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Introduction: Caffeine is the most widely consumed psychoactive substance,
and its stimulant properties are well documented, but few investigations have
examined its acute effects on brain and cardiovascular responses during
cognitively demanding tasks under ecologically valid conditions.

Method: This study used wearable biosensors and machine learning analysis
to evaluate the effects of moderate caffeine (162 mg) on heart rate variability
(HRV), entropy, pulse transit time (PTT), blood pressure, and EEG activity. Twelve
healthy male participants (20-30 years) completed a within-subjects protocol
with pre-caffeine and post-caffeine sessions. EEG was recorded from seven
central electrodes (C3, Cz, C4, CP1, CP2, CP5, CP6) using the EMOTIV EPOC
Flex system, and heart rate (HR) and blood pressure (BP) were continuously
monitored via the Huawei Watch D. Data analysis included power spectral
density (PSD) estimation, FOOOF decomposition, and unsupervised k-means
clustering.

Results: Paired-sample t-tests assessed physiological and EEG changes.
Although systolic and diastolic BP showed a non-significant upward trend, HR
decreased significantly after caffeine intake (77 + 5.3 bpm to 72 + 2.5 bpm,
p = 0.027). There was a significant increase in absolute alpha power suppression
(from —=5.1 + 0.8 dB to —6.9 + 0.9 dB, p = 0.04) and beta power enhancement
(=47 +1.2dB to —2.3 + 1/1, p = 0.04). The surface data from FOOOF shows
these are real oscillatory changes. Based on the changes in clustering prior and
post-caffeine, a machine-learning change in the brain activity differentiated pre/
post-caffeine states with unsupervised clustering. The study results show that
moderate caffeine resulted in synchronized EEG and cardiovascular changes,
indicating increased arousal and cortical activation that are detectable with
wearable biosensors and classifiable with machine learning.

Conclusion: A fully integrated, non-invasive methodology based on a wearable
device for real-time monitoring of cognitive states holds promise in the context
of digital health, fatigue detection, and public health awareness efforts.

KEYWORDS

caffeine, EEG, heart rate variability, blood pressure, cortical arousal, beta waves,
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1 Introduction

Caffeine is the most commonly used psychoactive drug in the
world, with around 80% of adults consuming caffeine-containing
drinks daily (Fredholm et al., 1999). Caffeine is a central nervous
system (CNS) stimulant used to counteract drowsiness and fatigue
during wakefulness, reducing subjective somnolence (Nehlig et al.,
1992; Nehlig, 20105 Ferré, 2008). It is found in coffee, tea, energy
drinks, and many medications. At its core, the principal activity of
caffeine is an adenosine receptor antagonist blocking mainly A1 and
A2A subtypes, causing increased neurotransmitter release, especially
dopamine and norepinephrine, which results in higher cortical arousal
and neuronal excitability (Fredholm et al., 1999; Ferré, 2008; Cauli and
Morelli, 2005).

Caffeine is also a stimulator of the cardiovascular system. Previous
studies have highlighted different effects on the heart rate variability
(HRV), heart rate (HR), as well as short-term elevation in blood
pressure (BP) (Temple et al., 2017; Childs and de Wit, 2006).
Nonetheless, there is great interindividual variability in these
autonomic effects depending on genetic polymorphisms, chronic
caffeine use, age, sex, and presence of cardiovascular disease (Temple
etal, 2017). Routes of administration are not only possible because of
the effect or half-life of caffeine, but also whether high doses might
help to set up patients to potentially deadly arrhythmias or
hypertensive responses (Nehlig, 2010). Overall, a moderate dose
changes sympathetic nervous network (SNS) tone and vasoreactivity
in part involving vasoconstriction.

Caffeine also has effects on cortical activity as indicated by
changes in electroencephalography (EEG) measures. The spectral
characteristics of the EEG in humans change with caffeine ingestion,
and this work has led to detailed studies using high-temporal-
resolution techniques that demonstrate frequency-specific changes in
brain dynamics. Caffeine reduces alpha-band activity (8-13 Hz) in the
spectral band in the Electroencephalogram (EEG), which is associated
with less cortical idling and increased arousal, while increasing beta-
band activity (13-30 Hz), which is thought to reflect higher levels of
attention or cognitive engagement (Nehlig et al., 1992; Dimpfel, 2003;
Barry et al., 2005; Barry et al., 2007).

