
A guide to bayesian networks
software for structure and
parameter learning, with a focus
on causal discovery tools

Francesco Canonaco1,2*†, Joverlyn Gaudillo1†, Nicole Astrologo1,
Fabio Stella2 and Enzo Acerbi1

1Minutia.AI Pte. Ltd., Singapore, Singapore, 2Department of Informatics, Systems and Communication,
University of Milano-Bicocca, Milano, Italy

A representation of the cause-effect mechanism is needed to enable artificial
intelligence to represent how the world works. Bayesian Networks (BNs) have
proven to be an effective and versatile tool for this task. BNs require constructing
a structure of dependencies among variables and learning the parameters that
govern these relationships. These tasks, referred to as structural learning and
parameter learning, are actively investigated by the research community, with
several algorithms proposed and no single method having established itself as
standard. A wide range of software, tools, and packages have been developed for
BNs analysis and made available to academic researchers and industry
practitioners. As a consequence of having no one-size-fits-all solution,
moving the first practical steps and getting oriented into this field is proving to
be challenging to outsiders and beginners. In this paper, we review the most
relevant tools and software for BNs structural and parameter learning to date,
with a focus on causal discovery tools, providing our subjective
recommendations directed to an audience of beginners. In addition, we
provide an extensive easy-to-consult overview table summarizing all software
packages and their main features. By improving the reader’s understanding of
which available software might best suit their needs, we improve accessibility to
the field and make it easier for beginners to take their first step into it.

KEYWORDS

structure learning, parameter learning, causal discovery algorithms, causal discovery,
bayesian networks (BNs)

1 Introduction

Bayesian networks (BNs) have established themselves over the years as a powerful
framework for modeling and analyzing complex systems under conditions of uncertainty.
They have been widely employed in fields such as medicine (Arora et al., 2019), biology
(Needham et al., 2007) and engineering (Kammouh et al., 2020). BNs represent probabilistic
relationships among variables in a graphical way that allows efficient inference and intuitive
causal reasoning when specific assumptions are met. It is important to clarify that while
Bayesian networks encode conditional dependencies through directed edges, these do not
necessarily imply causal relationships. A causal network is a specific type of Bayesian
network where the edges reflect actual causal influences among variables, and their
interpretation relies on assumptions such as causal sufficiency, faithfulness, and the
absence of unmeasured confounding. Throughout this paper, we include structure

OPEN ACCESS

EDITED BY

Claudio Angione,
Teesside University, United Kingdom

REVIEWED BY

Robert Smith,
Wageningen University and Research,
Netherlands
Manh-Toan Ho,
Centre for Interdisciplinary Social Research,
Phenikaa University, Vietnam

*CORRESPONDENCE

Francesco Canonaco,
francesco.canonaco@minutia.ai

†These authors have contributed equally to this
work and share first authorship

RECEIVED 20 May 2025
ACCEPTED 08 August 2025
PUBLISHED 25 August 2025
CORRECTED 23 October 2025

CITATION

Canonaco F, Gaudillo J, Astrologo N, Stella F
and Acerbi E (2025) A guide to bayesian
networks software for structure and parameter
learning, with a focus on causal discovery tools.
Front. Syst. Biol. 5:1631901.
doi: 10.3389/fsysb.2025.1631901

COPYRIGHT

© 2025 Canonaco, Gaudillo, Astrologo, Stella
and Acerbi. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Systems Biology frontiersin.org01

TYPE Mini Review
PUBLISHED 25 August 2025
DOI 10.3389/fsysb.2025.1631901

https://www.frontiersin.org/articles/10.3389/fsysb.2025.1631901/full
https://www.frontiersin.org/articles/10.3389/fsysb.2025.1631901/full
https://www.frontiersin.org/articles/10.3389/fsysb.2025.1631901/full
https://www.frontiersin.org/articles/10.3389/fsysb.2025.1631901/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fsysb.2025.1631901&domain=pdf&date_stamp=2025-08-25
mailto:francesco.canonaco@minutia.ai
mailto:francesco.canonaco@minutia.ai
https://doi.org/10.3389/fsysb.2025.1631901
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org/journals/systems-biology#editorial-board
https://www.frontiersin.org/journals/systems-biology#editorial-board
https://doi.org/10.3389/fsysb.2025.1631901

learning algorithms developed for both probabilistic modeling and
causal discovery. For a detailed discussion of the assumptions
underlying causal discovery, we refer the reader to (Vonk et al.,
2023). A BN (Jensen and Nielsen, 2007) consists of:

• A collection of random variables represented as nodes
X � {X1, X2, . . . , Xn}, connected by directed edges that
form a Directed Acyclic Graph (DAG). For instance, in
Figure 1, the variables could be denoted as D (Difficulty), I
(Intelligence), G (Grade), S (SAT), and L (Letter),
corresponding to the nodes shown in the DAG.

• A finite set of mutually exclusive states associated with each
random variable.

• For each random variable Xi with parents
Pa(Xi) � {Y1, . . . , Yn}, a Conditional Probability
Distribution (CPD) specifying the probability distribution
P(Xi | Y1, . . . , Yn). This CPD quantifies the influence of
the parent variables on Xi. If Xi has no parents, it is
associated with an unconditional probability distribution
P(Xi). In Figure 1, Pa(G) � {D, I}, which means that G
depends on both D and I via the conditional distribution
P(G | D, I).

