
20 μg/L, reaching concentrations of up to 900 μg/L (Labille
et al., 2020).

Given these environmental concentrations, concerns have arisen
regarding the potential ecotoxicological effects of TiO2, particularly
in the context of cosmetic formulations (Dreno et al., 2019). While
organic UV filters such as oxybenzone and octinoxate have already
been identified as hazardous to marine ecosystems - leading to their
ban in Key West and Hawaii (Suh et al., 2020) - there is a growing
need to assess the impact of inorganic UV filters like TiO2. In this
scenario, to provide experimental data that may enhance the
understanding of the cosmetic production field and support
future regulations, this study assesses the safety of nano- and
micro-sized TiO2 as active ingredient alone and incorporated
into sunscreens. With this aim, we examined for the first time
the impact of TiO2-based sunscreen formulations by applying an
International Organization for Standardization (ISO) protocol
simulating human immersion in the aquatic environment.

Given the growing need to assess the impact of inorganic UV
filters like TiO2 and to provide data supporting in cosmetic
production and future regulations in line with Safe and
Sustainable by Design (SSbD) principles, this study applied for
the first time an ad hoc protocol simulating realistic human
immersion and standardized ecotoxicological procedures
(i.e., ISO, UNICHIM). The latter represent a novel ecosafety-
oriented multi-species and multi-endpoint approach applied to
marine and freshwater bacteria, algae and crustaceans.

2 Materials and methods

2.1 Chemicals

Active principles Parsol TX (CAS: 13,463-67-7; 82%–87%;
rutile-TiO2 titanium dioxide, and 10.5%–14.5% silicon dioxide)
powder (<1000 μm) and Aerodisp W740X (CAS: 13,463-67-7;
anatase-TiO2) milky-white liquid solution (40 wt%, 1.41 g/cm3

density, mean aggregate size ≤100 nm) were purchased from
DSM Nutritional Products and Evonik Industries, respectively.
Specifically, Parsol TX stock solution was prepared by dissolving
powder in ethanol. The latter did not exceed the 0.02% at the highest
concentration tested. All test solutions were obtained by diluting
Parsol TX and AerodispW740X stock solutions with filtered natural
sea water (FNSW, salinity 37‰) and artificial freshwater.

2.2 Cream leachate preparation

The cream formulations were kindly provided by AHAVADead
Sea Laboratories and produced in accordance with Good
Manufacturing Practices (GMP). Each formulation contained

either Parsol TX (micro-sized titanium dioxide) or Aerodisp
W740X (nano-sized titanium dioxide) at a final concentration of
5% w/w. In addition, a control formulation without titanium dioxide
(referred to as ‘blank’) was included and subjected to the same
leaching and testing procedures. Approximately 72 mg of each
cream was uniformly applied to a synthetic skin substrate (6 ×
6 cm). The resulting dispersions were then tested either undiluted or
diluted at a 1:6 ratio, corresponding to leachate cream
concentrations of 72 mg/L (3.6 mg/L of nominal TiO2; referred
to as 100%) and 12 mg/L (0.6 mg/L of nominal TiO2; referred to as
16.6%), assuming complete release of the cream into the medium
which represents a worst-case scenario for estimating the highest
potential toxicity.

2.3 Titanium quantification

Titanium was analytically quantified according to the UNI EN
ISO 17294-2 (2023) method. Samples were diluted 1:10 with Milli-Q
grade water, acidified to 1% with HNO3, and analyzed using
Inductively Coupled Plasma Mass Spectrometry (ICP-MS;
NexION 350D, PerkinElmer), equipped with an ESI PrepFast
2DX autosampler for automated sample and standard
preparation and dilution. The ICP-MS system is a triple
quadrupole instrument with a collision/reaction cell (collision
gas: helium) for interference suppression. Sample introduction
was performed via a pneumatic nebulizer with a cyclonic spray
chamber. External calibration was carried out using the internal
standard method.

2.4 Ecotoxicological tests

Testing of nano- and micro-sized TiO2, both as an active
ingredient alone and as leachates derived from sunscreens, was
carried out in accordance with national (UNICHIM) and
international (ISO) standardized procedures to ensure
consistency and reliability of the results (Bisinicu et al., 2024).
Although A. franciscana and D. magna are among the most
tolerant aquatic invertebrates, these standard test organisms are
listed in regulations such as the Italian Legislative Decree No. 152/
2006. Particularly, D. magna is used as the standard bioassay
organism by different international scientific bodies (e.g.,
American Public Health Association) and governmental agencies
(e.g., USA Environmental Protection Agency) as reported by Sarma
and Nandini (2006). Furthermore, due to their a short life cycle,
smaller size, wide distribution, high population density, the lack of
need for feeding, anhydrobiotic storage and ready availability, they
are widely used in ecotoxicological assessments (Koivisto, 1995;
Neumeyer et al., 2015; Cavion et al., 2020; Ahmed, 2023).

