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The growing deployment of |oT devices necessitates reliable sensor data transfer
under diverse network conditions. This study introduces an adaptive network
switching framework to enhance data dependability across GSM, Wi-Fi, and LoRa
networks. By leveraging delay tolerant networking (DTN) principles and real-time
performance metrics, the algorithm dynamically selects the optimal channel for
transmitting sensor data—text, audio, image, and video—across urban, suburban,
and rural settings. Simulations demonstrate an average 33% improvement in
throughput, 24% reduction in latency, and 45% decrease in packet loss when
using the adaptive framework compared to standalone networks. The adaptability
score averaged 0.7 in rural scenarios, with peak performance scores reaching
1,000 for video data at night. A beehive monitoring case study validates these
results in real-world conditions. This work contributes a robust, adaptable
solution for sensor data optimization in loT applications.

KEYWORDS

GSM, Wi-Fi, LoRa networks, delay tolerant networking (DTN), sensor data, text,
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1 Introduction

The rapid proliferation of Internet of Things (IoT) devices has led to an exponential
surge in sensor installations across a range of industries, including agriculture, healthcare,
and environmental monitoring Mylonas et al. (2021). These sensors collect vital data that is
necessary for real-time monitoring and decision-making Al-Fuqaha et al. (2015). However,
dynamic network elements including physical obstacles, signal interference, and fluctuating
network coverage provide significant challenges for sensor data transmission, leading to
delays, greater latency, data loss, and inaccurate data transfer Soro and Heinzelman (2009).
This inconsistency may have a substantial impact on critical applications where timely data
is required for efficient operations, like precision agriculture, environmental monitoring or
remote patient monitoring in healthcare Nguyen et al. (2021). Therefore, it is crucial to
address the challenges of reliable sensor data transfer in various network scenarios to fully
exploit the potential of IoT technologies Fuller et al. (2020).
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Despite  significant advancements in communication
technology, the existing literature demonstrates an inadequate
level of understanding of the optimal integration of many
network technologies, including the Global System for Mobile
Communications (GSM), Wireless Fidelity (Wi-Fi), and Long
Range (LoRa), to offer reliable sensor data transfer Jouhari et al.
(2023). Most studies focus on single technologies or predefined
combinations  without accounting for changing network
circumstances or user needs Kloza et al. (2025). Moreover, there
are not many comprehensive frameworks that effectively manage
switching between diverse networks using the ideas of Delay
Tolerant Networking (DTN) Rodrigues (2020). The development
of an adaptive network architecture that can dynamically select the
optimal communication channel based on network conditions and
real-time performance data is necessary to fill this research gap
Akyildiz et al. (2020).

By integrating GSM, Wi-Fj,

technologies, the main objective of this research was to create an

and LoRa communication

efficient adaptive network switching algorithm that permitted
reliable and smooth sensor data transfer. To do this, it was
necessary to first analyze the performance of individual
technology using real-time communication metrics to create a
baseline for comparison Akpakwu et al. (2017), then design and
implement an adaptive switching algorithm that used a combination
of predefined performance metrics such as throughput and latency
to dynamically choose the best communication technology Lim et al.
(2020), assess the algorithm’s performance under different network
conditions using real-time metrics from empirical research Marsch
et al. (2018), and validate the algorithm’s effectiveness through
comprehensive simulations and comparisons with individual
network performance Li et al. (2020).

This article presents unique contributions to the field of adaptive
network architectures and sensor data transfer. First, it incorporates
DTN store-and-forward concepts into the suggested switching
algorithm, guaranteeing data dependability during downtimes
and strong performance under sporadic connectivity Kodheli
et al. (2020). Second, before going over the adaptable switching
architecture, it offers a thorough examination of each network,
highlighting both its advantages and disadvantages. The study
concludes by quantifying the algorithm’s performance and
offering a standardized method for evaluating adaptive network
solutions in sensor data applications through the definition and use
of performance indicators such as performance score and
adaptability. When taken as a whole, these contributions open
the door for further developments in IoT communication
techniques, improving the reliability and effectiveness of sensor
data transfer in practical applications such as beehive monitoring
Namugenyi et al. (2024).

The remainder of the article is structured as follows: Section 2
discusses related work; Section 3 presents the methodology and the
proposed hybrid framework and associated equations; Section 4 discusses
the results; and Section 5 concludes and outlines future directions.

2 Related work

With the growing deployment of IoT devices across industries,
various approaches have been proposed to address the reliability and
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efficiency of sensor data transfer over heterogeneous networks.
Research in this field primarily focuses on improving data
transmission quality under different network conditions by
optimizing connectivity across multiple technologies, such as
GSM, Wi-Fi, and LoRa.

2.1 Literature review on adaptive networking

Sensor data can now be transferred in various ways due to the
increasing diversity in data volumes and heterogeneity, primarily
through communication technologies like GSM, Wi-Fi, and LoRa.
As stated by Mishra and Natalizio (2020), GSM has been widely
used for transportation and logistics applications due to its
extensive coverage and dependability, particularly in urban
areas. Research continuously demonstrates that GSM is a
reliable method of transmitting data, especially in situations
with high levels of mobility. Imam-Fulani et al. (2023) and
Adedoyin and Falowo (2020) have noted that GSM has various
data
consumption, which are crucial for sensor systems that need

drawbacks, namely, lower rates and high power
constant data flow.

In comparison, Wi-Fi provides significantly faster data rates and
is commonly used in settings with reliable power sources and strong
infrastructure. According to Wang et al. (2020), Wi-Fi works well for
applications that need a lot of bandwidth, such as streaming videos
and transferring big datasets. The features of Wi-Fi make it perfect
for these kinds of jobs, as demonstrated further by Lim et al. (2020).
However, Zhou et al. (2021) pointed out that Wi-Fi’s reliance on
fixed infrastructure poses serious problems, especially in rural or
outdoor areas where it is harder to maintain a steady connection.
Furthermore, according to Uwaechia and Mahyuddin (2020), Wi-Fi
networks may encounter congestion and interference, which could
result in decreased dependability, especially during periods of
high usage.

In the meantime, LoRa has become a promising technology for
long-range, low-power communication, particularly for Internet of
Things applications. According to De Alwis et al. (2021), LoRa’s
special spread spectrum modulation makes it possible to
communicate over great distances with little power consumption,
which makes it perfect for uses like environmental monitoring and
smart agriculture. The promise of LoRa has been emphasized by
Pagano et al. (2022) in situations where devices need to function
over wide distances and have long battery lives. But as Daousis et al.
(2024) point out, applications that require quicker data transmission
may find that LoRa’s comparatively low data rate is a barrier.
Furthermore, LoRa’s wider use in hybrid communication systems
is constrained by the lack of a standardized framework for
integrating it with other communication technologies, according
to Jouhari et al. (2023).

Recent developments in adaptive networking are being
investigated as a solution to these individual constraints.
Concepts like network slicing and cognitive radio, which enable
devices to switch between various communication channels based
on interaction with the surrounding environments, have been
covered by Akyildiz et al. (2020) and Pham et al. (2020). These
methods demonstrate the increasing emphasis on creating flexible
solutions that may leverage the advantages of many communication
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technologies, improving the dependability of data transport across
heterogeneous and diversified networks.

2.2 Limitations of standalone networks

Even if the technologies under discussion have advanced
significantly, a rigorous examination of previous research and
methodologies identifies a number of flaws Budhwar et al.
(2023).  Without possible
integration, many studies tend to concentrate on separate

considering  the advantages of
performance assessments of every communication technology
Tataria et al. (2021). For example, research that compares GSM
and Wi-Fi independently ignores situations in which hybrid
solutions might offer higher reliability De Lima et al. (2021).
Also, integration with other networks, which could lessen LoRa’s
inherent data rate constraints, is frequently overlooked in studies on
the technology.

