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Bacteria rely on two-component signaling systems (TCSs) to detect
environmental cues and orchestrate adaptive responses. Despite their
apparent simplicity, TCSs exhibit a rich spectrum of dynamic behaviors arising
from network architectures, such as bifunctional enzymes, multi-step
phosphorelays, transcriptional feedback loops, and auxiliary interactions. This
study develops a generalized mathematical model of a TCS that integrates these
various elements. Using systems-level analysis, we elucidate how network
architecture and biochemical parameters shape key properties such as
stability, monotonicity, and signal amplification. Analytical conditions are
derived for when the steady-state levels of phosphorylated proteins exhibit
robustness to variations in protein abundance. The model characterizes how
equilibrium phosphorylation levels depend on the absolute and relative
abundances of the two components. Specific scenarios are explored,
including the MprAB system from Mycobacterium tuberculosis and the EnvZ/
OmpR system from textit Escherichia coli, to describe the potential role of reverse
phosphotransfer reactions. By combining mechanistic modeling with system-
level techniques, such as nullcline analysis, this study offers a unified perspective
on the design principles underlying the versatility of bacterial signal transduction.
The generalized modeling framework lays a theoretical foundation for
interpreting experimental dynamics and rationally engineering synthetic TCS
circuits with prescribed response dynamics.
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1 Introduction

Bacteria rely on two-component systems (TCSs) as their primary signaling modules to
detect environmental cues and orchestrate adaptive responses. A canonical TCS consists of
a membrane-bound sensor histidine kinase (SHK) and a cytoplasmic response regulator
(RR). Upon stimulation, the SHK autophosphorylates on a conserved histidine and
transfers the phosphoryl group to an aspartate on the RR, generating the active form
(RR-P) that typically regulates gene expression. This minimal architecture is remarkably
versatile, underpinning processes such as chemotaxis, nutrient sensing, antibiotic
resistance, and virulence regulation (Tierney and Rather, 2019; Tiwari et al., 2017;
Kirby, 2009; Ramos et al., 2022; Alvarez and Georgellis, 2023).

Despite their apparent simplicity, TCSs display a rich spectrum of topologies and
dynamic behaviors (Zschiedrich et al., 2016; Groisman, 2016; Stock et al., 2000). In some
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systems, exemplified by CheA in bacterial chemotaxis, SHK
functions exclusively as a kinase, phosphorylating the RR.
However, in many TCSs, SHK is bifunctional, participating in
both phosphorylation and dephosphorylation of its cognate RR.
In such cases, the input signal can modulate either one or both of
these enzymatic activities, effectively tuning the rates of kinase and/
or phosphatase reactions. TCSs may implement single-step
phosphotransfers or multi-step phosphorelays, adding regulatory
complexity and potentially delaying signal propagation.

At the transcriptional level, many TCSs feature autoregulation:
the phosphorylated RR activates transcription of both its own gene
and the gene encoding its partner SHK, thereby forming a positive
feedback loop (Goulian, 2010). This feedback can alter steady-state
behavior, activation, and inactivation kinetics and generate transient
overshoot or “memory” effects, whereby the system responds faster
to repeated stimuli. Although less common, negative
autoregulation—or even mixed positive and negative
feedback—has been observed in specific systems, providing an
additional layer of response modulation. Auxiliary proteins can
further diversify TCS behaviors, either by directly interacting
with SHKs or RRs or by mediating cross-talk between otherwise
independent TCS pathways (Rao et al., 2021; Groisman, 2016).

Mathematical modeling has been pivotal in elucidating the
emergent properties of TCSs (summarized in Table 1). Batchelor
and Goulian (2003) demonstrated that the steady-state level of RR-P
can be robust to protein abundance fluctuations when SHK is
limiting, a property supported by experimental data. Shinar et al.
(2007) formalized the conditions for input-output robustness,
showing that robustness is compromised when multiple
independent phosphorylation or dephosphorylation routes exist.
Igoshin et al. (2008) identified conditions for bistability, particularly
when unphosphorylated SHK and RR form “dead-end” complexes
or when alternative phosphatases modulate RR-P turnover. Ray and
Igoshin (2010), Mitrophanov et al. (2010), and Zorzan et al. (2021)
explored the role of transcriptional feedback, showing that
autoregulation can alter response speed, overshoot amplitude,
and even affect the effective sign of feedback, enabling TCSs to
switch between positive and negative regulatory modes depending
on signal strength. These studies collectively highlight how
bifunctionality, phosphorelays, and feedback loops produce rich
dynamic behaviors—including robustness, bistability, and adaptive
memory—that are now central themes in systems-level
analyses of TCSs.

In this study, we develop a systems-level model of a generalized
TCS model focusing on the MprAB system from Mycobacterium
tuberculosis that integrates canonical phosphorylation cycles,
bifunctional enzymatic activity, transcriptional feedback, and
potential auxiliary interactions. Our modeling framework seeks to
(i) dissect how network architecture and parameter regimes shape
dynamic properties and provide robustness, to be adopted as a
building block to implement overshoots, oscillations, and bistability,
and (ii) provide a predictive foundation for interpreting
experimental dynamics and guiding synthetic circuit design in
bacterial signal transduction.

By combining mechanistic modeling with systems-level
analysis, this study elucidates how bifunctionality,
phosphorelays, and feedback loops shape the dynamic
behavior of TCSs, providing insights into bacterial adaptation
and a framework for the rational engineering of synthetic
signaling circuits (Mukherji and van Oudenaarden, 2009;
Pasotti et al., 2017; Müller et al., 2025).

