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The microbiome represents a complex community of trillions of microorganisms
residing in various body parts and plays critical roles in maintaining host health
andwellbeing. Understanding the interactions betweenmicrobiota and their host
offers valuable insights into potential strategies for promoting health, including
microbiome-targeted interventions. We have created MicrobiomeKG, a
knowledge graph for microbiome research, that bridges various taxa and
microbial pathways with host health. This novel knowledge graph derives
algorithmically generated knowledge assertions from the supplementary
tables that support published microbiome papers. By identifying knowledge
assertions from supplementary tables and expressing them as knowledge
graphs, we are casting this valuable content into a format that is ideal for
hypothesis generation. To address the high heterogeneity of study contexts,
methodologies, and reporting standards, we leveraged neural networks to
implement a standardized edge scoring system, which we use to perform
centrality analyses. We present three example use cases: linking helminth
infections with non-alcoholic fatty-liver disease via microbial taxa, exploring
connections between the Alistipes genus and inflammation, and identifying
the Bifidobacterium genus as the most central connection with attention
deficit hyperactivity disorder. MicrobiomeKG is deployed for integrative
analysis and hypothesis generation, both programmatically and via the
Biomedical Data Translator ecosystem. By bridging data gaps and facilitating
the discovery of new biological relationships, MicrobiomeKG will help advance
personalized medicine through a deeper understanding of the microbial
contributions to human health and disease mechanisms.
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1 Introduction

The microbiome represents a complex community of trillions of microorganisms that
reside in various body parts; it plays critical roles in maintaining host health and wellbeing.
Emerging research has revealed that it influences numerous physiological processes,
including digestion (Hills et al., 2019), aging (Wilmanski et al., 2021), and immune
system function (Wiertsema et al., 2021). Conversely, the dysregulation of microbiota
(dysbiosis) is associated with various diseases and negative health outcomes (e.g.,
inflammatory bowel disease, obesity, diabetes, and neurological disorders) (Hills et al.,
2019). Hence, understanding the interactions between microbiota and their host offers
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valuable insights into potential strategies for promoting health,
including microbiome-targeted interventions.

The NCATS Biomedical Data Translator (“Translator”) is a
cutting-edge platform that aims to revolutionize biomedical research
(Fecho et al., 2025). It integrates vast amounts of diverse data, from
genes to clinical records, and uses advanced algorithms to uncover
insights and accelerate discoveries. By harmonizing data and
enabling semantic searches, Translator fosters a collaboration
among researchers and facilitates the development of new
treatments and therapies for various diseases. The Translator
project uses knowledge graphs (KGs) to store the wealth of data
required for reasoning in a compact, easy-to-parse, universal format.
KGs organize data frommultiple sources, capture information about
entities of interest in a given domain or task, and display
connections between them. KGs comprise nodes (things) and
edges (relationships between things).

Some prominent projects have come close to reconciling
microbiome data with Translator philosophy. BugSigDB
(Geistlinger et al., 2024) serves as a comprehensive database of
published microbial signatures but lacks content connecting the
microbiome and host health, as well as a knowledge graph format.
KG-Microbe (Santangelo et al., 2025) is an integratively analyzable
knowledge graph linking prokaryotic data for phenotypic traits,
taxonomy, chemicals, and environment descriptors, but is yet to
include content linking the microbiome and host health.
MicroPhenoDB (Yao et al., 2020) incorporates content linking
the microbiome with host health but lacks a knowledge graph
format. MetagenomicsKG (Ma et al., 2024) incorporates multiple
content sources, inclusive of microbiome-host health knowledge,
into an integratively analyzable knowledge graph. However, neither
includes knowledge from supplementary tables in their findings.

Here, we present MicrobiomeKG, an integratively analyzable
knowledge graph for microbiome research that bridges various taxa
and microbial pathways with host health, built from algorithmically
generated knowledge assertions from supplementary tables and
deployed to Translator (Fecho et al., 2025).

2 Methods

2.1 Selection of publications and
supplementary tables

The publications included in the initial version of
MicrobiomeKG represent a manually selected, non-
comprehensive set of recent and multiomic-driven scientific
papers that (a) bridge microbiome and host health-related
content and (b) include one or more supplementary tables with
content that can be modeled as subject–predicate–object triples (e.g.,
taxon X affects disease Y)—the standard units of knowledge graphs.

