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Introduction: Quantifying natural behavior from video recordings is a key
component in ethological studies. Markerless pose estimation methods have
provided an important step toward that goal by automatically inferring
kinematic body keypoints. Such methodologies warrant efficient organization
and interpretation of keypoints sequences into behavioral categories. Existing
approaches for behavioral interpretation often overlook the importance of
representative samples in learning behavioral classifiers. Consequently, they
either require extensive human annotations to train a classifier or rely on a limited
set of annotations, resulting in suboptimal performance.
Methods: In this work, we introduce a general toolset which reduces the
required human annotations and is applicable to various animal species. In
particular, we introduce OpenLabCluster, which clusters temporal keypoint
segments into clusters in the latent space, and then employ an Active Learning
(AL) approach that refines the clusters and classifies them into behavioral states.
The AL approach selects representative examples of segments to be annotated
such that the annotation informs clustering and classification of all temporal
segments. With these methodologies, OpenLabCluster contributes to faster and
more accurate organization of behavioral segments with only a sparse number
of them being annotated.
Results: We demonstrate OpenLabCluster performance on four different
datasets, which include different animal species exhibiting natural behaviors, and
show that it boosts clustering and classification compared to existing methods,
even when all segments have been annotated.
Discussion: OpenLabCluster has been developed as an open-source interactive
graphic interface which includes all necessary functions to perform clustering
and classification, informs the scientist of the outcomes in each step, and
incorporates the choices made by the scientist in further steps.

KEYWORDS

graphic user interface (GUI) for behavior recognition, animal behavior analysis, active
learning, semi-supervised learning, efficient behavior recognition
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1 Introduction

Analysis and interpretation of animal behavior are essential
for a multitude of biological investigations. Behavioral studies
extend from ethological studies to behavioral essays as a means
to investigate biological mechanisms (Sturm et al., 2019; Monosov
et al., 2024; Marques et al., 2018; Johnson et al., 2020; Berman
et al., 2016; Jazayeri and Afraz, 2017; Datta et al., 2019; Weber
et al., 2022; McCullough and Goodhill, 2021; Pereira et al., 2019).
In these studies, methodologies facilitating robust, uninterrupted,
and high-resolution observations are key. Indeed, researchers
have been recording animal behaviors for decades with various
modalities, such as video, sound, placement of physical markers,
and more (Taiwanica, 2000; Morrow-Tesch et al., 1998; Han
et al., 2011; Lynch et al., 2013; Nakamura et al., 2016; Buccino
et al., 2018; Bain et al., 2021). Recent enhancements in recording
technologies have extended the ability for the deployment of
recording devices in various environments and for extended
periods of time. The enhancement in the ability to perform longer
observations and in the number of modalities brings forward
the need to organize, interpret, and associate recordings with
identified repertoires of behaviors, i.e., perform classification of
the recordings into behavioral states. Performing these operations
manually would typically consume a significant amount of time
and would require expertise. For many recordings, manual
behavior classification becomes an unattainable task. Therefore, it
is critical to develop methodologies to accelerate the classification
of behavioral states and require as little involvement from the
empiricist as possible (Anderson and Perona, 2014; Dell et al., 2014;
Krause et al., 2013).

Early efforts in automatic behavior classification focused on
raw video analysis using machine learning techniques such as
convolutional neural networks (CNNs) (van Dam et al., 2020;
Jia et al., 2022; Batty et al., 2019; Brattoli et al., 2021), recurrent
neural networks (RNNs) (Stern et al., 2015; Murari et al., 2019),
temporal Gaussian mixture models Bohnslav et al. (2021), and
temporal CNNs (Marks et al., 2022). While effective in specific
scenarios, video-based methods often incorporate extraneous
background information and noise (e.g., camera artifacts), which
can undermine reliability and require considerable computational
resources due to the high-dimensional nature of video data
(Marks et al., 2022). In contrast, approaches that concentrate on
movement by utilizing body keypoints or kinematics-extracted
from video frames-can circumvent these limitations (Xu et al., 2017;
Insafutdinov et al., 2017, 2016; Sturman et al., 2020; Isik and Unal,
2023).

Markerless pose estimation techniques, such as OpenPose,
DeepLabCut, Anipose, and others (Mathis et al., 2018; Deeplabcut,
2018; Cao et al., 2019; Nath et al., 2019; Lauer et al., 2022;
Karashchuk et al., 2021), enable accurate keypoint detection
without the need for physical markers. Furthermore, numerous
related tools and approaches have also been further introduced
to advance animal pose estimation (Pereira et al., 2019; Wu
et al., 2020; Bala et al., 2020; Pereira et al., 2022; Zhang et al.,
2021; Usman et al., 2022; Ye et al., 2024). Once body keypoints
are estimated, behavioral segmentation can be achieved using
unsupervised clustering methods-such as HBDSCAN (Ester et al.,

1996; Hsu and Yttri, 2021), hierarchical clustering (Huang et al.,
2021), and the Watershed algorithm (Meyer, 1994; Berman et al.,
2014; Dunn et al., 2021)-which group similar postural states and
differentiate distinct behaviors (Marques et al., 2018; Hsu and Yttri,
2021). Dimensionality reduction techniques, including principal
component analysis (PCA) and uniform manifold approximation
and projection (UMAP), further enhance the representation of
body keypoints for effective clustering (McInnes et al., 2018; Huang
et al., 2021; Kwon et al., 2024; Hsu and Yttri, 2021; Wiltschko et al.,
2020).