2 Two-component system:
mathematical model

The model we consider is a general version of the model
proposed in Tiwari et al. (2010) to describe the functioning of
the two-component system MprA/MprB in M. tuberculosis in its
active state.

For the sake of generality, we refer to “response regulator” (RR)
and “sensor histidine kinase” (SHK) rather than to MprA and
MprB, respectively. Denoting by r (r*) and s (s*), the concentration
of RR (phosphorylated RR) and SHK (phosphorylated SHK),
respectively, the dynamic evolution of the two-component system
is described by the following set of ODEs (see Supplemental
Information of Tiwari et al. (2010), Equations (S39)–(S42)):

_r � kp
KP

r*s − kt
KT

rs* + kexdr* − kexpr + ]r − kpdegr (1)

_r* � − kp
KP

r*s + kt
KT

rs* − kexdr* + kexpr − kpdegr* (2)

_s � kads* − kaps + kt
KT

rs* + ]s − kpdegs (3)

_s* � −kads* + kaps − kt
KT

rs* − kpdegs* (4)

TABLE 1 Comparison of previous findings on bacterial TCSs with results from this study’s model.

References Findings from previous studies Model results of this study

Batchelor and Goulian (2003) Robustness of RR-P steady-state levels when SHK is limiting;
EnvZ/OmpR experiments confirmed robustness to fluctuations
in protein abundance.

Reproduces robustness when exogenous phosphorylation is
absent. Predicts loss of robustness (steady state depends on
SHK:RR ratio) if exogenous phosphorylation flux is present.

Shinar et al. (2007) Formalized conditions for input–output robustness; robustness
breaks downwhenmultiple phosphorylation/dephosphorylation
pathways exist.

General model confirms robustness only under restricted
architectures. Multiple independent routes compromise
robustness.

(Dutta and Inouye, 1996); (Zhu et al.,
2000)

Proposed and observed reverse phosphotransfer (RR-P→ SHK)
in EnvZ/OmpR; debated as mechanism for phosphatase activity.

Extends framework to include reverse phosphotransfer.
Predicts that it does not affect RR-P steady state (compensated
by forward transfer), but increases phosphorylated SHK levels.
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—where

• ]r and ]s are the production rate constants of RR and SHK,
respectively;1

• kp is the rate constant for the SHK-dependent
dephosphorylation of RR*;

• KP is the Michaelis–Menten constant for RR*
dephosphorylation by SHK;

• kt is the rate constant for the SHK*-dependent
phosphorylation of RR;

• KT is the Michaelis–Menten constant for RR–SHK*
phosphotransfer;

• kexp and kexd are the exogenous phosphorylation and
dephosphorylation rate constants, respectively;

• kap and kad are the autophopshorylation and
autodephosphorylation rate constants, respectively;

• kpdeg is the protein degradation rate (assumed equal for
RR and SHK).

One additional assumption worth highlighting is that the
system is always considered to be in the active state. This is
biologically reasonable as external stimuli often saturate the
sensing capacity of the TCS. As a result, the transition of the

sensor s from the inactive to the active state upon binding
external stimuli can be neglected in the model, as well as the
availability of ATP inside the cell to provide phosphate groups for
the phosphorylation steps.

The overall system can be represented as in Figure 1.
We define the total amount of RR and SHK as RT � r + r* and

ST � s + s*, respectively, and rewrite the previous model presented
in Equations 1–4 in the form shown in Equations 5–8:

_RT � kpdeg ur − RT( ) (5)

_r* � − kp
KP

r* ST − s*( ) + kt
KT

RT − r*( )s* − kexdr* + kexp RT − r*( )
− kpdegr*

(6)
_ST � kpdeg us − ST( ) (7)

_s* � −kads* + kap ST − s*( ) − kt
KT

RT − r*( )s* − kpdegs* (8)

—where ur ≔ ]r/kpdeg (us ≔ ]s/kpdeg) is the net production rate
of RR (SHK). Due to the separation of timescales between protein
accumulation and phosphorylation/dephosphorylation events, we
can assume that total concentrations of RR and SHK are
preserved—namely, that RT and ST are constant. Under this
assumption, we can normalize all state variables and consider the
phosphorylated portion of RR and SHK

r* ≔
r*
RT

and s* ≔
s*
ST
,

the dynamics of which are described by

FIGURE 1
Schema of the generalized TCS. Binding of the signal molecule and general activation of genes are reported in panel (a), while in panel (b) the part of
the system described by Equations 1–4 is reported.

1 Actually, in (Tiwari et al., 2010) production of RR and SHK is described by

the summation of two activating Hill functions. As explained later, since we

are focusing on the functioning of the Two-Component System, the

separation of time scales allows us to assume constant production rates.
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_r* � − kexd + kexp + kpdeg( )r* − kp
KP

STr* 1 − s*( ) − kt
KT

STr*s*

+ kt
KT

STs* + kexp

_s* � − kad + kap + kpdeg( )s* − kt
KT

RTs* 1 − r*( ) + kap

Since we aim to provide a model describing the functioning of
general two-component systems (TCSs) and unveiling its structural
and asymptotic properties, from now on we will consider the
following general formulation:

_r* � − α1 + α2( )r* − α3STr* 1 − s*( ) − α4STr*s* + α4STs*

+ α2 ≕ f1 r*, s*( ) (9)
_s* � − β1 + β2( )s* − β3RTs* 1 − r*( ) − β4RTr*s* + β4RTr*

+ β2 ≕ f2 r*, s*( ) (10)
Differential Equations 9, 10 describe the dynamics of the

phosphorylated portions of RR and SHK—that is, ratio
phosphorylated-RR (phosphorylated-SHK) over total RR
(SHK)—under the assumption that total concentrations RT and
ST are constant. Notice that in Equation 10, the terms −β4RTr*s*
and β4RTr* have been included for reasons of symmetry. Of course,
this general formulation can be tailored to the specific two-
component system under investigation. For instance, we
immediately verify that, upon defining

α1 � kexd + kpdeg, α2 � kexp, α3 � kp
KP

, α4 � kt
KT

β1 � kad + kpdeg, β2 � kap, β3 �
kt
KT

, β4 � 0,

Equations 9, 10 reduce to the MprA-MprB system proposed in
Tiwari et al. (2010).

