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Introduction: Caffeine is the most widely consumed psychoactive substance, 
and its stimulant properties are well documented, but few investigations have 
examined its acute effects on brain and cardiovascular responses during 
cognitively demanding tasks under ecologically valid conditions.
Method: This study used wearable biosensors and machine learning analysis 
to evaluate the effects of moderate caffeine (162 mg) on heart rate variability 
(HRV), entropy, pulse transit time (PTT), blood pressure, and EEG activity. Twelve 
healthy male participants (20–30 years) completed a within-subjects protocol 
with pre-caffeine and post-caffeine sessions. EEG was recorded from seven 
central electrodes (C3, Cz, C4, CP1, CP2, CP5, CP6) using the EMOTIV EPOC 
Flex system, and heart rate (HR) and blood pressure (BP) were continuously 
monitored via the Huawei Watch D. Data analysis included power spectral 
density (PSD) estimation, FOOOF decomposition, and unsupervised k-means 
clustering.
Results: Paired-sample t-tests assessed physiological and EEG changes. 
Although systolic and diastolic BP showed a non-significant upward trend, HR 
decreased significantly after caffeine intake (77 ± 5.3 bpm to 72 ± 2.5 bpm, 
p = 0.027). There was a significant increase in absolute alpha power suppression 
(from −5.1 ± 0.8 dB to −6.9 ± 0.9 dB, p = 0.04) and beta power enhancement 
(−4.7 ± 1.2 dB to −2.3 ± 1/1, p = 0.04). The surface data from FOOOF shows 
these are real oscillatory changes. Based on the changes in clustering prior and 
post-caffeine, a machine-learning change in the brain activity differentiated pre/
post-caffeine states with unsupervised clustering. The study results show that 
moderate caffeine resulted in synchronized EEG and cardiovascular changes, 
indicating increased arousal and cortical activation that are detectable with 
wearable biosensors and classifiable with machine learning.
Conclusion: A fully integrated, non-invasive methodology based on a wearable 
device for real-time monitoring of cognitive states holds promise in the context 
of digital health, fatigue detection, and public health awareness efforts.
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1 Introduction

Caffeine is the most commonly used psychoactive drug in the 
world, with around 80% of adults consuming caffeine-containing 
drinks daily (Fredholm et  al., 1999). Caffeine is a central nervous 
system (CNS) stimulant used to counteract drowsiness and fatigue 
during wakefulness, reducing subjective somnolence (Nehlig et al., 
1992; Nehlig, 2010; Ferré, 2008). It is found in coffee, tea, energy 
drinks, and many medications. At its core, the principal activity of 
caffeine is an adenosine receptor antagonist blocking mainly A1 and 
A2A subtypes, causing increased neurotransmitter release, especially 
dopamine and norepinephrine, which results in higher cortical arousal 
and neuronal excitability (Fredholm et al., 1999; Ferré, 2008; Cauli and 
Morelli, 2005).

Caffeine is also a stimulator of the cardiovascular system. Previous 
studies have highlighted different effects on the heart rate variability 
(HRV), heart rate (HR), as well as short-term elevation in blood 
pressure (BP) (Temple et  al., 2017; Childs and de Wit, 2006). 
Nonetheless, there is great interindividual variability in these 
autonomic effects depending on genetic polymorphisms, chronic 
caffeine use, age, sex, and presence of cardiovascular disease (Temple 
et al., 2017). Routes of administration are not only possible because of 
the effect or half-life of caffeine, but also whether high doses might 
help to set up patients to potentially deadly arrhythmias or 
hypertensive responses (Nehlig, 2010). Overall, a moderate dose 
changes sympathetic nervous network (SNS) tone and vasoreactivity 
in part involving vasoconstriction.

Caffeine also has effects on cortical activity as indicated by 
changes in electroencephalography (EEG) measures. The spectral 
characteristics of the EEG in humans change with caffeine ingestion, 
and this work has led to detailed studies using high-temporal-
resolution techniques that demonstrate frequency-specific changes in 
brain dynamics. Caffeine reduces alpha-band activity (8–13 Hz) in the 
spectral band in the Electroencephalogram (EEG), which is associated 
with less cortical idling and increased arousal, while increasing beta-
band activity (13–30 Hz), which is thought to reflect higher levels of 
attention or cognitive engagement (Nehlig et al., 1992; Dimpfel, 2003; 
Barry et al., 2005; Barry et al., 2007).