These spectral features are mainly noted over central and frontal
scalp regions (Childs and de Wit, 2006; Barry et al., 2005), where
resting-state paradigms are applied to evaluate intrinsic (task-free)
brain activity. Nevertheless, the literature is not without dissent, as in
many cases, studies are conflicting and heterogeneous, while some
studies show widespread beta increases (Smith, 2002). In addition,
other studies demonstrate localized effects or none at all. These
discrepancies may be due to methodological limitations such as small
sample sizes, limited EEG coverage, and a lack of cardiovascular
integration, as well common use of linear or univariate analyses.

This is where recent developments such as wearable EEG technology
and machine learning could provide new insight into how caffeine
impacts humans in a dynamic, multimodal way. Wearable EEG systems
(EMOTIV EPOC Flex) allow for mobile, high-density recordings across
cortical regions of interest (central lobe), in particular where changes
related to arousal are most pronounced (Barry et al., 2007; Wu et al.,
2022). For example, machine learning techniques with unsupervised
algorithms such as k-means clustering can be used to reveal latent
structures in EEG data and classify cognitive or pharmacologically
perturbed states even without labeled datasets (Jain, 2010; Hartigan and
Wong, 1979). These approaches facilitate and strengthen the sensitivity
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and breadth of psychophysiological surveillance to augment traditional
statistical analyses.

By combining EEG with cardiovascular measures like HR, BP, it
delivers a more powerful model to dissect systemic neuromodulation
in response to external stimuli. The heart-brain axis involves
bidirectional autonomic pathways, and coupling EEG-HRV analysis
has been shown to enhance stress, attention, or arousal detection
(Attar et al., 2021; Attar, 2022a, 2022b; Attar, 2019; Attar, 2023).
Conversely, discordant patterns of beta-band EEG rhythms and HRV
may signify emotional and cognitive dysregulation (Cauli and Morelli,
2005; Lenartowicz and Loo, 2014).

Despite growing interest in multimodal monitoring, few studies
have jointly examined EEG and cardiovascular changes following acute
caffeine intake using wearable biosensors and machine learning. To
address this gap, the study investigated the neurocardiological effects
of a moderate, ecologically valid caffeine dose (162 mg; approximately
one strong cup of black coffee) in a controlled within-subject design
with twelve healthy young male participants. EEG data were collected
using a 32-channel EMOTIV EPOC Flex system, focusing on central
scalp electrodes (C3, Cz, C4, CP5, CP1, CP2, CP6) previously identified
as key sites for arousal and sensorimotor modulation (Dimpfel, 2003;
Barry et al., 2005). Cardiovascular metrics, including HR and BP, were
recorded using the Huawei Watch D, a validated wearable for
ambulatory monitoring (Wu et al., 2022). EEG preprocessing followed
standard artifact removal procedures (e.g., bandpass filtering,
independent component analysis), and power spectral density (PSD)
analysis was conducted across canonical frequency bands (delta, theta,
alpha, beta). Unsupervised k-means clustering was then applied to
spectral features to evaluate whether caffeine-induced EEG states could
be differentiated without labeled data.

The objectives of the present study were to: (1) use wearable sensors
to detect the acute effects of caffeine on both cardiovascular and EEG
parameters, (2) identify spectral EEG biomarkers of cortical arousal, and
(3) evaluate the feasibility of classifying stimulant-induced brain states
through machine learning. By providing evidence for the real-time,
non-invasive monitoring of neurophysiological arousal, this work has
implications for future research in digital psychophysiology, particularly
through the integration of multimodal assessment strategies.

2 Methods
2.1 Participants

This study is a randomized, single-crossover study conducted in
12 healthy men between 20 and 30 years of age (mean + S. D.:
25.2 + 2.8 'y) from KAU university. This sample size is on the order of
recent within-subject EEG designs, which have been shown to achieve
sufficient statistical power to detect medium-to-large effect sizes
expected for acute caffeine effects in psychophysiological research
(Attar, 2022a, 2022b; Luck, 2014). For safety reasons, all participants
were nonsmokers and had to habitually consume a moderate amount
of caffeine (100-300 mg/day) and had no history of psychiatric,
cardiovascular, or neurological disorders.