2.2 Derivation of knowledge assertions

Leveraging relevant content from the supplementary tables,
their descriptions, or the manuscript itself, we incorporated
supplementary data contents into DataFrames using Python’s
“polars” library and processed the content to derive assertions.

We implemented a declarative data transformation system that
paired a human-curated configuration file to each supplementary
table; the configuration file specified the transformations required to
extract the knowledge assertions. We used custom Python scripts to
transform the DataFrames values in multiple ways via operations on
individual values and on entire rows. Value transformations
included mathematical transformations (e.g., exponentiating log-
transformed p-values), extracting relevant content with regular
expressions (e.g., extracting “Actinobacteria” from “kurilshikov_
class.Actinobacteria.id.419”), and text cleaning (e.g., deriving
“enterocloster bolteae” from “enterocloster_bolteae”). Row
operations included filtering based on certain conditions (e.g.,
based on a given column’s Boolean value), dropping duplicates,
dropping null values, and imposing cutoffs for filtering. Some edge
attributes were manually computed when not provided but were
reasonably inferred (e.g., total cohort size for meta-analyses where
the cohort sizes for all initial analyses are made explicit). Such
manual operations were performed only in the creation of the
configuration files but not in post-processing the extracted
knowledge assertions; this step was entirely automated and
objective. We use a p-value cutoff of 0.1 so that the graph
contained both statistically significant and not significant but
highly suggestive edges.

2.3 Standardization of KG contents
and structure

We standardized all edge predicates and node categories to
Biolink ontology predicates and Biolink ontology classes (Unni et al.,
2022). Furthermore, we mapped nodes to ontologies, representing
them using compact universal resource identifiers (CURIEs) and
normalizing them using BABEL (version of 2025/03/31)1. We
dropped any knowledge assertions that failed to map subject or
object to standard CURIEs. We then exported the output in
Knowledge Graph Exchange (KGX) tab-separated values
(TSV) format2.

2.4 Edge score computation

We developed a lightweight CPU-bound PyTorch neural
network to regress a score for each edge in MicrobiomeKG to
serve as a centralized semantic unifier, accounting for
methodological differences in the underlying knowledge and
enabling graph-wide edge interpretations and centrality analyses.
To train the model and score edges, we selected 11 features denoting
the significance of an edge, the sample size used to make an
assertion, whether the significance of an edge was FDR-corrected,
the strength of the assertion in an edge, the statistical test used to
make an assertion, the type of natural language processing required
to compute an edge, the database used to map an edge’s subject and
object to a CURIE, and miscellaneous context comprising the notes

1 https://github.com/TranslatorSRI/Babel

2 https://github.com/biolink/kgx
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and supplementary file caption fields. We cast numeric features to a
standard normal distribution and label-encoded categorical features.
We embedded free-text features with the pooler output of the dmis-
lab/biobert-base-cased-v1.1 transformer from HuggingFace (Lee
et al., 2020). These features were then passed through three
linear layers delimited by LeakyReLU activation functions, with a
dropout of 20% between the two largest linear layers to prevent
overfitting, given the similarity of certain features. Finally, we
leveraged a Softplus activation function after the last linear layer
to ensure strictly positive scores. Our specific implementation of the
model was trained on 300 manually scored edges, with unique
combinations of all 11 features, from initial versions of
MicrobiomeKG. During the training loop, we used a Huber Loss
(σ = 1) implemented with SmoothL1Loss (β = 1) and an Adam
optimizer (Kingma and Jimmy, 2017).

2.5 Centrality analysis

We calculated node centralities using four methods from the
graph_tool Python library: node betweenness, eigenvector, Katz, and
PageRank (Peixoto, 2023). For the Katz centrality method, we
set alpha to 80% of the eigenvalue and beta to the eigenvector of
the corresponding node. We treated edges with symmetric
predicates (biolink:correlated_with and biolink:associated_with)
symmetrically, and edges with asymmetric predicates (biolink:
affects) directionally. We calculated the edge weights for these
analyses using the scoring regression neural network
described above.