These spectral features are mainly noted over central and frontal 
scalp regions (Childs and de Wit, 2006; Barry et al., 2005), where 
resting-state paradigms are applied to evaluate intrinsic (task-free) 
brain activity. Nevertheless, the literature is not without dissent, as in 
many cases, studies are conflicting and heterogeneous, while some 
studies show widespread beta increases (Smith, 2002). In addition, 
other studies demonstrate localized effects or none at all. These 
discrepancies may be due to methodological limitations such as small 
sample sizes, limited EEG coverage, and a lack of cardiovascular 
integration, as well common use of linear or univariate analyses.

This is where recent developments such as wearable EEG technology 
and machine learning could provide new insight into how caffeine 
impacts humans in a dynamic, multimodal way. Wearable EEG systems 
(EMOTIV EPOC Flex) allow for mobile, high-density recordings across 
cortical regions of interest (central lobe), in particular where changes 
related to arousal are most pronounced (Barry et al., 2007; Wu et al., 
2022). For example, machine learning techniques with unsupervised 
algorithms such as k-means clustering can be  used to reveal latent 
structures in EEG data and classify cognitive or pharmacologically 
perturbed states even without labeled datasets (Jain, 2010; Hartigan and 
Wong, 1979). These approaches facilitate and strengthen the sensitivity 

and breadth of psychophysiological surveillance to augment traditional 
statistical analyses.

By combining EEG with cardiovascular measures like HR, BP, it 
delivers a more powerful model to dissect systemic neuromodulation 
in response to external stimuli. The heart-brain axis involves 
bidirectional autonomic pathways, and coupling EEG-HRV analysis 
has been shown to enhance stress, attention, or arousal detection 
(Attar et  al., 2021; Attar, 2022a, 2022b; Attar, 2019; Attar, 2023). 
Conversely, discordant patterns of beta-band EEG rhythms and HRV 
may signify emotional and cognitive dysregulation (Cauli and Morelli, 
2005; Lenartowicz and Loo, 2014).

Despite growing interest in multimodal monitoring, few studies 
have jointly examined EEG and cardiovascular changes following acute 
caffeine intake using wearable biosensors and machine learning. To 
address this gap, the study investigated the neurocardiological effects 
of a moderate, ecologically valid caffeine dose (162 mg; approximately 
one strong cup of black coffee) in a controlled within-subject design 
with twelve healthy young male participants. EEG data were collected 
using a 32-channel EMOTIV EPOC Flex system, focusing on central 
scalp electrodes (C3, Cz, C4, CP5, CP1, CP2, CP6) previously identified 
as key sites for arousal and sensorimotor modulation (Dimpfel, 2003; 
Barry et al., 2005). Cardiovascular metrics, including HR and BP, were 
recorded using the Huawei Watch D, a validated wearable for 
ambulatory monitoring (Wu et al., 2022). EEG preprocessing followed 
standard artifact removal procedures (e.g., bandpass filtering, 
independent component analysis), and power spectral density (PSD) 
analysis was conducted across canonical frequency bands (delta, theta, 
alpha, beta). Unsupervised k-means clustering was then applied to 
spectral features to evaluate whether caffeine-induced EEG states could 
be differentiated without labeled data.

The objectives of the present study were to: (1) use wearable sensors 
to detect the acute effects of caffeine on both cardiovascular and EEG 
parameters, (2) identify spectral EEG biomarkers of cortical arousal, and 
(3) evaluate the feasibility of classifying stimulant-induced brain states 
through machine learning. By providing evidence for the real-time, 
non-invasive monitoring of neurophysiological arousal, this work has 
implications for future research in digital psychophysiology, particularly 
through the integration of multimodal assessment strategies.

2 Methods

2.1 Participants

This study is a randomized, single-crossover study conducted in 
12 healthy men between 20 and 30 years of age (mean ± S. D.: 
25.2 ± 2.8 y) from KAU university. This sample size is on the order of 
recent within-subject EEG designs, which have been shown to achieve 
sufficient statistical power to detect medium-to-large effect sizes 
expected for acute caffeine effects in psychophysiological research 
(Attar, 2022a, 2022b; Luck, 2014). For safety reasons, all participants 
were nonsmokers and had to habitually consume a moderate amount 
of caffeine (100–300 mg/day) and had no history of psychiatric, 
cardiovascular, or neurological disorders.