Since caffeine metabolism and EEG activity may be affected by
sex-related hormonal factors, only male volunteers were asked to
participate in this study. Estrogen and progesterone changes during
the menstrual cycle can have an impact on caffeine clearance and EEG
patterns (Nehlig, 2010; Temple et al., 2017). Potential biological noise
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due to sex hormones (20-3) was decreased by focusing on men only,
as previous conventions in caffeine-EEG research demand (Fredholm
et al., 1999; Childs and de Wit, 2006).

All participants were requested to abstain from using caffeine-
containing substances at least 12 h before the sessions to eliminate any
potential tolerance or withdrawal effects. This washout duration is in
line with previous acute caffeine studies (Fredholm et al., 1999; Childs
and de Wit, 2006). After providing written informed consent,
participants were examined according to a King Abdulaziz University
Institutional Review Board (IRB no. 02-01-05-23) approved protocol.

2.2 Method of experimentation

There were two laboratory sessions for each participant: baseline
pre-caffeine and post-caffeine. Participants attended two sessions (for
auditory flirting performance) in an acoustically isolated room with the
lights dimmed (33-57 Ix) at 23 + 1°C and were seated so that they
could not see each other, as more precautions for improved acoustic
isolation were taken, i.e., use of UPVC window frames, earplugs,
and headphones.

The resting-state recording was 15 min for each of the sessions.
After a baseline session, participants consumed 162 mg of caffeine in
the form of freshly brewed black coffee within 5 min. The study
estimated this dose to be representative of the strong coffee we all
drink day by day (Nehlig et al., 1992; Blanchard and Sawers, 1983).
The post-caffeine compartment entry occurred at 15 min after
ingestion, capturing early physiological response, as the stomach/
duodenum to plasma caffeine concentrations are detected within
15-45 min post-ingestion (Fredholm et al., 1999; Temple et al., 2017).

2.3 EEG data acquisition

The EEG signal was acquired wirelessly with the 32-channel
EMOTIV EPOC Flex. This device is used to record each subject’s EEG
data from 9 electrodes according to the international 10-20 electrode
placement standard. Seven midline centro-parietal electrodes were
selected for analysis: C3, Cz, C4, CP5, CP1, CP2, and CP6, due to
existing evidence on caffeine-induced alpha and beta modulation in
these regions. EEG data were sampled at 128 Hz, referenced online to
the left mastoid, and maintained at an impedance level below 10 kQ
across the session. Subsequently, synchronization of EEG data with
cardiovascular recordings was performed manually in MATLAB
software to create time-stamped markers for these EEG frames.

2.4 Cardiovascular monitoring

HR and BP were continuously monitored with the Huawei Watch
D, which houses an oscillometric air cuff and PPG sensors. Clinical-
grade accuracy of static BP measurements has been validated for this
device. Participants were asked to remain seated and still throughout
the recording to minimize motion artifacts or potential reading errors.
Despite the static accuracy, variability in rapid BP measures is widely
understood due to the constraints of wearable sensors and must
be analyzed with caution.
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2.5 EEG preprocessing

Preprocessing was performed in EEGLAB v2022.1 (MATLAB
R2023a). Signals were bandpass filtered (1-45 Hz) with a 4th-order
zero-phase. Butterworth filter applied to remove slow drifts and high-
frequency noise. Line noise (50 Hz) was removed using the CleanLine
plugin, which applies multi-taper regression without distorting
broadband spectral content (Delorme and Makeig, 2004).

Noisy channels were identified via joint probability and kurtosis
metrics and replaced using spherical spline interpolation to preserve
spatial accuracy. Independent Component Analysis (ICA; extended
Infomax algorithm) was used for artifact removal, with 2-4 ocular or
muscular components rejected per participant following standard
guidelines (Delorme and Makeig, 2004; Makeig et al., 1996). Cleaned
data were re-referenced offline to the average of all remaining channels
(see Figure 1).

