:' frontiers ‘ Frontiers in Systems Biology

’ @ Check for updates

OPEN ACCESS

EDITED BY
Bairong Shen,
Sichuan University, China

REVIEWED BY
Valentina Di Salvatore,

University of Catania, Italy
Saptarshi Sinha,

University of California, San Diego,
United States

*CORRESPONDENCE
Xavier Daura,
xavier.daura@uab.cat

RECEIVED 17 June 2025
ACCEPTED 11 August 2025
PUBLISHED 15 September 2025

CITATION

Garcia-lllarramendi JM, Matos-Filipe P, Mas JM,
Farrés J and Daura X (2025) Digital patient
modeling identifies predictive biomarkers of
regorafenib response in elderly metastatic
colorectal cancer.

Front. Syst. Biol. 5:1648559.

doi: 10.3389/fsysb.2025.1648559

COPYRIGHT

© 2025 Garcia-lllarramendi, Matos-Filipe, Mas,
Farrés and Daura. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Systems Biology

TvPE Original Research
PUBLISHED 15 September 2025
po1 10.3389/fsysb.2025.1648559

Digital patient modeling identifies
predictive biomarkers of
regorafenib response in elderly
metastatic colorectal cancer

Juan Manuel Garcia-Illarramendi®?, Pedro Matos-Filipe®?,
Jose Manuel Mas?, Judith Farrés* and Xavier Daura®*>*

*Anaxomics Biotech S.L., Barcelona, Spain, ?Institute of Biotechnology and Biomedicine, Universitat
Autonoma de Barcelona, Barcelona, Spain, *Research Programme on Biomedical Informatics (GRIB),
Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona, Spain, “Catalan
Institution for Research and Advanced Studies (ICREA), Barcelona, Spain, *Centro de Investigacion
Biomédica en Red de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Salud Carlos IlI,
Cerdanyola del Valles, Spain

In silico clinical trials that simulate individualized mechanisms of action offer a
powerful approach to assess drug efficacy across large and diverse patient
populations, while also enabling the identification of predictive biomarkers. In
this study, we conducted an in silico clinical trial of first-line, single-agent
regorafenib in 399 elderly patients with metastatic colorectal cancer (mCRC).
Individualized network-based models were constructed using patient-specific
differential transcriptomic profiles and employed to simulate the target-specific
effects of regorafenib. From this analysis, we identified both predictive and
mechanistic ~ biomarkers  of  treatment  response. Notably,  four
proteins—MARK3, RBCK1, LHCGR, and HSFl—emerged as dual biomarkers,
showing associations with both response mechanisms and predictive
potential. Three of these (MARK3, RBCK1, and HSF1) were validated in an
independent cohort of mCRC patients and were also found to be targets of
previously reported regorafenib-predictive miRNAs. This study demonstrates a
novel systems biology strategy for evaluating drug response in silico, leveraging
transcriptomic data to simulate individual treatment outcomes and uncover
clinically relevant biomarkers. Our findings suggest that such approaches may
serve as valuable complements to traditional clinical trials for assessing drug
efficacy and guiding precision oncology.

KEYWORDS

In silico clinical trial, metastatic colorectal cancer, machine learning, regorafenib,
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1 Introduction

Computational modeling and simulation have long played a key role across various
stages of drug development, from target discovery to clinical evaluation (Lesage et al., 2023;
Sadybekov and Katritch, 2023). In the context of clinical studies, early efforts primarily
focused on pharmacokinetic and pharmacodynamic models. However, as our
understanding of the molecular basis of disease has advanced, mechanism-based
approaches—also known as systems biology models—have gained prominence. These
models integrate biological pathways and processes to more accurately simulate disease
progression and therapeutic effects (Ayyar and Jusko, 2020).
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These advances have laid the foundation for the development of
in silico clinical trials (ISCTs) (Pappalardo et al., 2019), which use
virtual patient populations and biological simulations to emulate
real-world clinical trials. ISCTs offer a rational, hypothesis-driven
framework for exploring treatment efficacy (Arulraj et al., 2024)
identifying biomarkers (Subudhi et al., 2022) and informing clinical
trial design (Creemers et al, 2023; Voutouri et al., 2024).
Importantly, they also allow researchers to assess risks and biases
in trial protocols prior to their implementation, ultimately
supporting the development of safer and more effective therapies.

A variety of modeling strategies and virtual patient generation
methods have been developed, each with unique strengths. Some
approaches generate “virtual patients” using population-level data
(Coto-Segura et al, 2023; Creemers et al,, 2023), while others
generate “digital twins or digital patients” based on individual-
level omics (Kalari et al, 2018) and clinical data (Wang et al,
2024). Patient-specific models constructed from transcriptomic or
proteomic profiles can capture inter-individual variability in disease
mechanisms and treatment responses and provide a more accurate
representation of real-world data.