Since caffeine metabolism and EEG activity may be affected by 
sex-related hormonal factors, only male volunteers were asked to 
participate in this study. Estrogen and progesterone changes during 
the menstrual cycle can have an impact on caffeine clearance and EEG 
patterns (Nehlig, 2010; Temple et al., 2017). Potential biological noise 
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due to sex hormones (20–3) was decreased by focusing on men only, 
as previous conventions in caffeine-EEG research demand (Fredholm 
et al., 1999; Childs and de Wit, 2006).

All participants were requested to abstain from using caffeine-
containing substances at least 12 h before the sessions to eliminate any 
potential tolerance or withdrawal effects. This washout duration is in 
line with previous acute caffeine studies (Fredholm et al., 1999; Childs 
and de Wit, 2006). After providing written informed consent, 
participants were examined according to a King Abdulaziz University 
Institutional Review Board (IRB no. 02-01-05-23) approved protocol.

2.2 Method of experimentation

There were two laboratory sessions for each participant: baseline 
pre-caffeine and post-caffeine. Participants attended two sessions (for 
auditory flirting performance) in an acoustically isolated room with the 
lights dimmed (33–57 lx) at 23 ± 1°C and were seated so that they 
could not see each other, as more precautions for improved acoustic 
isolation were taken, i.e., use of UPVC window frames, earplugs, 
and headphones.

The resting-state recording was 15 min for each of the sessions. 
After a baseline session, participants consumed 162 mg of caffeine in 
the form of freshly brewed black coffee within 5 min. The study 
estimated this dose to be representative of the strong coffee we all 
drink day by day (Nehlig et al., 1992; Blanchard and Sawers, 1983). 
The post-caffeine compartment entry occurred at 15 min after 
ingestion, capturing early physiological response, as the stomach/
duodenum to plasma caffeine concentrations are detected within 
15–45 min post-ingestion (Fredholm et al., 1999; Temple et al., 2017).

2.3 EEG data acquisition

The EEG signal was acquired wirelessly with the 32-channel 
EMOTIV EPOC Flex. This device is used to record each subject’s EEG 
data from 9 electrodes according to the international 10–20 electrode 
placement standard. Seven midline centro-parietal electrodes were 
selected for analysis: C3, Cz, C4, CP5, CP1, CP2, and CP6, due to 
existing evidence on caffeine-induced alpha and beta modulation in 
these regions. EEG data were sampled at 128 Hz, referenced online to 
the left mastoid, and maintained at an impedance level below 10 kΩ 
across the session. Subsequently, synchronization of EEG data with 
cardiovascular recordings was performed manually in MATLAB 
software to create time-stamped markers for these EEG frames.

2.4 Cardiovascular monitoring

HR and BP were continuously monitored with the Huawei Watch 
D, which houses an oscillometric air cuff and PPG sensors. Clinical-
grade accuracy of static BP measurements has been validated for this 
device. Participants were asked to remain seated and still throughout 
the recording to minimize motion artifacts or potential reading errors. 
Despite the static accuracy, variability in rapid BP measures is widely 
understood due to the constraints of wearable sensors and must 
be analyzed with caution.

2.5 EEG preprocessing

Preprocessing was performed in EEGLAB v2022.1 (MATLAB 
R2023a). Signals were bandpass filtered (1–45 Hz) with a 4th-order 
zero-phase. Butterworth filter applied to remove slow drifts and high-
frequency noise. Line noise (50 Hz) was removed using the CleanLine 
plugin, which applies multi-taper regression without distorting 
broadband spectral content (Delorme and Makeig, 2004).

Noisy channels were identified via joint probability and kurtosis 
metrics and replaced using spherical spline interpolation to preserve 
spatial accuracy. Independent Component Analysis (ICA; extended 
Infomax algorithm) was used for artifact removal, with 2–4 ocular or 
muscular components rejected per participant following standard 
guidelines (Delorme and Makeig, 2004; Makeig et al., 1996). Cleaned 
data were re-referenced offline to the average of all remaining channels 
(see Figure 1).

2.6 Outlier detection and FOOOF analysis

To reduce the influence of extreme values, power spectral density 
(PSD) estimates exceeding 3 standard deviations from each 
participant’s mean (per frequency band and electrode) were excluded 
(Luck, 2014; Gasser et  al., 1982). The FOOOF algorithm (Fitting 
Oscillations and One-Over-F) was applied to separate periodic 
(oscillatory) and aperiodic (1/f) spectral components (Donoghue 
et al., 2020). This algorithm delivery verification that caffeine-related 
changes in alpha and beta power reflected genuine oscillatory 
modulation rather than broadband spectral shifts.