Recent deep learning methods have advanced latent keypoint
representation learning through task-specific optimization, as
demonstrated by TREBA (Sun et al., 2021) and its automated
extension, AutoSWAP (Tseng et al., 2022). Contrastive learning
approaches have also been proposed to refine the latent space
by drawing together similar behavioral samples and separating
dissimilar ones (Zhou et al., 2023; Schneider et al., 2023). One of
the challenges in such approaches is the selection of appropriate
positive and negative samples which remains challenging without
human guidance. General methods such as Predict&Cluster (Su
et al., 2020) and VAME (Luxem et al., 2022) address these challenges
by focusing on sequence reconstruction and future prediction,
enabling the unsupervised clustering of behavioral patterns (Su
et al., 2020; Luxem et al., 2022; Weinreb et al., 2024).

While unsupervised clustering can identify similar behavioral
patterns (Su et al., 2020; Luxem et al., 2022; Weinreb et al.,
2024), it may not effectively identify behaviors of specific interest.
Supervised classification approaches address this limitation by
mapping behavioral segments to behavioral categories of interest,
under the guidance of annotated training data (Xu et al., 2017;
Sturman et al., 2020; Segalin et al., 2021). The classification
accuracy critically depends on both the choice of classifier
and the quality and quantity of annotations. Early success in
behavioral classification was achieved using classical machine
learning approaches (Dankert et al., 2009; Jhuang et al., 2010;
Segalin et al., 2021; Burgos-Artizzu et al., 2012; Hong et al., 2015;
De Chaumont et al., 2019; Goodwin et al., 2024; Hsu and Yttri,
2021). These have recently been supplemented by deep learning
approaches (Rousseau et al., 2000; Sakata, 2023; Zhou et al.,
2023; Ye et al., 2024; Sturman et al., 2020). Nevertheless, manual
annotation remains labor-intensive and subject to inter-annotator
variability.

To address the need for manual annotation, methods such as
SaLSa-which assigns uniform labels to pre-computed unsupervised
clusters-and JAABA-which provides an interactive framework for
correcting misclassifications-have been developed (Sakata, 2023;
Kabra et al., 2013). Active learning (AL) techniques further
streamline the process by automatically selecting samples for
annotation, balancing annotation effort with classification accuracy
(Cohn et al., 1996; Settles, 2009, 2012; Li and Shlizerman,
2020b; Tillmann et al., 2024). In particular, for behavior
recognition, A-SOiD Tillmann et al. (2024) employs AL to
prioritize samples with high prediction uncertainty for animal
behavior recognition; however, uncertainty-based selection may
inadvertently target redundant samples. Integrating clustering
information with classifier uncertainty could improve the efficiency
of sample selection.
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In this study, we extend previous methods by jointly learning
representations for AL and classifier training using pose estimated
from video recordings, e.g., keypoints estimated using DeepLabCut
(Mathis et al., 2018; Nath et al., 2019; Deeplabcut, 2018). In
particular, we introduce the OpenLabCluster toolset, an AL
based semi-supervised behavior classification platform embedded
in a graphic interface for animal behavior classification from
body keypoints. The system implements and allows the use of
multiple semi-supervised AL methods. AL is performed in an
iterative way, where, in each iteration, an automatic selection of
a subset of candidate segments is chosen for annotation, which
in turn enhances the accuracy of clustering and classification.
OpenLabCluster is composed of two components illustrated
in Figure 1: (1) Unsupervised deep encoder-decoder clustering
of behavior representation, Cluster Maps, which depicts the
representations as points and show their groupings, followed by
(2) Iterative automatic selection of representations for annotation
and subsequent generation of Behavior Classification Maps. In
each iteration, each point in the Cluster Map is re-positioned
and associated with a behavioral class (colored with a color that
corresponds to a particular class). These operations are performed
through the training of a clustering encoder-decoder [component
(1)] along with a deep classifier [component (2)]. OpenLabCluster
implements these methodologies as an open-source graphical user
interface (GUI) to empower scientists with little or no deep-
learning expertise to perform animal behavior classification. In
addition, OpenLabCluster includes advanced options for experts.

2 Results

2.1 Datasets

Behavioral states and their dynamics vary from species to
species and from recordings to recordings. We use four different
datasets to demonstrate OpenLabCluster applicability to various
settings. The datasets include videos of behaviors of four different
animal species [Mouse (Jhuang et al., 2010), Zebrafish (Marques
et al., 2018), C. elegans (Yemini et al., 2013), Monkey (Bala
et al., 2020)] with three types of motion features (body keypoints,
kinematics, segments), as depicted in Figure 2. Two of the datasets
include apriori annotated behavioral states (ground truth) (Mouse,
C. elegans), while the Zebrafish dataset includes ground truth
a priori predicted by another method, and the Monkey dataset
does not include ground truth annotations. Three of the datasets
have been temporally segmented into single-action clips (Mouse,
Zebrafish, C. elegans), i.e., temporal segments, while the Monkey
dataset is a continuous recording that requires segmentation into
clips. We describe further details about each dataset below.