Furthermore, the methods used in previous studies usually
overlook the dynamic character of network situations by
depending on static performance indicators Wang et al.
(2022).
switching between networks adaptively based on real-time

Assuring data transfer dependability requires
performance, which is hampered by this restriction Gill et al.
(2022). Additionally, a lot of research fails to sufficiently
address the difficulties caused by sporadic connectivity,
which is typical in practical implementations. Compounding
these problems is the absence of comprehensive frameworks
that integrate DTN ideas Rodrigues (2020) into adaptive

network topologies.

2.3 Research gap

The literature reveals a significant research gap in the integration
of several network technologies for reliable sensor data transfer
Dwivedi et al. (2022). Although particular networks have been the
focus of earlier research, comprehensive strategies that dynamically
adjust to changing network circumstances and user needs are
lacking. By creating an adaptive network switching method that
integrates GSM, Wi-Fi, and LoRa technologies to improve data
transfer reliability, this study seeks to close this gap [De Lima et al.
(2021); Wang et al. (2022); Gill et al. (2022)]. By including real-time
performance measurements, the suggested architecture ensures
optimal data transfer by allowing devices to move between
networks according to the current conditions. This research
improves data transfer reliability and offers a scalable solution for
a variety of IoT applications starting with our beehive monitoring
scenario by incorporating DTN store and forward concepts
Rodrigues (2020).

3 Methodology

This chapter outlines the methodology used to develop,
simulate, and evaluate the adaptive network switching algorithm
for efficient sensor data transfer across GSM, Wi-Fi, and LoRa
networks. The methodology includes the conceptual framework for
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adaptive switching, the simulation environment, data parameters,
and evaluation metrics.

3.1 Conceptual framework

By leveraging the unique advantages of each technology—Wi-
Fi’s high data rates for bandwidth-intensive data (e.g., video and
images), GSM’s extensive coverage and reliability for mobile
scenarios, and LoRa’s low-power, long-range capabilities for
remote areas—the proposed framework combines GSM, Wi-Fi,
and LoRa networks to optimize beehive monitoring applications.
The adaptive network architecture, shown in Figure 1, integrates
an adaptive switching algorithm that assesses area type, time
of day, and network parameters, such as throughput, latency,
packet loss, signal strength and power measurement at the
implementation stage.

The best
communication channel, improving data transmission reliability,

adaptive algorithm dynamically selects the
reducing latency, and maximizing throughput. This optimization
raises the Performance Score and Adaptability Score, enhancing the

effectiveness of beehive data collection and monitoring.

3.2 Simulation setup

The simulations were executed using Python and network
simulation libraries, incorporating real-time parameters for each
network. Table 1 outlines the parameters used for modeling each
network technology in a controlled environment.

The following components were used.

e LoRa Grove E5 Module: The LoRaWAN protocol is used by
this module Hochenbaum et al. (2013), which offers low
power consumption and long-range communication
capabilities. Applications needing long battery life and
long-distance transmission of tiny data packets are best
suited for the Grove E5.

e Wi-Fi 802.11: In places with well-established infrastructure,
the Wi-Fi network Engst and Fleishman (2003) offers
dependable connectivity and high data speeds thanks to
its operation under the TCP/IP protocol. To evaluate Wi-
Fi’s performance, the simulations took into account a
number of scenarios, including network congestion and
interference.

e GSM 800L Module: The GSM 800L Nain and Vipparthi
(2020) offers dependable data transfer and wide coverage in
urban settings, operating on the TCP/IP protocol. The effects
of signal intensity and mobility on data transmission

performance were examined using simulations.

Three different region types—rural, suburban, and urban—were
examined in the network topology design to ensure thorough
performance evaluation in a range of environmental situations.
During the simulations, four different kinds of sensor data were
also sent: text, audio, pictures, and video. The performance
characteristics of each data type were evaluated to determine how
they impact the overall performance of the network.
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Adaptive Network Conceptual Diagram for Beehive Data Collection
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Conceptual Framework for Adaptive Network in Beehive Monitoring Applications—This diagram illustrates the integration of GSM, Wi-Fi, and LoRa
within an adaptive switching framework. The framework dynamically evaluates throughput, latency, and packet loss to ensure efficient data transfer

across varying environments.

To reflect the changes in network performance brought on by
density,
simulations were run at various times of day, notably early

environmental conditions, user and interference,
morning, midday, late afternoon, and night. When paired with
the adaptive switching algorithm, this integrative approach made
it possible to thoroughly analyze the advantages and disadvantages

of each network technology.
3.3 Switching algorithm

The adaptive network switching algorithm, illustrated in Figure
2, facilitates seamless transitions among GSM, Wi-Fi, and LoRa to
enhance data transfer reliability. Key components include.

e Decision Criteria for Switching: The system selects the optimal

network based on real-time metrics, such as throughput,

Frontiers in The Internet of Things

latency, and signal strength. For example, the algorithm
may favor Wi-Fi under ideal conditions if latency is a priority.
e DTN (Delay Tolerant Networking) Implementation: By
incorporating DTN  store-and-forward principles, the
algorithm ensures consistent data transfer even during
sporadic connectivity, buffering data until a reliable

connection is restored.

3.4 Performance metrics

The performance of the adaptive network switching algorithm is
evaluated using the following metrics.

3.4.1 Performance score (PS)
This metric assesses the overall efficiency of data transmission
and is calculated based on the following pseudo code:
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FIGURE 2
Flow Diagram for the Adaptive Network Switching

Algorithm-The figure shows the decision-making process of the
switching algorithm. Networks are chosen dynamically based on
performance metrics (throughput, latency, packet loss) and DTN
store-and-forward mechanisms ensure reliability under intermittent
connectivity

def calculate performance score (metrics:
Dict [str, float]) -> float:

#

packet loss

throughput =metrics [“throughput”] /1000000 #

Convert to Mbps

Normalize throughput, latency, and

latency #

metrics([“latency”]

Measured directly
packet loss =metrics[“packet loss”] # Packet
loss as a percentage

# Calculate performance score with
balanced weight
Frontiers in The Internet of Things
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performance score = throughput - latency -

packet loss

return performance_score

In this code.

- Throughput measures the amount of data successfully
transmitted over a defined period and is normalized to Mbps.

- Latency is the time taken for data to travel from source to
destination, measured directly in milliseconds.

- Packet Loss represents the percentage of packets lost during
transmission.

By normalizing these values, the Performance Score provides a

comprehensive measure of data transmission efficiency.

3.4.2 Adaptability score (AS)
This metric, as shown in Equation 1, measures the system’s ability
to maintain performance when facing dynamic conditions from a
combination of Shannon’s Channel Capacity Theorem, Queueing
Theory and Latency Modeling, Control Theory and Optimization,
Multi-Objective Optimization, Empirical Modeling and Machine
Learning Lu (1999), Moore et al. (1977), Boyd et al. (1994), Deb
and Kalyanmoy (2001), and Ahmed et al. (2010). The weights w;, w,,
ws and wy in the equations are a result of optimization criteria
different metrics (i.e., channel switching frequency, data rate, error
rate, throughput, and latency) combined and balanced for maximum
adaptability, reflecting a control-theoretic approach to system
optimization. Adjusting the weights allows for prioritization based
on the specific network scenario. The general adaptability score as in
Equation 1 is calculated as a normalized summation of the product of
weights w; and each term f; corresponds to individual metrics for
each case described in Table 2 and Equations 2—4.
4
AS =Y wif; (1)
i=1
where w; represents the weight of each factor, and f; corresponds
to specific metrics as defined in the equations that follow.