2.7 Spectral analysis

PSD was computed using Welch’s method (2-s Hanning windows, 
50% overlap). Power values were log-transformed (dB) and averaged 
within canonical EEG bands: delta (1–4 Hz), theta (4–8 Hz), alpha 
(8–13 Hz), and beta (13–30 Hz). Post-caffeine PSD values were 
normalized to each participant’s baseline to minimize inter-subject 
variability, following established practice in acute pharmacological 
EEG studies (Barry et al., 2007; Klimesch, 1999).

2.8 Machine learning and EEG pattern 
classification

Unsupervised machine learning was used to assess the 
separability of pre-caffeine and post-caffeine EEG states. Power 
values from the four frequency bands across the seven electrodes 
served as features for a k-means clustering algorithm (k = 2), 
initialized via k-means++ for stability (Jain, 2010; Hartigan and 
Wong, 1979). In the clustering step, dimensionality was reduced 
using Principal Component Analysis (PCA), retaining the first 
three principal components, which explained 85.6% of the total 
variance. This approach balances interpretability with variance 
preservation and has been applied in previous EEG–HRV arousal 
classification studies (Attar et al., 2021; Attar, 2022a, 2022b; Attar, 
2019; Attar, 2023).
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2.9 Statistical analysis

Two-tailed paired-sample t-tests were conducted to compare HR, 
systolic BP, diastolic BP, and alpha/beta EEG power between sessions. 
Normality of difference scores was confirmed using the Shapiro–Wilk 
test. Significance was set at p < 0.05, and effect sizes were reported as 
Cohen’s d (Field, 2018). Data are expressed as mean ± SEM. A priori 
power analysis (G*Power 3.1) indicated that n = 12 provided 80% power 
to detect medium-to-large within-subject effects (d = 0.8) (Luck, 2014).

3 Results

3.1 Cardiovascular effects of caffeine

Heart rate (HR) decreased significantly from a baseline of 
77 ± 5.3 bpm to post-ingestion of caffeine 162 mg. This was associated 
with moderate-to-large effect size t(11) = 2.55, p = 0.027, Cohen’s 
d = 0.74 (Table  1). SBP and DBP changes were modest and not 
statistically significant. Resting SBP slightly increased from 

118.5 ± 4.1 mmHg to 119.4 ± 3.7 mmHg (p = 0.29, d = 0.32), while 
DBP rose from 76.0 ± 3.9 mmHg to 77.3 ± 4.2 mmHg (p = 0.23, 
d = 0.36). Table 1 summarizes these values, but only HR showed a 
statistically significant change post-caffeine.

Figure 2 demonstrates these findings using violin plots. This 
depicts both the distribution density and individual subject values 
for HR, SBP, and DBP. The plots highlight consistent within-subject 
HR reduction post-caffeine, alongside minimal and variable 
BP changes.

3.2 EEG spectral changes

The PSD analysis revealed that caffeine reliably affected neural 
oscillatory modulations. Caffeine-induced changes in power of five-
minute artifact-free EEG epochs. A significant decrease in alpha-band 
(8–13 Hz) power and a significant increase in beta-band (13–30 Hz) 
gamma. Compared to pre-caffeine and post-caffeine sessions, were 
demonstrated in Figure 3. These effects were confirmed by spatially-
resolved long-duration recordings (15 min) across central electrodes 
(C3, Cz, C4, CP5, CP1, CP2, CP6), with beta enhancements most 
pronounced at Cz and C4 (Figures 4, 5). While statistical analyses 
(Table 2) confirmed that alpha power decreased from −5.1 ± 0.8 dB 
to −6.9 ± 0.9 dB (t(11) = 2.31, p = 0.041, d = 0.67), and beta power 
increased from −4.7 ± 1. These changes are in line with reported 
caffeine-induced reductions in cortical idling and enhancement of 
cortical arousal (Gasser et al., 1982).

3.3 Machine learning-based EEG state 
differentiation

Unsupervised k-means clustering applied to PSD features across 
delta, theta, alpha, and beta bands from seven central electrodes 
successfully separated pre-caffeine and post-caffeine EEG data into 
distinct clusters (Figure 6).