2.1 Structural properties

We note that, by the way that r* has been defined, it is
dimensionless, and such that for every t≥ 0 it holds 0≤ r*(t)≤ 1,
r* � 0 means that all RR are unphosphorylated, while r* � 1
represents the situation with all RR phosphorylated. Clearly, the
same holds for s*, and hence every state trajectory of the
bidimensional system Equations 9, 10 belongs to the feasibility
set C ≔ (r*, s*): 0≤ r*≤ 1, 0≤ s*≤ 1{ }.

Proposition 1: The TCS model Equations 9, 10 exhibits a unique
equilibrium point (req* , seq* ) within the feasibility set C.

Proof. First, notice that the set C is positively invariant with
respect to systems Equations 9, 10, so that if the state trajectory starts
in C, then it stays in C for any t≥ 0. Positive invariance of the convex
and compact set C ensures that there exists at least one equilibrium
point in C—that is, a limit cycle or at least one stable equilibrium
point (Blanchini and Miani, 2015—Theorem 4.21).

We now resort to Bendixon’s theorem to rule out the existence of
closed orbits.2 Note that

df1

dr*
r*, s*( ) � − α1 + α2( ) − α3ST 1 − s*( ) − α4STs*< 0, ∀ r*, s*( ) ∈ C

df2

ds*
r*, s*( ) � − β1 + β2( ) − β3RT 1 − r*( ) − β4RTr*< 0, ∀ r*, s*( ) ∈ C

Hence, div(f) ≔ df1

dr* + df2

ds* is not identically zero in any sub-region of
the simply connected region C and does not change sign in C. Then,
by Bendixon’s theorem (Sastry, 1999—Theorem 2.7), the set C
contains no closed orbits of system Equations 9, 10.

Finally, we resort to nullcline analysis to prove the uniqueness of
steady states. Setting dr*/dt � 0 and ds*/dt � 0 yields the following
expressions for r* and s* nullclines:

r* � α4STs* + α2
α1 + α2 + α3ST 1 − s*( ) + α4STs*

≕ g s*( ) (11)

s* � β4RTr* + β2
β1 + β2 + β3RT 1 − r*( ) + β4RTr*

≕ h r*( ) (12)

A typical figure of RR and SHK nullclines is reported in Figure 2.
From expression 11, it is easy to obtain s* � g−1(r*):

g−1 r*( ) � α1 + α2 + α3ST( )r* − α2
α4ST 1 − r*( ) + α3STr*

(13)

We define the function Δ(r*) ≔ h(r*) − g−1(r*) and note that, by
the way Δ(r*) has been defined, if (req* , seq* ) is an equilibrium
point, then Δ(req* ) � 0; vice versa, if Δ(�r*) � 0 then (�r*, h(�r*)) �
(req* , seq* ) is an equilibrium point. It is a matter of computation to
verify that Δ(r*) is a rational function—Δ(r*) � n(r*)

d(r*)—and that
both the numerator and denominator are polynomials of
order 2:

n r*( ) � β4RTr* + β2( ) α4ST 1 − r*( ) + α3STr*( )
+ − β1 + β2 + β3RT 1 − r*( ) + β4RTr*( )
× α1 + α2 + α3ST( )r* − α2( )

d r*( ) � β1 + β2 + β3RT 1 − r*( ) + β4RTr*( ) α4ST 1 − r*( ) + α3STr*( )
Note that d(r*)> 0 for every r* ∈ [0, 1], and hence Δ(r*) � 0 for
some r* ∈ [0, 1] if and only if n(r*) � 0 for some r* ∈ [0, 1]. Since
n(0)> 0 and n(1)< 0, there certainly exists req* ∈ [0, 1] such that
n(req* ) � 0, and hence Δ(req* ) � 0—as already demonstrated, the
system admits at least one equilibrium point in C. On the other
hand, since n(r*) is a second-order polynomial, such an req*
belonging to the interval [0,1] is unique—the system admits a
unique equilibrium point C.