Oncology is among the therapeutic areas where in silico
methodologies have seen the most widespread application.
Within this field, metastatic colorectal cancer (mCRC) remains a
significant clinical challenge due to its high incidence, aggressive
course, and poor prognosis—particularly among elderly patients
(Bray et al, 2018). While early-stage colorectal cancer has a
favorable 5-year survival rate exceeding 90%, median survival
drops to approximately 2 years in the metastatic setting (Bradley
et al,, 2011; Franchi et al., 2019). Notably, individuals aged 65 years
and older make up more than two-thirds of the mCRC population
and account for the majority of disease-related mortality (Ferlay
et al., 2015). Despite numerous approved treatment options, only
two molecular biomarkers—RAS mutation status (predictive for
anti-EGFR therapies) and microsatellite instability (MSI) status
(predictive for immunotherapy)—are currently implemented in
clinical practice. However, MSI-high (MSI-H) tumors represent
only a small fraction of CRC cases, and even within this
subgroup, response to immunotherapy is not guaranteed (Hou
2022). inhibitor, has
demonstrated encouraging disease control and overall survival in

et al, Regorafenib, a multikinase
elderly mCRC patients, supporting its potential utility as a first-line
treatment in this subgroup. However, no validated biomarkers are
currently available to predict which patients will benefit most from
this therapy (Carrato et al., 2019). This underlines an urgent and
unmet need for novel predictive biomarkers that can guide
treatment  selection and enable more effective patient
stratification and personalized care in metastatic colorectal cancer.

In this study, we present an in silico clinical trial evaluating first-
line single-agent regorafenib in elderly mCRC patients. We employ a
systems biology modeling platform (Jorba et al., 2020; Segu-Verges
et al., 2021), which uses a neural network-like algorithm to
propagate biological signals through the human protein network.
Patient-specific models are constructed from transcriptomic
profiles, enabling the simulation of individualized mechanisms of
action (MoA) and drug responses. Our aim is to identify both
predictive and mechanistic biomarkers of regorafenib efficacy. The

findings are further validated in an independent patient cohort and
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linked to a previously established panel of regorafenib-associated
predictive miRNAs.

2 Materials and methods
2.1 In silico clinical trial study

Our analysis emulates a clinical trial with individual mCRC
patient models assessing the action of regorafenib. The simulation
incorporates multiple interconnected components defined below.

2.1.1 Model stimulus and mCRC molecular
definition

The model is stimulated by inhibiting 18 known protein targets
of regorafenib with pharmacological activity, as reported in
DrugBank 5.1.19 (Wishart et al, 2018) (see
Supplementary Table S1).

version

A molecular definition of mCRC was obtained from the
Biological Effector Database (BED) (Jorba et al., 2020), which is
based on manual curation of scientific literature. In BED, proteins
are annotated according to their contribution to disease: activation-
associated proteins receive a score of +1, and inhibition-associated
proteins receive a score of —1. The mCRC protein knowledge set
used in this study as outset for the models (see Supplementary Table
S2) includes 236 proteins.

2.1.2 IDE generation

Gene expression data for mCRC were obtained from the GEO
database (Edgar et al, 2002; Barrett et al.,, 2013). We identified
485 mCRC samples from colorectal biopsies of untreated patients
aged 70-88 years, forming the discovery population. Of these,
77 samples were excluded due to missing raw microarray data or
prior normalization adjustments (e.g., quantile normalization,
surrogate variable adjustment), leaving 408 mCRC patient
samples for analysis (see Supplementary Table S3). In parallel, we
retrieved 49 healthy control samples from the same GEO
experiments (see Supplementary Table S4). CuBlock cross-
platform normalization (Junet et al., 2021) was applied to all
samples at the probe level. Probe expression values were then
converted to protein expression by averaging the expression of all
probes mapping to each protein.

RNA-seq gene expression data was obtained from The Cancer
Genome Atlas (TCGA) for a validation cohort of 67 mCRC patients,
selected to match the age range of the discovery cohort. Additionally,
data from 23 healthy colon or rectum tissue samples were included
for comparison. Prior to conversion to protein expression levels,
expression data from both mCRC and healthy samples were
normalized using the Trimmed Mean of M-values method.

Normal protein expression ranges were established from the
expression distribution of healthy samples. Following the approach
of Kalari et al. (2018), proteins in mCRC samples with expression
values above the 95th percentile or below the 5th percentile of the
expression distribution observed in healthy samples were considered
upregulated (+1) or downregulated (—1), respectively. Proteins with
expression values within this range were considered normally
expressed and excluded from further analysis. This process
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generated individual differential expression (IDE) signatures for
each of the 408 mCRC samples.

To refine the IDEs, we identified differentially expressed genes
(DEGs) through population-level analysis. DEGs between pooled
mCRC and healthy samples were identified with Welch’s t-test and
DESeq2 (Love et al., 2014) with a false discovery rate (FDR) from
two-sided p values of less than 0.05 for the discovery and validation
mCRC populations, respectively. We then selected proteins that
were within three interaction links of the mCRC protein knowledge
set in our protein interaction network. Proteins in the IDE
signatures that did not appear in both the DEG list and the
network proximity list were excluded from the final IDEs.

2.1.3 TPMS modelling

The methodology applied in this study has been previously
described (Jorba et al., 2020; Gutierrez-Casares et al., 2021). In brief,
the Therapeutic Performance Mapping System (TPMS) is a systems
biology-based approach that constructs mathematical models of
mechanisms of action (MoAs) to explain the relationship between a
biological stimulus and a clinical response.