3.4.3 Wi-Fi network adaptability measurement
The Wi-Fi network adaptability Andrews et al. (2014) is based
on the following criteria.

e Channel Switching Efficiency: The ability of the network to
efficiently switch channels to avoid interference and optimize
performance.

e Data Rate Performance: The network’s ability to maintain a
good data rate under varying conditions, considering both
average data rate and maximum achievable data rate.

e Error Resilience: The network’s ability to handle transmission
errors effectively.

The Measurement Metrics include.

e Channel Switch Frequency: How often the network switches
channels to avoid interference.

e Average Data Rate: The average rate at which data is transmitted.

e Max Data Rate: The maximum achievable data rate for
the network.

e Error Rate: The percentage of data packets that are corrupted
during transmission.
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TABLE 1 Real-time simulation modeling parameters for Wi-Fi, GSM, and LoRa networks.

10.3389/friot.2025.1520653

Parameter Wi-Fi (802.11) GSM (800L) LoRa (grove E5)
Antenna Gain (dB) 5 5 2
Average Data Rate (bps) 500,000 2,400 3,000
Base Power Consumption (W) 0.5 0.5 0.02
Channel Switch Frequency (Hz) 1 1 0.01
Distances Tested (m) 2-500 m 2 to 10,000 m 2 to 10,000 m
Frequency Band (MHz) 2,400 900 868

Latency Coefficients

U: 0.12, S: 0.18, R: 0.25

U: 0.15, S: 0.2, R: 0.25 U: 0.3, S: 0.35, R: 0.4

Max Data Rate (bps) 1,000,000 9,600 50,000

Max Packet Size (bytes) 2 MB 1 MB 255 bytes

Max Throughput (bps) 600 Mbps 171.2 kbps 50 kbps
Modulation Technique OFDM GMSK LoRa Modulation (CSS)
Noise Floor (dBm) -95 -95 -120

Packet Loss Coefficients

U: 0.03, S: 0.015, R: 0.007

U: 0.03, S: 0.015, R: 0.005 U: 0.02, S: 0.015, R: 0.01

Packet Sizes (Audio) 64 KB 128 KB 150 bytes
Packet Sizes (Image) 512 KB 500 KB 255 bytes
Packet Sizes (Text) 1 KB (1,024 bytes) 0.5 KB (512 bytes) 100 bytes
Packet Sizes (Video) 2 MB 1 MB 255 bytes
Target Latency (ms) 100 150 1,000
Transmit Power (dBm) 20 20 14
U-Urban, S-Sub-Urban, R-Rural.
TABLE 2 Network switching patterns.
Switching Initial network Switched to network Counts
1 GSM 800L WiFi 802.11n 288
3 LoRaGrove E5 with LoRaWAN WiFi 802.11n 288
4 WiFi 802.11n LoRaGrove E5 with LoRaWAN 288
0 GSM 800L LoRaGrove E5 with LoRaWAN 240
2 LoRaGrove E5 with LoRaWAN GSM 800L 240

e Throughput-WiFi: The actual data transfer rate experienced

on the WiFi network.

e Latency-WiFi: The time it takes for data packets to travel from

source to destination on the WiFi network.

The adaptability for Wi-Fi is given by:

ASwip = w; - (

(AverageDataRate
MaxDataRate

1
ChannelSwitchFrequency) "

w,

) + ws - (1 — ErrorRate) + w,

Throughput,,,. TARGETLATENCY
10° Latencyyys;

Frontiers in The Internet of Things

3.4.4 GSM network adaptability measurement
For GSM, the adaptability score Bug et al. (2003) depends on the
following criteria.

e Handover Efficiency: The ability of the network to

successfully transfer a call between cells without
interruption.

e Modulation Efficiency: The ability of the network to adjust
modulation schemes to optimize data rate and robustness
based on signal conditions.

e Signal Quality: The strength and quality of the signal received

by the device.

The Measurement Metrics include.
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e Handover Success Count: The number  of
successful handovers.

e Total Handover Count: The total number of
attempted handovers.

e Modulation Change Efficiency: The frequency of modulation
changes and their impact on performance.

e Max Modulation Efficiency: The highest achievable
modulation efficiency for the network.

e Average Signal Quality: The average strength and quality of
the received signal.

e Throughput-GSM: The actual data transfer rate experienced
on the GSM network.

e Latency-GSM: The time it takes for data packets to travel from
source to destination on the GSM network.

The adaptability score for the GSM network (ASgsm) is
calculated as follows:

ASgsm = wy -
Gsm = W <TotalHandoverC0unt

ModulationChangeEfficiency
. - - +ws
MaxModulationEfficiency

HandoverSuccessCount>
2

- AverageSignalQuality + w,

Throughput,,;, TARGETLATENCY
10° Latency gy

3.4.5 LoRa network adaptability measurement
For LoRa, key adaptability criteria Talavera et al. (2017) include.

e Spreading Factor Optimization: The ability of the network to
adjust the spreading factor (a parameter affecting data rate and
range) to optimize transmission for a given scenario.

e Frequency Hopping Efficiency: The ability of the network to
hop between frequencies to avoid interference.

e Network Stability: The network’s ability to maintain reliable
communication over time.

The Measurement Metrics Include.

e Spreading Factor Adjustment Frequency: How often the
network adjusts the spreading factor.

e Max Spreading Factor Changes: The maximum number of
spreading factor changes allowed within a specific time-frame.

e Frequency Hopping Efficiency: How effectively the network
changes frequencies to avoid interference.

e Max Frequency Hops: The maximum number of frequency
hops allowed within a specific time-frame.

e Network Stability Index: A metric indicating the overall
stability and reliability of the LoRa network.

e Throughput-LoRa: The actual data transfer rate experienced
on the LoRa network.

e Latency-LoRa: The time it takes for data packets to travel from
source to destination on the LoRa network.

The adaptability score for the LoRa network (ASior.) is
calculated as follows:

Frontiers in The Internet of Things
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ASLoRa =W; - (

ModulationChangeEfficiency
: - : T ws
MaxModulationEfficiency

HandoverSuccessCount .
TotalHandoverCount 2

- AverageSignalQuality + w,

Throughput, .. TARGETLATENCY
10° Latency, g,

(4)

3.4.6 Adaptive network switching combination
adaptability measurement

Finally, the overall adaptability score Jin et al. (2017) for the
adaptive switching network across all communication technologies
is shown in Equation 5 and depends on the following criteria.

e Network Switching Efficiency: The ability of the network to
efficiently switch between different available networks (e.g.,
WiFi, cellular) based on performance and conditions.

e Overall Performance: The network’s performance across
different metrics (e.g., throughput, latency) considering
both the average performance across all connected
networks and the maximum achievable performance.

e Load Balancing Efficiency: The ability of the network to
distribute traffic across multiple networks to avoid congestion.

e Throughput-Adaptive: The actual data transfer rate
experienced on the adaptive network.

e Latency-Adaptive:: The time it takes for data packets to travel
from source to destination on the adaptive network.

The Measurement Metrics Include.

e Network Switching Frequency: The frequency at which the
network switches between different networks.

e Average Performance Across Networks: The average
performance metric (e.g., throughput, latency) across all
connected networks.

e Max Performance: The maximum achievable performance
metric for the adaptive network.

e Load Balancing Index: A metric indicating the efficiency of
load balancing.