Principal component analysis (PCA) reduced the feature space to 
three dimensions, explaining 85.6% of the variance, and visualized in 
two dimensions for clarity (Figure 7). The post-caffeine state engaged 
a distinct region of the PCA space, confirming that caffeine-induced 
EEG variations are structurally distinguishable. A complementary 
heatmap representation (Figure 8) showed consistent post-caffeine beta 
increases across participants, reinforcing the reproducibility of 
spectral shifts.

3.4 Quantitative evaluation of classification 
performance

Cluster quality metrics indicated moderate but meaningful 
separability: Silhouette Score = 0.54 and Davies–Bouldin Index = 0.61. 
A supervised Support Vector Machine (SVM) with an RBF kernel, 
trained on the same features, achieved 79.2% accuracy, F1 = 0.81, and 
AUC = 0.84 under 5-fold cross-validation, confirming discriminability 
under caffeine influence.

A t-SNE projection of high-dimensional EEG features (Figure 9) 
further supported the visual separation between pre-caffeine and post-
caffeine states, providing an alternative non-linear view of 
feature clustering.

FIGURE 1

EEG preprocessing workflow.
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3.5 Joint neural–cardiovascular dynamics

When plotted together (Figure 10), the changes in HR, alpha power, 
and beta power revealed a coherent multimodal signature of caffeine 
ingestion: a decrease in HR and alpha power, accompanied by an 
increase in beta power. This coupling supports the hypothesis that 
caffeine exerts coordinated effects on central and autonomic 
arousal systems.

3.6 Oscillatory vs. broadband effects: 
FOOOF decomposition

To ensure spectral changes reflected true oscillatory activity 
rather than broadband shifts, the FOOOF algorithm decomposed 
each spectrum into aperiodic (1/f) and periodic components 
(Figure  11). Beta-band enhancements were predominantly 

attributable to genuine oscillatory increases rather than broadband 
slope changes, strengthening the validity of the spectral interpretation 
and opening avenues for excitation–inhibition balance metrics in 
future work.

4 Discussion

The present study provides converging neurophysiological and 
cardiovascular evidence that a moderate, ecologically relevant dose of 
caffeine (162 mg) induces acute, measurable, and multidimensional 
changes in human arousal systems. Using an integrated methodology that 
combined wearable EEG, wearable cardiovascular monitoring, and 
machine learning–based pattern recognition. The study demonstrated that 
caffeine alters cortical oscillatory activity, modulates autonomic function, 
and produces brain–heart signatures that are not only statistically 
significant but also structurally separable in a data-driven feature space.

TABLE 1  Cardiovascular measures before and after caffeine ingestion.

Parameter Pre-caffeine Post-caffeine t(11) p-value Cohen’s d

HR (bpm) 77 ± 5.3 72 ± 2.5 2.55 0.027* 0.74

SBP (mmHg) 118.5 ± 4.1 119.4 ± 3.7 1.11 0.29 0.32

DBP (mmHg) 76.0 ± 3.9 77.3 ± 4.2 1.26 0.23 0.36

Values are means ± SEM. * p < 0.05. Heart rate (HR), SBP and DBP are obtainable as means ± SEM at the baseline and after intake of 162 mg  caffeine. Also paired sample t-tests were 
performed, with a p value <  0.05 being considered significant. HR was significantly lower  post-caffeine; BP changes were small, and not significant.

FIGURE 2

Individual and group-level changes in cardiovascular measures following caffeine ingestion. Violin plots demonstrating heart rate and blood pressure 
before and after caffeine intake. Each plot shows distribution density and individual subject data points. Heart rate significantly decreased while blood 
pressure presented a slight, non-significant rise after caffeine consumption.

FIGURE 3

Group-averaged EEG power spectra before and after caffeine ingestion. Five-minute artifact-free EEG epochs were analyzed to compare spectral 
power across canonical frequency bands. Post-caffeine data show increased beta and decreased alpha power, reflecting cortical arousal. Short trace 
comparisons were excluded to avoid bias.
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4.1 Neural effects and mechanistic 
interpretation

Alpha power suppression and beta power enhancement were found 
over central scalp regions, which is in line with previous studies 

implicating the role of caffeine as a nonselective adenosine receptor 
antagonist within the CNS (Fredholm et al., 1999; Cauli and Morelli, 
2005). Through this inhibition of A1 and A2A receptors, caffeine 
decreases the inhibitory influence of adenosinergic signal. It increases 
the availability of excitatory neurotransmitters (e.g., dopamine and 

FIGURE 4

Average EEG power spectra across all participants before and after caffeine intake. Long-duration EEG analyses shown in this figure—spanning 15 min 
recordings across central scalp region electrodes (C3, Cz, C4, CP5, CP1, CP2, CP6)—confirmed spatially widespread beta enhancements, with the 
most prominent effects at Cz and C4.