Remark 1: Remark 1. A closed-form expression for the equilibrium
point of the TCS can be computed as the unique root in interval [0,1]
of the second-order polynomial n(r*).
req* � α3β3RTST − α4β4RTST ± ��

A
√

2 α3β3RTST − α4β4RTST + α1β3RT + α2β3RT − α1β4RT − α2β4RT( )( )
with. A � (−α3β3RTST + α4β4RTST − α1β3RT − 2α2β3RT + α2β4
RT − α3β1ST − α4β2ST − α1β1 − α2β1 − α1β2 − α2β2)2 − 4(α2β3RT +
α4β2ST + α2β1 + α2β2)(α3β3RTST − α4β4RTST + α1β3RT + α2β3RT−
α1β4RT − α2β4RT) + α1β3RT + 2α2β3RT − α2β4RT + α3β1ST + α4β2
ST + α1β1 + α2β1 + α1β2 + α2β2)

Proposition 1 states that all trajectories with initial conditions in
C converge to a unique equilibrium point (req* , seq* ) ∈ C. This means

2 Since every limit cycle is a closed orbit, ruling out the existence of closed

orbits automatically excludes the existence of limit cycles.
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that, independently of the initial relative amounts of phosphorylated
and unphosphorylated proteins, the proportion of phosphorylated
to total RR will asymptotically equal req* , while the proportion of
phosphorylated to total SHK will asymptotically tend to seq* . The
following proposition identifies a subregion Ceq=C where the
equilibrium point is located and hence provides upper and lower
bounds to the phosphorylation levels req* and seq* asymptotically
reached by the TCS.

Proposition 2:Consider the TCS described bymodels Equations 9,
10. The unique equilibrium point of the system, denoted by
(req* , seq* ), belongs to the subregion

Ceq ≔ r*, s*( ): rmin* ≤ r*≤ rmax* , smin* ≤ s*≤ smax*{ }=C,
where

rmin* : � α2
α1 + α2 + α3ST

, rmax* : � α4ST + α2
α1 + α2 + α4ST

,

smin* : � β2
β1 + β2 + β3RT

, smax* : � β4RT + β2
β1 + β2 + β4RT

Proof. Consider the expression for RR nullcline Equation 11 and
note that

∂g

∂s*
s*( ) � ST α1α4 + α4α3ST + α2α3( )

α1 + α2 + α3ST 1 − s*( ) + α4STs*( )2 > 0 for everys* ∈ 0, 1[ ],

and hence r* is strictly monotonically increasing in s*. The bounds
on req* then follow from

g 0( ) � α2
α1 + α2 + α3ST

≕ rmin* , and

g 1( ) � α4ST + α2
α1 + α2 + α4ST

≕ rmax* ,

Analogous computations on SHK nullcline Equation 12 lead to
upper and lower bounds on seq* .

The set Ceq is reported in Figure 2 for the set of parameters
considered. We conclude this section with the following Lemma,
which will be useful for subsequent derivations (see again Figure 2).

Lemma 1: Consider the TCS described by models Equations 9, 10,
and define

�α: � α2α3
α2α3 + α1α4

α̂: � α2
α1 + α2

�β: � β2β3
β2β3 + β1β4

β̂: � β2
β1 + β2

Then, RR nullcline Equation 11 always passes through
(�α, α̂)—g(�α) � α̂—while SHK nullcline Equation 12 always passes
through (�β, β̂)—h(�β) � β̂.

This behavior can also be observed in Figure 3, where the dotted
lines indicate the nullclines associated with higher values of RT and
ST, while the dashed lines are the nullclines obtained with lower
values of RT and ST, as described in the caption.

Since verifying that g(�α) � α̂ and h(�β) � β̂ is just a matter of
computation, the proof of Lemma 1 is omitted.

At this point, two observations are in order. First, the
dimensionless values req* and seq* depend on the total amounts of
RR and SHK proteins present within the system (recall that, due to
time scale separation, so far we have assumed that the quantities RT

and ST are constant). In other words, req* and seq* are continuous
functions of RT and ST—req* � req* (RT, ST) and seq* � seq* (RT, ST).
The second observation is that uniform monotonicity of req* (RT, ST)
and seq* (RT, ST) with respect to their arguments is not guaranteed.
Depending on the values taken by the system parameters,
equilibrium req* might decrease with RT when RT belongs to a
specific interval, and increase with RT when it belongs to a
different interval.

3 Relative concentrations

3.1 Low vs high RT concentration

In this section, we assume that RT and ST are independent.

Proposition 3: (Low RT concentration.) Consider the TCS described
by models Equations 9, 10 and let the total SHK concentration ST be
arbitrary but fixed. When the total RR concentration is extremely
low—that is, for RT → 0—the equilibrium point asymptotically
reached by the system is given by (req* , seq* ) � (g(β̂), β̂).

Proof. By taking the limit for RT → 0 of the function h(r*)
defined in Equation 12 and representing SHK nullcline,3 it can be
seen that seq* � β̂. The result then follows by plugging seq* into
RR-nullcine Equation 11.

FIGURE 2
Nullclines for α1 � 0.5, α2 � 1, α3 � 1, α4 � 7, β1 � 0.3, β2 � 1, β3 � 1,
β4 � 4, RT � 1, and ST � 1. The Ceq region corresponds to the
subregion where the equilibrium point is located, as detailed in
Proposition 2.

3 An equivalent way to see that seq* � β̂ when RT → 0 is noticing that in this

case both smin* and smax* tend to β2/(β1 + β2) � β̂, and hence the subregion

Ceq reduces to a line.
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Proposition 4: (High RT concentration.) Consider the TCS
described by models Equations 9, 10 and let the total SHK
concentration ST be arbitrary but fixed. When the total RR
concentration is extremely high—that is, for RT → +∞—the
equilibrium point asymptotically reached by the system is
(rhR* , h(rhR* )), with rhR* being the (unique) solution in the
interval [0,1] of the quadratic equation A(r*)2 + Br* + C � 0, where

A: � α1 + α2 + α3ST( )β3 − α2 + α4ST( )β4 − α1β4
B: � − α1 + α2 + α3ST( )β3 + α2 + α4ST( )β4 − α2β3
C: � α2β3