2.6 Deployment

We deployed MicrobiomeKG as a public web application
programming interface (API) using Translator Reasoner API
(TRAPI) format3. We achieve this using Plover (Glen et al.,
2025), an in-memory Python-based platform designed to host
and serve Biolink-compliant knowledge graphs as TRAPI APIs.
Plover enables one-hop queries of the underlying KG and
automatically performs Biolink predicate/class hierarchical
reasoning and concept subclass transitive chaining, among other
tasks. The Plover MicrobiomeKG API is accessible for direct
querying via its Translator deployment endpoint4.

3 Results

3.1 Overview of MicrobiomeKG

We developed Microbiome KG, a knowledge graph built for
microbiome research, focusing on the interface between the
microbiome and the health of the host. The current version
(2.1.0) contains knowledge assertions crafted from 104 different

supplementary tables (Supplementary Table S1) across
40 publications. The number of assertions derived from each
publication varies over four orders of magnitude (Figure 1, Edge
Count axis), reflecting the huge diversity in content and level of
detail of the supplementary tables. The graph components derived
from each publication may have multiple separate components, and
therefore their unique edge counts may be lower than the expected
theoretical minimum for connected graphs (Figure 1, blue dots and
lower gray dashed line). Additionally, they may include edges
sharing the same subject–predicate–object triple but found in
different supplementary tables or using different analytical
methods. Their total edge count may therefore exceed the
theoretical maximum (Figure 1, orange dots and upper gray
dashed line).

The KG comprises 27,772 nodes (concepts) and 112,118 edges
(assertions, of which 71,602 are statistically significant) that outline
relationships between the microbiome and various host health
factors, spanning 38 Biolink (Unni et al., 2022) ontology classes
(most commonly, genes, taxa, proteins, and chemicals—Figure 2;
Supplementary Table S2). Disease and SmallMolecule are the most
central classes to the graph, followed by OrganismTaxon,
PhenotypicFeature, ChemicalEntity, and Gene. Notably, class
node count does not correlate to graph centrality. For example,
diseases (with 90 nodes) are more central than proteins (with
3,311 nodes), despite a roughly 36-fold ratio in the number of
proteins vs. diseases included in the KG (Figure 2). The KG uses
eight different biolink ontology predicates, of which the most
commonly used are biolink:associated_with and biolink:
correlated_with. Taking into account symmetric predicates, there
are 244 combinations of subject category, predicate, and object

FIGURE 1
Node, edge, and unique edge count of MicrobiomeKG
subgraphs stratified by publication. Each publication is represented by
two (potentially overlapping) dots: an orange dot denoting the total
number of edges contributed by that publication and a blue dot
denoting the number of unique (non-redundant) edges. A gray line
connects corresponding dots when they are not next to each other.
Dark gray dashed lines denote the theoreticalmaximumandminimum
unique edge counts for a connected graph. These correspond,
respectively, to n•(n-1)/2 (for a fully connected graph) and n-1 (for a
graph lacking any cliques), where n denotes the number of nodes in
the graph. The light gray dashed line denotes the theoretical minimum
unique edge count (n/2) without requiring the graph to be connected.

3 https://github.com/NCATSTranslator/ReasonerAPI

4 multiomics.transltr.io/mbkp
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category (Supplementary Table S3), with the most common being
“Protein correlated_with SmallMolecule” (22,513 counts).

3.2 Case study 1: helminthiasis and NAFLD

Through the combination of edges derived from publications
already integrated into MicrobiomeKG (see table in Figure 3), we
identified a hypothetical connection between helminthiasis
(MONDO:0004664) and metabolic dysfunction-associated
steatotic liver disease (also known as non-alcoholic fatty-liver
disease, or NAFLD, MONDO:0013209). This connection is
consistent with and supported by published observations (Raj
et al., 2020; Lee et al., 2021; Liu et al., 2022).

Helminthiasis is a global health burden, particularly in
economically underdeveloped regions. Helminth colonization has
been linked to changes in host gut microbiomes of increased
diversity (Lee et al., 2014). More recent work identified
significant alterations in host gut and saliva microbiota, driven by
clinical helminth infections (Gobert et al., 2022), at multiple
taxonomic levels. Figure 3 highlights the statistically significant

association between helminth infections and gut bacteria of the
orders Burkholderiales (adjusted p-value = 0.0026) and
Lactobacillales (adjusted p-value ~0), as reported in
Supplementary Table S3 of Gobert et al. (2022).