The adaptability score for the Adaptive network (ASadaptive) is
calculated as follows:

SpreadingFactorAdjustmentFrequenc
ASAdaptive =Wy ( P § ) d Y> + W,

MaxSpreadingFactorChanges

FrequencyHoppingEfficiency rw
MaxFrequencyHops ’

- LoadBalancingIndex + w,

Throughput,y, ... TARGETLATENCY
1 06 LatencYAdaptive

(5)

This score reflects the algorithm’s efficiency in adapting to
network changes based on data type, area type, and
time of day.
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3.5 Assumptions

The following assumptions were made to facilitate the
simulations and ensure valid results.

e Reliable Data Transfer: It is assumed that the switching
combination of GSM, Wi-Fi, and LoRa provides reliable
data transfer during both online and offline states. The
algorithm is designed to manage data buffering and ensure
transmission when connectivity is restored using DTN’s store
and forward mechanism. Da Silva et al. (2018).

e Real-Time Performance Metrics: The simulations are based on
real-time performance metrics obtained from existing
research and empirical experiments, ensuring that the
results are representative of actual network conditions for
WiFi Hochenbaum et al. (2013), GSM Engst and Fleishman
(2003), and LoRa Nain and Vipparthi (2020).

e Weighting: The weights w;, w,, ws and wy in the equations
above represent the relative importance of each factor in
determining adaptability. These weights Jin et al. (2017)
can be adjusted based on specific use case requirements.

3.6 Validation

A comparison between the adaptive switching findings and each
network’s performance in real-time settings was done in order to
verify the simulation results. The validation procedure included.

e Benchmarking Against Real-World Data: The simulations’
performance measurements were produced using real data
from field experiments involving the GSM, Wi-Fi, Namugenyi
et al. (2024) and LoRa
Vipparthi (2020).

e Performance Analysis: The analysis evaluated the switching

technologies Nain and

algorithm’s performance in comparison to the individual
network simulations, concentrating on the performance score
and adaptability metrics. This test guarantees that the suggested
adaptive network architecture not only performs as expected but
also increases data transmission reliability in a quantifiable way.

4 Results and discussion

This section presents the simulation findings comparing the
adaptability and performance scores over three communication
networks (LoRa, GSM, and Wi-Fi) in urban, suburban, and rural
locations, across different data types (text, image, audio, and video),
and during different times of day Gupta and Jha (2015). Scatter plots
are used to display the data, providing a clear comparison of the
capabilities of each network. Analysis of the adaptable switching
combination is also discussed.

4.1 Graphical results (wi-Fi, GSM, LoRa)

To provide a comprehensive, high-level comparison of the
network modules, we consolidated the results into a single scatter
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plot, presented in Figure 3. This approach allows us to visually
analyze the trade-offs between performance and adaptability for
each network across various operational conditions. The plot’s
visual encodings were designed to convey the influence of data
type, time of day, and area type. In this figure, each data point
with
distinguishing the network module and shape indicating the area

represents a specific real-time measurement, color
type. The position of each point on the graph reflects the combined
effects of data type and time of day on the measured scores.

As depicted in Figure 3, the three networks form distinct

clusters, which effectively summarize their primary characteristics:

4.1.1 Wi-Fi

The cluster for Wi-Fi is concentrated in the top-right
quadrant of the plot. This grouping signifies a strong and
consistent relationship between high performance and high
adaptability. The tight clustering of the points indicates that
Wi-Fi maintains its superior performance across different data
types, times of day, and area types, with only minor variations. We
observed its highest scores in urban and suburban environments,
as shown by the prominent blue squares and orange triangles,
while a slight decrease was noted for data-heavy formats like video
in rural areas.

4.1.2 GSM

The GSM cluster is generally positioned below the Wi-Fi cluster,
reflecting a lower overall performance and adaptability. The scatter
of points is more spread out compared to Wi-Fi, particularly for
audio and video data, which highlights the network’s greater
sensitivity to environmental and temporal factors. While GSM
demonstrates a stable and relatively high performance for low-
bandwidth applications such as text, its scores for data-intensive
formats show a notable decline, especially in rural settings and
during peak times.

4.1.3 LoRa

The LoRa cluster is distinctly located in the bottom-left
quadrant of the plot, indicating a trade-off where its
performance and adaptability scores are significantly lower
than those of Wi-Fi and GSM. This is an expected outcome
given LoRa’s design as a low-power, long-range protocol
optimized for minimal data payloads. The tight clustering of
its points confirms its suitability for text and other low-
bandwidth applications, but it also clearly illustrates its
limited capacity for high-data formats like audio and video.
While LoRa a consistent, albeit low, level of
performance in urban environments, its scores in rural

retains

locations are the poorest of all three networks.

In conclusion, this combined scatter plot provides a powerful
visual summary of each network’s strengths and limitations. It
clearly demonstrates that Wi-Fi is the optimal choice for high-
performance, high-adaptability scenarios, while LoRa is best
low-power, applications. GSM
represents a middle ground, offering a balanced solution for

suited  for long-range
general data but struggling with high-bandwidth content. This
visualization is crucial in validating our multi-criteria analysis
and guiding the logic for network switching Gupta and
Jha (2015).
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4.2 Analysis and interpretation

The evaluation of the simulation results provides important
information about each network’s advantages and disadvantages
with regard adaptability.  Significant
implications of the findings also extend to the switching

to performance and

algorithm’s effectiveness and design.

4.2.1 Wi-Fi performance and adaptability
Particularly in urban and suburban environments, Wi-Fi
continuously demonstrates excellent performance and adaptability
across the majority of data types. With only minor drops in rural
regions due to possible interference and weaker signals at greater
distances, its performance for audio and video is still adequate.

e Implications for Switching Algorithm: Because Wi-Fi
the
preference to Wi-Fi when it is available for data-intensive

consistently performs well, algorithm can give
applications (such as audio and video), particularly in urban
and suburban areas. Fallback techniques (i.e., GSM or LoRa in
our case) might be required for rural deployments,

nevertheless, in order to mitigate the performance drop.

4.2.2 GSM performance and adaptability
Particularly in rural regions, GSM has trouble transmitting voice
and video, although it does well for text and image data. Due to
congestion and network overloads, the network exhibits a more
noticeable time-of-day effect, especially during peak hours.

e Implications for Switching Algorithm: For low-bandwidth
applications like text data, the switching algorithm can use
GSM as a backup network in the event that Wi-Fi is not
available. However, when video or audio communications are
needed, particularly in rural regions, the algorithm needs to be
built to quickly switch away from GSM.

4.2.3 LoRa performance and adaptability

Compared to Wi-Fi and GSM, LoRa exhibits noticeably lower
performance and adaptability across all data types. In urban and
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suburban areas, it works well for low-data applications like text
transmission; nevertheless, in all sorts of areas, particularly rural
ones, its performance for audio and video is unsatisfactory.

e Implications for Switching Algorithm: LoRa can be used as a
last alternative, particularly in rural areas where GSM and Wi-
Fi are inconsistent or absent. Because LoRa has serious limits
when it comes to processing higher-bandwidth applications,
the switching mechanism should only give it priority for low-
bandwidth data types like text and optimized audio, image,
and video.

4.2.4 Score similarity Explanation

The similarity in scores can be attributed to the relatively minor
adjustments applied based on the time of day. In our methodology,
the time-of-day factors introduce only small variations to reflect
typical, minor fluctuations in network performance due to
environmental changes or usage patterns.

Morning: Performance is slightly boosted by 5 percent
(factor of 1.05).

Evening: A slight reduction of 5 percent (factor of 0.95).
Night: An increase of 10 percent (factor of 1.1).

Day: No adjustment (factor of 1.0).

These adjustments were intentionally conservative, providing a
controlled reflection of real-world variability without exaggerating
its impact. As a result, given the modest range of adjustments
(from -5 percent to +10 percent), the overall effect on
performance and adaptability scores remained minimal.

This outcome is supported by several factors.

e Minimal Impact of Time-of-Day Adjustments: The time-of-

day adjustments were kept modest to avoid introducing
which the
characteristics of each network. With network-specific

excessive variability, could obscure core
parameters (e.g., throughput, latency, packet loss) staying
relatively stable, these small adjustments naturally result in

minor changes in the final scores.
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Results Display for Network Switching Patterns—The frequency

of transitions between networks under varying conditions. Highlights
algorithm preference for Wi-Fi where possible, and fallback to GSM/
LoRa under constraints.