2.6 Outlier detection and FOOOF analysis

To reduce the influence of extreme values, power spectral density
(PSD) estimates exceeding 3 standard deviations from each
participant’s mean (per frequency band and electrode) were excluded
(Luck, 2014; Gasser et al., 1982). The FOOOF algorithm (Fitting
Oscillations and One-Over-F) was applied to separate periodic
(oscillatory) and aperiodic (1/f) spectral components (Donoghue
etal., 2020). This algorithm delivery verification that caffeine-related
changes in alpha and beta power reflected genuine oscillatory
modulation rather than broadband spectral shifts.

2.7 Spectral analysis

PSD was computed using Welch’s method (2-s Hanning windows,
50% overlap). Power values were log-transformed (dB) and averaged
within canonical EEG bands: delta (1-4 Hz), theta (4-8 Hz), alpha
(8-13 Hz), and beta (13-30 Hz). Post-caffeine PSD values were
normalized to each participant’s baseline to minimize inter-subject
variability, following established practice in acute pharmacological
EEG studies (Barry et al., 2007; Klimesch, 1999).

2.8 Machine learning and EEG pattern
classification

Unsupervised machine learning was used to assess the
separability of pre-caffeine and post-caffeine EEG states. Power
values from the four frequency bands across the seven electrodes
served as features for a k-means clustering algorithm (k = 2),
initialized via k-means++ for stability (Jain, 2010; Hartigan and
Wong, 1979). In the clustering step, dimensionality was reduced
using Principal Component Analysis (PCA), retaining the first
three principal components, which explained 85.6% of the total
variance. This approach balances interpretability with variance
preservation and has been applied in previous EEG-HRV arousal
classification studies (Attar et al., 2021; Attar, 2022a, 2022b; Attar,
2019; Attar, 2023).
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FIGURE 1
EEG preprocessing workflow.

2.9 Statistical analysis

Two-tailed paired-sample t-tests were conducted to compare HR,
systolic BP, diastolic BP, and alpha/beta EEG power between sessions.
Normality of difference scores was confirmed using the Shapiro-Wilk
test. Significance was set at p < 0.05, and effect sizes were reported as
Cohens d (Field, 2018). Data are expressed as mean + SEM. A priori
power analysis (G*Power 3.1) indicated that n = 12 provided 80% power
to detect medium-to-large within-subject effects (d = 0.8) (Luck, 2014).

3 Results
3.1 Cardiovascular effects of caffeine

Heart rate (HR) decreased significantly from a baseline of
77 £ 5.3 bpm to post-ingestion of caffeine 162 mg. This was associated
with moderate-to-large effect size t(11) = 2.55, p = 0.027, Cohen’s
d=0.74 (Table 1). SBP and DBP changes were modest and not
statistically significant. Resting SBP slightly increased from
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118.5 + 4.1 mmHg to 119.4 + 3.7 mmHg (p = 0.29, d = 0.32), while
DBP rose from 76.0 + 3.9 mmHg to 77.3 + 4.2 mmHg (p =0.23,
d =0.36). Table 1 summarizes these values, but only HR showed a
statistically significant change post-caffeine.

Figure 2 demonstrates these findings using violin plots. This
depicts both the distribution density and individual subject values
for HR, SBP, and DBP. The plots highlight consistent within-subject
HR reduction post-caffeine, alongside minimal and variable
BP changes.

3.2 EEG spectral changes

The PSD analysis revealed that caffeine reliably affected neural
oscillatory modulations. Caffeine-induced changes in power of five-
minute artifact-free EEG epochs. A significant decrease in alpha-band
(8-13 Hz) power and a significant increase in beta-band (13-30 Hz)
gamma. Compared to pre-caffeine and post-caffeine sessions, were
demonstrated in Figure 3. These effects were confirmed by spatially-
resolved long-duration recordings (15 min) across central electrodes
(C3, Cz, C4, CP5, CP1, CP2, CP6), with beta enhancements most
pronounced at Cz and C4 (Figures 4, 5). While statistical analyses
(Table 2) confirmed that alpha power decreased from —5.1 + 0.8 dB
to —6.9 £ 0.9 dB (t(11) = 2.31, p = 0.041, d = 0.67), and beta power
increased from —4.7 £ 1. These changes are in line with reported
caffeine-induced reductions in cortical idling and enhancement of
cortical arousal (Gasser et al., 1982).