2.1.1 Home-cage mouse
The dataset includes video segments of 8 identified behavioral

states (Jhuang et al., 2010). The Home-Cage Mouse dataset is
selected considering its clearly segmented videos, each with well-
defined behavioral categories. In particular, it contains videos
recorded by front cage cameras when the mouse is moving
freely and exhibits natural behaviors, such as drinking, eating,

grooming, hanging, micromovement, rearing, walking, and resting.
Since keypoints have not been provided in this dataset, we use
DeepLabcut (Mathis et al., 2018; Nath et al., 2019; Deeplabcut,
2018) to automatically mark and track eight body joint keypoints
(snout, left-forelimb, right-forelimb, left-hindlimb, right-hindlimb,
fore-body, hind-body, and tail) in all recorded videos frames.
An example of estimated keypoints overlaid on top of the
corresponding video frame from a side view is shown in Figure 2A
(top). To reduce the noise that could be induced by the pose
estimation procedure, we only use the segments for which
DeepLabCut estimation confidence is high enough. We use 8
sessions for training the models of clustering and classification
(2856 segments) and test classification accuracy on 4 other sessions
(393 segments).

2.1.2 Zebrafish
The dataset includes video footage of zebrafish movements and

was utilized in Marques et al. (2018) for unsupervised behavior
clustering using 101 precomputed kinematic features, a procedure
that identified 13 clusters which were manually related to 13
behavior prototypes (see Appendix 1.3). In the application of
OpenLabCluster to this dataset, we utilize only a small subset of
these features (16 features) and examine whether OpenLabCluster
is able to generate classes aligned with the unsupervised clustering
results obtained on full 101 features (as the ground truth). We use
5,294 segments for training and 2,781 segments for testing.

2.1.3 C. elegans
The dataset is recorded with Worm Tracker 2.0 when the worm

is freely moving. The body contour is identified automatically
using contrast to background from which kinematic features are
calculated and constitute 98 features that correspond to body
segments from head to tail in 2D coordinates, see Yemini et al.
(2013) and Figure 2C. Behavioral states are divided into three
classes: moving forward, moving backward, and staying stationary.
We use ten sessions (a subset) to investigate the application of
OpenLabCluster to this dataset, where the first 7 sessions (543
segments) are used for training and the remaining 3 sessions (196
segments) are used for testing.

2.1.4 Monkey
This dataset is from OpenMonkeyStudio repository (Bala

et al., 2020) and captures freely moving macaques in a large
unconstrained environment using 64 cameras encircling an open
enclosure. 3D keypoints positions are reconstructed from 2D
images by applying deep neural network reconstruction algorithms
on the multi-view images. Among the movements, 6 behavioral
classes have been identified. In contrast to other datasets, this
dataset consists of continuous recordings without segmentation
into action clips. We thereby segment the videos by clipping
them into fixed duration clips (10 frames with 30 fps rate)
which results in 919 segments, where each segment is ≈ 0.33
s long. OpenLabCluster receives the 3D body key points of
each segment as inputs. Notably, a more advanced technology
could be implemented to segment the videos as described
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FIGURE 1

OpenLabCluster overview. (1) Clustering: Input of body keypoints segments is mapped to low dimensional space. Unsupervised encoder–decoder
maps them to a Cluster Map. (2) Classification: AL algorithms automatically select candidates for annotation after which Cluster Map is reshaped into
the Behavior Classification Map where each point is associated with a behavioral state [Grooming (red), Hanging (blue), Rearing (blue)]. Mouse images
are reproduced from frames of videos provided in the dataset of Jhuang et al. (2010).

in Sarfraz et al. (2021). Here, we focused on examining the
ability of OpenLabCluster to work with segments that have not
been pre-analyzed and thus used the simplest and most direct
segmentation method.

2.2 Evaluation metrics

We evaluate the accuracy of OpenLabCluster by computing
the percentage of temporal segments in the test set that
OpenLabCluster correctly associated with the states given as
ground truth, such that 100% accuracy will indicate that
OpenLabCluster correctly classified all temporal segments in the
test set. Since OpenLabCluster implements a semi-supervised
approach to minimize the number of annotations for segments, we
compute the accuracy given annotation budgets of overall 5%, 10%,
and 20% labels to be used over the possible iterations in conjunction
with AL. In particular, we test the accuracy when the Top, CS,
and MI AL methods implemented in OpenLabCluster are used for
the selection of temporal segments to annotate. Method details are
provided in Section 4 and Appendix 1.3.

2.3 Benchmark comparison

We evaluated OpenLabCluster against established animal
behavior classification approaches either with or without AL

methods. For non-AL approaches, we compared against K-Nearest
Neighbor (KNN) (Cover and Hart, 1967), Support Vector Machine
(SVM) (Jhuang et al., 2010), SimBA’s Random Forest Classifier
(RFC) (Goodwin et al., 2024), and VAME with an additional
classifier (VAME+C) (Luxem et al., 2022). With respect to AL, we
compared our method to A-SOiD (Tillmann et al., 2024), which
employs RFC with selective sampling. Furthermore, we conducted
ablation studies by evaluating OpenLabCluster with decoder
removed and explored alternative architectures by integrating
VAME’s encoder-decoder (OpenLabCluster-V) with various AL
strategies (CS, TOP, and MI). Detailed experimental settings
and additional results are provided in the Benchmark Details
Section 1.1.

2.4 Outcomes

The results of evaluation consisting of 5 runs are shown in
Tables 1, 2 and further analysis in Figures 3, 4. We summarize the
main outcomes of the evaluation and their interpretation below.