Each
communication technology inherently possesses unique

e Dominance of Network-Specific Characteristics:
performance characteristics that primarily shape the results.
The differences between Wi-Fi, LoRa, and GSM are more
impactful than the minor time-based adjustments, as each
network operates under stable conditions throughout the day.

e Environmental Stability: The networks were tested in distinct
environments—urban, rural, and suburban—with observable
differences in signal interference and network congestion
reflected in the results. Given these settings, time-of-day
factors alone had minimal impact on scores, as each area’s
overall usage patterns and peak demand influence network
performance more prominently.

To further explore the influence of time, we could consider
increasing the adjustment factors or introducing additional
environmental variables, such as traffic load (We have in the
background done optimization models for the huge data types),
which may make network performance more sensitive to peak usage
times. However, our aim was to avoid adding excessive variability
and to maintain a normal distribution of each network’s
performance characteristics. Notably, the observed differences are
more pronounced across networks rather than within the same
network at different times.

4.2.5 Overall network comparison and switching
effectiveness

The data as in Table 2 indicates that Wi-Fi is the most often used
network for the majority of applications, particularly in urban and
suburban settings when its performance and versatility are at their
peak. When other networks fail, LoRa is most suited for text or
optimized data in rural locations, whereas GSM is a backup network
for low-data applications.
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Due to its generally better performance, the switching algorithm
gives priority to.

e WiFi for high-bandwidth applications when available

o GSM for text and low-bandwidth data, particularly when Wi-
Fi is unavailable or very congested

e Both GSM and LoRa can be used to send data across distances
of more than 300 m.

e LoRa is the backup choice for text data, especially in rural
locations where neither WiFi nor GSM are practical.

The visualization in Figure 4 helps identify patterns in network
switching behavior and performance across different conditions. It
shows the frequency of switches between different networks. The
results of the adaptability test also reveal that the algorithm needs to
take into consideration the fact that performance varies throughout
the times of the day, especially for GSM, which exhibits the biggest
variations.

4.2.6 Summary

The analysis shows that by dynamically choosing the best
network depending on the type of data, time of day, and area,
the switching method can greatly enhance overall system
performance. By adjusting to the unique strengths and
weaknesses of GSM, LoRa, and Wi-Fi, the algorithm can
guarantee effective data transfer while reducing battery usage and
network congestion.

4.3 Adaptability vs. performance
(adaptive switching)

The results in Figures 5-7 above clearly demonstrate the

significant advantages of the adaptive network switching
combination over individual network types (Wi-Fi, GSM, and
LoRa), as depicted in the generated figures. By intelligently
leveraging the strengths of each underlying technology and
the

adaptive algorithm consistently maximizes both performance and

dynamically switching based on real-time conditions,

adaptability across a diverse range of data types, times of day, and
geographical regions.
Key Insights from Figures 5-7.

1. Best Performing Scenario: The figures highlight that the
Urban-Text (Night) scenario using the Combined (Switch)
network achieves the highest performance, reaching scores
close to 1,600 with adaptability nearing 1.0. This indicates
the synergistic effect of utilizing the best available network
(likely Wi-Fi’s high bandwidth in urban areas at night with less
congestion) for low-bandwidth, latency-tolerant data.

. Lowest Performance Scenario: Conversely, the LoRa network
consistently exhibits the lowest performance for video data
across all area types and times of day, with performance scores
often falling below 100. This confirms LoRa’s inherent
limitations in handling high-bandwidth, real-time video
transmission. Adaptability for LoRa in video scenarios also
tends to be low.
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FIGURE 5

Scenario 1: Urban Area-This figure illustrates the performance of the ANCA framework within a dense urban environment. In this scenario, network
signals (particularly from Wi-Fi and GSM) are generally strong and abundant. The plot would show how the algorithm effectively leverages these high-
performance networks to achieve superior adaptability and performance scores, ensuring fast and reliable data transmission under ideal conditions.

3. Performance of Suburban Areas: The adaptive switching
algorithm probably benefits from less network congestion
and better environmental circumstances in suburban areas,
which show great adaptability, especially in the late afternoon
and at night.

4. Suburban Area Dynamics: The adaptive switching algorithm shows
considerable benefits in suburban areas. The figures indicate that the
combined (switch) network maintains high adaptability (around
0.9-1.0) in suburban environments, particularly during late
afternoon and night. This suggests the algorithm effectively
utilizes GSM’s robust coverage and potentially switches to
available Wi-Fi for higher bandwidth needs when conditions allow.

5. Rural Area Performance: In rural areas, the adaptive network
demonstrates its strength in leveraging the long-range capabilities
of LoRa for low-bandwidth data (text, image) with good
adaptability (around 0.85-0.99). For higher bandwidth needs
like audio and video, the system likely switches to GSM,
providing moderate but significantly better performance (scores
in the range of 750-920) compared to standalone Wi-Fi (scores
often below 500) in these areas.

In Contrast:

e Wi-Fi Limitations (5): As illustrated in the figures, Wi-Fi
performs exceptionally well in urban settings for high-
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bandwidth data types and video),

performance scores above 950. However, its effectiveness

(audio achieving
drops significantly in suburban areas (performance scores
falling to 550-800) and becomes very poor in rural areas
(performance scores often below 450), highlighting its range
constraints. Nighttime performance in urban areas remains
strong due to potentially less network congestion.

GSM’s Consistent Coverage (6): The figures show that GSM
provides consistent coverage across all area types. In suburban
areas, GSM performance for all data types sees a notable
increase, often reaching scores between 800 and 940,
demonstrating its reliability and suitability. While not as
high as urban Wi-Fi for highbandwidth data, GSM offers a
more stable and wider-reaching solution, especially in less
densely populated areas. Even in rural areas, GSM maintains a
moderate performance level (scores between 750 and 920),
often outperforming Wi-Fi. However, it still struggles to
match the high bandwidth capabilities of urban Wi-Fi
for video.

LoRa’s Niche in Rural Low-Bandwidth Data (7): The figures
clearly indicate that LoRa excels in rural areas for low data rate
applications like text and image, exhibiting high adaptability
(above 0.90) and moderate performance (around 450-630).
However, its performance for high-bandwidth data like audio
and, critically, video, remains very low (performance scores
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Scenario 2: Suburban Area-This figure represents a suburban setting, which presents a mix of network availability and signal quality. The ANCA
framework is challenged to balance the strengths of different protocols. The plot shows how the switching algorithm adapts to this environment, perhaps
prioritizing Wi-Fi and GSM where available, but seamlessly switching to LoRa for more distant or obstructed transmissions, thereby maintaining high

scores despite moderate network variability.

consistently below 100) across all environments, confirming
its unsuitability for real-time multimedia transmission. Image
data also shows below-average performance on LoRa
compared to other networks.
Overall: The adaptive switching network consistently
demonstrates its superiority by intelligently navigating the
varying network conditions and data demands across different
area types and times of day. While Wi-Fi offers high bandwidth
in urban areas, its performance degrades significantly in suburban
and rural settings. GSM provides robust coverage and good
performance, particularly in suburban and rural areas. LoRa
excels in rural environments for low-bandwidth data due to its
long range. The adaptive network effectively combines these
strengths, ensuring optimal performance and adaptability. For
instance, even in challenging scenarios like potential congestion
for urban-video at certain times or the inherent limitations of
individual networks in specific regions, the combined system
dynamically selects the most suitable option, leading to overall
better than network
independently.  The
adaptability of the combined network, even in scenarios where
individual networks struggle, underscore its value in providing a
reliable and efficient communication solution.