FIGURE 5

Long-duration spectral EEG analysis at central scalp region electrodes. This figure illustrates the grand average power spectra, highlighting increased 
beta activity and reduced alpha/theta power post-caffeine. These variations align with heightened attentional and arousal states.

TABLE 2  EEG spectral power changes before and after caffeine intake.

Band Pre-caffeine (dB) Post-caffeine (dB) t(11) p-value Cohen’s d

Alpha (8–13 Hz) −5.1 ± 0.8 −6.9 ± 0.9 2.31 0.041* 0.67

Beta (13–30 Hz) −4.7 ± 1.2 −2.3 ± 1.1 3.59 0.004** 1.04

* p < 0.05; ** p < 0.01.
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FIGURE 6

Unsupervised clustering of EEG spectral features using the k-means algorithm. EEG power spectral features (across delta, theta, alpha, beta bands and 
7 electrodes) were clustered into two groups. Data-driven separability of caffeine-induced neural changes was demonstrated by the emergence of 
distinct clusters corresponding to pre-caffeine and post-caffeine states.

FIGURE 7

EEG spectral clustering visualized with reduced dimensionality. Prior to k-means clustering, dimensionality was reduced using principal component 
analysis (PCA). The plot supports the viability of classifying neural states using unsupervised machine learning by clearly separating the pre- and post-
caffeine conditions.
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norepinephrine) in a variety of brain areas, including both cortical and 
subcortical regions (Attar, 2022a, 2022b). Together, these changes in 
neurochemistry prepare the cortex for enhanced excitability, readiness 
to respond, and reduced idling, which the study notes electro-
physiologically as oscillatory changes within their observed 
frequency content.

Alpha suppression (8–13 Hz) is a widely recognized 
electrophysiological marker of increased cortical activation and 
attentional engagement (Dimpfel, 2003; Barry et al., 2007). Its reduction 
in our post-caffeine recordings indicates a shift away from relaxed, 
internally oriented processing toward a state of heightened environmental 
readiness. Concurrently, beta enhancement (13–30 Hz) is linked to 

sustained attention, cognitive effort, and sensorimotor integration, and 
is often observed during active task engagement or heightened alertness 
(Barry et al., 2005). The topographical concentration of these effects at 
electrodes Cz and C4 corresponds to midline and right-hemispheric 
motor–sensorimotor areas, suggesting that caffeine’s stimulatory impact 
may particularly facilitate readiness for motor action.

These neural changes were not trivial in magnitude. The effect 
sizes were in the medium-to-large range, reinforcing their robustness 
despite the modest sample size. Moreover, the application of FOOOF 
decomposition confirmed that the beta increases and alpha decreases 
were genuine oscillatory effects, rather than artifacts of broadband 
spectral shifts—a common confound in pharmacological EEG 

FIGURE 8

EEG spectral power heatmap before and after caffeine ingestion. This heatmap visualizes power spectral density across 100 frequency bins and central 
scalp electrodes. Warmer colors in the post-caffeine condition indicate increased beta activity, supporting the presence of stimulant-induced spectral 
shifts across subjects.

FIGURE 9

Evaluation of clustering performance and EEG feature separability. Left panel shows the clustering performance metrics: silhouette score (0.54) and 
Davies–Bouldin index (0.61) indicate moderate cluster quality, validating k-means separability of EEG features. While the right panel shows t-SNE 
projection of EEG spectral features: two-dimensional t-SNE embedding illustrates distinct clusters corresponding to pre- and post-caffeine EEG states, 
confirming machine-learnable separability of brain activity.
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studies. This analytic specificity strengthens confidence in the 
interpretation of caffeine-induced oscillatory modulation.

4.2 Machine learning classification of 
caffeine states

One of the more significant advancements of this study was the 
use of unsupervised clustering with electroencephalography (EEG) 
spectral feature vectors. The study used k-means clustering to 
distinguish caffeinated and decaffeinated recordings. As expected, the 
separation between the upper limit of one condition and the lower 
limit of another- without providing this information directly through 
labels. These states could be  separated not only in the high-
dimensional feature space, but also visually following dimensionality 
reduction with principal component analysis (PCA). This suggests 

caffeine-related differences emerge as structured, learnable variations 
in neural activity patterns.