2.4.1 Accuracy of classification
We observe that the accuracy of classification of OpenLabCluster

across datasets is consistently higher than standard supervised
classification methods (e.g., C, SVM, and SimBA) for almost any
budget of annotation. Specifically, for the Home-Cage Mouse
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FIGURE 2

Visualization of four animal behavior datasets. (A) Home-Cage mouse dataset (mouse); (B) C. elegans movement dataset (C. elegans); (C) zebrafish
free swimming dataset (Zebrafish); (D) OpenMonkeyStudio Macaque behaviors dataset (Monkey). The top row shows positions of extracted keypoints
for each dataset. Images sources: (A) Images are reproduced from frames of videos in the dataset of Jhuang et al. (2010). (B) Images are reproduced
from dataset of Marques et al. (2018). (C) Images are reproduced from datasets provided by Yemini et al. (2013). (D) Images are reproduced from
Figure 8 and images of Bala et al. (2020).

Behavior dataset (Table 1), OpenLabCluster achieves the accuracy
of 66.2% when just 143 (5% of 2,856) segments have been
annotated. Accuracy improves along with the increase in the
number of annotated segments, i.e., accuracy is 76.6% when 10%
of segments are annotated, and 81.5% when 20% of segments
are annotated. Compared to C-the encoder-only version of
OpenLabCluster-OpenLabCluster achieves an average accuracy
increase of approximately 12%. This improvement underscores
the importance of both the encoder-decoder structure and active
sample selection. Meanwhile, VAME+C, which incorporates an
encoder-decoder and a classifier, shows promise by reaching an
accuracy of 67.4% with only 5% annotated samples. However, it
remains less optimal than OpenLabCluster-V, which attains 74.7%
under the same annotation budget. These results further illustrate
the effectiveness of AL for accurate behavior classification with
limited labels. It should be noted that although A-SOiD also
integrates active learning for sample selection, its classifier design
and exclusive reliance on an uncertainty-based selection method
appears to limit its performance relative to OpenLabCluster
variants. Among the AL strategies TOP, CS, and MI, both CS
and MI outperform TOP on the Home-Cage Mouse dataset.
Notably, while AL is expected to be especially effective in sparse
annotation scenarios when all segments are annotated (fully
supervised scenario), the accuracy of the OpenLabCluster MI
approach exceeds supervised classification approaches (C) by 12.4%

(rightmost column in Table 1). This reflects the effectiveness of
the targeted selection of candidates for annotation and the use of
clustering latent representation to enhance the overall organization
of the segments.

For Zebrafish and C. elegans datasets, OpenLabCluster
consistently achieves higher accuracy, except when 100% of the
C. elegans dataset is annotated, demonstrating its generalizability
across various animal behavior datasets. When compared to its
encoder-only variant (C), OpenLabCluster exhibits an accuracy
improvement of approximately 7.8% on the zebrafish dataset
and approximately 2.2% on the C. elegans dataset. These gains
are less pronounced than those observed on the Home-Cage
Mouse dataset. These could be associated with not having
manually identified ground truth behavior states for Zebrafish
and having only three classes for the C. elegans dataset which
is a simpler semantic task that does not challenge classifiers.
We can indeed observe that when all annotations are considered
ins C. elegans dataset, all approaches perform well (above
92%) and a standard classifier achieves the best accuracy. In
contrast to the results observed with the Home-Cage Mouse
dataset, we find that on the Zebrafish dataset, OpenLabCluster-
V underperforms OpenLabCluster and exhibits comparable
performance on C. elegans. Moreover, the CS strategy appears
unsuitable for OpenLabCluster-V in the Zebrafish setting, resulting
in diminished outcomes.
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TABLE 1 Classification accuracy of Home-Cage Mouse behaviors for
increasing number of annotated segment (reported as percentage (%)).

Comparison of
baseline
methods with
OpenLabCluster
on Home-Cage
Mouse dataset

Mouse (8 classes; keypoints)

Labels (%) 5 10 20 100

Labels (#) 143 286 571 2856

KNN; Cover and Hart
(1967)

43.5 ± 3.9 53.1 ± 1.7 51.5 ± 2.9 60.8 ± 0.0

SVM; Jhuang et al.
(2010)

50.6 ± 6.0 60.3 ± 2.6 64.6 ± 1.6 72.3 ± 0.0

C 55.2 ± 3.6 60.7 ± 1.7 64.5 ± 2.1 71.5 ± 1.0

SimBA; Goodwin et al.
(2024)

62.2 ± 3.8 66.5 ± 2.2 69.8 ± 1.2 79.8 ± 0.9

A-SOID; Tillmann et al.
(2024)

55.2 ± 0.9 60.3 ± 1.1 65.1 ± 1.7 70.6 ± 0.5

VAME+C; Luxem et al.
(2022)

67.4 ± 4.6 75.1 ± 1.8 77.8 ± 1.3 85.2 ± 0.7

OpenLabCluster Top 58.6 ± 2.6 69.2 ± 1.8 76.7 ± 1.2 83.8 ± 0.4

OpenLabCluster MI 65.8 ± 2.8 76.6 ± 0.9 79.1 ± 0.7 82.0 ± 0.7

OpenLabCluster CS 66.2 ± 3.1 74.5 ± 1.8 81.5 ± 1.0 83.9 ± 0.3

OpenLabCluster-V TOP 68.3 ± 1.8 75.3 ± 1.8 77.5 ± 1.2 85.6 ± 0.8

OpenLabCluster-V CS 74.4 ± 1.4 77.7 ± 1.8 81.4 ± 0.9 85.8 ± 0.7

OpenLabCluster-V MI 74.7 ± 1.2 76.1 ± 1.5 80.1 ± 0.6 85.3 ± 0.3

Top: Classification accuracy of existing baselines: KNN, SVM, C, SimBA, A-SOiD, and
VAME+C. Middle: Accuracy of OpenLabCluster using three AL strategies (CS, Top, and MI).
Bottom: Accuracy of OpenLabCluster with the VAME encoder-decoder (OpenLabCluster-V).
Boldface indicates the best accuracy.