results any single could achieve

consistently high  performance and
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4.4 Performance under variable conditions

4.4.1 Scores by data type, area and time of day
The analysis of performance scores in Figure 8a reveals distinct
trends. Nighttime in urban areas generally demonstrates the best
performance across most data types when the combined network
leverages Wi-Fi’s capacity. Midday can sometimes show slightly
lower scores due to potential network load. Urban settings
consistently outperform suburban and rural areas when
considering Wi-Fi’s contribution to the combined network. The
performance disparity between urban and rural areas is most
pronounced for video data when relying on standalone Wi-Fi.
Text and image data generally achieve higher performance across
the combined network, especially in urban areas. The worst
performance is consistently observed for video data on the LoRa
network in all environments. When examining adaptability scores,
text and image data tend to have higher adaptability across the
combined network, particularly in urban areas. Urban environments
show superior adaptability compared to suburban and rural areas
for the combined system. Video data often displays slightly lower
adaptability compared to text and image, especially when the
underlying network faces bandwidth constraints. Rural areas
benefit from LoRa’s adaptability for low-bandwidth data within

the combined system. The hierarchy of adaptability generally
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Scenario 3: Rural Area-This figure captures the system’s performance in a rural environment, where traditional networks like Wi-Fi and GSM may be
scarce or have weak signals. The plot would highlight the crucial role of LoRa’s long-range capabilities. The switching algorithm'’s effectiveness is most
evident here, as it prioritizes the most viable network (likely LoRa) to ensure data is transmitted reliably even in the absence of robust infrastructure,

proving the system'’s resilience and adaptability.

remains: Text and Image score highest, followed by Audio, with
Video often being the lowest when network limitations are
encountered.

When examining adaptability scores in Figure 8b text and image
data types emerge with the highest adaptability, especially in urban
areas during nighttime, reflecting a strong performance trend.
Urban environments show superior adaptability compared to
suburban and rural areas, with nighttime operations generally
yielding better adaptability across all data types. Conversely,
video data displays the lowest adaptability scores, particularly
during midday, and areas show consistently low
adaptability scores across the board. The insights suggest a
hierarchy of adaptability: Text scores highest, followed by image,
audio, and video. The overall conclusion indicates that network

rural

switching proves most effective for text-based data in urban settings
at night, whereas video streaming in rural areas during midday poses
the greatest challenges for network adaptation.

4.4.2 Sensitivity analysis

A sensitivity analysis was carried out to determine the
robustness of the adaptive network algorithm, taking into
account different network conditions, data types, and times of
day to determine how they affected performance.

Frontiers in The Internet of Things

1. Network Conditions: When network circumstances changed,
the switching algorithm performed exceptionally well,
dynamically switching to the best network. For example, the
algorithm successfully preferred GSM or LoRa over Wi-Fi
during periods of high congestion, which improved latency
and decreased packet loss.

e Example: Peak Congestion (Urban-Video, Late Afternoon):
Peak Congestion (Urban-Video, Late Afternoon): The
algorithm reduced Wi-Fi congestion in urban areas in the
late afternoon by switching to GSM or LoRa. This dynamic
method prevented considerable performance reduction and
guaranteed smoother video transmission. Overall robustness
was enhanced by the adaptability score’s relative stability
during these periods.

2. Data Types: The program effectively prioritized the right
network for each sort of data, being extremely sensitive to
the type of data being transmitted. The algorithm shifted to
networks with larger data throughput capacities, such as Wi-Fi
or LoRa, for high-bandwidth applications, like video. On the
other hand, it used GSM to optimize for low-latency, smaller
data transfers for text and sensor data. Across all data kinds, the
switched to network continuously maintained balanced
performance.
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FIGURE 8

Performance and adaptability scores for different scenarios. (a) Performance Score by Datatype, Area Type, and Time of Day: Performance Score
Distribution Across Networks — Boxplot comparison of scores across data types and conditions. Highlights variability and central tendencies in
performance. (b) Adaptability Score by Datatype, Area Type, and Time of Day: Adaptability Score Distribution Across Networks — Boxplot representation
highlighting variability and error margins across environments. Offers a clearer view of adaptability spread compared to scatter representation.

e Example: Video versus Text (Rural, Night):because of its
long-range capabilities, the algorithm preferred LoRa for
video data transmission at night in rural regions, whereas
GSM was chosen for text data transmission since it allowed
for rapid and effective transfer of smaller data packets.

3. Time of Day: The adaptable algorithm responded very well to
changes in the time of day, especially in settings where network
traffic fluctuated. The system alternated more freely between
networks like Wi-Fi and GSM at times of low congestion (such
as early in the morning or late at night), maximizing data transfer
according to the load on the network. On the other hand, it
adjusted by shifting heavier data types to LoRa during peak hours,
which provided more reliable performance under pressure.

e Example: Urban Audio (Night): The algorithm preferred
Wi-Fi for audio transmission at night when Wi-Fi was less
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crowded, resulting in a better adaptability score (0.5). This
demonstrated how the system adapts to network
circumstances throughout the day by optimizing the
audio data flow and minimizing delay.

Key Sensitivity Analysis Points.

e Peak Congestion (Urban-Video, Late Afternoon): By

alternating between Wi-Fi and GSM or LoRa, the adaptable
algorithm effectively managed congestion and avoided
performance deterioration.

e Video vs Text (Rural, Night): The algorithm optimized each

based on the bandwidth and latency requirements of the data,
favoring GSM for text and LoRa for video data because of its
long-range capabilities.
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e Urban Audio (Night): With a score of about 0.5, Wi-Fi was
utilized efficiently when it was less crowded at night, resulting
in a higher adaptability for audio data.

4.4.3 Similarity in the scores

The similarity in scores can be attributed to the relatively minor
adjustments applied based on the time of day. In the methodology,
the time-of-day factors introduce only small variations to reflect
typical, minor fluctuations in network performance due to
environmental changes or usage patterns.

1. Morning: Performance is slightly boosted by 5 percent
(factor of 1.05)

2. Evening: A slight reduction of 5 percent (factor of 0.95)

3. Night: An increase of 10 percent (factor of 1.1)

4. Day: No adjustment (factor of 1.0)

These adjustments were intentionally conservative, providing a
controlled reflection of real-world variability without exaggerating
its impact. As a result, given the modest range of adjustments
(from -5 to +10 percent), the overall effect on performance and
adaptability scores remained minimal.

This outcome is supported by several factors.

e Minimal Impact of Time-of-Day Adjustments: The time-of-

day adjustments were kept modest to avoid introducing
which could obscure the
characteristics of each network. With network-specific

excessive  variability, core
parameters (e.g., throughput, latency, packet loss) staying
relatively stable, these small adjustments naturally result in
minor changes in the final scores.

Each

communication technology inherently possesses unique

e Dominance of Network-Specific Characteristics:
performance characteristics, which primarily shape the
results. The differences between Wi-Fi, LoRa, and GSM are
more impactful than the minor time-based adjustments, as
operates stable

throughout the day.

each  network under conditions
e Environmental Stability: The networks were tested in

distinct environments—urban, rural, and

suburban—with  observable differences in signal
interference and network congestion reflected in the
results. Given these settings, time-of-day factors alone
had minimal impact on scores, as each area’s overall
usage patterns and peak demand influence network

performance more prominently.

To further explore the influence of time, We could consider
increasing the adjustment factors or introducing additional
environmental variables, such as traffic load (we have in the
background done optimization models for the huge data types),
which may make network performance more sensitive to peak usage
times. However, our aim was to avoid adding excessive variability
and to maintain a normal distribution of each network’s
performance characteristics. Notably, the observed differences are
more pronounced across networks than within the same network at
different times.
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4.4.4 Summary

This sensitivity analysis highlights how well the adaptable
algorithm responds to different parameters in real time,
guaranteeing peak performance under various circumstances. The
adaptable network continuously outperformed static networks by
optimizing its network selection and switching procedures, even in
the face of difficult conditions like network congestion or fluctuating
data requirements. Results indicate that the algorithm maintains
high performance and adaptability by constantly adapting to
network conditions, data kinds, and times of day, guaranteeing

real-time data transfer that is efficient and seamless.