TPMS models are built upon the Human Protein Network (HPN),
a comprehensive map of human proteins and their known
interactions. These include physical interactions, signaling and
metabolic pathways, and gene regulation mechanisms, integrated
from curated databases such as KEGG (Kanehisa et al, 2025),
REACTOME (Milacic et al.,, 2024), intACT (Del Toro et al., 2022),
BIOGRID (Oughtred et al., 2021), HPRD (Peri et al, 2004), and
TRRUST (Han et al., 2015). TPMS uses sampling-based methods to
generate models analogous to multilayer perceptrons, where proteins
represent nodes and known interactions define edges. Upon
perturbation of the HPN with a stimulus, the signal propagates
through connected nodes based on the activation or inhibition state
of each protein and the directionality and weight of their interactions.
This propagation occurs over three iterative steps. In the first step, the
input signal is transmitted from the drug target nodes to their directly
connected neighbors. Each receiving node integrates the input signals
from its upstream nodes, with each contribution weighted according to
the corresponding edge weight (representing interaction strength and
direction). The sum of these inputs is then transformed using a
hyperbolic tangent function, which normalizes the signal and limits
its magnitude. In the second step, the newly activated nodes pass their
output signals to their own downstream neighbors, again weighted by
edge strength and passed through the same transformation. In the
third and final step, this propagation continues once more to the next
layer of directly connected nodes. The cumulative effect of these three
iterations allows the signal to reach biologically relevant downstream
response proteins while preventing over-diffusion of the perturbation
signal across the network thereby generating plausible MoAs. Model
training incorporates general constraints (e.g., known drug-indication
pairs) and user-defined specific conditions. The accuracy of each
model is evaluated by the percentage of constraint fulfillment.
Network parameters (edge weights) are optimized via a stochastic
optimization method based on simulated annealing, which adjusts
interaction strength and direction based on probabilistic measures
derived from biological evidence. Due to the underdetermined nature
of the system—where the number of training constraints is typically
smaller than the number of model parameters—TPMS yields a
population of feasible solutions.
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In this study, the stimulus is defined as the inhibition of
regorafenib drug targets, while the response set comprises proteins
from mCRC knowledge set. The objective is to propagate the signal
from the inhibited targets to the response proteins in a manner that
reverses their pathological activity, as previously defined. Each TPMS
solution is characterized by a distinct pattern of protein activity across
the HPN. The final model is derived by averaging across all valid
solutions with most solutions clustering around a dominant
mechanistic pattern. This observation is supported by the low
uncertainty scores computed for our TPMS models. Specifically,
the uncertainty score quantifies solution variability as the ratio
between the observed Shannon entropy of the ensemble and the
maximum possible entropy for the model. In the case of the
regorafenib simulation, the median uncertainty score across
models was 20.5%, indicating relatively high convergence among
solutions. Given this low variability, averaging the signal across all
valid solutions was considered appropriate and biologically
meaningful, as it captures the most robust and recurrent
mechanistic patterns while minimizing the influence of outliers.
Proteins with a final non-zero signal value between —1 and +1 are
considered active downstream proteins. The in silico response is
quantified using a score called TSignal, calculated as an average of
the activity values of response proteins (mCRC molecular definition
set). Activities in the corresponding sum will be positive when the
protein shows its predefined expected modulation (e.g., if we simulate
a drug treatment, we expect a reversal of the pathological signal) and
negative if it deviates from its expected direction. The summatory is
then divided by the total number of proteins reached. Correctly
while
incorrectly affected proteins reduce the score. The TSignal of a
TPMS model was calculated as the mean TSignal of the solutions.

modulated proteins contribute positively to TSignal,

2.1.4 Calibration of in silico signal to
clinical outcomes

To improve the clinical relevance of our in silico response metric,
TSignal, we implemented a calibration step to align TPMS-predicted
responses with real-world clinical outcomes. We selected five drugs
approved for first-line treatment of mCRC, for which overall
survival (OS) data were available from published clinical trials:
cetuximab (Sastre et al.,, 2011), regorafenib (Carrato et al., 2019),
bevacizumab (Cunningham et al., 2013), capecitabine (Cunningham
et al,, 2013) and irinotecan (Sanli et al., 2006). To estimate the
survival benefit attributable to each treatment, we subtracted OS
data—obtained from placebo-treated populations in previously
published studies (Scheithauer et al., 1993; Ho et al., 2005)
— from the reported OS for each drug. Where possible, we
matched placebo OS data to the trial population’s characteristics
(e.g., age, treatment setting) to account for inter-study variability
(see Supplementary Table S5).

TPMS models were generated for each drug by setting the drug’s
known targets as the stimulus and the full mCRC protein knowledge
set as the response. For each model, we computed the corresponding
TSignal value and assessed its association with clinical benefit by
calculating the Pearson correlation between TSignal and the
reported OS for each drug. To optimize this relationship, we
applied an iterative feature selection process, whereby proteins
were progressively removed from the response list if their
exclusion improved the correlation between TSignal and OS. This
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stepwise refinement was repeated until the maximum Pearson
correlation was achieved. The final calibrated subset comprised
233 proteins (see Supplementary Table S2), resulting in a
Pearson correlation coefficient of 0.87 between TSignal and OS
across the five drug models (see Supplementary Figure S1). This
optimized protein set was used for all subsequent TPMS analyses.