Figure 1 shows a well-known example of BN where the
variables course Difficulty and student Intelligence are
assumed to be independently assigned prior to the realization
(observing the value) of any other variable. The student’s Grade

is influenced by both Difficulty and Intelligence. The SAT Score
depends solely on Intelligence, while the recommendation Letter
is assumed to be based exclusively on the Grade. This structure
reflects the intuitive idea that each variable is directly influenced
only by its parent nodes in the network (Koller and
Friedman, 2009).

In fact, BNs leverage conditional independence to compactly
represent the joint probability distribution over a set of random
variables X � {X1, X2, . . . , Xn}. The joint distribution can be
factorized into a product of CPDs, one for each node:

P X1, X2, . . . , Xn() � ∏
n

i�1
P Xi | Pa Xi()()

where Pa(Xi) denotes the set of parent variables of Xi in the
network. Although, in principle, various types of distributions can be
used, most applications in the literature have focused on two main
modeling assumptions due to their mathematical tractability and
computational efficiency:

• Discrete Bayesian Networks (Heckerman et al., 1995):
assume that Xi is a multinomial random variable
dependent on the configurations of the values of its parents;

• Gaussian Bayesian Networks (Geiger and Heckerman, 1994):
assume that each variable Xi is a univariate normal random
variable, with its value linearly dependent on its
parent variables.

FIGURE 1
Student Bayesian Network example with CPDs.

Frontiers in Systems Biology frontiersin.org02

Canonaco et al. 10.3389/fsysb.2025.1631901

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2025.1631901

The objective of the learning process is to determine both the
network structure and the associated parameters that best represent
the observed data. Learning a Bayesian Network involves:

• Structure learning: identifying the qualitative structure of the
network, i.e., the conditional independence relationships
among the variables.

• Parameter learning: estimating the conditional probability
distributions (CPDs) for each node.

Learning the structure of a BN from data is a foundational step
of the model construction process. For this purpose, a multitude of
algorithms have been developed over the years; these methods are
typically categorized into three groups: constraint-based, score-
based, and hybrid.

Constraint-based algorithms rely on the theory of causal graphical
models introduced by Pearl (Verma and Pearl, 1990). A well-known
example of this class is the PC-Stable (named after its authors Peter and
Clark) algorithm (Colombo and Maathuis, 2014), which improves the
original PC algorithm (Spirtes et al., 2000) by making it more robust to
variable ordering. The algorithm starts with a complete undirected
graph and recursively removes edges using a conditional independence
(CI) test. Score-based algorithms define a scoring function, such as BIC
(Bayesian information criterion) (Neath and Cavanaugh, 2012), AIC
(Akaike information criterion) (Cavanaugh and Neath, 2019), to
evaluate how well a given network fits the data. A search algorithm,
such as greedy search or simulated annealing, is then used to explore
the space of possible graphs. Hybrid algorithms combine constraint-
based and score-based approaches. Typically, a constraint-based
method is used to reduce the search space, followed by a score-
based optimization over the reduced space.

These algorithms generally assume that the input is tabular data,
where each row represents an independent observation (i.i.d.), and
each column corresponds to a variable. Constraint-based methods
require data that are suitable for conditional independence (CI)
testing, which typically includes discrete or continuous variables
depending on the CI test used (e.g., chi-square for discrete, partial
correlation for continuous). Score-based methods, on the other
hand, rely on likelihood-based scoring functions and can handle
discrete, continuous, or mixed data types depending on the scoring
function and underlying assumptions. Hybrid methods inherit the
data requirements of both approaches.

To speed up or improve structure learning, prior knowledge can
be incorporated to constrain or guide the search for the network
structure. Users may specify relationships that are known to exist,
permitted, or prohibited, thereby reducing the search space and
enhancing both the accuracy and efficiency of learning algorithms.

An overview of structure learning approaches is beyond the
scope of this document; a comprehensive assessment of state-of-the-
art methodologies can be found in (Nogueira et al., 2022; Kitson
et al., 2023; Glymour et al., 2019; Scanagatta et al., 2019). Moreover,
readers interested in the performance of the different classes of
algorithms can refer to dedicated publications that offer
comprehensive evaluations of the accuracy and computational
efficiency of structure learning methods (Scutari et al., 2019).

Parameter learning is another critical task in BNs development.
Given the DAG, the objective of parameter learning is to estimate the
parameters of the conditional probability distributions associated with

each node, which is essential for inference and prediction. For a
comprehensive review of parameter learning strategies, challenges,
and algorithms, refer to the works of (Ji et al., 2015; Heckerman, 1998).

Approaching the study of BN framework requires a solid
understanding of fundamental principles in disciplines such as
probability and computer science. Assuming that the reader is
already familiar with these foundations, some convenient
readings on causality and BNs science are offered by Probabilistic
Graphical Models Principles and Techniques (Koller and Friedman,
2009), Bayesian Artificial Intelligence (Korb and Nicholson, 2010),
Probabilistic Reasoning in Intelligent Systems (Pearl, 2014),
Bayesian Networks with Examples in R (Scutari and Denis,
2021), Bayesian Networks in R with Application in the field of
System Biology (Scutari and Lebre, 2013), Bayesian Networks and
Influence Diagrams (Kjaerulff and Madsen, 2008). This document
assumes that the reader is equipped with the necessary foundational
knowledge and is ready to engage in practical hands-on work.