2.4.1 Bacteria
The bioluminescence inhibition of the photobacterium A.

fischeri was determined according to the UNI EN ISO 11348-3
(EN ISO 11348-3, 2018) test protocol. The lyophilized bacteria were
kept at −20 °C prior testing and activated by hydration. Bioassays
were carried out in triplicates by exposing A. fischeri to Aerodisp
W740X (0.1, 1, 14.1, 141, 1410 mg/L) and Parsol TX (0.1, 1, 12.5,
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50 mg/L) solutions, and to blank cream, Aerodisp W740X cream
and, Parsol TX cream leachates (100% - undiluted leachates, 16.6% -
diluted leachates). All the samples were kept on a thermostatic plate
at 15 °C throughout the entire test. Negative and solvent control were
performed by NaCl solution and ethanol, respectively.
Bioluminescence was measured after 30 min of exposure to
samples by using the luminometer Microtox®M500. Samples
were considered toxic when 50% reduction (EC50) of the
bioluminescence (vs. control) was obtained.

2.4.2 Phytoplankton
The growth inhibition tests of the marine diatom P. tricornutum,

and the freshwater green alga R. subcapitata were performed
according to ISO 10253 (ISO, 2016) and to OECD 201 (2011),
adapting the protocol to the use of 24-well plates (Lukavský and
Simmer, 2001).

The tests were carried out in triplicate. The three algal species
were exposed to Aerodisp W740X (1.41, 14, 141 mg/L), Parsol TX
(0.0001, 0.001, 0.01, 0.1, 1, 12.5, 25, 50), and cream leachates (100% -
undiluted leachates, 16.6% - diluted leachates), namely, blank cream,
Aerodisp W740X cream and Parsol TX cream for 72 h at 20 °C ±
0.5 °C with a 12:12 light:dark photoperiod and light intensity of
6,000–10000 lux. The negative and solvent control were performed
by F/2 medium and ethanol, respectively. After 72 h, a Lugol’s
solution was used to stop the algal growth. Then, algal cells were
counted under an inverted microscope (Leitz Diavert, Germany) by
using a haemocytometer (Bürker chamber). The growth inhibition
percentage was then calculated by comparing the algal growth in the
test solutions with that of the negative control.

2.4.3 Zooplankton
Immobility and swimming speed alteration (SSA) were

evaluated in the larval stage of the marine crustaceans
Amphibalanus amphitrite (II stage nauplii) and A. franciscana
(Instar I larvae), obtained in laboratory conditions as reported in
Garaventa et al. (2010) and Piazza et al. (2012). The bioassays on the
barnacle A. amphitrite were performed according to UNICHIM
standardized protocol published by the Italian regulatory authority
(NU 2245/2012), while the bioassays with the brine shrimp A.
franciscana with ISO testing procedure (ISO TS/20787). Tests
were carried out in triplicates in multiwell plates with 1 mL of
Aerodisp W740X (1.41, 14.10, 141, 1410 mg/L), Parsol TX (0.0001,
0.001, 0.01, 0.1, 1, 12.5, 25, 50 mg/L), and cream leachates (100% -
undiluted leachates, 16.6% - diluted leachates), namely, blank cream,
Aerodisp W740X cream, Parsol TX cream leachates and 10-
15 organisms for each well. The plates were incubated for 48h at
20 ± 0.5 °C for A. amphitrite and 25 ± 0.5 °C for A. franciscana, in
darkness. Subsequently, a stereo microscope was used to count
immobile organisms. The percentage of immobility was
calculated comparing the number of immobilized organisms to
the negative control. Regarding the SSA, it was evaluated to
register the crustacean’s movement for 3s in darkness by using
the Swimming Behaviour Recorder system as described in Faimali
et al. (2006). The average swimming speed (S) of each concentration
was compared to the negative control to determine the percentage
of SSA:

SSA %( ) � S Treated-Control( )/Control) × 100

Immobility was also assessed in the freshwater crustacean D.
magna, according to ISO 6341 (ISO, 1996) and the protocol
provided by commercial kit Daphtoxkit FTM. The bioassays were
carried out in triplicates in multiwell plates with 9 mL of the
aforementioned test solutions and five daphnids for each well.
The plates were incubated for 48h at 20 ± 0.5 °C in darkness.
Then, immobile organisms (organisms with any movement for 15 s)
were counted by using a stereomicroscope. Immobility percentages
were calculated as described above for marine crustaceans.