More specifically, rhR* � (−B − ��������
B2 − 4AC

√ )/(2A).
Proof. Note that when RT → +∞, the upper and lower bounds

on seq* are given by smin* � 0 and smax* � 1, respectively, and hence
do not provide any useful information. Taking the limit for RT → +
∞ of RR and SHK nullclines Equations 13, 12 yields

lim
RT→+∞

g−1 r*( ) � α1 + α2 + α3ST( )r* − α2
α4ST 1 − r*( ) + α3STr*

lim
RT→+∞

h r*( ) � β4r*
β4r* + β3 1 − r*( )

Solving for limRT→+∞g−1(r*) � limRT→+∞h(r*) leads to the
quadratic equation A(r*)2 + Br* + C � 0. The result now follows
upon noting that if (α1 + α2 + α3ST)β3 > (α1 + α2 + α4ST)β4, then
A> 0 and B< 0, otherwise A< 0; by Descartes’ rule of signs, the
quadratic equation has a unique positive solution.

Corollary 1: Consider the TCS described by models Equations 9, 10
and let the total SHK concentration ST be arbitrary but fixed.
Assuming the total RR concentration to be very high—that is,
RT → +∞—then if β3 ≠ 0 and β4 � 0, the equilibrium point

asymptotically reached by the system is (rmin* , 0); if β3 � 0 and
β4 ≠ 0, the equilibrium point is (rmax* , 1).

Proof. Consider the scenario with β3 ≠ 0 and β4 � 0 and note
that in this case, smax* � β2

β1+β2. Taking the limit for RT → +∞ of
SHK nullcline (12) yields

seq* � lim
RT→+∞

β2
β1 + β2 + β3RT 1 − r*( ) � 0, smin* � 0.

Then, from RR nullcline Equation 11, we have req* � g(seq* ) � rmin* 4.
The proof for the case β3 � 0 and β4 ≠ 0 follows the same line and is
hence omitted.

Figure 4 reports, for an illustrative set of parameters, equilibrium
values req* and seq* as a function of RT.

By symmetry, analogous results on the equilibrium point hold
when the SHK total amount is extremely low or extremely
high—ST → 0 or ST → +∞.

3.2 Uniform monotonicity of the equilibrium
with respect to RT and ST

We now consider small perturbations of RT and ST
concentrations and investigate their effects on the equilibrium
point (req* , seq* ).

We assume first that ST is constant and consider small
perturbations of RT. The equilibrium values continuously depend
on RT—that is, (req* , seq* ) � (g(seq* , RT), h(req* , RT))—and this
dependence is quantitatively described by

∂req*

∂RT
� ∂g

∂s*

∂seq*

∂RT
(14)

∂seq*

∂RT
� ∂h

∂r*

∂req*

∂RT
+ ∂h

∂RT
(15)

Conversely, if we assume that total concentration RT is constant
while ST slowly varies, we have

∂req*

∂ST
� ∂g

∂s*

∂seq*

∂ST
+ ∂g

∂ST
(16)

∂seq*

∂ST
� ∂h

∂r*

∂req*

∂ST
(17)

Putting together Equations 14–17 and solving for the variation
of equilibria with respect to RT and ST, we obtain

∂req*

∂RT
�

∂h
∂RT

∂g
∂s*

1 − ∂h
∂r*

∂g
∂s*

∂seq*

∂RT
�

∂h
∂RT

1 − ∂h
∂r*

∂g
∂s*

(18)

∂req*

∂ST
�

∂g
∂ST

1 − ∂h
∂r*

∂g
∂s*

∂seq*

∂ST
�

∂g
∂ST

∂h
∂r*

1 − ∂h
∂r*

∂g
∂s*

(19)

Proposition 5: Consider the TCS described by model Equations 9,
10, and let (req* , seq* ) denote the (unique) equilibrium point of the
system. The equilibrium values req* � req* (RT, ST) and seq* �
seq* (RT, ST) are:

FIGURE 3
Nullclines for α1 � 0.5, α2 � 1, α3 � 1, α4 � 7, β1 � 0.3, β2 � 1, β3 � 1,
and β4 � 4. The solid lines have RT � 1 and ST � 1 as in Figure 2; the
dashed lines are obtained with RT � 0.4 and ST � 0.4; the dotted lines
with RT � 2 and ST � 2.

4 Alternatively, the result directly follows from Proposition 4 with β3 � 0.
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i) monotonically increasing in their arguments if α̂> �β and β̂> �α;
ii) monotonically decreasing in their arguments if α̂< �β and β̂< �α.
Proof. Observe that

∂h

∂r*
� RT β1β4 + β4β3RT + β3β2( )

β1 + β2 + β3RT 1 − r*( ) + β4RTr*( )2 ≥ 0 for every r* ∈ 0, 1[ ],

and by symmetry, also ∂g
∂s*≥ 0 for every s* ∈ [0, 1]. Moreover, recall

that the function Δ(r*) ≔ h(r*) − g−1(r*) is such that Δ(0)> 0 and
Δ(1)< 0 (see proof of Theorem 1), and hence at the equilibrium
∂Δ
∂r* � ∂h

∂r* − ∂g−1
∂r* < 0—∂h

∂r*<
∂g−1
∂r* . This, in turn, implies that

0<
∂h
∂r*
∂g−1
∂r*

� ∂h

∂r*
∂g

∂s*
< 1

Then, the sign of the partial derivatives Equations 18, 19 are
solely determined by ∂h