Over the past 5 years, the field of causality and BNs development
has seen an influx of numerous packages with no single solution being
able to cater to all requirements and scenarios; this abundance of
options is often challenging for individuals trying to gain hands-on
experience with BNs. This document simplifies structure and parameter
learning in BNs by providing a comprehensive overview of available
software packages with a focus on causal discovery. In addition, we offer
our subjective recommendations on selecting the best tools based on the
reader’s specific objectives. The remainder of this paper is structured as
follows: Section 2 provides a systematic review of both open-source and
commercial software. Section 3 offers guidance on selecting tools
suitable for beginners. Section 4 summarizes the key contributions
of this work. A concise summary of all reviewed tools is provided in
Supplementary Table S1 (Supplementary Material).

2 Software tools and packages

2.1 gCastle

gCastle (Zhang et al., 2021) is an end-to-end Python toolbox
created by Huawei Noah’s Ark Lab for causal structure learning. The
package is equipped with functionalities such as data generation
from simulated or real-world datasets, causal structure learning, and
evaluation metrics.

2.2 bnlearn

bnlearn (Scutari, 2010) is an R package developed by Marco
Scutari and first released in 2007 with functionality to learn the
structure of BNs, parameter estimation, and inference. After 10 years
of continuous development, the package has grown to accommodate
a multitude of algorithms from the literature. The package
implements constraint-based algorithms, e.g., Peter-Clark (PC),
Grow-Shrink (GS), Incremental Association Markov Blanket
(IAMB), Inter-IAMB, Fast-IAMB, IAM-False Discovery Rate
(FDR), Semi-Interleaved HITON-PC, and Max-Min Parents and
Children (MMPC), pairwise-based algorithms, e.g., Algorithm for
the Reconstruction of Accurate Cellular Networks (ARACNe) and
Chow-Liu (ARACNE and Chow-Liu), score-based, e.g., Hill-

Frontiers in Systems Biology frontiersin.org03

Canonaco et al. 10.3389/fsysb.2025.1631901

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2025.1631901

Climbing (HC) and Tabu Search, hybrid algorithms, e.g., Hybrid
Parents and Children (HPC), Max-Min HC (MMHC), Restricted
Structural Maximum Algorithm 2 (RSMAX2), and Tree-augmented
Naive Bayes (TAN), structure learning algorithms for discrete,
Gaussian and conditional Gaussian networks, along with many
score functions and conditional independence tests. Some utility
functions (model comparison and manipulation, random data
generation, arc orientation testing, simple and advanced plots)
are included, as well as support for parameter estimation, e.g.,
maximum likelihood estimation (MLE) and Bayesian estimation,
and inference, conditional probability queries, cross-validation,
bootstrap, and model averaging.

2.3 pgmpy

Pgmpy (Ankan and Panda, 2015) is a Python library developed in
2015 by Ankur Ankan to work with probabilistic graphical models. It
allows users to create their graphical models and then perform
inferences or map queries to them. The library implements several
inference algorithms like variable elimination, belief propagation, etc.
The library is designed with a modular structure, allowing users to
access dedicated classes for commonly used graphical models like
Naive Bayes (NB) and hiddenMarkovmodels, eliminating the need to
build them from base models. Currently, it includes implementations
of various algorithms for structure learning, parameter estimation,
both approximate, i.e., sampling-based, and exact inference, as well as
causal inference.

2.4 Tetrad

Tetrad (Ramsey et al., 2018) is a Java suite of software for the
discovery, estimation, and simulation of causal models developed by
the Carnegie Mellon University-Causal Learning and Reasoning
(CMU-CLeaR) group. Some of its basic features for beginners
include the ability to load existing datasets, load existing causal
graphs, and create a new causal graph. For practitioners, the tool is
equipped with advanced functionalities, such as specifying prior
knowledge on constraint-based algorithms, manipulating data by
imputing missing values, discretizing data, simulating data from
statistical models, and computing the probability distribution of any
variable, among others. It features a graphical user interface (GUI)
and offers popular constraint-based algorithms for causal discovery
such as PC, Fast Causal Inference (FCI), PC-Max, Conservative PC
(CPC), and MLE for parameter learning.

2.5 Causal command (CMD)

Causal-cmd1 is a Java application that offers a command-line
interface tool for causal discovery algorithms developed by the
Center for Causal Discovery. Currently, the application includes
more than 30 algorithms for causal discovery.

2.6 Causal-learn

Causal-learn (Zheng et al., 2024) is a Python translation and
extension of the Tetrad Java code (refer to the Tetrad package)
developed by CMU-CLeaR group. It offers implementations of up-
to-date causal discovery methods, as well as simple and intuitive
Application Programming Interfaces (APIs).

2.7 pcalg

Pcalg (Kalisch et al., 2012) is an R package developed by Markus
Kalisch et al. in 2006. It offers constraint-based algorithms such as
PC, FCI, and Really FCI (RFCI) as well as hybrid and score-based
algorithms for causal discovery.

2.8 LiNGAM

Linear Non-Gaussian Acyclic Model (LiNGAM) (Shimizu et al.,
2006) is a Python package for causal discovery developed by T.
Ikeuchi et al. The package offers many causal discovery algorithms
for linear non-Gaussian models such as Direct-LiNGAM, Linear
Non-Gaussian Models for Latent Factors (LiNA), and Vector
Autoregressive Models-LiNGAM (VAR-LiNGAM).