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent
form of progressive and chronic liver disease, with gradual
accumulation of liver fibrosis and cirrhosis. The pathogenesis of
NAFLD is complex and involves disrupted glycolipid metabolism,
inflammation, and dysregulation of the gut microbiota (Han et al.,
2023). Metagenomic studies have identified bacterial taxa positively
or negatively associated with progression to advanced fibrosis in
NAFLD (Loomba et al., 2017). Furthermore, Gagnon et al. (2023)
used Mendelian randomization to establish the causal relationships
between gut microbiota and multiple cardiometabolic traits and
chronic diseases, including NAFLD (Gagnon et al., 2023). We
highlight their finding that Class Betaproteobacteria affects (leads
to) NAFLD, with a Benjamini–Hochberg adjusted p-value
of <0.0218 as computed using the inverse variance weighted
(IVW) method (their Supplementary Table S5) and adjusted
p-value of <0.000076 calculated using the IVW radial method
(their Supplementary Table S6). The association with order

FIGURE 2
Metagraph of MicrobiomeKG. Vertices represent Biolink ontology classes; numbers in labels represent the count of nodes in the graph that belong
to that class. Each arc represents a Biolink ontology predicate (or type of assertion) between two vertices; arcs are designated independent of edge count
and are directed. Some pairs of vertices are connected by multiple arcs.
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Burkholderiales within class Betaproteobacteria did not reach the
significance threshold but was suggestive, with an adjusted p-value
of <0.075 (their Supplementary Table S5). A significant negative
connection between Burkholderiales (specifically, Parasutterella)
and NAFLD was reported by Yun et al. (2019). Similarly, the
relationship with Lactobacillus did not reach statistical
significance (adjusted p-value <0.0664), but a mechanistic
relationship is reported by Lee et al. (2021). Both Burkholderiales
and Lactobacillales have potential application as therapeutics for
NAFLD (Lee et al., 2021; Liu et al., 2022).

3.3 Case study 2: genus Alistipes and
inflammation

Connections between dietary patterns and systemic inflammation
have long been established, with diets that emphasize animal proteins
leading to increased inflammation versus diets that emphasize fiber,
fruit, and vegetables lowering it (Galland, 2010; Ricker and Haas,
2017). Both diet and inflammation have also been linked to the gut
microbiome (David et al., 2014; Zhang et al., 2022; Mirhosseini et al.,
2024). In particular, the genus Alistipes has been implicated in
inflammation (Kaur et al., 2017; Parker et al., 2020), although this
assertion is ultimately derived from work that does not support it
(Rautio et al., 1997). More recent publications provide additional
support for this connection (Wan et al., 2019; Rinninella et al., 2023).

We observed in MicrobiomeKG multiple connections between
the genus Alistipes and entities associated with inflammation

(Figure 4), including genes (Saa1, Ghr, Fcer1g, Tnfrsf11a, and
Adora1), tryptophan-related metabolites (tryptophan and 3-
formylindole), and short-chain fatty acids (including butyric acid,
propanoic acid, and acetate). The edges supporting these
connections are sourced from Forsyth et al. (2024), Nguyen et al.
(2021) and Diener et al. (2022).

Nguyen et al. (2021) studied the gut microbial communities and
host metabolome in early life (6 weeks and 12 months of age) in
humans. While they did not discuss it, their supplementary data show
thatAlistipeswas negatively correlated with butyric acid, propanoic acid
(which has multiple anti-inflammatory derivative drugs), and acetate
(Spearman correlations of −0.31, −0.366, and −0.225, respectively;
Benjamini–Hochberg adjusted p-values of 0.002, 0.001, and 0.032,
respectively). These three metabolites are short-chain fatty acids
(SCFAs) known to have anti-inflammatory effects (Cook and Sellin,
1998; Hamer et al., 2008; Mishiro et al., 2013; Al-Lahham and Rezaee,
2019). The data also indicate a negative correlation with tryptophan
(Spearman correlation of −0.28; Benjamini–Hochberg adjusted p-value
of 0.005), an essential amino acid that plays a complex role in
inflammation, both directly and through its metabolites (Sorgdrager
et al., 2019; Seymour et al., 2024; Harris et al., 2024).