The study’s cluster quality metrics point to modest, but not trivial, 
separability (Silhouette score = 0.54; Davies–Bouldin index = 0.61). 
The relatively limited number of samples accentuates the concordance 
among altered gene expression patterns when detecting elusive 
biomarkers. Further, when we tested classification performance using 
a supervised SVM model, accuracy reached 79.2% (F1-score = 0.81), 
demonstrating that these brain states are sufficiently distinct to 
support real-time or near-real-time classification. This is an 
important step toward applied cognitive monitoring systems.

These findings support the feasibility of integrating wearable EEG 
with machine learning algorithms to passively track pharmacologically 
induced cognitive states. This approach has potential applications in 
fatigue detection, cognitive readiness assessment, and individualized 
stimulant dosing strategies.

FIGURE 10

Distribution of key physiological and neural markers pre- and post-caffeine. Violin plots display individual and group distributions for heart rate (left), 
alpha power (center), and beta power (right). Caffeine’s impact on autonomic and cortical arousal is demonstrated by notable decreases in heart rate 
and alpha power and increases in beta power.

FIGURE 11

FOOOF-based decomposition of EEG spectra into periodic and aperiodic components. The raw power spectral density (orange) is decomposed into 
an aperiodic 1/f component (dashed orange) and residual periodic peaks (red). Results reveal that caffeine-induced beta increases reflect genuine 
oscillatory enhancements rather than broadband power shifts, supporting frequency-specific interpretations.
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4.3 Cardiovascular findings and brain–
heart coupling

Caffeine caused a significant decrease in heart rate (HR) from 
77 ± 5.3 bpm to 72 ± 2.5 bpm (p = 0.027), with only minor 
non-significant concomitant changes in systolic and diastolic blood 
pressure (BP). This pattern is interesting as caffeine cardiovascular 
responses were shown to be  related to dosage, physiological 
variability across individuals, and baseline autonomic tone (Nehlig, 
2010; Temple et al., 2017). The decrease in HR might have been due 
to baroreceptor-mediated reflex parasympathetic activation as a 
counter-balance to the vasoconstriction and elevation in vascular 
resistance following caffeine-induced sympathetic activity.

Notably, the simultaneous measurement of EEG and 
cardiovascular indices allowed us to capture synchronized changes 
across central and peripheral systems. The integrated pattern—HR 
decrease, alpha suppression, and beta enhancement—supports the 
concept of caffeine as a systemic stimulant that modulates both 
cortical and autonomic arousal. Such multimodal signatures are 
consistent with prior research showing that co-activation of beta 
rhythms and increased heart rate variability. This is linked to optimal 
attentional control, whereas discordant patterns may reflect stress or 
dysregulation (Attar et al., 2021; Lenartowicz and Loo, 2014).

4.4 Methodological contributions

In comparison with earlier studies on caffeine–EEG in humans 
(Table 3), our study has several methodological advantages:

	-	 Wearable integration  – lightweight, non-invasive wearable 
systems (EEG and cardiovascular monitoring), to enhance 
ecological validity and portability.

	-	 Machine learning analytics — the study used unsupervised and 
supervised algorithms to classify brain states; Constructing 

machine learning classifiers detected stimulant-induced changes 
without having to know the condition labeling.

	-	 Oscillatory decomposition  – the study used FOOOF to 
decompose periodic and aperiodic EEG components, supporting 
the oscillatory nature of these changes.

	-	 Ecologically relevant dose and delivery.

These innovations are part of a wider trend in digital 
psychophysiology, whereby multimodal biosignal recording and 
AI-driven analytics can monitor brain–body states on many 
human conditions.

4.5 Limitations and future directions

While the results are intriguing, there are some limitations to keep 
in mind:

	-	 The sample consisted of 12 healthy young men, so 
generalizability is an issue. Large-scale, sex- and age-diverse 
cohorts examining individual sensitivity, perhaps together with 
hormonal profile and genetic profiling, are necessary in 
future investigations.

	-	 EEG Spatial Coverage — Focused only on seven central 
electrodes; limited spatial resolution. An encephalography with 
high-resolution density would offer a more complete coverage of 
cortical effects, especially in frontal and occipital areas.

	-	 Recording Timings—Post-caffeine levels taken at 15 min, during 
the early pharmacodynamic period. A multi-timepoint design 
expanding the whole 30–120 min peak plasma window could 
provide a more detailed temporal profile.