4.5 Case studies (beehive monitoring)

The following case studies predict the adaptive network
switching algorithm’s behavior under various conditions and
times of day for beehive monitoring in urban, rural, and
suburban settings. The performance results are visualized with
the y-axis representing AS and the x-axis representing PS. Larger
symbols indicate higher adaptability.

4.5.1 Urban scenario
Context: Rooftop hive monitoring in dense city infrastructure.
Findings.

e Video data demonstrated high performance (up to 1,400) and
adaptability (0.9) especially during mid-day and afternoon,

indicating  strong  support for  bandwidth-intensive
applications.
e Audio and image data had moderate performance

(800-1,000), with slightly reduced adaptability.

o Text-based sensor data scored under 400 in early morning and
night, reflecting lower network efficiency for low-bandwidth
tasks at off-peak hours.

4.5.2 Rural scenario
Context: Remote hive locations with sparse infrastructure.
Findings.

e Video data retained moderate to high adaptability (scores of
800-1,200 and adaptability 0.4-0.7), especially in late
afternoon and evening.

e Audio and text data consistently underperformed (;600),
suggesting GSM and LoRa networks struggle with low-data-
rate communication at long range.

4.5.3 Suburban scenario
Context: Mixed-use environments with occasional video
streams and frequent sensor monitoring.
Findings.
e Video adaptability remained stable (scores 600-900,
adaptability 0.4-0.6) in mid-day hours.
e Sensor and image data scored moderately (400-800), while
audio data lagged slightly (below 500), particularly at night

and early morning.
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4.5.4 General performance trends

e Video data consistently outperforms other types across all
settings, benefiting most from the adaptive algorithm’s
dynamic switching, particularly in urban regions.

e Sensor and text data struggle during early morning and night
across all environments, suggesting the need for optimization
in handling low-bandwidth communication during

these periods.
e Urban settings enjoy enhanced adaptability thanks to robust
Wi-Fi and GSM infrastructure, while rural areas depend

heavily on LoRa, which exhibits greater variability.

Summary Insight: The adaptive switching algorithm is most
effective for high-bandwidth data like video, particularly in urban
settings. Suburban and rural areas can benefit from additional
optimization strategies, especially for sensor and text-based
communication.

4.6 Field testing and validation

The Adaptive Network Communications Architecture (ANCA)
was tested in three real-world environments: urban, suburban, and
rural. Field data was collected at varying distances, capturing
throughput, latency, packet loss and Power in Watts. The results
demonstrate that the adaptive switching algorithm significantly
performance  compared  to
module. In
adaptability score (AS) and power measurements were consistent

improves using a  single

communication particular, improvements in

with simulation predictions.

4.6.1 Validation and analysis of the adaptive
network switching results

The real-world results validate the effectiveness of the adaptive
switching algorithm. Compared to single network deployments, the
adaptive approach consistently maintained higher performance and
adaptability scores across all environments. These improvements
confirm that the simulation models are representative of actual
deployments, with the adaptive mechanism compensating for
weaknesses in individual networks.

4.6.2 Real-world performance validation

To rigorously validate the real-world performance of our
proposed solution and its correlation with simulation outcomes,
we conducted a scenario-based analysis across three key
performance indicators: Performance Score (PS), Adaptability
Score (AS), and Power Consumption. This validation moves
beyond global correlation coefficients, providing a granular
assessment of system behavior under realistic conditions.

4.6.2.1 Validation results

The results are visualized in Figure 9, which consolidates the
findings into a three-panel grouped bar chart. Each panel
corresponds to one metric (PS, AS, or Power Consumption),
plotted across representative real-world scenarios (Urban,
Suburban, and Rural) and networks (Wi-Fi, GSM, and LoRa).
Distances were aligned with practical deployment ranges:
2-100 m (Urban), 200-500 m (Suburban), and 2-8 km (Rural).
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This design allows for a clear, side-by-side comparison of network
performance in diverse environments.

4.6.2.2 Power consumption clarification

The values of the average instantaneous power draw (W)were
derived from direct current measurements on each communication
module during sustained transmission of payloads. These results
align with the values reported in Table 3, with LoRa consistently
exhibiting the lowest power draw per transmission, while GSM
shows the highest. Any apparent discrepancies are attributable to
differences in plotting scale in earlier drafts, which have been
corrected in this version.

4.6.2.3 Data payload sizes
To ensure consistency and reproducibility, we explicitly report
the payload sizes transmitted in the real-world validation.

o Text (Temperature/Humidity readings): 512 bytes per packet
e Image (JPEG still): 50 KB per frame

e Audio (voice sample, 8 kHz, compressed): 200 KB per clip
e Video (low-resolution MP4, 240p, 10 s): 1.5 MB per segment

These payload sizes were used consistently across all three
networks, ensuring that the observed PS, AS, and Power values
are directly comparable.

4.6.2.4 Error margins and variability

Each bar in Figure 9 includes vertical black lines denoting error
margins. These margins are not statistical confidence intervals;
instead, they represent the empirically observed variability due to
real-world, uncontrolled factors such as.

e Diurnal changes in background network traffic
e Minor variations in interference, multipath fading, and
ambient environmental conditions

The bounded ranges confirm that, despite fluctuations, the
robust performance  within

fidelity of the

system  consistently  delivers

predictable limits, thereby validating the

simulation results.

4.7 Energy and software stack
considerations

Efficient energy management is critical for adaptive switching
across Wi-Fi, GSM, and LoRa, particularly when operating resource-
constrained IoT devices. The real-world test cases revealed that
while LoRa consumed the least power per transmission, GSM and
Wi-Fi offered higher throughput at the expense of energy. The
adaptive framework balances these trade-offs by dynamically
selecting the protocol that minimizes energy use while meeting
performance requirements. For example, in rural deployments
where data payloads were small, LoRa provided the most energy-
efficient option, whereas in urban settings Wi-Fi was preferable for
high-bandwidth transfers despite higher power draw.

Equally important is the software stack that enables seamless
switching between protocols. The integration of lightweight drivers,
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Comparison of WiFi, GSM, and LoRa Across Real-World Scenarios
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FIGURE 9

Validation plots with error margins (Performance Score, Adaptability Score, and Power Consumption) across Urban, Suburban, and Rural scenarios
for Wi-Fi, GSM, and LoRa. Error margins represent empirically observed performance fluctuations due to dynamic real-world factors. Power values are

average instantaneous draws (W), consistent with those in Table 3.

middleware, and cross-platform APIs ensures minimal overhead
when transitioning between GSM, Wi-Fi, and LoRa. Comparative
analysis with existing single-stack implementations shows that
ANCA’s layered approach reduced switching latency and
prevented resource contention across modules. Optimization
strategies such as buffering with DTN principles, selective wake-
up scheduling, and efficient encoding of payloads further enhanced
performance without
complexity.

Together, the energy-aware operation and efficient software

significantly increasing computational

stack design provide a critical backbone for scalable IoT systems,
ensuring that adaptive switching remains viable even under
constrained device resources.