2.9 CDT

CDT (Kalainathan et al., 2020) is a Python package for causal
inference in graphical models and pairwise settings (compatible with
Python ≥ 3.5). Developed by Diviyan Kalainathan and Olivier
Goudet, CDT provides tools for structure learning and dependency
analysis. It leverages on NumPy, scikit-learn, PyTorch, and R to
implement various algorithms for causal discovery, including
methods from bnlearn and pcalg. The package is particularly
suited for analyzing observational data, offering both classical and
deep learning-based approaches to causal structure recovery.

2.10 pyAgrum

pyAgrum (Ducamp et al., 2020) is a Python wrapper for the C++
aGrUM library. It offers a high-level interface to aGrUM, enabling
users to create, model, learn, apply, compute, and integrate BNs and
other graphical models. Some specific (Python and C++) codes are
added to simplify and extend the aGrUMAPI. The package contains
causal discovery, parameter learning, and inference algorithms.

2.11 bnlearn (python)

Bnlearn2 is a Python package for causal discovery, parameter
learning and inference developed by Erdogan Taskesen. It

1 https://bd2kccd.github.io/docs/causal-cmd/ 2 https://erdogant.github.io/bnlearn/pages/html/index.html

Frontiers in Systems Biology frontiersin.org04

Canonaco et al. 10.3389/fsysb.2025.1631901

https://bd2kccd.github.io/docs/causal-cmd/
https://erdogant.github.io/bnlearn/pages/html/index.html
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2025.1631901

implements the most classical approaches for causal discovery such
as HC, exhaustive search, Chow-Liu, TAN, PC, and MLE, as well as
Bayesian estimation for parameter learning.

2.12 OpenMarkov

OpenMarkov (Arias et al., 2019) is a Java open-source software
tool developed by the Research Centre for Intelligent Decision-
Support Systems. OpenMarkov comes with a user interface and can
perform causal discovery employing the PC algorithm and
HC search.

2.13 pomegranate

Pomegranate (Schreiber, 2018), a Python package developed by
Jacob Schreiber, offers efficient and versatile probabilistic models,
spanning from individual probability distributions to composite
models including BNs and hidden Markov models. The package
offers both constraint-based and score-based algorithms, as well as
parameter learning procedures.

2.14 BayesFusion

BayesFusion3 is a commercial software offering different
solutions for causal discovery, parameter learning, and inference.
Their flagship product is GeNIe, a tool for artificial intelligence and
machine learning that has at its core the BN framework and other
types of graphical probabilistic models. The SMILE engine allows
the user to include custom applications that can be written in a
variety of programming languages, e.g., C++, Python, Java, .NET, R,
Matlab. Models created with GeNIe or SMILE can be shared or used
on mobile devices via BayesMobile, or through a web browser
with BayesBox.

2.15 BayesiaLab

BayesiaLab4 is a commercial software developed by Dr. Lionel
Jouffe and Dr. Paul Munteanu and their team. It offers plenty of
algorithms for causal discovery, parameter learning, and inference.
The software includes a graphical user interface and is well
documented.

2.16 Bayes Server

Bayes Server5 is a commercial software developed by Bayes
Server Ltd. Besides the most well-known algorithms for causal

discovery, parameter learning and inference, the software offers a
wide range of tools for diagnostic, anomaly detection and decision-
making under uncertainty which have at their core the BN
framework. Bayes Server can be used in the cloud as well as on a
local machine through a GUI. It offers an advanced user interface
accessible programmatically via a number of APIs that can be used
via Java, Matlab, Python, Spark and R.

3 My causal path: picking the right tool
as a beginner

This section aims to assist beginners select the ideal package or
software that best suits their needs. The first subsection focuses on
causal discovery tools, while the second presents tools that support
functionalities for both parameter learning and structure learning
for the Bayesian network framework. Finally, the last subsection
discusses commercial software that offers additional features such as
optimized user-interfaces and professional customer support. Note
that while the previous section provided a comprehensive overview
of available solutions, this section shortlists and discusses only those
we consider most suitable for beginners. It is important to note that
while all the tools discussed in this section aim to uncover structure
among variables, they differ in their underlying modeling
assumptions and output types. Some tools (e.g., bnlearn, pgmpy,
pyAgrum) are focused on Bayesian networks and provide
probabilistic modeling capabilities, including structure and
parameter learning as well as inference. Others (e.g., LiNGAM,
CDT, causal-learn) are specialized for causal discovery and do not
build a full probabilistic graphical model. Instead, these methods
aim to recover a causal DAG under specific assumptions (e.g.,
linearity, non-Gaussianity, no hidden confounding). While the
outputs may look similar (DAGs), their interpretation and use
cases are different. We highlight these distinctions throughout
the section to help readers select the tool that best fits their goals.