2.1.5 Individual model construction using TPMS

The construction of individual patient models using the
Therapeutic Performance Mapping System (TPMS) follows a
two-step simulation process, designed to capture both the
molecular characteristics of the disease state and the patient-
specific response to treatment. Both steps along with the
calibration of the in silico signal are run in MATLAB
(MathWorks, 2024).

In the first step, TPMS simulates the disease state of each patient
based on their IDE profile, which represents the molecular condition
prior to treatment. To initiate the simulation, a set of 20 proteins
located in proximity to mCRC knowledge set was selected as the
stimulus. The signal originating from these proteins is propagated
through the network with the aim of maintaining the disease-
representative signal across the mCRC knowledge set, which acts
as the response. Patient-specific IDEs were incorporated as
restrictions during model training. These restrictions served two
purposes: they promoted the inclusion of IDE proteins in the
network by retrieving connections between them and the defined
stimulus and response nodes, and they increased the model’s
accuracy when IDE proteins were present in the final solution
with the correct activation or inhibition sign. A solution was
considered valid if at least 50% of the IDE proteins present had
the correct sign and at least 60% of the proteins in the mCRC
knowledge set were reached by the propagated signal. For each
patient, 50 valid MoA solutions were retained, representing the
initial disease state.

In the second step, the effect of regorafenib treatment was
simulated by applying the drug’s inhibitory effect to the MoA
solutions generated in the disease state modeling. The goal of
this simulation was to revert the pathological activity of the
proteins in the mCRC knowledge set. As in the first step, a
solution was considered valid if at least 60% of the mCRC
knowledge set proteins were reached. However, in this phase, the
activity signs of IDE proteins were allowed to change, and there was
no constraint on the number of IDE proteins included in the final
solution. For each patient, 50 valid treatment-state MoA solutions
were collected, which represent the individualized response model to
regorafenib. The thresholds used in the modeling steps were
empirically determined based on prior experience with the TPMS
framework, representing a practical compromise that preserves
biological across
the dataset.

interpretability while ensuring feasibility

2.2 |dentification of mechanistic and
predictive biomarkers

Mechanistic biomarkers of regorafenib response were identified

by comparing MoA proteins of good and poor in silico responders
within the discovery mCRC population. Proteins with an absolute
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mean activation difference greater than 0.1 and an FDR <0.05, based
on Welch’s t-test, were considered significant. In the validation
cohort, due to its smaller sample size, mechanistic biomarkers were
identified using the Mann-Whitney U test. Proteins with a median
absolute activation difference >0.1 and a p-value <0.05 were deemed
significant.

Similarly, predictive biomarkers were identified by comparing
the frequency and sign of inclusion of IDE proteins between good
and poor in silico responders using Fisher’s exact test. A
p-value <0.05 was used as the threshold for significance.

Enrichment analyses of the mechanistic biomarkers identified in
the discovery cohort were done using the KEGG (Kanehisa et al.,
2025) and REACTOME (Milacic et al., 2024) pathway annotations.
Statistical significance was assessed using the hypergeometric test,
with the background limited to all proteins with predicted activity
across the full set of MoAs. Pathways were considered significantly
enriched if they had a false discovery rate (FDR) <0.05 and included
at least 10% of the input protein set.

All statistical and enrichment analyses were conducted using R
statistical software (v4.2.2) (R Core Team, 2025), stats base R
package and the clusterProfiler R package (Xu et al., 2024).

2.3 Association between miRNAs
and proteins

A panel of 12 microRNAs (miRNAs)—hsa-miR-126-3p, hsa-
miR-126-5p, hsa-miR-139-5p, hsa-miR-140-3p, hsa-miR-143-5p,
hsa-miR-152-3p, hsa-miR-185-5p, hsa-miR-28-3p, hsa-miR-338-
3p, hsa-miR-362-3p, hsa-miR-551, and hsa-miR-582-5p—was
previously identified as predictive of response to first-line single-
agent regorafenib treatment (Conde et al., 2021). Protein targets for
these miRNAs were retrieved from miRGate (Andrés-Leén et al.,
2015), which integrates both experimentally validated and
computationally predicted interactions. Validated targets were
obtained from MiRTarBase (Huang et al, 2022), miRecords
(Xiao et al, 2009) and OncomirDB (Wang et al, 2014).
Predicted targets were sourced from five different databases:
miRanda (Enright et al, 2003), Pita (Kertesz et al, 2007),
RNAHybrid (Rehmsmeier et al, 2004), Microtar (Thadani and
2006) (McGeary et al, 2019).
miRNA-protein interactions were considered more reliable if

Tammi, and TargetScan
they were experimentally validated or, in the case of predicted

targets, if they were supported by at least three

independent databases.