2.4.2 The amount of required annotations
Since accuracy varies across datasets and depends on the

number of classes and other aspects, we examine the relationship
between accuracy and the number of required annotations. In
Figure 3A, we compute the necessary number of annotations
required to achieve 80% of classification accuracy with benchmark
methods, OpenLabCluster and OpenLabCluster-V on the Home-
Cage Mouse dataset. We observe that AL methods require only
15–20% of the annotated segments to achieve 80% of classification
accuracy, whereas benchmark methods (KNN, SVM, C, A-SOiD,
SimBA) require roughly nine times as many annotations as the
optimal AL approaches. Among the AL methods, the MI and
CS embedded variants of OpenLabCluster and OpenLabCluster-V
achieve 80% accuracy with approximately 400 annotated samples.
The variant with the TOP selection method turns out to be slightly
less effective, requiring approximately 700 annotations.

We further visualize the effectiveness of pertaining (C vs.
OpenLabCluster) under varying annotation budgets in Figure 3B.
We observe that for most cases, OpenLabCluster methods lead
to higher accuracy for a given number of annotations than the
counterpart, encoder-only classifier. The curves indicating the
accuracy of various OpenLabCluster AL methods (red, green,
blue) have a clear gap between them and C curve (darkgray),
especially in the mid-range of the number of annotations. However,

the performance of OpenLabCluster and C is comparable on C.
elegans dataset, likely due to the dataset’s relative simplicity. In
Figure 3C, we further examine class-wise confusion matrices for the
Zebrafish dataset on 4 annotation budgets (5%, 10%, 20%, 100%).
From visual inspection, it appears that the matrix that corresponds
to 20% annotations is close to the matrix that corresponds to
100% annotations. This proximity suggests that the annotation of
the full dataset might be redundant. Indeed, further inspection
of Figure 3C indicates that samples annotated as LCS and BS
classes (y-axis) by the unsupervised learning method are likely
to be predicted as the LLC (x-axis) by OpenLabCluster. One
possibility for the discrepancy could be annotation errors of the
prior clustering method, which are taken as the ground truth. Re-
examination of the dynamics of some of the features (e.g., tail
angle) further supports this hypothesis and demonstrates that the
methods in OpenLabCluster can potentially identify the outlier
segments whose annotation settles the organization of the Behavior
Classification Map (for more details see in Appendix 1.3).

2.4.3 Organization of the latent representation
Our results indicate that the Latent Representation captured

by the OpenLabCluster encoder-decoder and the classifier are
able to better organize behavioral segments in comparison with
direct embeddings of body keypoints. We quantitatively investigate
such an organization with the Monkey dataset, for which ground
truth annotations and segmentation are unavailable. Specifically,
we obtain the Cluster Map of the segments with OpenLabCluster
through the unsupervised training stage, projecting keypoints into
the latent representation space. We then depict the 2D tSNE
projection of the Latent Representation and compare it with the
2D tSNE projection of body keypoints in Figure 4A. The color in
both plots indicates Kmeans Clusters. We set the number clusters
as 6 which is defined by the OpenMonkeyStudio dataset (Bala et al.,
2020). Indeed, it can be observed that within the Cluster Map,
segments are grouped into more distinct and enhanced clusters.
To measure the clustering properties of each embedding, we
apply clustering metrics of Calinski-Harabasz (CHI) (Caliński and
Harabasz, 1974) and Davies-Bouldin (DBI) (Davies and Bouldin,
1979). CHI measures the ratio of inter- and intra-cluster dispersion,
with larger values indicating better clustering. DBI measures the
ratio of inter-cluster distance to intra-cluster distance, with lower
values indicating better clustering. CHI and DBI are shown in
the bottom of Figure 4 considering the various number of clusters
(from 2 to 20 with interval 2). The comparison shows that the CHI
index is higher for the Latent representation than the embedding of
the keypoints regardless of the number of clusters being considered
and is monotonically increasing with the number of clusters.
The DBI index for the Cluster Map is lower than the index of
the embedding of the keypoints and illustrating the DBI index
decreasing with increasing number of clusters. This is consistent
with the expectation that clustering quality will be consistent with
the number of behavioral types.

3 Discussion

In this study, we introduce OpenLabCluster, a novel toolset
for quantitative studies of animal behavior from video recordings
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TABLE 2 Classification accuracy of Zebrafish and C. elegans behaviors for increasing the number of annotated segments [reported as percentage (%)].