	-	 The coffee delivery method is ecologically valid; however, 
multiple “cups of coffee” can introduce variability in caffeine 
content. Future work with standardized capsule–based 
administration would allow for more accurate dosing.

TABLE 3  Comparative overview of study design and methodological advances relative to previous caffeine-EEG research.

Study EEG 
channels/
focus

Sample size/
demographics

Caffeine 
dose & 
form

Cardiovascular 
integration

EEG 
analysis 
method

Machine 
learning 
applied

Key advances

Barry et al. 

(2005, 

2007)

19-channel EEG; 

frontal & central

10–12 adults; mixed 

gender

250 mg capsule Not assessed Spectral 

(FFT); t-tests

No Alpha suppression, beta 

increase

Dimpfel 

(2003)

8-channel EEG; 

frontal & occipital

Small N (<10); 

unclear

Variable coffee 

doses

Not assessed Spectral ratios; 

visual 

inspection

No Dose–response effects 

observed

Childs and 

de Wit 

(2006)

64-channel EEG; 

task-based design

15 healthy adults 200 mg capsule HR/BP monitored ERP and FFT No Task-related EEG changes 

post caffeine

Nehlig 

et al. 

(1992)

10-channel EEG; 

resting state

12 young adults 100–200 mg 

coffee

Not assessed FFT; alpha 

and beta band 

focus

No Central arousal and alpha 

suppression

Present 

Study 

(2025)

7 central electrodes 

(C3–CP6) via 

EMOTIV Flex

12 healthy young 

males (20–30 yrs)

162 mg black 

coffee

Wearable BP & HR 

(Huawei Watch D)

PSD (Welch), 

FOOOF, 

clustering

Yes (k-means) Wearable 

EEG + cardiovascular + 

ML integration in resting-

state design

Highlights study-specific attributes like sample size, EEG setup, dose standardization, use of wearable devices, and machine learning integration, contrasted with prior research.
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	-	 Control conditions — no placebo or decaf condition = not 
separating pharmacological effects from expectancy or 
environmental factors.

	-	 Machine learning complexity — k-means and SVM have shown 
positive results, but to further increase the sensitivity for micro-
changes in states, research should look into deep learning, fuzzy 
logic classifiers, or even a hybrid mode.

4.6 Broader implications for digital health 
and society

These findings have direct implications for personalized health 
monitoring, occupational risk assessment, and community health. As 
caffeine use commences in early life and endures throughout the 
lifespan (Fredholm et al., 1999), there is clear practical utility for tools 
capable of providing an objective metric of hormone function to 
optimize patterns of intake, which may help mitigate against 
deleterious consequences.

For example, beta power increase may act as a neuro-biomarker 
of alertness in circumstances like:

	-	 Monitoring shift workers, taxi drivers, or pilots for 
fatigueogenic behavior.

	-	 Improve student and professional study/performance Schedules.
	-	 Assisting in clinical decisions for sleep disorders or attentional 

deficits in patients.

For example, some of the review articles included in this issue 
describe how cardiovascular responses can be  used to guide the 
consumption of caffeine in patients with hypertension, arrhythmias, 
or autonomic dysfunction. Such wearable EEG–BP systems could 
afford an affordable approach for the monitoring of neurological and 
cardiovascular health in under-resourced settings, circumventing the 
requirement for specialized clinical facilities.

From a neuroergonomics perspective, this work demonstrates the 
potential to optimize the adaptability of work environments through 
real-time and unobtrusive monitoring avenues that govern cognitive 
load and ensure safer interactions between humans and machines (see 
Table 4).

5 Conclusion

In summary, moderate caffeine intake induces disinhibition and 
coordinated neural-cardiovascular changes that are prominent and 
measurable by machine-learning methods. The study shows that with 
the integration of wearable EEG and cardiovascular sensors, spectral 
analysis, oscillatory decomposition, and AI-driven classification, a 
scalable system for continuous real-time psychophysiological monitoring 
can be implemented. It provides a basis for the application of such a 
system in digital health, occupational safety, and neuroergonomics.

These results underscore the importance of investigating a more 
broadly diverse population in future studies, obtaining an expanded 
spatial localization of brain patterns using higher-density EEG, 
controlling for placebo effects, and applying different classification 
algorithms. This will refine the sensitivity, specificity, and 

generalizability of caffeine state identification, part of a broader 
class of digital biomarkers with the potential to facilitate 
personalized, adaptive health interventions across clinical and 
daily life.
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