2.4 Assessing the predictive value of
mechanistic and predictive biomarkers

The predictive ability of 3 proteins—HSFI, MARK3 and
RBCK1—to in silico regorafenib response was assessed with the
CuBlock normalized expression of the identified good and poor
responders in univariate logistic regression models. The area under
the receiver operator curve (AUC) after 10-fold cross-validation
(CV) with 100 repetitions was computed for each protein. A
CV-AUC >0.7 was considered as significant to determine their
predictive ability (Hosmer et al., 2013).
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FIGURE 1

Schematic overview of the study workflow and key steps. Discovery phase with individual differential proteins identification (IDEs), individual model
building and simulation, and biomarkers identification. Validation phase with study replication in an independent cohort and linking to a previously

established panel of regorafenib-associated predictive miRNAs.

Results

This study was conducted in two main phases (see Figure 1). In
the discovery phase, a large cohort of digital patient models was
generated using individual transcriptomic profiles, followed by in
silico simulation of regorafenib treatment to identify mechanistic
and predictive biomarkers of response. In the validation phase, the
same modeling and simulation procedures were applied to an
independent patient cohort to confirm the robustness of the
findings. Additionally, the identified predictive biomarkers were
evaluated for their association with a previously established panel of
regorafenib-related predictive miRNAs.
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3.1 Patient-specific differential expression
profiles in elderly mCRC

The target population for our study was elderly patients with untreated
metastatic colorectal cancer (mCRC) receiving first-line treatment with
single-agent regorafenib. To build individual in silico models, we derived
individual differentially expressed genes (IDEs) for 408 mCRC patients
using valid microarray data obtained from the GEO database.

IDEs were defined as proteins with expression values above the 95th
percentile or below the 5th percentile of the distribution observed in
healthy control samples. This method typically results in a large number
of differentially expressed proteins per patient (mean IDE proteins per
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patient: 626). To enhance the specificity and biological relevance of these
profiles, we applied a two-step refinement process. First, we identified
3,342 proteins (see Supplementary Table S6) that were significantly
differentially expressed between the pooled mCRC and healthy samples,
population DEGs. All of these genes appeared in at least one of the
individual IDE profiles, population mCRC
dysregulation is preserved within the individual-level models. Second,

confirming  that

we restricted the IDEs to include only proteins located within three
interaction links of the mCRC protein knowledge set; 10,176 proteins, in
our network model. This step ensured that each IDE consisted of
proteins not only differentially expressed but also mechanistically
relevant to mCRC pathogenesis. Six out of the 408 patients were
excluded from the analysis due to having a low number of IDE
proteins. The resulting IDE profiles are thus patient-specific, yet
rooted in population-level disease features and constrained by
network-based proximity to mCRC knowledge set. Each patient’s
profile reflects a distinct combination of disease-associated protein
alterations (see Supplementary Table S7).

3.2 Simulation of first-line single-agent
regorafenib and definition of good and poor
responders

In a simulated clinical trial framework, individualized response
models to regorafenib were constructed using a two-step simulation
process. In the first step, each patient’s identified IDEs were used to
construct an initial disease-state MoA model. These models then
served as the basis for simulating the effect of regorafenib treatment
in the second step.

For three patients, no valid solutions were found during the initial
disease-state modeling, and they were therefore excluded from further
analysis. In total, 399 individualized regorafenib treatment models were
successfully generated. The extent of drug impact on the 233-proteins
mCRC knowledge set—used to represent the functional landscape of
disease biology—was quantified using the in silico signal metric
(TSignal) that has been adjusted to better align with actual clinical
outcomes (see Supplementary Figure S1). This value reflects the
predicted ability of regorafenib to reverse pathological protein
activity. The distribution of the TSignal across the 399 mCRC
models followed a normal distribution (see Figure 2).

To explore potential mechanistic and predictive differences
between good and poor in silico responders, we stratified patients
into two groups: good responders, defined as those with mean
TSignal values above the 90th percentile (n = 40), and poor
responders, defined as those below the 10th percentile (n = 40).
These thresholds correspond to estimated OS values of 6.95 and
7.79 months, respectively.

No statistically significant differences were observed in age, sex
and cancer stage between the population of good and poor in silico
regorafenib responders (see Table 1).

3.3 Mechanistic and predictive biomarkers
identification

The stratification of patients into mechanistic good and poor
responders to regorafenib enabled the identification of two types of
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FIGURE 2

Distribution of in silico response scores (TSignal) across

399 metastatic colorectal cancer (MCRC) digital patients in the
discovery cohort. The TSignal represents the predicted response to
regorafenib. Horizontal lines mark the 10th and 90th percentiles,
used as thresholds to define in silico poor (orange) and good (grey)
responders, respectively.

potential biomarkers: mechanistic biomarkers, derived from the
comparison of MoAs, and predictive biomarkers, derived from
the comparison of IDEs.