∂RT
and ∂g

∂ST
since all other terms are always non-

negative. It is a matter of computation to verify that

∂h

∂RT
� β1β4 + β2β3( )r* − β2β3

β1 + β2 + β3RT 1 − r*( ) + β4RTr*( )2,
and hence at equilibrium sign( ∂h

∂RT
) � sign(req* − �β). Exploiting again

the symmetry of the system, we can claim that
sign( ∂g

∂ST
) � sign(seq* − �α). Hence, provided that req* (seq* ) is

greater than �β (respectively, �α), both req* and seq* are
monotonically increasing functions of RT (respectively, ST).
Similarly, provided that req* (seq* ) is smaller than �β (respectively,

�α), both req* and seq* are monotonically decreasing functions of RT

(respectively, ST). It is clear from Figure 2 that when α̂> �β and β̂> �α,
the equilibrium values necessarily satisfy the inequalities req* > �β and
seq* > �α, and the thesis follows.

Remark 2: The conditions on the system parameters provided by
proposition 5 are sufficient (but not necessary) for uniform
monotonicity of the equilibrium concerning total concentrations
RT and ST. It is worth noticing that such a result is extremely
powerful; its strength resides in the fact that it does not depend on
the specific form of the functions RT and ST (provided they are
monotone). More specifically, let RT � fR(uext) and ST � fS(uext),
where uext is an external signal and fR and fS are monotone
functions. Then, uext � f−1

R (RT), and the relationship between ST
and RT is given by ST � fS◦f−1

R (RT) (note that the composite
function fS◦fR is itself monotone). Proposition 5 states that if
α̂> �β and β̂> �α, monotonicity of the equilibrium with respect to
RT and ST is ensured independently on the specific form of the
monotone functions fR and fS. If the previous conditions are not
satisfied, uniform monotonicity is not guaranteed.

We now focus on the case where a proportionality relationship
among RT and ST can be assumed: ST � fS◦fR(RT) � λRT. Note
that this is a perfectly reasonable assumption when phosphorylated
RR activates the transcription of both its gene and the gene encoding
its partner SHK—see, for example, the mathematical description of
the MprA/MprB two-component system adopted in (Tiwari
et al., 2010).

FIGURE 4
Equilibrium values req* and seq* continuously depend on the total amount of RR protein RT . Parameter values: α1 � 0.5, α2 � 1, α3 � 1, α4 � 7, β1 � 0.3,
β2 � 1, β3 � 1, β4 � 4, and ST � 1.
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Theorem 1: Consider the TCS described by models Equations 9, 10,
and assume that total RR and SHK concentrations are related by
ST � λRT, where λ> 0 is a fixed (not necessarily known)
proportionality coefficient. When the total RR concentration is
extremely high—that is, for RT → +∞—the (unique) equilibrium
point asymptotically reached by the system is

req* , seq*( ) �
0, 0( ), if

α3β3
α4β4

> 1

1, 1( ), if
α3β3
α4β4

< 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Proof. Compute the limit for RT → +∞ of RR and SHK

nullclines Equations 11, 12:

r* � lim
RT→+∞g s*, λRT( ) � α4s*

α3 + α4 − α3( )s*, for every λ> 0 (20)

s* � lim
RT→+∞

h r*, RT( ) � β4r*
β3 + β4 − β3( )r* (21)

From expression Equation 21, it is easy to obtain

r* � h−1 s*( ) � β3s*
β4 + β3 − β4( )s*

Substituting the previous expression into Equation 20 and solving
for s* yields the following quadratic equation:

s*( )2 α4β4 − α3β3( )s* + α3β3 − α4β4( ){ } � 0

Then, the only two possible equilibrium points are (req* , seq* ) �
(0, 0) and (req* , seq* ) � (1, 1). To determine which is the right
solution, we need to resort to the intersection condition
∂h
∂r*

∂g
∂s* < 1 (see the proof of Proposition 5). Indeed, it is

straightforward to verify that

lim
RT→+∞

∂h

∂r*
� β3β4

β3 + β4 − β3( )r*( )2
lim

RT→+∞
∂g

∂s*
� α3α4

α3 + α4 − α3( )s*( )2,

and hence

∂h

∂r*
∂g

∂s*
|(r*,s*)�(0,0) � β4

β3

α4
α3

∂h

∂r*
∂g

∂s*
|(r*,s*)�(1,1) � β3

β4

α3
α4
,

which uniquely determines the limiting equilibrium pair once the
quantity β4

β3

α4
α3
is known.

Remark 3: The previous result does not require knowledge of the
value assumed by the proportionality coefficient λ; we just need to
know that a proportionality coefficient continuously relates
RT and ST

4 Absolute concentrations

We have thus far analyzed the properties (asymptotic behavior
and monotonicity) of relative concentrations: of the ratio between
phosphorylated and unphosphorylated protein concentrations. A
fundamental and crucial point is that these properties do not

necessarily hold for absolute concentrations too: the fact that the
relative concentration req* tending to 0 does not imply that absolute
concentration req* tends to 0; similarly, uniform monotonicity of req*
for RT does not imply uniform monotonicity of r* to RT. To
understand this point, note that the relative concentration req*
tends to 0 when total RR concentration asymptotically grows to
infinity (i.e., RT → +∞) and r* asymptotically approaches a given
saturation level req* ≠ 0. Regarding monotonicity, since r* � r*RT, it
holds that

∂r*
∂RT

� ∂r*
∂RT

RT + r*

It is clear that if req* is a monotonically increasing function of RT

(namely, ∂r*
∂RT

> 0), so is req* . On the contrary, if req* is a monotonically
decreasing function of RT, and hence ∂r*

∂RT
< 0; monotonicity of req*

with respect to RT is not guaranteed.
In the following, we analyze the asymptotic behavior of absolute

concentrations req* and seq* when RT grows to infinity, under the
assumption that RR and SHK total concentrations are linearly
related with the proportionality coefficient λ—ST � λRT.