Comparison of baseline methods
with OpenLabCluster on Zebrafish
and C. elegans dataset

Zebrafish (13 classes; kinematic) C. elegans (3 classes; segments)

Labels (%) 5 10 20 100 5 10 20 100

Labels (#) 265 530 1059 5294 27 55 109 543

SVM; Jhuang et al. (2010) 55.8 ± 1.5 63.9 ± 1.2 68.6 ± 0.5 74.0 ± 0.0 76.3 ± 0.8 76.4 ± 0.3 74.5 ± 0.6 76.0 ± 0.0

KNN; Cover and Hart (1967) 57.2 ± 1.0 60.3 ± 1.1 63.0 ± 0.3 69.2 ± 0.0 61.0 ± 11.3 71.5 ± 3.4 73.3 ± 2.6 77.0 ± 0.0

VAME+C; Luxem et al. (2022) 62.1 ± 1.1 67.7 ± 0.4 70.9 ± 0.5 75.2 ± 0.3 73.8 ± 3.8 75.7 ± 1.5 76.6 ± 0.2 76.5 ± 0.0

C 65.7 ± 1.6 70.0 ± 0.7 75.8 ± 0.9 82.8 ± 0.1 71.3 ± 4.7 75.2 ± 3.4 77.5 ± 0.9 94.8 ± 0.7

A-SOID; Tillmann et al. (2024) 68.3 ± 0.4 72.1 ± 0.7 74.5 ± 0.4 77.3 ± 0.2 73.7 ± 3.5 74.4 ± 2.6 76.6 ± 1.0 78.7 ± 0.4

SimBA; Goodwin et al. (2024) 69.7 ± 1.0 73.0 ± 0.8 75.9 ± 0.7 80.3 ± 0.3 68.9 ± 12.7 74.1 ± 4.1 77.2 ± 2.1 83.5 ± 0.6

OpenLabCluster CS 71.9 ± 1.0 76.6 ± 1.0 79.8 ± 0.6 83.2 ± 0.1 73.5 ± 1.0 64.3 ± 5.1 75.1 ± 3.1 92.8 ± 0.4

OpenLabCluster Top 72.0 ± 1.2 77.1 ± 0.7 80.1 ± 0.7 83.5 ± 0.4 76.5 ± 0.0 76.5 ± 3.1 77.9 ± 1.1 93.0 ± 0.5

OpenLabCluster MI 74.7 ± 0.7 79.2 ± 0.3 81.1 ± 0.4 83.4 ± 0.2 76.6 ± 0.2 74.7 ± 3.0 76.9 ± 0.2 93.6 ± 0.8

OpenLabCluster-V CS 44.4 ± 1.6 53.5 ± 2.6 64.3 ± 1.3 75.1 ± 0.2 65.6 ± 12.6 76.5 ± 0.3 75.4 ± 2.4 76.6 ± 0.2

OpenLabCluster-V TOP 63.0 ± 1.0 67.8 ± 0.8 71.6 ± 0.9 75.1 ± 0.2 75.8 ± 2.2 76.8 ± 0.2 76.7 ± 0.2 76.5 ± 0.0

OpenLabCluster-V MI 65.9 ± 0.7 69.4 ± 0.7 71.9 ± 0.4 75.1 ± 0.3 75.7 ± 1.2 76.8 ± 0.4 76.8 ± 0.4 76.5 ± 0.0

Top: benchmark methods KNN, SVM, and C, SimBA, A-SOiD, VAME+C. Middle: Accuracy of OpenLabCluster using various AL approaches: CS, Top, and MI. Bottom: OpenLabCluster with
VAME encoder-decoder (OpenLabCluster-V). Best accuracy is highlighted in boldface.

FIGURE 3

Relation between accuracy and annotation. (A) The amount of annotations required to achieve 80% accuracy for classification of Home-Cage Mouse
behaviors. Computed for benchmark methods (KNN, SVM, and C, SimBA, A-SOiD, VAME+C), and variants of OpenLabCluster with three AL methods
(Top, MI, CS). (B) Prediction accuracy with increasing annotation budget on three datasets of Mouse, C. elegans and Zebrafish. (C) Confusion matrix
for zebrafish dataset for increasing annotation budget (5%, 10%, 20%, 100%).

in terms of automatic grouping and depiction of behavioral
segments into clusters and their association with behavioral classes.
OpenLabCluster works with body keypoints which describe the

pose of the animal in each frame and across frames reflecting the
kinematic information of the movement that is being exhibited in
the segment. The advancement and the availability of automatic
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FIGURE 4

2D tSNE projection of behavioral segments. (A) 2D t-SNE projections comparing representations derived from keypoints vs. a latent representation.
The six K-means clusters are color-coded. For per cluster per representation, the four samples with the shortest distance to each cluster’s centroid
are shown as examples. The images are sourced from the dataset of Bala et al. (2020). (B) Plots of the Calinski-Harabasz (CHI) and Davies-Bouldin
(DBI) scores, which assess clustering quality, for each projection method across a range of cluster numbers.

tools for markerless pose estimation in recent years allows the
employment of such tools in conjunction with OpenLabCluster for
performing almost automatic organization and interpretation of a
variety of ethological experiments.

The efficacy of OpenLabCluster is attributed to two major
components: (i) Unsupervised pre-training process which groups
segments with similar movement patterns and disperses segments
with dissimilar movement patterns (Clustering); (ii) Automatic
selection of samples of segments for association with behavioral
classes (AL) through which all segments class labels are associated
(classification) and the clustering representation is being refined.