3.3 Machine learning-based EEG state
differentiation

Unsupervised k-means clustering applied to PSD features across
delta, theta, alpha, and beta bands from seven central electrodes
successfully separated pre-caffeine and post-caffeine EEG data into
distinct clusters (Figure 6).

Principal component analysis (PCA) reduced the feature space to
three dimensions, explaining 85.6% of the variance, and visualized in
two dimensions for clarity (Figure 7). The post-caffeine state engaged
a distinct region of the PCA space, confirming that caffeine-induced
EEG variations are structurally distinguishable. A complementary
heatmap representation (Figure 8) showed consistent post-caffeine beta
increases across participants, reinforcing the reproducibility of
spectral shifts.

3.4 Quantitative evaluation of classification
performance

Cluster quality metrics indicated moderate but meaningful
separability: Silhouette Score = 0.54 and Davies-Bouldin Index = 0.61.
A supervised Support Vector Machine (SVM) with an RBF kernel,
trained on the same features, achieved 79.2% accuracy, F1 = 0.81, and
AUC = 0.84 under 5-fold cross-validation, confirming discriminability
under caffeine influence.

A t-SNE projection of high-dimensional EEG features (Figure 9)
further supported the visual separation between pre-caffeine and post-
caffeine states, providing an alternative non-linear view of
feature clustering.
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TABLE 1 Cardiovascular measures before and after caffeine ingestion.

10.3389/fnsys.2025.1611293

Parameter Pre-caffeine Post-caffeine t(11) p-value Cohen's d
HR (bpm) 77 £5.3 72425 2.55 0.027% 0.74
SBP (mmHg) 118.5+ 4.1 119.4+3.7 111 0.29 0.32
DBP (mmHg) 76.0 +3.9 77.3+42 1.26 0.23 036

Values are means + SEM. * p < 0.05. Heart rate (HR), SBP and DBP are obtainable as means + SEM at the baseline and after intake of 162 mg caffeine. Also paired sample t-tests were
performed, with a p value < 0.05 being considered significant. HR was significantly lower post-caffeine; BP changes were small, and not significant.

Heart Rate Before and After Caffeine

Blood Pressure Before and After Caffeine

pressure presented a slight, non-significant rise after caffeine consumption.

80 i 120 = Before
i | = After
701 !
100
__60f %’
£
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T _g 40
20 @
20
10
0 - L [¢] n " n
Before After Systolic Diastolic
FIGURE 2

Individual and group-level changes in cardiovascular measures following caffeine ingestion. Violin plots demonstrating heart rate and blood pressure
before and after caffeine intake. Each plot shows distribution density and individual subject data points. Heart rate significantly decreased while blood

FIGURE 3

comparisons were excluded to avoid bias.

ES

Group-averaged EEG power spectra before and after caffeine ingestion. Five-minute artifact-free EEG epochs were analyzed to compare spectral
power across canonical frequency bands. Post-caffeine data show increased beta and decreased alpha power, reflecting cortical arousal. Short trace

E1 EZ

E6

3.5 Joint neural—-cardiovascular dynamics

When plotted together (Figure 10), the changes in HR, alpha power,
and beta power revealed a coherent multimodal signature of caffeine
ingestion: a decrease in HR and alpha power, accompanied by an
increase in beta power. This coupling supports the hypothesis that
caffeine exerts coordinated effects on central and autonomic

arousal systems.

3.6 Oscillatory vs. broadband effects:
FOOOF decomposition

To ensure spectral changes reflected true oscillatory activity
rather than broadband shifts, the FOOOF algorithm decomposed
each spectrum into aperiodic (1/f) and periodic components
11).

(Figure Beta-band enhancements were predominantly
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attributable to genuine oscillatory increases rather than broadband
slope changes, strengthening the validity of the spectral interpretation
and opening avenues for excitation-inhibition balance metrics in
future work.

4 Discussion

The present study provides converging neurophysiological and
cardiovascular evidence that a moderate, ecologically relevant dose of
caffeine (162 mg) induces acute, measurable, and multidimensional
changes in human arousal systems. Using an integrated methodology that
combined wearable EEG, wearable cardiovascular monitoring, and
machine learning-based pattern recognition. The study demonstrated that
caffeine alters cortical oscillatory activity, modulates autonomic function,
and produces brain-heart signatures that are not only statistically
significant but also structurally separable in a data-driven feature space.
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beta activity and reduced alpha/theta power post-caffeine. These variations align with heightened attentional and arousal states.