Theorem 2: Consider the TCS described by models Equations 9, 10
and assume that the total RR and SHK concentrations are linearly
related by ST � λRT, where λ> 0 is a fixed proportionality coefficient.
When total RR concentration is sufficiently high—that is, for
RT → +∞, RR and SHK—then absolute concentrations
asymptotically approach the equilibrium values:

req* � α2β3 + λα4β2
λ α3β3 − α4β4( )

seq* � α2β4 + λα3β2
α3β3 − α4β4

,

respectively.
Proof. We claim that for a sufficiently high RT, absolute

equilibrium concentrations req* and seq* asymptotically approach
saturation levels ρ and σ:

lim
RT→+∞

req* RT, λRT( ) · RT{ } � ρ,
lim

RT→+∞ seq* RT, λRT( ) · λRT{ } � σ

We now seek to determine the values ρ and σ. First, we note that

ρ � lim
RT→+∞g seq* RT, λRT( ), λRT( ) · RT

� lim
RT→+∞

α4λRTseq* RT, λRT( ) + α2

α1 + α2 + α3λRT 1 − seq* RT, λRT( )( ) + α4λRTseq* RT, λRT( ) · RT

� lim
RT→+∞

α4σ + α2
α1 + α2 + α3λRT + α4 − α3( )σ · RT

� α4σ + α2

λα3

Analogously, the limit of seq* for RT → +∞ can be computed as

σ � lim
RT→+∞ h req* RT, λRT( ), λRT( ) · λRT

� lim
RT→+∞

β4RTreq* RT, λRT( ) + β2
β1 + β2 + β3RT 1 − req* RT, λRT( )( ) + β4RTreq* RT, λRT( ) · λRT

� lim
RT→+∞

β4ρ + β2
β1 + β2 + β3RT + β4 − β3( )ρ · λRT

� β4ρ + β2( )λ
β3
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Therefore, we need to solve the linear system:

ρλα3 � α4σ + α2
σβ3 � β4ρ + β2( )λ{

Solving for ρ and σ yields

ρ � α2β3 + λα4β2
λ α3β3 − α4β4( ), σ � α2β4 + λα3β2

α3β3 − α4β4
,

Thus, the proof is concluded.
It follows from Theorem 2 that for sufficiently high RT, while the

amount of phosphorylated SHK increases with λ, the amount of
phosphorylated RR is a decreasing function of λ, such that

req* �
1
λα2β3 + α4β2
α3β3 − α4β4

(22)

5 Discussion

A distinguishing feature of the proposed TCS mathematical
model is that it accounts for a variety of reactions, including RR
phosphorylation and dephosphorylation through external
(exogenous) pathways, SHK autophosphorylation and
autodephosphorylation, RR phosphorylation via phosphotransfer
from SHK, and RR dephosphorylation via SHK. Of course, by
setting 0 for one or more parameters, the model can be tailored to
specific two-component systems (TCSs) and/or situations in which
some of the previous reactions are negligible.

One of the best characterized examples of TCS is the EnvZ/
OmpR system in Escherichia coli, which responds to changes in
environmental osmolality by regulating the expression of the outer
membrane porins OmpF and OmpC. As in many TCSs, EnvZ is a
bifunctional sensor histidine kinase, meaning that it phosphorylates
and dephosphorylates the response regulator OmpR. Batchelor and
Goulian (2003) proposed a mathematical model of the EnvZ/OmpR
TCS and experimentally tested the model’s predictions. Their main
finding was that for sufficiently high amounts of OmpR, when total
EnvZ in the cell is much less abundant than total OmpR5, the steady-
state level of phosphorylated OmpR is robust (insensitive) to
fluctuations in EnvZ and OmpR concentrations. This model
accounts for the autokinase, phosphotransfer, and phosphatase
activities of EnvZ and neglects the exogenous phosphorylation
and dephosphorylation of OmpR. Casting such a scenario into
our mathematical framework means setting α2 and β4 to 0.
Theorem 2 then implies that the equilibrium absolute
concentration for OmpR is given by req* � α4β2

α3β3
, and hence,

consistent with Batchelor and Goulian (2003), does not depend
on EnvZ total concentration. However, our model shows that if an
exogenous RR phosphorylation flux is present (α2 ≠ 0), the previous
result fails; when an external pathway for OmpR phosphorylation is
present, the steady-state concentration of phosphorylated OmpR is
(higher and) decreasing with λ (see Equation 22). Notably, Batchelor

and Goulian (2003) predicted, via theoretical analysis and
experimental verification with fluorescent reporter strains, that
when condition ST ≪RT does not hold, the steady-state value of
OmpR-P decreases with increasing total EnvZ concentration. This is
consistent with our theoretical results, which also shed light on the
role of an EnvZ-independent mechanism for OmpR
phosphorylation.

Furthermore, our analysis allows the characterization of the
steady-state concentration of the histidine kinase: seq* � λ β2

β3
(recall

that β4 � 0). As expected, our model predicts that the amount of
phosphorylated EnvZ increases with more vigorous autokinase
activity (β2) and decreases with stronger phosphotransfer activity
of the histidine kinase (β3).