We evaluate OpenLabCluster performance on various datasets
of recorded animal species freely behaving, such as Home-Cage
Mouse, Zebrafish, C. elegans, and Monkey datasets. For the datasets
for which ground-truth labels have been annotated, we show that
OpenLabCluster classification accuracy exceeds the accuracy of a
direct deep classifier for most annotation budget even when all
segments in the training set have been annotated. The underlying

reason for the efficacy of OpenLabCluster is the unsupervised pre-
training stage of the encoder-decoder which establishes similarities
and clusters segments with the Latent Representation of the
encoder-decoder. This unsupervised pretraining through encoder-
decoder modeling effectively mitigates noise from body orientation
and inaccuracies in keypoint estimation to provide a summarized
representation. Such a representation turns out to be useful in
informing which segments could add semantic meaning of the
groupings and refine the representation further.

In practice, we observe that even a sparse annotation of
a few segments (5%–20% of the training set) chosen with
appropriate AL methods would boost clustering and classification
significantly. Classification accuracy continues to improve when
more annotations are performed; however, we also observe that
the increase in accuracy is primarily in the initial annotation
steps, which demonstrates the importance of employing clustering
in conjunction with AL selection in these critical steps. Indeed,
our results demonstrate that among different AL approaches,
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more direct approaches such as Top are not as effective as
others considering the need to include more metrics quantifying
uncertainty and similarity of the segments.

As we describe in the Methodology section, OpenLabCluster
includes advanced techniques of unsupervised and semi-supervised
neural network training through AL (Appendix 1.1). Inspired by
the DeepLabCut project (Mathis et al., 2018; Nath et al., 2019;
Deeplabcut, 2018), we implement these techniques jointly with a
graphic user interface to enable scientists to use the methodology
to analyze various ethological experiments with no deep learning
technical expertise. In addition, OpenLabCluster is an open-source
project and is designed such that further methodologies and
extensions would be seamlessly integrated into the project by
developers. Beyond ease of use, the graphic interface is an essential
part of OpenLabCluster functionality, since it visually informs the
scientists of the outcomes in each iteration step. This provides
the possibility to inspect the outcomes and assist with additional
information "on-the-go". Specifically, OpenLabCluster allows for
pointing at points (segments) in the maps, inspecting their
associated videos, adding or excluding segments to be annotated,
working with different low-dimensional embeddings (2D or 3D),
switching between AL methods, annotating the segments within the
same interface, and more.

4 Materials and methods

Existing approaches for behavior classification from keypoints
are supervised and require annotation of extensive datasets before
training (Xu et al., 2017; Sturman et al., 2020). The requirement
limits the generalization of classification from one subject to
another, from animal to animal, from a set of keypoints to another,
and from one set of behaviors to another due to the need for
re-annotation when such variations are introduced.

In contrast, grouping behavioral segments into similarity
groups (clustering) typically it does not require annotation and
could be done by finding an alternative representation of behavioral
segments reflecting the differences and the similarities among
segments. Both classical and deep-learning approaches address
such groupings (Marques et al., 2018; Hsu and Yttri, 2021). Notably,
clustering is a ‘weaker’ task than classification since it does not
provide the semantic association of groups with behavioral classes;
however, it could be used as a preliminary stage for classification.
If leveraged effectively, as a preliminary stage, clustering can direct
annotation to minimize the number of segments that need to be
annotated and at the same time to boost classification accuracy.

OpenLabCluster, that is primarily based on this concept, first
infers a Cluster Map and then leverages it for automatic selection of
sparse segments for annotation (AL) that will both inform behavior
classification and enhance clustering. It iteratively converges to a
detailed Behavior Classification Map where segments are grouped
into similarity classes and each class is homogeneously representing
a behavioral state. Below we describe the components.

4.1 Clustering

The inputs into OpenLabCluster denoted as X are sets of
keypoint coordinates (2D or 3D) or kinematics features for each

time segment along with the video footage (image frames that
correspond to these keypoints). Effectively, each input segment
of keypoints is a matrix with the row dimension indicating
the keypoints coordinate, e.g., the first row will indicate the x-
coordinate of the first keypoint and the second row will indicate
the y-coordinate of the first keypoint and so on.

The first stage of OpenLabCluster is to employ a recurrent
neural network (RNN) encoder-decoder architecture that will learn
a Latent Representation for the segments as shown in Figure 5. The
encoder is composed of m bi-directional gated recurrent units (bi-
GRU) (Cho et al., 2014) sequentially encoding time-series input
into a Latent Representation (latent vector in R

m space). Thus,
each segment is represented as a point in the Latent Representation
R

m space. The decoder is composed of uni-directional GRUs that
receive as input the latent vector and decode (reconstruct) the
same keypoints from the latent vector. Training optimizes encoder-
decoder connectivity weights such that the reconstruction loss,
the distance between the segment keypoints reconstructed by the
decoder and the input segment, is minimized, see the Appendix for
further details (Section 1.1). This process reshapes the latent vector
points in the Latent Representation space to better represent the
segments similarities and distinctions.

To visualize the relative locations of segments in the Latent
Representation, OpenLabCluster implements various dimension
reductions (from R

m → R
2 or R

m → R
3), such as PCA,

tSNE, and UMAP, to obtain Cluster Maps, see Figure 5-bottom.
Thus, each point in the Cluster Map is a reduced-dimensional
Latent Representation of an input segment. From inspection of
the Cluster Map on multiple examples and benchmarks, it can
be observed that the Latent Representation clusters segments that
represent similar movements into the same clusters, to a certain
extent, typically more effectively than an application of dimension
reduction techniques directly to the keypoints segments (Su et al.,
2020; Su and Shlizerman, 2020).