3.1 Tools for causal discovery (structure
only, No probabilistic modeling)

When the goal is to discover the underlying structure among
variables typically interpreted causally under certain assumptions
without the need for full probabilistic modeling or inference,
gCastle, CDT, and LiNGAM are three tools that represent viable
solutions and provide easy access to those functionalities. In
particular, gCastle by Huawei Noah’s Ark Lab is in our opinion
one of the most accessible and comprehensive causal discovery
open-source Python libraries at the time of writing this document. It
offers various cutting-edge approaches for recovering the structure
of causal networks ranging from score-based to gradient-based and
hybrid algorithms. For each algorithm, the documentation offers a
detailed practical example, making the tool very friendly to
beginners. Various examples can also be found in Causal
Inference and Discovery in Python (Part 3: Causal Discovery)
(Molak, 2023), which offers the user the ability to dive deeper
into any particular functionality offered by the tool. Moreover,
gCastle can also be used via a GUI, which provides a friendlier
version of the interface that does not involve coding. CDT is another

3 https://www.bayesfusion.com/

4 https://www.bayesia.com/bayesia/bayesialab/bayesialab

5 https://www.bayesserver.com/

Frontiers in Systems Biology frontiersin.org05

Canonaco et al. 10.3389/fsysb.2025.1631901

https://www.bayesfusion.com/
https://www.bayesia.com/bayesia/bayesialab/bayesialab
https://www.bayesserver.com/
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2025.1631901

great package that we feel confident in recommending. Its
documentation contains several examples that will guide users
step-by-step into their first structural learning attempts. CDT has
the largest collection of algorithms for causal discovery among all
the other reviewed tools for beginners, some of which can be run
using Pytorch as well.

For time series data, the Longitudinal LiNGAM model
(Kadowaki et al., 2013) extends the original LiNGAM framework
(Shimizu et al., 2006) to account for temporal dynamics. It assumes
that each variable is a linear function of its own past values and the
past values of other variables, across a fixed number of time lags. The
model assumes that the noise terms are continuous, non-Gaussian,
and independent over time. These non-Gaussianity and
independence assumptions are essential for identifying the
direction of causal relationships from observational data, which
would otherwise be unidentifiable under Gaussian noise.

The LiNGAM Python package includes implementations for
various LiNGAM-based models, including the VAR-LiNGAM
(vector autoregressive) model for time series. It offers theoretical
background and practical examples for each model, making it a
useful tool for both research and applied causal analysis.

When the goal is performing causal discovery on big data,
Causal-Command represents a valid option. This Java library
implements several algorithms for causal discovery and can be
used via a shell script or as part of a Java-based application. We
perceive this library to be less user-friendly compared to the ones
mentioned above; thus, we deem Causal-Command a good fit for
more intermediate or advanced users.

To conclude our assessment of tools specialized in causal
structural learning, we consider CDT to be the best choice when
having a large set of available methodologies is desirable. For example,
CDT could be the most useful for training or educational purposes,
where assessing and comparing the effectiveness of various methods is
needed. CDT is also the best choice when an interface with Pytorch is
required or preferred. While CDT offers a wide range of causal
discovery algorithms, gCastle stands out for its user-friendly, code-
free interface and well-curated documentation, making it especially
accessible to non-programmers. Although both CDT and gCastle
support linear non-Gaussian models, LiNGAM remains the most
suitable tool when working specifically with this model type, as it is
built for such scenarios.

3.2 Tools for Bayesian Networks (structure
and parameter learning)

In many cases, one may wish to learn both the structure and the
parameters of a probabilistic model using the Bayesian network
framework. To this end, several tools extensively cover both
functional areas while offering great simplicity of use. One of the
most complete and well-maintained tools to date is bnlearn. Apart
from the remarkable availability of built-in methods for parameter
learning, structural learning, inference, missing data handling, and
model validation strategies, what makes bnlearn stand out is its
documentation and practical examples. Remarkably, most methods
and examples are thoroughly explained in the books Bayesian
Networks in R and Bayesian Networks With Examples in R
(Scutari andDenis, 2021), of which the creator of bnlearn is co-author.

A valid alternative to bnlearn is represented by pgmpy. Unlike
bnlearn, which provides methods for the static scenario only, pgmpy
partially covers the dynamic case as well. This is an important
feature, given that a great part of real-world problems and systems
include time-dependent components. On the other hand, the range
of algorithms available in pgmpy is more limited than in bnlearn,
particularly for structure learning tasks. Nonetheless, pgmpy
compensates for this limitation by offering more comprehensive
documentation. Abundant examples are available in the practical
notebooks section, along with tutorial notebooks, both of which are
beneficial for taking the first steps into this field.

Another alternative to bnlearn is pyAgrum. Just like pgmpy,
pyAgrum provides methods for static and dynamic scenarios,
making it a valid option for time-dependent real-world problems.
pyAgrum offers comprehensive documentation including tutorials,
examples and applications with interactive widgets. An important
resource offered by pyAgrum is a list of implemented solutions to the
problems presented in the ‘Book of Why’ by Judea Pearl. PyAgrum
not only provides rich and well-organized documentation, but also
offers a wide array of structure learning methodologies. For example,
it implements greedy hill climbing (GHC), local search with tabu-list
(LS-TL), Multivariate Information-based Inductive Causation
(MIIC), Chow-Liu, NB, TAN, and K2 algorithms.

A less sophisticated yet relevant package is the Python version of
the original bnlearn (which is an R package). Although it is not as
rich in methodologies as Pgmpy and the original bnlearn (only a
handful of causal discovery algorithms are available in it), the
Python version of bnlearn offers an intuitive interface and its
documentation is as rich and well-curated as the original R
version. The documentation not only presents many code
snippets followed by the associated output but also provides a
brief introduction to the theory behind it.