Diener et al. (2022) jointly correlated host genetic variants and
gut microbiome with the blood metabolome in humans (Diener
et al., 2022). Here, the genusAlistipeswas again not mentioned in the
manuscript, but their Supplementary Table S3 reports a weaker
positive association with 3-formylindole (two-sided Wald test of
0.018; Bonferroni adjusted p-value of 0.0032). This metabolite is also
anti-inflammatory (Luo et al., 2024).

FIGURE 3
Microbiome effects link helminth infections with non-alcoholic fatty liver disease (NAFLD). Arrows indicate relationships between the concepts
(helminth infection, bacterial classes, NAFLD). Bidirectional arrows represent symmetrical relationships (associated with, correlated with). Thicker lines
represent significant relationships, dashed arrows represent higher-level “treats” relationships. The source publication for each edge is indicated in green.
IVW: inverse variance-weighted. ZIGMM: zero-inflated Gaussian mixture model. B–H: Benjamini–Hochberg. Bf: Bonferroni. NA: not applicable.
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Forsyth et al. (2024) studied the relationship between gut
microbiome dysbiosis and inflammaging in mice. They reported that
the prevalence of Alistipes was positively correlated with the expression
levels of the genes Saa1 and Ghr and negatively correlated with
Tnfrsf11a, Fcer1g, and Adora1 (see table in Figure 4). Serum
amyloid A1 (Saa1) is an acute-phase response protein that rapidly
increases during inflammation events (Ye and Sun, 2015; Chen et al.,
2023). Knock-out of growth hormone receptor (Ghr) in mice leads to
reduced inflammation (Masternak and Andrzej, 2012). Dysregulation
and ablation of tumor necrosis factor receptor superfamilymember 11A
(TNFRSF11A) causes autoinflammatory disorders (Jéru et al., 2013;
Papatheodorou et al., 2024). Hypomethylation of the Fc epsilon
receptor I gamma gene (FCER1G), leading to its increased activity,
was observed in patients with rheumatoid arthritis compared to control
subjects (Podgórska et al., 2022). Similarly, reduced expression of the
adenosine A1 receptor (Adora1) led to islet inflammation in a mouse
model of Type 1 diabetes (Yip et al., 2013).

In summary, almost all the gene and metabolite associations
identified in MicrobiomeKG connecting the Alistipes genus to
inflammation are consistent with a pattern of increased Alistipes
fraction correlating with increased inflammation, both by positively
correlating with genes and analytes that are themselves positively
associated with inflammation or through two negative associations
(e.g., Fcer1g and butyric acid). The only exception is 3-formylindole,

which is positively associated with Alistipes but negatively associated
with inflammation; we note that the Alistipes–3-formylindole
association has a very weak effect size, much lower than the other
nine Alistipes associations discussed here (see table in Figure 4).

3.4 Graph standardization via edge scores

By design, MicrobiomeKG is a highly heterogeneous graph. It
integrates knowledge from 290 unique analyses comprising many
different methods. Thus, the statistics annotating each edge may
often convey a variety of meanings. This poses a unique challenge
for graph-wide edge interpretation and centrality analyses. Without a
centralized semantic unifier, edges are difficult to compare, particularly
at scale, hindering downstream analysis. Furthermore, the complex
non-linear nature of how each edge’s features contribute to its accuracy
and utility precludes reasonable algorithmic construction of such
semantic unifiers (e.g., algorithmic quantifications accounting for
how methods affect relationship strength are often weak, especially
as the number of different methods scales). However, given the ability
to quantify an edge’s accuracy and utility on a small scale, neural
networks present a unique and highly scalable solution to this
centralized semantic unifier problem. We therefore implemented
and trained a neural network (see “Methods”) and computed a