TABLE 2 EEG spectral power changes before and after caffeine intake.

Pre-caffeine (dB) Post-caffeine (dB) t(11) p-value Cohen’s d
Alpha (8-13 Hz) —5.1+0.38 69409 231 0.041% 0.67
Beta (13-30 Hz) —47+12 —23+11 3.59 0.0047 1.04

#p<0.05; %% p<0.01.

4.1 Neural effects and mechanistic

interpretation

Alpha power suppression and beta power enhancement were found
over central scalp regions, which is in line with previous studies
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implicating the role of caffeine as a nonselective adenosine receptor
antagonist within the CNS (Fredholm et al., 1999; Cauli and Morelli,
2005). Through this inhibition of Al and A2A receptors, caffeine
decreases the inhibitory influence of adenosinergic signal. It increases

the availability of excitatory neurotransmitters (e.g., dopamine and
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Power Distribution Across Participants and Frequency Bins

Frequency Bin

EEG spectral power heatmap before and after caffeine ingestion. This heatmap visualizes power spectral density across 100 frequency bins and central
scalp electrodes. Warmer colors in the post-caffeine condition indicate increased beta activity, supporting the presence of stimulant-induced spectral
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Davies—Bouldin index (0.61) indicate moderate cluster quality, validating k-means separability of EEG features. While the right panel shows t-SNE
projection of EEG spectral features: two-dimensional t-SNE embedding illustrates distinct clusters corresponding to pre- and post-caffeine EEG states,

t-SNE Visualization of EEG Feature Clusters

x ><)g Cluster
x ® %  Cluster 0
10 ¥
» ' «  Cluster 1
x X 7%
5 .
0 ..
5t
_10 L

7.5

100 =75 —50 —25 00 25 50

Component 1

norepinephrine) in a variety of brain areas, including both cortical and
subcortical regions (Attar, 2022a, 2022b). Together, these changes in
neurochemistry prepare the cortex for enhanced excitability, readiness
to respond, and reduced idling, which the study notes electro-
physiologically as oscillatory changes within their observed
frequency content.

Alpha
electrophysiological marker of increased cortical activation and

suppression (8-13Hz) is a widely recognized
attentional engagement (Dimpfel, 2003; Barry et al., 2007). Its reduction
in our post-caffeine recordings indicates a shift away from relaxed,
internally oriented processing toward a state of heightened environmental

readiness. Concurrently, beta enhancement (13-30 Hz) is linked to
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sustained attention, cognitive effort, and sensorimotor integration, and
is often observed during active task engagement or heightened alertness
(Barry et al., 2005). The topographical concentration of these effects at
electrodes Cz and C4 corresponds to midline and right-hemispheric
motor-sensorimotor areas, suggesting that caffeine’s stimulatory impact
may particularly facilitate readiness for motor action.

These neural changes were not trivial in magnitude. The effect
sizes were in the medium-to-large range, reinforcing their robustness
despite the modest sample size. Moreover, the application of FOOOF
decomposition confirmed that the beta increases and alpha decreases
were genuine oscillatory effects, rather than artifacts of broadband
spectral shifts—a common confound in pharmacological EEG
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and alpha power and increases in beta power.

Distribution of key physiological and neural markers pre- and post-caffeine. Violin plots display individual and group distributions for heart rate (left),
alpha power (center), and beta power (right). Caffeine’s impact on autonomic and cortical arousal is demonstrated by notable decreases in heart rate
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FOOOF-based decomposition of EEG spectra into periodic and aperiodic components. The raw power spectral density (orange) is decomposed into
an aperiodic 1/f component (dashed orange) and residual periodic peaks (red). Results reveal that caffeine-induced beta increases reflect genuine
oscillatory enhancements rather than broadband power shifts, supporting frequency-specific interpretations.
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studies. This analytic specificity strengthens confidence in the
interpretation of caffeine-induced oscillatory modulation.