In conclusion, for those who are familiar with R, bnlearn
represents the best choice, especially when coupled with the
aforementioned books. For practitioners who prefer Python and/or
need to model dynamic systems, pgmpy and pyAgrum are the best
alternatives to bnlearn; themultitude of examples contained in pgmpy
and pyAgrum documentation provides tremendous added value for
beginners and/or practitioners moving their first steps in this field.
The Python version of bnlearn offers a more straightforward interface
than the other options; however, it does come with a limited number
of structure learning algorithms, making it suitable for readers seeking
to begin with simpler implementations.

3.3 Commercial software

For a wider and more flexible application of BNs frameworks in
industry settings where cloud computing might be involved, the
resulting models often need to be shared and accessed from a variety
of devices, including mobile devices, where no-code solutions may
be preferable. In addition, in these kind of scenarios, professional
support is usually needed, making the open-source packages
described in the previous sections unsuitable. In this section, we
illustrate some practical commercial solutions that might satisfy the
needs of larger industry organizations.

For this purpose, Bayes Server would be our recommended choice.
A demo is available on their official website. The platform provides

Frontiers in Systems Biology frontiersin.org06

Canonaco et al. 10.3389/fsysb.2025.1631901

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2025.1631901

comprehensive documentation, including examples demonstrating
how to interact with the graphical user interface. The
documentation also features a code section that serves as a central
repository of practical examples for working with the Bayes Server API.
Additionally, the site showcases numerous real-world use cases across
various domains, including aerospace and healthcare. Bayes Server is
available under both commercial and academic licenses.

GeNIe by BayesFusion LLC is a valid alternative to Bayes Server.
GeNIe makes use of the SMILE engine, a library of C++ classes that
implement causal and parameter learning, as well as inference,
which can be called via API. SMILE can be used via Java,
Python, R, and. NET using the following wrappers: jSMILE (Java
and environments that can instantiate and use the JVM), PySMILE
(Python 2.7 and 3. x), rSMILE (R 3. x), SMILE.NET (.NET). Another
component of GeNIe is BayesBox, an interactive repository where
graphical models can be uploaded, shared, and consulted from a
variety of devices, including mobiles.

A demo of BayesBox is available on the BayesFusion website.
BayesFusion also provides detailed documentation, which includes
information about GeNIe and its main features, as well as examples
and introductory materials for SMILE. The support forum is also
well-populated and can be a valuable resource for users.

A viable alternative to BayesServer and GeNIe is BayesiaLab.
BayesiaLab has a commercial license and offers an intuitive GUI,
APIs, and many useful resources, such as an ebook that includes
several tutorials. Webinars, tutorials, and use cases that will help
users navigate the multitude of features offered by BayesiaLab are
also available. It is worthwhile to mention that the BayesiaLab API
framework can be accessed using Java only.

In conclusion, both BayesServer and GeNIe can suit the
aforementioned contexts. They are both equipped with a web
platform that features a user-friendly interface and ready-to-use
examples, and both software can be used on mobile devices. For
BayesServer and GeNIe, pricing and licensing models can be the
deciding factors in determining which tool best suits the reader’s
needs after having tried their trial and demo versions. This might not
apply to BayesiaLab, as users cannot try the software on the website
before purchasing it. Additionally, BayesiaLab can only be usedwith Java.

4 Conclusion

This paper provides an overview of recent tools and software
packages for Bayesian network structure and parameter learning, as
well as methods specifically developed for causal discovery. The tools
were reviewed from the perspective of a beginner seeking to gain
hands-on experience in the field, and subjective recommendations
were given about which tools are deemed more suitable. At the same
time, it is important to acknowledge that the current landscape of BN
tools remains fragmented. This fragmentation is largely due to the
diverse range of assumptions, data types (e.g., discrete, continuous,
mixed), and application domains (e.g., bioinformatics, social sciences,
engineering) that BN modeling encompasses. As a result, many
packages have been developed to cater to specific niches, leading
to limited interoperability and a lack of standardization. Despite this,
we believe the field is approaching a turning point. As methodologies
that go beyond prediction are needed in real-world applications, there
will be increasing pressure to integrate the software presented in this

paper intomore unified and user-friendly frameworks. Just as libraries
like scikit-learn (Pedregosa et al., 2011) helped consolidate various
machine learning algorithms into a common interface, we foresee the
potential emergence of standardized libraries for BN modeling that
balance flexibility with usability. Such developments would not only
streamline experimentation and benchmarking but also lower the
barrier of entry for practitioners and researchers across disciplines.
Given the rapid evolution of this research field, updated versions of
this document might be released periodically. The authors emphasize
that all software contributions to this research field are instrumental in
scientific advancement and complement each other in a
beneficial way.

Author contributions

FC: Conceptualization, Investigation, Resources, Supervision,
Writing – original draft, Writing – review and editing. JG:
Conceptualization, Investigation, Supervision, Writing – original
draft, Writing – review and editing. NA: Conceptualization,
Writing – original draft, Writing – review and editing. FS:
Conceptualization, Writing – original draft, Writing – review and
editing. EA: Conceptualization, Writing – original draft,
Writing – review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This research was
supported by Minutia. AI Pte. Ltd. (Singapore). The funder was
not involved in the study design, collection, analysis, interpretation
of data, the writing of this article, or the decision to submit it for
publication. Additional support was provided through a doctoral
scholarship co-funded by Minutia. AI and Italy’s National Recovery
and Resilience Plan (PNRR). Additional institutional support was
provided by the University of Milan–Bicocca (Italy).