Mechanistic biomarkers were identified by comparing protein
activation levels in the MoAs between good and poor responders. A
total of 213 proteins showed statistically significant differential
activity (Welch’s t-test, adjusted p-value <0.05; mean absolute
difference >0.1; see Supplementary Table S8). Unsupervised
clustering based on the activity of these mechanistic proteins
clearly distinguished good from poor responders, with only one
good responder clustering with poor responders and 3 poor
responders clustering with the good responders (see Figure 3).
Enrichment analysis of these proteins showed a significant
presence of proteins more active in good responders involved in
“[R-HSA-73894] DNA Repair”. While proteins with higher activity
in poor responders showed enrichments in “04151_PI3K-Akt

“04621_NOD-like
pathway”, “04620_Toll-like receptor signaling pathway”, “05131_
Shigellosis”, “05162_Measles” and “[R-HSA-1643685] Disease” (see
Supplementary Table S9).

signaling  pathway”, receptor  signaling

In parallel, a comparison of IDE profiles between good and
poor responders yielded 173 proteins with significantly different
frequencies, representing potential predictive biomarkers
(Fisher’s exact test, p-value <0.05; see Supplementary Table
S10). The enrichment analysis of this predictive protein did
not reveal any significantly enriched KEGG and
REACTOME pathways.

The two sets of biomarkers—mechanistic and predictive—were
found to be highly interconnected in the HPN used by TPMS, with
linked interactions  (see

many proteins through  direct
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TABLE 1 Demographic and clinical characteristics of the discovery mCRC population, including a comparison between the subgroups of good and poor in

silico responders identified through treatment simulation.

Discovery mCRC population

In silico response subsets

Characteristic Poor N = 402 Good N = 40° p-value®
Age 77.0 (73.0-81.0) 75.5 (72.0-78.5) 77.0 (73.5-80.5) 0.4
Sex >0.9
Female 182 (46%) 22 (55%) 22 (55%)
Male 217 (54%) 18 (45%) 18 (45%)
Cancer stage (AJCC) 0.8
111 253 (72%) 27 (75%) 26 (70%)
v 99 (28%) 9 (25%) 11 (30%)
Unknown 47 4 3
“Median (Q1 - Q3); n (%).
"Welch’s Two Sample t-test; Fisher’s exact test.
Sex In silico response
Male Poor
Female Good
05 Age
= ——f ° ISS
%
$
% 7
— < Mean TSignal
= 0.44
-0.5 I
0.39

FIGURE 3

Heatmap of mechanistic biomarkers associated with regorafenib response in the discovery mCRC cohort. Rows represent the 213 mechanistic
biomarkers identified, and columns represent individual digital patients, clustered based on predicted protein activity profiles. Annotations indicate each
patient’s predicted in silico response category, biological sex, age, and model-derived TSignal value.

Supplementary Figure S2). Notably, four proteins—LHCGR,
MARK3, HSFI1,
highlighting their potential biological relevance.

HSF1, LHCGR, and MARK3 exhibited reduced expression in
the IDEs of good responders, meaning their expression levels were

and RBCKl—were common to both sets,

lower than those observed in healthy controls. In contrast,
RBCK1 was overexpressed in the IDEs of poor responders
compared to control levels (see Figure 4B). This expression
pattern was also reflected in the normalized transcriptomic data;
however, statistically significant differences relative to healthy
controls were observed only for LHCGR, MARK3, and RBCK1
(see Figure 4C).

Simulation of regorafenib action revealed that in good responder
models, HSF1 and LHCGR showed increased activity post-
treatment, suggesting a reversal of their initially low activation
states. However, MARK3 and RBCKI1 maintained their baseline
activation patterns following treatment: MARK3 remained less
active in good responders, and RBCKI more active in poor
responders (see Figure 4A).

Frontiers in Systems Biology

3.4 Independent cohort validation

To validate our findings, we replicated the entire analysis in an
independent cohort of 67 mCRC patients with similar demographic
characteristics to the discovery population (see Table 2). Gene
expression data in form of RNA-Seq were obtained from TCGA,
along with 23 healthy colon or rectal tissue samples from CRC
patients (see Supplementary Table S11).

Following the same TPMS simulation procedure used in the
discovery phase, we identified IDEs for each of the 67 mCRC
patients and generated individualized regorafenib treatment
models. Patients were then classified as good responders
(17 patients) or poor responders (5 patients) using the same
TSignal thresholds that defined good and poor responders in the
discovery cohort. No significant differences in the demographic and
clinical variables were observed between the good and poor in silico
responders in this validation cohort (see Table 2).

Comparison of MoAs between good and poor responders in
this validation cohort identified 211 proteins (see Supplementary
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FIGURE 4

Mechanistic and predictive biomarkers associated with regorafenib response in the discovery mCRC cohort. (A) Boxplots showing predicted protein
activity levels of HSF1, LHCGR, MARK3, and RBCK1 in in silico good and poor responders. (B) Risk differences calculated using Newcombe's method,
representing the difference in the proportion of patients with | under- or T overexpression of each biomarker in the individual differential expression (IDE)
profiles. (C) Boxplots of normalized protein expression levels for the four biomarkers across good responders, poor responders, and healthy

control samples.

Table S12) with significantly different activity, 64 of which
overlapped with the mechanistic biomarkers from the
discovery cohort (see Supplementary Figure S3), Similarly,
comparing IDE profiles between good and poor responders
yielded 79 proteins (see Supplementary Table S13) with
significantly different frequencies. Five of these proteins were
also identified as predictive biomarkers in the discovery cohort
analysis (see Supplementary Figure S3).