4.2 Machine learning classification of
caffeine states

One of the more significant advancements of this study was the
use of unsupervised clustering with electroencephalography (EEG)
spectral feature vectors. The study used k-means clustering to
distinguish caffeinated and decaffeinated recordings. As expected, the
separation between the upper limit of one condition and the lower
limit of another- without providing this information directly through
labels. These states could be separated not only in the high-
dimensional feature space, but also visually following dimensionality
reduction with principal component analysis (PCA). This suggests

Frontiers in Systems Neuroscience

caffeine-related differences emerge as structured, learnable variations
in neural activity patterns.

The study’s cluster quality metrics point to modest, but not trivial,
separability (Silhouette score = 0.54; Davies-Bouldin index = 0.61).
The relatively limited number of samples accentuates the concordance
among altered gene expression patterns when detecting elusive
biomarkers. Further, when we tested classification performance using
a supervised SVM model, accuracy reached 79.2% (F1-score = 0.81),
demonstrating that these brain states are sufficiently distinct to
support real-time or near-real-time classification. This is an
important step toward applied cognitive monitoring systems.

These findings support the feasibility of integrating wearable EEG
with machine learning algorithms to passively track pharmacologically
induced cognitive states. This approach has potential applications in
fatigue detection, cognitive readiness assessment, and individualized
stimulant dosing strategies.
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4.3 Cardiovascular findings and brain—
heart coupling

Caffeine caused a significant decrease in heart rate (HR) from
77 £53bpm to 72+25bpm (p=0.027), with only minor
non-significant concomitant changes in systolic and diastolic blood
pressure (BP). This pattern is interesting as caffeine cardiovascular
responses were shown to be related to dosage, physiological
variability across individuals, and baseline autonomic tone (Nehlig,
2010; Temple et al., 2017). The decrease in HR might have been due
to baroreceptor-mediated reflex parasympathetic activation as a
counter-balance to the vasoconstriction and elevation in vascular
resistance following caffeine-induced sympathetic activity.

Notably, the of EEG and
cardiovascular indices allowed us to capture synchronized changes

simultaneous measurement
across central and peripheral systems. The integrated pattern—HR
decrease, alpha suppression, and beta enhancement—supports the
concept of caffeine as a systemic stimulant that modulates both
cortical and autonomic arousal. Such multimodal signatures are
consistent with prior research showing that co-activation of beta
rhythms and increased heart rate variability. This is linked to optimal
attentional control, whereas discordant patterns may reflect stress or
dysregulation (Attar et al., 2021; Lenartowicz and Loo, 2014).

4.4 Methodological contributions

In comparison with earlier studies on caffeine-EEG in humans
(Table 3), our study has several methodological advantages:

- Wearable integration - lightweight, non-invasive wearable
systems (EEG and cardiovascular monitoring), to enhance
ecological validity and portability.

- Machine learning analytics — the study used unsupervised and
supervised algorithms to classify brain states; Constructing

10.3389/fnsys.2025.1611293

machine learning classifiers detected stimulant-induced changes
without having to know the condition labeling.

- Oscillatory decomposition - the study used FOOOF to
decompose periodic and aperiodic EEG components, supporting
the oscillatory nature of these changes.

- Ecologically relevant dose and delivery.

These innovations are part of a wider trend in digital
psychophysiology, whereby multimodal biosignal recording and
Al-driven analytics can monitor brain-body states on many
human conditions.

4.5 Limitations and future directions

While the results are intriguing, there are some limitations to keep
in mind:

- The sample consisted of 12 healthy young men, so
generalizability is an issue. Large-scale, sex- and age-diverse
cohorts examining individual sensitivity, perhaps together with
hormonal profile and genetic profiling, are necessary in
future investigations.

- EEG Spatial Coverage — Focused only on seven central
electrodes; limited spatial resolution. An encephalography with
high-resolution density would offer a more complete coverage of
cortical effects, especially in frontal and occipital areas.

- Recording Timings—Post-caffeine levels taken at 15 min, during
the early pharmacodynamic period. A multi-timepoint design
expanding the whole 30-120 min peak plasma window could
provide a more detailed temporal profile.

- The coffee delivery method is ecologically valid; however,
multiple “cups of coffee” can introduce variability in caffeine
content. Future work with standardized capsule-based
administration would allow for more accurate dosing.

TABLE 3 Comparative overview of study design and methodological advances relative to previous caffeine-EEG research.