Finally, while our analysis demonstrates the existence of a single
robust equilibrium of the system (Theorem 1), it is instructive to
consider the possibility of using such a building block as part of a
closed-loop system with positive retroactivity, which could lead to
oscillatory or bistable behaviors (Igoshin et al., 2008; Zorzan et al.,
2021; Tiwari et al., 2010).

5.1 Phosphotransfer and reverse
phosphotransfer reactions

Bifunctional sensor histidine kinase exerts both positive and
negative control through SHK phosphotransfer and phosphatase
activity, respectively. While the biochemical reactions underlying
SHK kinase activity are reasonably well understood, the
mechanisms of phosphatase activity represent a long-standing
question, the investigation of which has led to the formulation of
multiple hypotheses (see Huynh and Stewart, 2011 for an overview).
An early hypothesis, first proposed by Dutta and Inouye (1996),
identified reverse transfer of the phosphoryl group from
phosphorylated RR to SHK as a potential RR dephosphorylation
mechanism. Such a hypothesis was prompted by experimental
results conducted on EnvZ/OmpR system in E. coli (Dutta and
Inouye, 1996; Zhu et al., 2000), showing that reverse transfer of the
phosphoryl group from OmpR-P to EnvZ was detected in the early
period of the phosphatase reaction with domain A of
EnvZ—specifically with the EnvZ kinase− phosphatase+ mutant
(EnvZ.N347D), and, under certain conditions, with the
wild-type EnvZ.

Even if later experiments invalidated the reverse
phosphotransfer model (Hsing and Silhavy, 1997), it is
universally recognized that reverse phosphotransfer can occur
under certain conditions. As pointed out by Gao and Stock
(2009), multiple mechanisms may have evolved for phosphatase
activities, and individual histidine kinases may utilize different
regulatory strategies. We now aim to theoretically investigate a
scenario in which both direct and reverse phosphotransfer
reactions occur, and a distinct phosphatase activity of the sensor
histidine is present.

Since the kinase activity of SHK takes the form of a
phosphotransfer reaction (by which a phosphoryl group is
transferred from phosphorylated SHK to RR), reaction rates α4
and β3 are actually equal—α4 � β3. We first assume that only SHK
exhibits phosphotransfer activity (β4 � 0), and we rename α3 as α

p
3 ,

where superscript p stands for “phosphatase activity” (of the SHK).

5 As reported, for instance, in (Hsing and Silhavy, 1997), in vivo OmpR is

nearly 100-fold more abundant than EnvZ.
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It follows from Theorem 2 that when total RR concentration is
sufficiently high, steady-state absolute concentrations are given by
req* � 1

λα2+β2
αp3

and seq* � λ β2
β3
.

When reverse phosphotransfer from phosphorylated RR to
SHK occurs, the reaction rate β4 is non-zero and α3 � αp3 + αrt3 ,
with αrt3 � β4 (where superscript rt stands for “reverse
phosphotransfer”). Then, recalling that α4 � β3, Theorem 2 yields

req* �
1
λα2 + β2

αp3
and seq* � λ

β2
β3

+ α2β4 + λαrt
3 β2

αp3β3

� λ
β2
β3

+ αrt3 α2 + λβ2( )
αp3β3

This indicates that, even if reverse phosphotransfer occurs, the
absolute concentration of phosphorylated RR remains
unchanged. While this may seem contradictory at first, it is easily
explained by noting that reverse phosphotransfer from
phosphorylated RR to SHK is exactly compensated by the
increased direct phosphotransfer from phosphorylated SHK to
RR. On the contrary, when the reverse phosphotransfer reaction
occurs, our analysis shows that the absolute concentration of SHK
increases and that such an increase is larger for higher values of the
reverse phosphotransfer rate (bigger αrt3 ) and/or for larger amounts
of total SHK concentration (bigger λ).

This study’s main findings are summarized here in comparison
with the literature.

6 Conclusion

We here developed a generalized mathematical model for
bacterial two-component signaling systems that integrates
canonical phosphorylation cycles, bifunctional enzymatic
activities, transcriptional feedback, and potential auxiliary
interactions. Through systems-level analysis, we elucidated how
network architecture and parameter regimes shape key dynamic
properties and robustness.

Our modeling framework provides a predictive foundation for
interpreting experimental dynamics, as illustrated for the EnvZ/
OmpR system, and for guiding the rational design of synthetic
signaling circuits. We demonstrated that the bifunctionality of the
sensor histidine kinase, multi-step phosphorelays, and
transcriptional feedback, which are incorporated into the model,
enable rich behaviors that allow TCSs to precisely tune cellular
responses to diverse environmental stimuli.

Notably, we derived analytical conditions in Propositions 3,
Propositions 4, Propositions 5 and Theorem 1 under which the
steady-state levels of phosphorylated proteins exhibit input–output
robustness, overshoot, or bistability. We also characterized in
Sections 3–4 how the equilibrium phosphorylation levels depend
on the absolute and relative abundances of the two components.
These insights are critical for understanding natural mechanisms of
bacterial adaptation and for forward-engineering synthetic gene
circuits with prescribed dynamics.

By combining the mechanistic modeling framework with
systems analysis techniques, such as nullcline analysis, this study
provides a unified perspective on the structural design principles

that underlie the remarkable versatility of two-component signal
transduction. The proposed generalized model lays a theoretical
foundation for further experimental investigations, such as
exploring reverse phosphotransfer mechanisms, and establishes a
framework for rationally harnessing two-component systems in
synthetic biology applications.
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