Of the four top candidate biomarkers identified in the
discovery phase (MARK3, RBCKI, LHCGR, and HSF1),
three—MARK3, RBCKI, and HSFl—were successfully
validated as mechanistic biomarkers in the independent
validation cohort. These proteins showed consistent activation
profiles in the regorafenib simulations: HSF1 exhibited higher
activity in good responder models compared to poor responders,
while MARK3 and RBCK1 remained less active in good
responders compared to poor responders (Figure 5A).

3.5 Validation of predictive biomarkers
through previously identified regorafenib-
associated miRNAs

A panel of 12 miRNAs has previously been identified as
predictive of response to first-line single-agent regorafenib
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treatment (Conde et al., 2021). To explore potential links
between these miRNAs and the predictive biomarkers identified
in our study, we assessed whether any of the 178 predictive
biomarkers were known targets of the 12 miRNAs, based on
established miRNA-protein interactions.

Across all interaction types (including both predicted and
experimentally  validated), found that 167 of the
173 predictive biomarkers of the discovery cohort had at least
one known with the miRNA panel
Supplementary Table S14). When restricting the analysis to
interactions—i.e., those that
experimentally validated or predicted by at least
independent algorithms—we identified 46 predictive proteins as

we

association (see

higher-confidence were
three

reliable targets of the predictive miRNAs. Of these 46 proteins,
23 exhibited expression patterns consistent with the regulatory
direction of the associated 9 miRNAs. Specifically, proteins
linked to miRNAs that were overexpressed in good responders
showed lower protein expression in those patients, and vice
versa (Figure 5B).

Notably, three of our most promising predictive
biomarkers—MARK3, HSF1, and RBCKl—were among the
proteins targeted by these miRNAs. However, only RBCK1 had a
high-confidence interaction with one of the predictive miRNAs
(hsa-miR-140-3p)
strengthening its potential role as a clinically relevant biomarker.

and  consistent  regulatory  direction,
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TABLE 2 Demographic and clinical characteristics of the validation mCRC population, including a comparison between the subgroups of good and poor in

silico responders identified through treatment simulation.

Validation mCRC population

In silico response subsets

Characteristic Poor N = 5° Good N = 17°
Age 77.0 (73.0-81.0) 75.0 (73.0-82.0) 75.0 (71.0-80.0) 0.3
Sex >0.9
Female 32 (48%) 2 (40%) 9 (53%)
Male 35 (52%) 3 (60%) 8 (47%)
Cancer stage (AJCC) >0.9
111 41 (61%) 3 (60%) 9 (53%)
v 26 (39%) 2 (40%) 8 (47%)

“Median (QI - Q3); n (%).
hMann—W’hitney U test; Fisher’s exact test.

A
In silico response ' Good - Poor
HSF1 MARK3
[ ]
3 (s g 025
s 2 0.00
g 047 o S
3 3 -0.25
g 0.01 g
3 . * 3 050
[ ]
RBCK1
0.4 °
(0]
= o
F ool gy T
o
5 o
S 04+
3
<
-0.8 - ®
FIGURE 5

Validation of the mechanistic and predictive biomarker identified in the discovery mCRC population. (A) Boxplots of predicted protein activity levels

for HSF1, MARK3, and RBCK1 in in silico good and poor responders within the validation mCRC cohort. (B) Network diagram showing associations
between previously identified dysregulated predictive miRNAs (oval nodes) and predictive biomarkers from the discovery cohort (diamond-shaped
nodes). Node color indicates expression direction in poor responders: orange for upregulated, blue for downregulated.

3.6 Assessing the predictive value of
mechanistic and predictive biomarkers

We evaluated the predictive potential of the three
biomarkers—HSF1, MARK3, and RBCK1—which were identified
as both predictive and mechanistic in the discovery cohort, and
validated in the independent validation cohort. All three proteins
showed significant differences in normalized expression between the
40 good and 40 poor responders in the discovery cohort (Welch’s
t-test, FDR <0.05), with lower expression levels associated with good
responders (Figure 4C).

To assess their ability to distinguish between good and poor in
silico responders to regorafenib, we constructed univariate logistic
regression models using normalized expression data. HSF1 and
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MARK3 showed limited predictive performance, with cross-
validated AUC values below 0.7. In contrast, RBCK1 achieved a
cross-validated AUC of 0.7, indicating moderate predictive value
(see Figure 6).

4 Discussion

This study presents an in silico clinical trial framework designed
to simulate first-line regorafenib treatment in elderly patients with
mCRC, a population often underrepresented in clinical research
despite their high disease burden. By integrating transcriptomic data
into a systems biology-based modeling approach (TPMS), we
developed 399 digital patient models that enabled the prediction
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FIGURE 6
Predictive performance of mechanistic and predictive

biomarkers HSF1, MARK3, and RBCK1. Receiver operating
characteristic (ROC) curves from univariate logistic regression models
built using normalized expression data to distinguish between in
silico good and poor responders. Cross-validated area under the
curve (AUC) values are reported for each biomarker.

of drug-target based response and the identification of mechanistic
and predictive biomarkers.