4.8 Significance

The study’s findings have significant implications for sensor data

applications, especially in situations where real-time data
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monitoring is necessary under various network circumstances.
Key benefits include.

o Efficient Resource Utilization: The algorithm makes the best
use of the network resources by utilizing each network’s
advantages (Wi-Fi, GSM, and LoRa), increasing the overall
effectiveness of data transmission systems.

e Enhanced Reliability: A more dependable framework for real-
time monitoring is provided by the switching mechanism,

data
unhindered despite network irregularities.

o Scalability: The adaptable network combination can be used in a
number of fields outside beehive management, including smart
city applications, agriculture, and environmental monitoring.

which guarantees that transmission ~ continues

This framework’s ability to enhance the performance of real-
time sensor data systems can drive innovation in various IoT
applications, particularly where robust, uninterrupted data flow
is critical.
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TABLE 3 Summary comparison results for real-world test case scenarios.

10.3389/friot.2025.1520653

Distance P.S (%) A.S (%) Power (W)
Urban
Wi-Fi 2m 83.00 89.25 435
Wi-Fi 100 m 2575 35.75 3.85
GSM 2m 76.25 82.00 6.40
GSM 100 m 64.25 68.25 5.90
LoRa 2m 9425 97.50 3.50
LoRa 100 m 89.25 94.50 3.30
Adaptive 2m 90.00 95.00 4.80
Adaptive 100 m 73.75 78.75 450
Suburban
Wi-Fi 200 m 2.69 6.50 335
Wi-Fi 500 m 0.00 0.00 3.00
GSM 200 m 50.75 55.75 543
GSM 500 m 37.50 4250 493
LoRa 200 m 83.50 89.50 320
LoRa 500 m 73.25 79.50 3.05
Adaptive 200 m 59.50 64.50 6.00
Adaptive 500 m 4375 48.75 550
Rural
Wi-Fi 2 km 0.00 0.00 3.00
Wi-Fi 8 km 0.00 0.00 3.00
GSM 2 km 2525 30.00 443
GSM 8 km 7.75 12.50 3.93
LoRa 2 km 61.50 71.50 3.03
LoRa 8 km 37.75 47.75 3.00
Adaptive 2 km 61.25 7125 3.50
Adaptive 8 km 3875 48.75 3.50

4.9 Contributions to research

This research makes several key contributions to the state of the
art in adaptive IoT networking and sensor data transfer.

e Unified Multi-Network Framework: We propose a novel
adaptive communication framework that integrates GSM,
Wi-Fi, and LoRa into a single switching system,
dynamically selecting the optimal network based on real-
time performance metrics (throughput, latency, packet loss,
and signal strength). This goes beyond prior studies that focus
primarily on single technologies or fixed combinations
without adaptive switching.

e Integration of DTN Principles: The framework incorporates
Delay Tolerant Networking (DTN)  store-and-forward
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mechanisms, which enhance reliability under intermittent
connectivity. This contribution is particularly relevant for
rural and remote IoT deployments, where connectivity
disruptions are common.

Standardized Evaluation Metrics: We introduce and apply
Performance Score (PS) and Adaptability Score (AS) as
standardized indicators for evaluating adaptive network
solutions. Unlike prior work that relies on isolated
metrics, these composite measures allow a more consistent
and comparative assessment of multi-technology
frameworks.

Empirical Validation in Beehive Monitoring: Using a practical
ToT application, we validate the framework’s effectiveness in
real-world conditions. Results demonstrate a 33%
improvement in throughput, 24% reduction in latency, and
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45% decrease in packet loss compared to standalone networks,
providing strong empirical evidence of the framework’s value.

e Extending Prior Literature: Our work advances beyond
existing studies by explicitly comparing and integrating
multi-technology strategies, whereas most prior approaches
focus only on isolated technologies or static
integration models.

e Foundation for Intelligent Decision-Making: The research
highlights the potential for incorporating machine learning-
based approaches (e.g., reinforcement learning, federated
learning) into adaptive switching. Such extensions would
enable predictive, context-aware decision-making and

overcome the limitations of static threshold-based switching

algorithms.

4.10 Limitations and future work

4.10.1 Limitations

Despite the promising results demonstrated by the proposed
adaptive communication framework for sensor networks, several
limitations were identified during the course of this study.

The

conducted in a controlled simulation environment, which

e Simulation-Based Evaluation: experiments  were
may not fully capture the variability and complexity of
real-world deployment scenarios, such as electromagnetic
interference, physical obstructions, or environmental factors
Alobaidy et al. (2022).

e Simplified Power and Latency Models: Power consumption
and latency metrics were derived from theoretical or

models  rather  than
which could affect the

performance evaluation Wang et al. (2020).

simulation-based empirical

measurements, accuracy of

e Static Thresholds in Switching Algorithm: The current
network switching logic employs static decision thresholds,
limiting its adaptability to dynamic or unpredictable network
conditions Jahanbakht et al. (2021).

e Limited Scope of Network Technologies: The framework
focused on WiFi, GSM, and LoRa, without incorporating
other emerging technologies like 5G or satellite-based IoT
networks, which might be more suitable for extreme or remote
environments Kanellopoulos et al. (2023).

4.10.2 Future work

Building upon the foundation of this research, several avenues
can be explored to improve the performance, adaptability, and
scalability of the proposed architecture.

e Machine Learning-Based Decision Making: Future
implementations could benefit from integrating predictive
models using machine learning algorithms such as

reinforcement learning or neural networks Akyildiz et al.

(2020) to enable context-aware and data-driven switching

strategies.

e 5G and Satellite Network Integration: Incorporating advanced
communication systems such as 5G and low-earth orbit (LEO)

satellite connectivity can enhance the reliability and reach of
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the framework, particularly in regions with limited terrestrial
infrastructure Kanellopoulos et al. (2023).

e Real-World Deployments and Validation: Deploying the
system in actual beehive environments or similar field
applications will help validate the simulation outcomes
and provide practical insights into operational challenges,
sensor node durability, and energy constraints Zhou
et al. (2021).

e Cross-Domain  Application: The proposed system
architecture can be adapted and tested in various other
use cases, including smart agriculture, health monitoring,
industrial IoT (IIoT), and environmental sensing, where
real-time and robust data communication is essential De
Alwis et al. (2021).

e Interoperability and Standardization: Exploring mechanisms
to ensure interoperability with existing IoT frameworks and
compliance with international standards would further
enhance the adoption and scalability of the system across
different platforms Dwivedi et al. (2022).

In conclusion, while the current implementation offers a solid

groundwork for adaptive sensor network communication,
addressing the above limitations and exploring the suggested
future enhancements will significantly expand its impact and

applicability in diverse real-world contexts.

5 Conclusion

In this paper, we introduced an Adaptive Network
Communications Architecture (ANCA), a novel framework
integrating Wi-Fi, GSM, and LoRa to enhance sensor data
transmission in heterogeneous environments Alobaidy et al.
(2022). Through both simulations and real-world field tests, the
proposed switching algorithm demonstrated its effectiveness in
dynamically selecting the most suitable communication protocol
based on data type, distance, and environmental conditions Akyildiz
et al. (2020). Results consistently showed improvements in
throughput, latency, packet loss, and power consumption
compared to single-network deployments.

Our rigorous validation approach moved beyond simple
correlation coefficients to a direct, granular comparison of
implemented results. By including and analyzing the measured
error margins, we were able to demonstrate the robustness and
stability of our implemented solution in dynamic, real-world
conditions. This comprehensive validation confirms that the
system not only achieves the stated average scores but also
maintains its performance within a predictable and realistic
range, thereby providing compelling evidence that our
simulation results are a reliable predictor of the system’s
performance.

Opverall, the findings highlight the importance of adaptive multi-
protocol frameworks in ensuring robust and energy-efficient data
transfer. The ANCA architecture not only strengthens IoT
deployments in agriculture, such as beehive monitoring, but is
to other domains smart cities,

also extensible including

healthcare, and environmental monitoring. By addressing

variability across network conditions and optimizing protocol
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switching, ANCA establishes a foundation for more resilient and
scalable IoT communication systems.
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