2.5 Statistical analysis

Data of ecotoxicological tests are expressed as mean ± standard
error (SE). Graphpad Prism five software was used for statistical
analysis. The effect percentages deriving from three independent
tests were interpolated using a nonlinear regression (log agonist vs.
normalized response-variable slope) to calculate EC50s (Effective
Concentration resulting into 50% algal growth inhibition,
immobility or SSA in the exposed organisms). One-way ANOVA
(Dunnett’s multiple comparison tests) was used to determine any
significant differences between controls and treated samples (NOEC
and LOEC values, *p < 0.05, **p < 0.01, ***p < 0.001 and ****p <
0.0001). For each species, statistically significant differences (**p <
0.01 and ***p < 0.001) were evaluated by Two-way ANOVA
(Bonferroni post-tests) considering the “cream leachates” factor
and the “percentages tested” factor.

3 Results

3.1 Evaluation of titanium concentration in
leachates across ecotoxicological testmedia

As a preliminary step, titanium (Ti) concentration released from
the different sunscreen formulations into the various aqueous media
used for ecotoxicological testing was quantified. Table 1 reports the
Ti concentration measured in leachates from the three sunscreen
formulations-blank (without TiO2), and the two TiO2-containing
formulations, Aerodisp W740X and Parsol TX-as determined by
ICP-MS. In most media, Ti concentration was within the range of
1–8 μg/L, i.e., close to the instrument’s limit of quantification
(LOQ = 10 μg/L). In contrast, Ti levels in the Daphnia medium
(freshwater) were consistently below the LOQ for all formulations,
including the blank, indicating negligible leaching or detection in
that matrix. Four aqueous media were analyzed: two for marine
organisms (seawater and marine algal culture medium) and two for
freshwater organisms (freshwater algal medium and Daphnia
medium). Overall, media with higher osmolarity-such as seawater
and the marine algal medium-showed slightly higher Ti
concentrations compared to freshwater media. This pattern may
suggest enhanced TiO2 leaching and/or analytical interference due
to increased salt content, which could influence particle dispersion
or induce matrix effects. Among the quantifiable data, the freshwater
algal medium exhibited the largest difference between the blank and
the Aerodisp W740X formulation, while seawater showed the
greatest difference between the blank and the Parsol® TX
formulation. These trends suggest that medium composition

Frontiers in Toxicology frontiersin.org04

Nugnes et al. 10.3389/ftox.2025.1686954

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2025.1686954


TABLE 1 Total titanium (Ti) concentration (µg/L) measured in undiluted cream leachates (blank cream, Aerodisp W740X cream, Parsol TX cream), prepared
in the aquatic media (filtered seawater/freshwater and algal media).

Ti concentration (µg/L)

Blank cream Aerodisp W740X cream Parsol TX cream

Leachates Marine Seawater 3.3 2.5 6.4

Algal medium 5.1 5.5 6.3

Freshwater Daphnia medium 0.28 1 0.3

Algal medium 1.2 8.6 1.3

TABLE 2 EC50 valueswith confidence limits (95%), expressed inmg/L for Parsol TX and AerodispW740X calculated for phyto- and zooplankton species. For Parsol TX,
the highest tested concentration was 50 mg/L; higher concentrations were not tested due to solvent toxicity limitations. For Aerodisp W740X, the highest testable
concentrations for bacteria and phytoplankton were limited by sample opacity (milky solution). For zooplankton, themaximum tested concentration was 1410mg/L.

EC50 (95% CL)

Active ingredients

Exposure time Endpoint Parsol TX
(mg/L)

Aerodisp W740X
(mg/L)

Bacteria A. fischeri 30m Bioluminescence inhibition >50 >1410

Phytoplankton P. tricornutum 72h Growth inhibition 0.38
(0.06-2.25)

>141

R. subcapitata 72h Growth inhibition 0.018
(0.007-0.45)

>141

Zooplankton A. amphitrite 48h Immobility >50 84.6
(28.2-183.3)

Behaviour >50 239.7
(42.3-1381.8)

A. franciscana 72h Immobility >50 >1410

Behaviour >50 >1410

D. magna 48h Immobility >50 >1410

TABLE 3 EC50 values with confidence limits (95%) expressed as percentages for all creams leachates, calculated for phyto- and zooplankton species. ND =
EC50 not determined within the tested concentration range. EC50 values were not reached at the highest percentage tested (100%, undiluted samples).