A key strength of this work is the use of large, publicly available
with
normalization techniques to assemble a representative discovery

transcriptomic  datasets ~ combined cross-platform

cohort of untreated elderly mCRC patients. This cohort provided the

foundation for building individualized protein expression
IDEs differential

expressions)—that capture the unique molecular features of each

profiles—referred  to  as (individual
patient relative to healthy controls. Notably, these IDEs reflected
known population-level cancer signatures, underscoring their
biological relevance.

We employed the TPMS systems biology modeling approach
(Jorba et al., 2020; Segu-Verges et al., 2021) to simulate the effect
of the inhibition of regorafenib targets in a mCRC knowledge set.
This simulation yielded a distribution of treatment responses,
quantified as TSignal values. Based on this distribution, we
defined the top and bottom 10% of models as good and poor
responders, respectively. By comparing the MoAs between these
two groups, we identified 213 mechanistic biomarkers—proteins
whose activation profiles distinguished good from poor
responders.

Enrichment analysis of these biomarkers revealed biologically
plausible pathways. Proteins more active in poor responders were
enriched in pathways previously associated with resistance to
treatment, including PI3K-Akt (Yang et al.,, 2023), NOD-like
receptor (Canning et al., 2015; Shen et al., 2025) and Toll-like
receptor signaling (Sasaki et al., 2020; Papadakos et al., 2023).
These pathways are known to mediate survival and immune
evasion mechanisms that can diminish therapeutic efficacy.
Conversely, good responders showed enrichment in DNA
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repair pathways—though their role in modulating treatment
response  remains (Kiwerska  and
Szyfter, 2019).

To identify predictive biomarkers, we compared the IDEs of

context-dependent

good and poor responders and found 173 proteins with significant
differential expression patterns. Importantly, many predictive
candidates had a close relationship (one link connection) with
the mechanistic set, with four proteins—HSF1, MARK3, LHCGR,
and RBCK1—shared across both. Biomarkers with both mechanistic
and predictive relevance are particularly valuable, as they are more
likely to reflect true drug-response biology rather than statistical
artifacts (Robinson et al., 2013).

Further analyses focused on these four candidate biomarkers. In
the independent validation cohort, the entire modeling procedure
was replicated, and HSF1, MARK3, and RBCKI1 consistently
retained their mechanistic activity profiles, reinforcing their
biological relevance. Moreover, all three proteins were linked to
previously reported regorafenib-associated predictive miRNAs.
Notably, even under more
miRNA-target
RBCK1
provide additional support for the involvement of these proteins

stringent criteria for defining
with
remained robust. While these miRNA-target links

relationships, the association

in modulating treatment response, we acknowledge that such
associations remain putative in the absence of functional
validation. Nonetheless, the consistency of these associations
across datasets supports their value as hypothesis-generating
leads for future mechanistic studies. Moreover, RBCK1 was the
only candidate to demonstrate moderate predictive power (cross
validated AUC = 0.7) in univariate logistic regression models using
transcriptomic data.

RBCKI1 encodes a ubiquitin ligase involved in transcriptional
regulation and immune signaling and is known to modulate NF-kB
pathways, which are often implicated in tumor progression and
drug resistance (see below). In our study, RBCK1 was significantly
overexpressed in mCRC samples compared to healthy controls,
and its elevated expression was strongly associated with poor
response to regorafenib. Importantly, in silico simulations
indicated that regorafenib does not modulate RBCK1 activity,
suggesting that its persistent activation may contribute to

resistance mechanisms. One possible explanation is that
RBCKI1-driven signaling bypasses regorafenib’s  primary
inhibitory targets, sustaining pro-survival pathways that

diminish drug efficacy. Prior studies have implicated RBCKI in
chemotherapy resistance in colorectal (Liu et al., 2019), liver (Chen
etal., 2022) and ovarian (Wang et al., 2022) cancers. A recent study
also demonstrated experimentally that RBCKI1 can significantly
inhibit the apoptosis and promote invasion in hepatocellular
carcinoma, supporting its role in aggressive tumor behavior (Yu
et al., 2024). A conceptual parallel exists where RBCK1 promotes
resistance to the tyrosine kinase inhibitor sunitinib in clear cell
renal cell carcinoma (Wang et al., 2023), further validating its
potential as a treatment-refractory biomarker. While these
findings are consistent with known resistance mechanisms,
further experimental validation is needed to clarify RBCK1’s
downstream effectors and its direct role in limiting
regorafenib efficacy.

In conclusion, our study identifies RBCK1 as a promising

biomarker of poor response to regorafenib in elderly mCRC
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patients. Its consistent activity across modeling, expression, and
validation analyses underscores its potential as both a prognostic
and mechanistic marker of resistance. Although the predictive
performance based on transcriptomic data is modest (AUC ~0.7),
which limits immediate clinical applicability, the reproducibility of
our mechanistic findings—supported by prior evidence in other
cancer types—suggests that RBCK1 may serve as a valuable
component of a broader predictive framework. To enhance
efforts
practical detection methods (e.g, immunohistochemistry or

clinical translatability, future should explore more
ELISA-based assays) and assess the utility of integrating this
biomarker into multivariable models that combine biomarker
levels with relevant clinical parameters.

Integrating such computational frameworks into early phases of
clinical development could accelerate biomarker discovery and
treatment for difficult-to-study patient

optimize strategies

populations.
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