FIGURE 4
Metabolite and gene connections between the Alistipes genus and inflammation. Arrows indicate relationships between the concepts. Bidirectional
arrows represent symmetrical relationships (associated with, correlated with). Dotted lines denote multi-step connections, not detailed here. The source
publication for each edge is indicated in green. Red and blue denote, respectively, positive (both increase together) and negative (increase in one with
decrease in the other) associations. The thinner line for Diener et al. (2022) represents the weaker effect size, and the color gradient for 3-
formylindole denotes the inconsistency in directionality. SparCC: sparse correlation for compositional data. B–H: Benjamini–Hochberg. Bf: Bonferroni.
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score for each edge in MicrobiomeKG. The resulting distribution of
scores (Supplementary Figure S1) is approximately bimodal, with each
mode roughly corresponding to Boolean edge significance. The
softplus activation function in the scoring network implies that
theoretical scores should be non-negative (i.e., ranging from 0 to
positive infinity). The observed scores for 112,118 edges range from
0 to ~178, with an average score of ~74 and very few outliers
(Supplementary Figure S1). We then used these scores as edge
weights to compute centrality metrics (see “Methods”, and case
study 3 below).

3.5 Case study 3: ADHD and Bifidobacterium

We computed the most central organism taxa directly connected
with a collection of diseases. Firstly, we iterated through each disease
in MicrobiomeKG, creating a subgraph comprising the disease and its
direct organism taxon neighbors.We then compared the various node
centralities of the taxon nodes in these subgraphs, selecting the most
central node for interpretation. This analysis identified 39 diseases
connected to microbial taxa by four different centrality algorithms
(Supplementary Table S4) and only taking into account edge
directionality, weighted edges, and direct disease–taxon
relationships. In some cases, different centrality metrics highlighted
different taxa for the same disease, but frequently the same taxon was
identified by most or all centrality methods.

In this analysis, the genus Bifidobacterium was the most central
organism taxon connected to attention-deficit hyperactivity disorder
(ADHD) in MicrobiomeKG across all four computed centralities.
The relatively high node betweenness centrality of this genus
emphasizes its role as the primary bridge connecting the ADHD
node to the rest of the graph. Strengthening this narrative,
Bifidobacterium’s sizable Katz and eigenvector centralities suggest
that the node is strongly influential throughout MicrobiomeKG.
Furthermore, the taxon is strongly recursively connected, as
indicated by its PageRank centrality (Supplementary Table S4).

This central role that Bifidobacterium plays in ADHD is also
reflected in the current microbiome-ADHD literature. The genus is
described as one of the greatest mysteries in the field, with its relative
abundance unpredictably fluctuating with age in different populations
with ADHD (Cickovski et al., 2023). Furthermore, supplementation
with Bifidobacterium bifidum (Bf-688) has yielded promising results
in reducing inattentive and hyperactivity/impulsivity in clinical trials
(Wang et al., 2022; Wang et al., 2024).

4 Discussion

We here present MicrobiomeKG, a novel knowledge graph
connecting the microbiome and host health, and three case studies
highlighting its application. MicrobiomeKG derives knowledge
assertions drawn from supplementary materials published together
with microbiome papers. Unlike the standard application of natural
language processing of paper abstracts and/or full texts of papers, which
is perforce limited to content their authors decided to discuss in the text
(and, potentially, the main-text tables), content extraction from the
supplementary tables may capture a significantly larger corpus of
knowledge assertions not included in the manuscript for a variety of

reasons, including considerations of statistical significance, space
limitations, and decisions about focus of narrative. In some cases,
the supplementary tables provide precise numerical values for
content included in the manuscript narrative in a simplified or
approximate form, or perhaps in graphical form in embedded
figures, which pose additional data extraction challenges. By table-
mining the supplementary materials, we are thus able to maximize
knowledge extraction while minimizing reproduction errors. For
example, most of the edges underlying case studies are not in their
papers’ main text, tables, or figures, yet they are readily derivable from
the supplementary data tables. Supporting materials from publications
have been used to extract gene sets (Clarke et al., 2024); here, we applied
them to extract structured knowledge assertions. Previous efforts have
already extracted knowledge from the full text of publishedmanuscripts
via natural language processing or through wholesale inclusion in the
training of large language models (LLMs). MicrobiomeKG is designed
to supplement (and be integrated with) such existing knowledge bases,
not to replace them or be redundant with them.