EC50 (95% CL)

Creams

Exposure
time

Endpoint Blank
cream (100%)

Parsol TX
cream (100%)

AerodispW740X
cream (100%)

Bacteria A. fischeri 30m Bioluminescence
inhibition

ND ND ND

Phytoplankton P.
tricornutum

72h Growth inhibition ND ND ND

R. subcapitata 72h Growth inhibition ND ND ND

Zooplankton A. amphitrite 48h Immobility ND ND ND

Behaviour ND ND ND

A. franciscana 72h Immobility ND ND ND

Behaviour ND ND ND

D. magna 48h Immobility ND ND ND
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plays a role in modulating both the release and detectability of Ti
from different TiO2-containing sunscreen products.

Overall, Ti concentrations were low across all tested media,
suggesting limited release and availability of Ti from the
formulations under the conditions used.

3.2 Ecotoxicological tests

The ecotoxicological results from tests with aquatic species
exposed to nano- and micro-sized TiO2 active ingredient and all

cream leachates, are shown below. For clarity, all tested
concentrations were used to calculate EC50 values (Tables 2, 3),
while the most significant concentrations compared to the controls
are shown in Figures 1, 2.

3.2.1 EC50 values and biological responses to TiO2

active ingredients and sunscreen leachates
To evaluate the potential impact of both the active ingredients

and the leachates from the sunscreen formulations, several
ecotoxicological endpoints across multiple aquatic species
representing different trophic levels were assessed. Specifically,

FIGURE 1
Growth inhibition of R. subcapitata (diagonal bars) and P. tricornutum (dotted bars) after 72 h exposure to: (A) Parsol TX, (B) Aerodisp W740X (active
ingredients), (C) blank cream leachate, Parsol TX cream leachate, and AerodispW740X cream leachate. Data aremean ± SEM (n = 3). *p < 0.05, **p < 0.01,
***p < 0.001 and ****p < 0.0001 vs. control (One-way ANOVA + Dunnett for actives; Two-way ANOVA + Bonferroni for leachates). No asterisk indicates
no statistical significance.
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the following endpoints were measured: bioluminescence inhibition
in the bacterium A. fischeri, growth inhibition in the phytoplankton
species P. tricornutum and R. subcapitata, immobilization in the
zooplankton speciesD. magna, while immobilization and behavioral
responses in A. amphitrite and A. franciscana. Thus, Tables 2, 3
show the EC50 values obtained both for the active ingredients
Aerodisp® W740X and Parsol TX and all cream leachates.

For bacteria, no EC50 values were determined for both active
ingredients within the range of concentrations tested.
Concentrations higher than 141 mg/L for Aerodisp W740X could
not be tested due to the opacity of the sample solution, while
concentrations >50 mg/L for Parsol TX, were not tested due to
solvent toxicity. Quantifiable EC50 values for Parsol TX were
obtained only in phytoplankton species tested, with values of
0.38 mg/L for P. tricornutum and 0.0018 mg/L for R. subcapitata,
indicating a higher sensitivity of primary producers to micro-TiO2.
Conversely, for Aerodisp W740X, EC50 values were obtained only

for the marine crustacean A. amphitrite, indicating a higher
sensitivity of this species to the nano-sized TiO2.

Additionally, no toxic effects–in terms of EC50s - were observed
in any of the test species exposed to leachates from the blank or the
TiO2-containing formulations.

3.2.2 Bioluminescence inhibition in A. fischeri
induced by TiO2 active ingredients and
cream leachates

The inhibition of bioluminescence in A. fischeri was not
significantly affected after 30 min exposure to various
concentrations of Aerodisp W740X and Parsol TX, tested both as
pure active ingredients and as cream leachates (Supplementary
Figure S1). Both active ingredients exhibited a similar trend
Supplementary Figure S1A), as well as for their corresponding
cream leachates (Supplementary Figure S1B), showing 15% or
20% maximum effect in bioluminescence inhibition.