EEG Sample size/ Caffeine Cardiovascular EEG Machine Key advances

channels/ demographics dose & integration EREWVAS learning

focus form method applied
Barryetal. | 19-channel EEG; 10-12 adults; mixed 250 mg capsule | Not assessed Spectral No Alpha suppression, beta
(2005, frontal & central gender (FFT); t-tests increase
2007)
Dimpfel 8-channel EEG; Small N (<10); Variable coffee Not assessed Spectral ratios; = No Dose-response effects
(2003) frontal & occipital unclear doses visual observed

inspection
Childs and | 64-channel EEG; 15 healthy adults 200 mg capsule | HR/BP monitored ERPand FFT | No Task-related EEG changes
de Wit task-based design post caffeine
(2006)
Nehlig 10-channel EEG; 12 young adults 100-200 mg Not assessed FFT; alpha No Central arousal and alpha
etal resting state coffee and beta band suppression
(1992) focus
Present 7 central electrodes 12 healthy young 162 mg black ‘Wearable BP & HR PSD (Welch), Yes (k-means) ‘Wearable
Study (C3-CP6) via males (20-30 yrs) coffee (Huawei Watch D) FOOOFE, EEG + cardiovascular +
(2025) EMOTIV Flex clustering ML integration in resting-
state design

Highlights study-specific attributes like sample size, EEG setup, dose standardization, use of wearable devices, and machine learning integration, contrasted with prior research.
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- Control conditions — no placebo or decaf condition = not
separating pharmacological effects from expectancy or
environmental factors.

- Machine learning complexity — k-means and SVM have shown
positive results, but to further increase the sensitivity for micro-
changes in states, research should look into deep learning, fuzzy
logic classifiers, or even a hybrid mode.

4.6 Broader implications for digital health
and society

These findings have direct implications for personalized health
monitoring, occupational risk assessment, and community health. As
caffeine use commences in early life and endures throughout the
lifespan (Fredholm et al., 1999), there is clear practical utility for tools
capable of providing an objective metric of hormone function to
optimize patterns of intake, which may help mitigate against
deleterious consequences.

For example, beta power increase may act as a neuro-biomarker
of alertness in circumstances like:

- Monitoring shift workers, taxi drivers, or pilots for
fatigueogenic behavior.
- Improve student and professional study/performance Schedules.
- Assisting in clinical decisions for sleep disorders or attentional

deficits in patients.

For example, some of the review articles included in this issue
describe how cardiovascular responses can be used to guide the
consumption of caffeine in patients with hypertension, arrhythmias,
or autonomic dysfunction. Such wearable EEG-BP systems could
afford an affordable approach for the monitoring of neurological and
cardiovascular health in under-resourced settings, circumventing the
requirement for specialized clinical facilities.

From a neuroergonomics perspective, this work demonstrates the
potential to optimize the adaptability of work environments through
real-time and unobtrusive monitoring avenues that govern cognitive
load and ensure safer interactions between humans and machines (see
Table 4).

5 Conclusion

In summary, moderate caffeine intake induces disinhibition and
coordinated neural-cardiovascular changes that are prominent and
measurable by machine-learning methods. The study shows that with
the integration of wearable EEG and cardiovascular sensors, spectral
analysis, oscillatory decomposition, and Al-driven classification, a
scalable system for continuous real-time psychophysiological monitoring
can be implemented. It provides a basis for the application of such a
system in digital health, occupational safety, and neuroergonomics.

These results underscore the importance of investigating a more
broadly diverse population in future studies, obtaining an expanded
spatial localization of brain patterns using higher-density EEG,
controlling for placebo effects, and applying different classification
algorithms. This will refine the sensitivity, specificity, and
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TABLE 4 Summary of benefits for community and clinical application.

Domain Application

Healthcare Monitoring caffeine’s impact on hypertensive or elderly
populations

Workplace safety Fatigue detection in drivers, pilots, and healthcare workers

Education Awareness of safe consumption levels among students

Public policy Informing regulatory guidance on caffeine labeling and
serving sizes

Digital health Enabling non-invasive brain and heart monitoring for
wellness

generalizability of caffeine state identification, part of a broader
class of digital biomarkers with the potential to facilitate
personalized, adaptive health interventions across clinical and
daily life.
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