Conflict of interest

Authors FC, JG and NA were employed by Minutia.AI Pte. Ltd.
EA has equity and is an advisor to Minutia.AI Pte. Ltd.

The remaining author declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Correction note

A correction has been made to this article. Details can be found
at: 10.3389/fsysb.2025.1717030.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Frontiers in Systems Biology frontiersin.org07

Canonaco et al. 10.3389/fsysb.2025.1631901

http://SMILE.NET
https://doi.org/10.3389/fsysb.2025.1717030
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2025.1631901

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fsysb.2025.1631901/
full#supplementary-material

References

Ankan, A., and Panda, A. (2015). pgmpy: probabilistic graphical models using
python. SciPy, 6–11. doi:10.25080/majora-7b98e3ed-001

Arias, M., Pérez-Martín, J., Luque, M., and Díez, F. J. (2019). Openmarkov, an open-
source tool for probabilistic graphical models. IJCAI, 6485–6487. doi:10.24963/ijcai.
2019/931

Arora, P., Boyne, D., Slater, J. J., Gupta, A., Brenner, D. R., and Druzdzel, M. J. (2019).
Bayesian networks for risk prediction using real-world data: a tool for precision
medicine. Value Health 22, 439–445. doi:10.1016/j.jval.2019.01.006

Cavanaugh, J. E., and Neath, A. A. (2019). The akaike information criterion:
background, derivation, properties, application, interpretation, and refinements.
Wiley Interdiscip. Rev. Comput. Stat. 11, e1460. doi:10.1002/wics.1460

Colombo, D., and Maathuis, M. H. (2014). Order-independent constraint-based
causal structure learning. J. Mach. Learn. Res. 15, 3741–3782.

Ducamp, G., Gonzales, C., andWuillemin, P.-H. (2020). “Agrum/pyagrum: a toolbox
to build models and algorithms for probabilistic graphical models in python,” in
International Conference on Probabilistic Graphical Models (PMLR).

Geiger, D., and Heckerman, D. (1994). “Learning gaussian networks,” in Uncertainty
in artificial intelligence (Elsevier), 235–243.

Glymour, C., Zhang, K., and Spirtes, P. (2019). Review of causal discovery methods
based on graphical models. Front. Genet. 10, 524. doi:10.3389/fgene.2019.00524

Heckerman, D. (1998). A tutorial on learning with bayesian networks. Learn. Graph.
models, 301–354. doi:10.1007/978-94-011-5014-9_11

Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning bayesian
networks: the combination of knowledge and statistical data. Mach. Learn. 20,
197–243. doi:10.1023/a:1022623210503

Jensen, F. V., and Nielsen, T. D. (2007). Bayesian networks and decision graphs, 2.
Springer.

Ji, Z., Xia, Q., and Meng, G. (2015). “A review of parameter learning methods in
bayesian network,” in Advanced Intelligent Computing Theories and Applications: 11th
International Conference, ICIC 2015, Fuzhou, China, August 20-23, 2015
(Springer), 3–12.

Kadowaki, K., Shimizu, S., and Washio, T. (2013). “Estimation of causal structures in
longitudinal data using non-gaussianity,” in 2013 IEEE International Workshop on
Machine Learning for Signal Processing (MLSP), Southampton, UK, 22-25 September
2013 (IEEE), 1–6.

Kalainathan, D., Goudet, O., and Dutta, R. (2020). Causal discovery toolbox:
uncovering causal relationships in python. J. Mach. Learn. Res. 21, 1–5.

Kalisch, M., Mächler, M., Colombo, D., Maathuis, M. H., and Bühlmann, P. (2012).
Causal inference using graphical models with the r package pcalg. J. Stat. Softw. 47,
1–26. doi:10.18637/jss.v047.i11

Kammouh, O., Gardoni, P., and Cimellaro, G. P. (2020). Probabilistic framework to
evaluate the resilience of engineering systems using bayesian and dynamic bayesian
networks. Reliab. Eng. and Syst. Saf. 198, 106813. doi:10.1016/j.ress.2020.106813

Kitson, N. K., Constantinou, A. C., Guo, Z., Liu, Y., and Chobtham, K. (2023). A
survey of bayesian network structure learning. Artif. Intell. Rev. 56, 8721–8814. doi:10.
1007/s10462-022-10351-w

Kjaerulff, U. B., and Madsen, A. L. (2008). Bayesian networks and influence diagrams,
200. Springer Science+ Business Media, 114.

Koller, D., and Friedman, N. (2009). Probabilistic graphical models: principles and
techniques. MIT press.

Korb, K. B., and Nicholson, A. E. (2010). Bayesian artificial intelligence. Boca Raton,
FL: CRC Press.

Molak, A. (2023). Causal inference and discovery in python: unlock the secrets of
modern causal machine learning with DoWhy, EconML, PyTorch and more.
Birmingham, England: Packt Publishing Ltd.