FIGURE 2
Immobility and swimming speed alteration in marine crustaceans A. franciscana (black bar) and A. amphitrite (grey bar), and in the freshwater
crustacean Daphnia magna (white bar) after 48h exposure to different concentrations of Parsol TX (A,C) and Aerodisp W740X) (B,D). Data are mean ± SE
(n = 3). *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001 vs. control (One-way ANOVA + Dunnett for actives; Two-way ANOVA + Bonferroni for
leachates). No asterisk indicates no statistical significance.
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3.2.3 Growth inhibition of freshwater and marine
phytoplankton by TiO2 active ingredients and
cream leachates

The growth inhibition percentage of the freshwater alga R.
subcapitata and the marine diatom P. tricornutum after 72h of
exposure to different concentrations of Aerodisp W740X and Parsol
TX is shown in Figures 1A,B. Both active ingredients affected the
growth of both algal species in a concentration-dependent manner
(Figures 2A,B). Although no EC50 values could be estimated for
Aerodisp W740X due to sample opacity at concentrations >141 mg/
L, a significant inhibition of algal growth was observed in both
freshwater (R. subcapitata) and marine (P. tricornutum) species
starting from the concentration tested (1.41 mg/L; Figure 2B). Parsol
TX showed marked toxicity in both algae, with significant effects
observed at concentrations of 1 mg/L for both algal species.

The growth inhibition of both algal species was also evaluated in
leachates of the three creams (blank cream, Aerodisp W70X cream
and Parsol TX cream). Although, in R. subcapitata, the Parsol TX
cream induced an algal growth inhibition of approximately 40% for
both tested percentages (16.6%, 100%), no EC50 value was estimated
for any cream leachate (Table 3).

Significant differences were found in the freshwater species R.
subcapitata when the blank cream leachate was compared with the
respective percentage (16.6%, 100%) of the cream with Aerodisp
W70X or Parsol TX, highlighting a higher toxicity of the cream
leachates containing the active ingredients (Two-way ANOVA,
Bonferroni post-tests; Figure 2C). Conversely, no significant
differences were observed for the marine species P. tricornutum.

Notably, the blank cream leachate affected the growth of both
species, with a higher impact on R. subcapitata, indicating that
formulation matrix can alter algal growth.

3.2.4 Effects of sunscreen components on
zooplankton immobility and behaviour

Figure 2 shows, the percentage of immobility in A. franciscana,
A. amphitrite, andD. magna, and the percentage of swimming speed
alteration (SSA) in the two marine crustaceans (A. franciscana and
A. amphitrite) after 48 h of exposure to different concentrations of
Parsol TX (Figures 2A,C) and Aerodisp W740X (Figures 2B,D),
SSA, defined as baseline swimming behaviour of the organisms, is a
sensitive sublethal endpoint that can reveal early signs of
physiological stress or neurotoxicity, even in the absence of
mortality. No effects were recorded in marine and freshwater
crustaceans after the exposure to the solvent control used for
Parsol TX stock solution (<10% effect).

Both compounds negatively only influenced A. amphitrite
immobility (2A,B) and swimming behaviour (2C,D). Specifically,
after the exposure to Aerodisp W740X, significant percentages of
immobilization (B) and swimming speed alteration (D) were
observed in A. amphitrite from 1.41 mg/Land 14.1 mg/L,
respectively, causing 100% effect at 1410 mg/L (data not shown).
Significant ecotoxicological responses were also caused by Parsol TX
at 1 mg/Lfor immobility and SSAmg/L), although only a 40% effect was
recorded at the highest concentration (50 mg/L). No significant effects
in terms of immobility and SSA were observed inA. franciscana nauplii
and D. magna larvae (<10%) exposed to both compounds (Figure 2).

Figure 3 also shows the results of the three cream leachates on
marine (A. franciscana, A. amphitrite) and freshwater (D. magna)

zooplankton species in terms of immobility (A) and SSA (B). No
cream leachates caused significant ecotoxicological effects (<20%;
two-way ANOVA, Bonferroni post-test) at any dilution tested
(16.6% and 100%).

4 Discussion

This study aimed to assess the potential ecotoxicological effects
of nano- and micro-TiO2, tested both as active ingredient alone
(Parsol TX, Aerodisp W740X) and as components of sunscreen
leachates containing the two different sizes of TiO2 (cream with
Parsol TX, cream with Aerodisp W740X). For the first time, an ad
hoc protocol simulating human immersion in the aquatic
environment was applied to simulate a realistic exposure
scenario. Additionally, to evaluate the ecotoxicological effects, we
adopted a multi-species approach integrating both standard
regulatory endpoints (mortality, immobility, growth inhibition)
and sub-acute behavioural responses. This comprehensive
approach is particularly relevant since standard assays, although
essential for regulatory frameworks, may underestimate nano- and
microparticles risk. Conversely, behavioural endpoints (e.g., altered
swimming activity in crustaceans) are increasingly recognized as
sensitive indicators of sublethal stress (Di Giannantonio et al., 2022;
Gambardella et al., 2024). As noted by Hellou (2011), behavioural
ecotoxicology may reveal pollutant effects that remain undetected by
traditional assays, especially during short-term exposures.
Therefore, our choice to include behavioural assays along with
standardized tests reflects a significant strategy in the overall risk
characterization of TiO2. Particularly, in this research,
ecotoxicological endpoints (i.e., bacterial bioluminescence and
algal growth inhibition, crustacean immobility and behaviour)
were evaluated in selected marine and freshwater species
belonging to three different levels of the aquatic food chains, to
achieve a comprehensive assessment of TiO2 toxic effects across
organizational levels.