There is a need in the field for work that validates assertions by
comparing results from different datasets and identifying
inconsistencies in the assertions reported by different studies, as
collected in large repositories like MGnify (Mitchell et al., 2020). A
goal of the current project is to facilitate such efforts by collecting and
standardizing the representation of such assertions asmade available in
the supplementary materials of published papers. Even after
standardizing the semantic representation of the assertions, the
heterogeneity of contexts, methodologies, and reporting standards
used in the different studies pose an additional challenge for the
integration, comparison, and downstream analysis of the edges in the
knowledge graph. We thus developed an approach to scoring edges
into a standardized framework. We achieved this by applying neural
networks to integrate multiple aspects of publication and edge
metadata such as sample size, statistical test and correction
methods, and context terms derived from the manuscript itself. We
demonstrated the use of such standardized edge scores to compute
centrality metrics (Muhiuddin et al., 2023), which we then used to rank
hypotheses withinMicrobiomeKG subgraphs of interest, such as which
organism taxa are directly related to specific diseases.

The resultingKG is available for direct download and is also deployed
via Plover (Glen et al., 2025) and integrated with other KGs through the
Translator ecosystem,which already incorporates assertions derived from
other knowledge bases. Use of the KGX exchange format6, Biolinkmodel
(Unni et al., 2022) categories and predicates, and the standardized
normalization of all terms into CURIEs, ensures the interoperability
of the resource. This can be easily transformed into other knowledge
representation and exchange formats, like BioRDF (Nolin et al., 2010)
and integrated with cross-referenced data from other microbiome
resources like MGnify (Mitchell et al., 2020).

A limitation of MicrobiomeKG is its current scope. The version
of the graph presented here contains 27,772 nodes and 112,118 edges
sourced from a set of 40 microbiome papers (Figure 1). Disbiome, a
prior effort that manually curates information linking the
microbiome with a disease, included assertions sourced from
approximately 500 papers upon publication (Janssens et al., 2018)

6 https://github.com/biolink/kgx
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and then expanded to 1,179 papers—a much larger collection than
currently included in MicrobiomeKG. On the other hand, that manual
curation effort yielded 10,866 assertions linking 1,615 organisms to
375 diseases, which is a very limited number compared to the node and
edge count in MicrobiomeKG. Likewise, the MGnify resource includes
over 3,500 publicly available projects connected with 1,785 microbiome
publications (Mitchell et al., 2020), although the scope is much wider
than the microbiome-to-disease domain. To scale up the scope of
MicrobiomeKG, we plan to implement automated extraction methods
to further mine supplemental data for assertions on microbiome and
host health while simultaneously expanding the types of multiomic
analysis and data types to be included in the graph. In the long-term, we
plan to leverage a collection of rule-based algorithms, natural language
processing, artificial intelligence, and machine learning methods
(including large language models) to optimize data collection and
scalability and to improve the metadata associated with the
knowledge assertions (Nassar et al., 2022).

Supplementary materials can be very difficult to use (Pop and
Salzberg, 2015). By identifying knowledge assertions from
supplementary tables and expressing them as knowledge graphs, we
are casting this valuable content into a format that is ideal for hypothesis
generation. MicrobiomeKG ultimately brings novel nodes and edges to
Translator that foster previously unexplored connections between the
microbiome and varied biomedical data. We expect that
MicrobiomeKG will be the first of many knowledge graphs built
from knowledge assertions derived from the trove of untapped
supplementary tables. In the context of graph machine learning,
such extended knowledge extraction will prove advantageous for
training microbiome, biological, biomedical, and host health AI/ML
models (Tiddi and Schlobach, 2022). As the field evolves, we foresee the
integration of more diverse datasets into knowledge graphs, enhancing
the richness and applicability of these resources. This expansion will not
only strengthen the predictive power of AI/ML models but also enable
data-driven insights into the complex interplay between the
microbiome and host health. For example, graph embedding could
integrate MicrobiomeKG’s expert-derived insights within graph neural
networks, capturing microbial relationships and functional associations
to enable downstream analyses such as phenotype classification,
differential analysis, and microbial network exploration (Ma et al.,
2024). Ultimately, by bridging data gaps and facilitating the discovery of
new biological relationships, MicrobiomeKG will help advance
personalized medicine through a deeper understanding of microbial
contributions to human health and disease mechanisms.
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