4.2 Classification

To classify behavioral segments that have been clustered, we
append a classifier, a fully connected network, to the encoder.
The training of the classifier is based on segments that have
been annotated and minimizes the error between the predicted
behavioral states and the behavioral states given by the annotation
(cross-entropy loss). When the annotated segments well represent
the states and the clusters, the learned knowledge is transferable
to other unlabeled segments. AL methods such as Cluster Center
(Top), Core-Set (CS), and Marginal Index (MI) aim to select such
representative segments by analyzing the Latent Representation.
Top selects representative segments which are located at the centers
of the clusters [obtained by Kmeans (Li and Shlizerman, 2020a)]
in the Latent Representation space. This approach is effective
at the initial stage. CS selects samples that cover the remaining
samples with minimal distance (Sener and Savarese, 2018). MI is
an uncertainty-based selection method, selecting samples that the
network is most uncertain about. See Supplementary materials 1.1
for further details regarding these methods. Once segments
for annotation are chosen by the AL method, OpenLabCluster
highlights the points in the Cluster Map that represent them and
their associated video segments, such that they can be annotated
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FIGURE 5

Latent Representation is learned by performing the reconstruction task using an encoder-decoder structure. Latent vectors (last state of the encoder)
are projected onto low dimensional space with various dimension reduction techniques to visualize the Latent Representation which constitute the
Cluster Map. Mouse images are reproduced from frames of videos in the dataset of Jhuang et al. (2010).

FIGURE 6

Behavior classification map is generated by a fully connected classifier network (green rectangle) which receives the latent vector transformed by the
encoder-decoder as input and classifies them into behavior classes (example shown: 8 classes in Home-Cage Mouse Behavior dataset). Behavioral
Classification Map is generated from the Cluster Map and indicates the predicted classes of all segments.

within the graphic interface of OpenLabCluster (choosing the most
related behavioral class). When the annotations are set, the full
network of encoder-decoder with appended classifier is re-trained
to perform classification and predict the labels of all segments.
The outcome of this process is the Behavior Classification Map

which depicts both the points representing segments in clusters
and associated states labels with each point (color) as illustrated
in Figure 6. In this process, each time that a new set of samples is
selected for annotation, the parameters of the encoder-decoder and
the classifier are being tuned to generate more distinctive clusters
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and more accurate behavioral states classification. The process
of annotation and tuning is repeated, typically until the number
of annotations reaches the maximum amount of the annotation
budget, or when clustering and classification appear to converge to
a steady state.

4.3 Implementation details

OpenLabCluster code (OpenLabCLuster, 2022) was developed
in University of Washington UW NeuroAI Lab by Jingyuan
Li and Moishe Keselman. OpenLabCluster interface is inspired
by Deeplabcut (2018), which code is used as a backbone for
user interface panels, interaction with the back-end, logging, and
visualization. OpenLabCluster also uses Google Active Learning
Playground code (Google Active Learning Playground Github
Repository, 2017) for the implementation of the K-center selection
method in the Core-Set AL option. For specific usage, please
see the third_party folder within the OpenLabCluster code
repository (OpenLabCLuster, 2022).

OpenLabCluster is available as a GitHub Repository
(OpenLabCluster) https://github.com/shlizee/OpenLabCluster and
also can be installed with Package Installer for Python (PIP) pip
install openlabcluster Jingyuan Li (2022). The repository includes a
manual, instructions, and examples.

4.4 Benchmark details

As described earlier, OpenLabCluster summarizes keypoints
or kinematic features of a temporal segment into a latent
representation and then classifies the behavior using this
summarized representation. This approach captures the intrinsic
dynamics of short behavior prototypes, in contrast to benchmark
methods that compute movement features at each timestep via
predefined protocols (Segalin et al., 2021; Tillmann et al., 2024)
and classify behavior on a per-timestep basis. To ensure fair
comparison, we concatenated the frame-wise features within each
segment and applied each frame-wise classification method to
the resulting representation. Specifically, for KNN (Cover and
Hart, 1967), SVM (Jhuang et al., 2010), and A-SOiD (Tillmann
et al., 2024), we concatenated the frame-wise features of each
action segment and then employed the classifier proposed by
each method for behavior recognition. For SimBA (Goodwin
et al., 2024), movement features were extracted from each frame
and integrated with pose-based features. The final representation
was formed by concatenating these integrated features across all
timesteps within the segment. VAME (Luxem et al., 2022) closely
resembles OpenLabCluster by learning a unified representation for
entire sequences. In VAME+C, we pre-trained VAME, appended a
classifier to its latent feature-which encodes the temporal segment’s
dynamics-and fine-tuned the model using a classification loss.
For the Home-Cage Mouse, Zebrafish, and C. elegans datasets,
sequences are pre-segmented so that each segment contains a
single behavioral prototype. For the OpenStudio Monkey dataset,
which is continuously recorded, we divided the videos into fixed
temporal windows. More advanced approaches, such as change-
point detection algorithms (Edelhoff et al., 2016; Etemad et al.,
2021), could also be employed for video segmentation.
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