In line with this multi-endpoint approach, the results revealed
different sensitivity across the selected assays. Regarding bacteria, no
significant inhibition of bioluminescence was observed after
exposure to either nano- or micro-sized TiO2 (effect <20%;
Supplementary Figure S1), as demonstrated by Heinlaan et al.
(2008) who reported a median toxic effect only at high
concentrations (EC50 > 20 g/L). Similarly, Lopes et al. (2012)
found that 6 nm and ~100 nm particle size TiO2 did not exert
inhibitory effect in A. fischeri. Although bacterial bioluminescence
test is widely adopted in ecotoxicological assessments due to
inclusion in some international regulations, its sensitivity appears
limited in specific contexts. As highlighted by Fekete-Kertész et al.
(2017), most studies failed to detect any toxic effects of TiO2 at short
exposure time (Froehner et al., 2000; García et al., 2011; Heinlaan
et al., 2008; Strigul et al., 2009), raising concerns about the adequacy
of this assay for evaluating the acute toxicity of nanomaterials. In
this regard, the toxicity of nano- and micro-sized TiO2 was also
assessed by using longer exposure times, by applying bioassays on
aquatic crustaceans (48 h) and algae (72 h). Regarding
phytoplankton, both Aerodisp W740X (nano- TiO2) and Parsol
TX (micro- TiO2) induced concentration-dependent growth
inhibition in freshwater and marine algae (Figure 1). However,
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Parsol TX exhibited higher toxicity, as shown by its lower
EC50 values (0.018 mg/L for R. subcapitata, 0.38 mg/L for P.
tricornutum). Although micro-TiO2 was coated with silica and
dimethicone to improve its safety (Trivedi et al., 2025), in our
study this coating may have contributed to the increased toxicity
observed in algae. These results highlight the relevance of
considering surface treatment, alongside particle size and UV
filter concentrations, when evaluating the environmental risks of
TiO2-based sunscreens. These findings align with those reported by
Sendra et al. (2017), who also observed, based on EC50 values, a
higher toxicity of microsized TiO2 compared to nanosized TiO2 in
the freshwater alga Chlamydomonas reinhardtii. Nano- TiO2 is
known to induce exo-polymeric substances (EPS) production,
which could reduce its bioavailability by promoting
agglomeration, limiting particle-cell contact, and trapping
particles outside the cell (Khan et al., 2011). This mechanism
could explain the reduced toxicity of nano-TiO2 compared to the
micro- TiO2 observed in this study. This low toxicity is in line with
the findings of Wang et al. (2016), who reported an EC50 of

167.7 mg/L and a LOEC of 20 mg/L, as similar high effective
concentrations (141 mg/L and 14.1 mg/L) were also identified in
both algal species in our research. However, these results regarding
n-TiO2 differ from most previous findings, which have reported
markedly higher toxicity levels, often with EC50 values in the range
10–100 mg/L in various marine and freshwater algal species (Aruoja
et al., 2009; Hartmann et al., 2010; Miller et al., 2012; Clément et al.,
2013; Li et al., 2015). Several studies have attempted to demonstrate
the mode of action through which TiO2 could inhibit algal growth.
One of the main ones concerns oxidative stress, in particular lipid
peroxidation, with high levels of malondialdehyde (MDA),
superoxide dismutase (SOD) and catalase (CAT) (Ma et al., 2013;
Melegari et al., 2013). After exposure to nano-TiO2, Lin et al. (2012)
reported a significant increase in MDA levels in Chlorella sp. In
Karenia brevis, a severe reactive oxygen species (ROS) generation led
to significant damage to intracellular organelles and the cell
membrane, ultimately impairing algal growth (Li et al., 2015). On
the other hand, Wang et al. (2008) highlighted the ‘shading effect’
caused by particle aggregation, which could reduce both the