Neath, A. A., and Cavanaugh, J. E. (2012). The bayesian information criterion:
background, derivation, and applications. Wiley Interdiscip. Rev. Comput. Stat. 4,
199–203. doi:10.1002/wics.199

Needham, C. J., Bradford, J. R., Bulpitt, A. J., andWesthead, D. R. (2007). A primer on
learning in bayesian networks for computational biology. PLoS Comput. Biol. 3, e129.
doi:10.1371/journal.pcbi.0030129

Nogueira, A. R., Pugnana, A., Ruggieri, S., Pedreschi, D., and Gama, J. (2022).
Methods and tools for causal discovery and causal inference.Wiley Interdiscip. Rev. data
Min. Knowl. Discov. 12, e1449. doi:10.1002/widm.1449

Pearl, J. (2014). Probabilistic reasoning in intelligent systems: networks of plausible
inference. Elsevier.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830.

Ramsey, J. D., Zhang, K., Glymour, M., Romero, R. S., Huang, B., Ebert-Uphoff, I.,
et al. (2018). “Tetrad—a toolbox for causal discovery.” in 8th international workshop on
climate informatics, 1–4.

Scanagatta, M., Salmerón, A., and Stella, F. (2019). A survey on bayesian network
structure learning from data. Prog. Artif. Intell. 8, 425–439. doi:10.1007/s13748-019-
00194-y

Schreiber, J. (2018). Pomegranate: fast and flexible probabilistic modeling in python.
J. Mach. Learn. Res. 18, 1–6.

Scutari, M. (2010). Learning bayesian networks with the bnlearn r package. J. Stat.
Softw. 35, 1–22. doi:10.18637/jss.v035.i03

Scutari, M., and Denis, J.-B. (2021). Bayesian networks: with examples in R. Chapman
and Hall/CRC.

Scutari, M., and Lebre, S. (2013). Bayesian networks in R: with applications in systems
biology. New York: Springer Verlag New York Inc.

Scutari, M., Graafland, C. E., and Gutiérrez, J. M. (2019). Who learns better bayesian
network structures: accuracy and speed of structure learning algorithms. Int. J. Approx.
Reason. 115, 235–253. doi:10.1016/j.ijar.2019.10.003

Shimizu, S., Shimizu, A., and Hyvärinen, H. (2006). A linear Non-gaussian acyclic
model for causal discovery. J. Mach. Learn. Res.

Spirtes, P., Glymour, C. N., and Scheines, R. (2000). Causation, prediction, and search.
MIT press.

Verma, T., and Pearl, J. (1990). “Equivalence and synthesis of causal models,” in
Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence,
255–270.

Vonk, M. C., Malekovic, N., Bäck, T., and Kononova, A. V. (2023). Disentangling
causality: assumptions in causal discovery and inference. Artif. Intell. Rev. 56,
10613–10649. doi:10.1007/s10462-023-10411-9

Zhang, K., Zhu, S., Kalander, M., Ng, I., Ye, J., Chen, Z., et al. (2021). gcastle: a python
toolbox for causal discovery. arXiv preprint arXiv:2111.

Zheng, Y., Huang, B., Chen, W., Ramsey, J., Gong, M., Cai, R., et al. (2024). Causal-
learn: causal discovery in python. J. Mach. Learn. Res. 25, 1–8.

Frontiers in Systems Biology frontiersin.org08

Canonaco et al. 10.3389/fsysb.2025.1631901

https://www.frontiersin.org/articles/10.3389/fsysb.2025.1631901/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fsysb.2025.1631901/full#supplementary-material
https://doi.org/10.25080/majora-7b98e3ed-001
https://doi.org/10.24963/ijcai.2019/931
https://doi.org/10.24963/ijcai.2019/931
https://doi.org/10.1016/j.jval.2019.01.006
https://doi.org/10.1002/wics.1460
https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.1007/978-94-011-5014-9_11
https://doi.org/10.1023/a:1022623210503
https://doi.org/10.18637/jss.v047.i11
https://doi.org/10.1016/j.ress.2020.106813
https://doi.org/10.1007/s10462-022-10351-w
https://doi.org/10.1007/s10462-022-10351-w
https://doi.org/10.1002/wics.199
https://doi.org/10.1371/journal.pcbi.0030129
https://doi.org/10.1002/widm.1449
https://doi.org/10.1007/s13748-019-00194-y
https://doi.org/10.1007/s13748-019-00194-y
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.1016/j.ijar.2019.10.003
https://doi.org/10.1007/s10462-023-10411-9
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2025.1631901

	A guide to bayesian networks software for structure and parameter learning, with a focus on causal discovery tools
	1 Introduction
	2 Software tools and packages
	2.1 gCastle
	2.2 bnlearn
	2.3 pgmpy
	2.4 Tetrad
	2.5 Causal command (CMD)
	2.6 Causal-learn
	2.7 pcalg
	2.8 LiNGAM
	2.9 CDT
	2.10 pyAgrum
	2.11 bnlearn (python)
	2.12 OpenMarkov
	2.13 pomegranate
	2.14 BayesFusion
	2.15 BayesiaLab
	2.16 Bayes Server

	3 My causal path: picking the right tool as a beginner
	3.1 Tools for causal discovery (structure only, No probabilistic modeling)
	3.2 Tools for Bayesian Networks (structure and parameter learning)
	3.3 Commercial software

	4 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Correction note
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