FIGURE 3
Immobility (A) and swimming speed alteration (B) in marine crustaceans A. franciscana, A. amphitrite and in the freshwater crustacean Daphnia
magna after 48h exposure to 16.6% (diluted; horizontal line bar) and 100% (undiluted; vertical line bar) leachates of cream blank (without active
ingredient), cream with cream with Parsol and Aerodisp W70X. No asterisk indicates no statistical significance (Two-way ANOVA, Bonferroni post-tests).
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availability of active sites and the specific surface area. Furthermore,
Schwab et al. (2011) provided evidence that micro and nano-TiO2

particles could penetrate algal cells and adhere to chloroplasts,
thereby interfering with light absorption by chlorophyll and
ultimately impairing photosynthetic activity and growth. In
addition, TiO2 can also adsorb essential nutrients such as zinc
and phosphorus from the growth medium, thereby reducing their
bioavailability to algae (Kuwabara et al., 1986).

In several algal species, a severe reactive oxygen species (ROS)
generation due to photoactivation (i.e., light, UV irradiation) led to
significant damage to intracellular organelles and the cell
membrane, ultimately impairing algal growth (Li et al., 2015; Roy
et al., 2016; Baniamerian et al., 2020). On the other hand,Wang et al.
(2008) highlighted the ‘shading effect’ caused by particle
aggregation, which could reduce both the availability of active
sites and the specific surface area. Furthermore, Schwab et al.
(2011) provided evidence that micro and nano-TiO2 particles
could penetrate algal cells and adhere to chloroplasts, thereby
interfering with light absorption by chlorophyll and ultimately
impairing photosynthetic activity and growth. In addition, TiO2

can also adsorb essential nutrients such as zinc and phosphorus
from the growth medium, thereby reducing their bioavailability to
algae (Kuwabara et al., 1986). The different toxicity found in the
algae exposed to nano- or micro-sized TiO2 could be ascribed to all
these mechanisms (i.e., photoactivation, shading effects) since a
photoperiod was used; further investigations are required to
elucidate the main factors contributing to algal toxicity.

Regarding zooplankton, two crustaceans out of three (A.
franciscana, D. magna) were not affected - in terms of acute
and behavioural responses - by nano and micro-TiO2 active
ingredients or incorporated into creams by any concentrations
(Figures 2, 3). Generally, A. franciscana and D. magna are
considered among the most tolerant aquatic invertebrates to a
wide range of environmental contaminants (Pinto and Zanette,
2023; Al-Shidi and Sulaiman, 2024). Our findings are in line with
previous studies reporting the absence of toxic effects of nano-
TiO2 in these aquatic invertebrates. Specifically, Ates et al. (2013)
and Heinlaan et al. (2008) observed no toxic effects in A.
franciscana and D. magna, respectively. To the best of our
knowledge, no data on the effects of micro- and nanosized
TiO2 on A. amphitrite nauplii are currently available in the
literature. This makes the present research the first study ever
carried out on this species. Thus, A. amphitrite was the only species
to exhibit significant sensitivity to both compounds. TiO2 is known
to induce strong ROS production in crustaceans, which could
compromise membrane integrity through lipid peroxidation. This
oxidative stress may subsequently damage proteins and nucleic
acids, impair cellular antioxidant defenses, and ultimately lead to
cell death (Bhuvaneshwari et al., 2017; Thiagarajan et al., 2022).
Kim et al. (2010) also demonstrated that the mortality induced by
TiO2 nanoparticles was attributed to the oxidative stress, which
was indirectly related to the oxidative stress markers, such as
MDA, CAT and GSH. Oxidative stress and immune system
impairment were also found in the marine crustacean Moina
mongolica after short-term exposure to nano-TiO2 (Huang
et al., 2022).

Further investigations focusing on oxidative stress
biomarkers and molecules involved in the immune response

in barnacle nauplii will help to clarify the mechanisms
responsible for the toxicity of micro- and nano-sized TiO2

active ingredients.
To better understand the ecological relevance of our findings, we

compared the effect concentrations determined in this study with
TiO2 concentrations measured in the aquatic environments. The
latter are frequently detected in the aquatic environment at
concentrations varying between freshwater systems (6.5–86 μg/L;
Neal et al., 2011; Shi et al., 2016) and seawater (37–900 μg/L Tovar-
Sánchez et al., 2013; Labille et al., 2020). The toxic effects measured
in the present study on phyto- and zooplankton (Table 1) overlap
the environmental levels, suggesting a potential ecotoxicological risk
of TiO2 active ingredients in both freshwater and marine
ecosystems.

Due to its strong UV radiation blocking properties, TiO2 is
widely used as an active ingredient in sunscreen formulations
(Foltête et al., 2011). However, similar to other cosmetic
formulations, sunscreens can enter aquatic environments through
direct release during recreational water activities or indirectly via
treated wastewater discharged into natural water bodies. The level of
TiO2 release from topical formulations following dermal application
can vary considerably, depending on both the formulation type and
environmental conditions. In studies employing realistic exposure
scenarios, TiO2 release ranged from approximately 5% to just over
30% over a 48-h period (Botta et al., 2011). In another study,
estimated release rates ranged from 10% to 22% for cream-based
sunscreens and from 40% to 46% for milk-based formulations
applied to pig skin after 120 min of immersion in continuously
agitated water (Jeon et al., 2016). Chemical analyses revealed
generally low concentrations of Ti released in freshwater and
seawater from the tested formulations (Table 1). Considering that
the highest expected concentration of Ti, based on the amount of
cream applied (72 mg) and the declared TiO2 content in the
formulations (5%), was approximately 3.6 mg/L, the measured
values (<10 μg/L) indicate limited leaching of Ti into the
aqueous media, independently from water composition (i.e., algal
medium, freshwater, seawater). At such low concentrations, it was
not possible to determine the particle size distribution by DLS, as
also confirmed by TiO2 quantification through ICP-MS analysis.
This limitation prevented a direct evaluation of the influence of
water matrix and ionic strength on particle aggregation
and behaviour.

In this study, we report for the first time the absence of
toxicity in terms of EC50 and LC50 values-when comparing
micro- and nano-TiO2 based sunscreens to the cream blank
across all aquatic organisms. However, a significant growth
inhibition between TiO2 based-sunscreens and cream blank
was found in freshwater algae. This result cannot be ascribed
to Ti release in the aquatic medium, since a similar Ti content was
measured in all samples at low levels (<9 μg/L; Table 1). Thus, the
significant effect found in freshwater algae rather than in marine
ones may be due to the behaviour of TiO2 in the two different
aquatic environments. Indeed, several studies report the
aggregation of TiO2 in both freshwater and seawater (Brunelli
et al., 2013; Gambardella et al., 2024); nevertheless, based on a
comparison of these studies, aggregation in seawater appears to
lead to larger agglomerates due to its higher ionic strength. These
findings could explain the highest toxicity observed in freshwater
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algae, as low aggregation in freshwater could increase the
bioavailability of TiO2 and consequently, lead to stronger
growth inhibition.

All zooplankton species exhibited low sensitivity to the cream
leachates, with no significant effects observed on immobility or
swimming behaviour. These observations further support the
hypothesis that Ti, after being incorporated into a formulation
and released at environmentally relevant concentrations, exerts
lower ecotoxicological pressure on zooplankton compared to the
active ingredient alone.

5 Conclusion

Here, we propose a leachate-based methodology for sunscreens
combined with a multi-species and multi-endpoint ecotoxicological
approach to evaluate the toxicity of TiO2. For the first time an ad hoc
protocol simulating a realistic exposure scenario based on human
immersion in an aquatic environment was applied, thereby
enhancing the environmental relevance of the testing conditions
and addressing a critical gap in the assessment of contaminants
released from consumer products. Our results demonstrate the
toxicity of UV filters as micro- and nano-TiO2 active ingredients
towards marine and freshwater zooplankton, whereas no significant
effects were observed for the sunscreen formulations. Considering
the potential toxicity of the active ingredients, future studies should
also address phototoxicity. Since the specificity of toxicity is linked
to sunscreen design and realistic exposure conditions, in our
research we considered the toxicity of individual active
ingredients as well as that of the cream formulations. The latter
were tested using a protocol specifically designed to reproduce
realistic environmental exposure, where effective concentrations
are generally much lower due to dilution. This finding highlights
the importance of evaluating both ingredient-specific toxicity and
formulation design to better predict ecotoxicological effects in real-
world scenarios. Beyond regulatory implications, these findings also
align with the One Health perspective, recognizing the
interconnectedness between human wellbeing, environmental
protection, and ecosystem health. In this context, the cosmetic
industry is increasingly integrating environmental safety into
product innovation, a particularly relevant aspect for sunscreens
that may be directly released into marine water. Our work therefore
not only addresses a scientific and regulatory gap but also supports
the broader shift towards sustainable and environmentally
responsible cosmetic formulations.
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