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Opposite serotonergic
modulation of sharp waves in the
dorsal and ventral hippocampus

Charalampos L. Kandilakis and Costas Papatheodoropoulos*

Laboratory of Physiology, Department of Medicine, University of Patras, Rion, Greece

Serotonin plays a crucial role in regulating hippocampal network dynamics,
however, its effects on sharp wave-ripples (SPWs), a pattern fundamental for
memory consolidation and emotional processing, remain incompletely understood,
particularly along the dorsoventral axis. Using hippocampal slices from adult rats,
we compared serotonergic modulation of SPWs and associated multiunit activity
(MUA) in dorsal and ventral CA1 regions. Serotonin (1-100 uM) was applied to
evaluate dose dependent and region-specific effects on SPW amplitude, duration,
frequency, and neuronal firing. We found that serotonin reduces SPW amplitude
in both hippocampal segments, decreases the rate of SPW occurrence in the
dorsal hippocampus, and increases the rate of SPW occurrence in the ventral
hippocampus, but only at relatively low concentrations. The suppressive effect on
SPW amplitude is accompanied by a reduction in firing frequency during SPWs in
both regions, whereas the enhancing effect of low serotonin concentrations on
SPW rate in the ventral hippocampus is associated with an excitatory action on
basal neuronal activity. These results reveal a region-specific, and dose-dependent
serotonergic modulation of SPWs, reflecting distinct excitatory/inhibitory balances
and receptor subtype distributions along the hippocampal axis. Functionally,
serotonergic suppression of dorsal SPWs may regulate cognitive processes, whereas
bidirectional modulation in the ventral hippocampus may fine-tune affective and
stress-related responses. Our findings highlight dorsoventral specialization of
serotonergic control over hippocampal network patterns, providing insights into
the mechanisms of dorsoventral hippocampal specialization and the symptom
heterogeneity of neuropsychiatric disorders involving serotonergic dysfunction.
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1 Introduction

Serotonin (5-hydroxytryptamine, 5-HT) is a multifaceted neuromodulator with diverse
functional roles in both physiology and pathology in the central nervous system.
Physiologically, serotonin is involved in several functions including cognitive flexibility, mood
and emotional regulation, stress reactivity, and modulation of sleep-wake cycle (Charnay and
Léger, 2010; Pytliak et al., 2011). Furthermore, dysregulation of serotonin signaling is
implicated in a range of neuropsychiatric and neurodevelopmental disorders including anxiety,
depression, schizophrenia, and autism spectrum disorders (Bai et al., 2014; Miiller and
Homberg, 2015; Muller et al., 2016; Yamazaki et al., 2022; Lin et al., 2023). Serotonin originates
from neurons in the raphe nuclei, which project widely throughout the brain (Molliver, 1987).
Its actions are mediated by seven types of serotonin receptors (5-HTRs), comprising 14
receptor subtypes (Pytliak et al., 2011; McCorvy and Roth, 2015), thereby modulating both
neural cell function and network activity.
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A significant portion of serotonin’s influence on behavior
involves the hippocampus which receives dense serotonergic
innervation from the raphe nuclei (Molliver, 1987). As a critical
structure for spatial navigation, episodic memory, emotional
processing, affective responses, and social behavior (Bannerman
et al., 2014; Blair and Fanselow, 2014; Strange et al., 2014;
Okuyama et al., 2016; Eichenbaum, 2017; Shi et al., 2023), the
hippocampus integrates multiple neuromodulatory inputs to
support flexible cognition and behavior (Hasselmo and Giocomo,
2006; Sara, 2009). Notably, the potent effects of serotonin on
hippocampal physiology are primarily mediated through its
ability to regulate the excitation/inhibition (E/I) balance acting
on a diversity of hippocampal neurons via multiple receptor
(Bombardi et al., 2021; Kandilakis
Papatheodoropoulos, 2025). The regulation of E/I balance is a

subtypes and
fundamental mechanism for the generation and modulation of
behaviorally relevant network rhythms (Haider et al., 2006;
Vogels and Abbott, 2009; Isaacson and Scanziani, 2011), and the
serotonergic modulation of E/I balance dynamically shapes
network activities in the hippocampus (Kocsis et al., 2006;
Johnston et al., 2014; Gener et al., 2019), such as sharp waves -
ripples (SPWs).

SPWs is a fundamental hippocampal network pattern that
arises from synchronous activity in the CA3-CAl circuit,
depends on a finely tuned E/I balance (Giannopoulos and
Papatheodoropoulos, 2013; Simeone et al., 2013; Schlingloff
et al., 2014; Buzsaki, 2015; Hofer et al., 2015; Melonakos et al.,
2019; Trompoukis et al., 2020), and plays a fundamental role in
memory consolidation, goal-directed decision making, and
off-line information processing (Buzsdki, 2015; Joo and Frank,
2018; Pfeiffer, 2020; O'Callaghan et al., 2021; Tomar et al., 2021;
Kuga et al., 2023; Xie et al., 2023). Generated through coordinated
network activity, SPWs enable the replay and reorganization of
recent experiences, providing a substrate for long-term memory
formation and the integration of information from discrete brain
regions (Wilson and McNaughton, 1994; Buzséaki, 2015; Foster,
2017). Neuronal firing during SPWs is highly organized and
represents spatiotemporally structured reactivations of pyramidal
cells following previous experiences (Wilson and McNaughton,
1994; Buzsdki, 2015; Foster, 2017). Notably, SPWs appear altered
in various psychiatric and neurodevelopmental disorders
including schizophrenia (Gao et al., 2019; Nour et al., 2022;
Munn et al., 2023; Ohki et al., 2024), depression (Shiozaki et al.,
2023; Koketsu et al., 2024), anxiety (Caligkan and Stork, 2019;
Kuga et al., 2023), and autism spectrum disorders/fragile X
syndrome (Boone et al., 2018; Pollali et al., 2021; Leontiadis et al.,
2023), which are thought to result from disruption of the E/I
balance in brain network (Gao and Penzes, 2015; Nelson and
Valakh, 2015; Ferguson and Gao, 2018; Sohal and Rubenstein,
2019; Kirischuk, 2022).

Given that serotonin modulates both glutamatergic and
GABAergic transmission, which represent fundamental components
of E/I balance, often in a receptor- and region-specific manner
(Kandilakis and Papatheodoropoulos, 2025), it is well-positioned to
influence the generation and expression of SPWs. Evidence indicates
that serotonin signaling is indeed involved in the modulation of SPW's
(Ponomarenko et al., 2003; Wang et al., 2015; ul Haq et al., 2016; Jelitai
et al,, 2021; Cooper et al., 2025). For instance, many of the median
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raphe nucleus neurons are silent during SPW's and activation of these
neurons inhibits SPWs (Wang et al., 2015). Also, serotonin suppresses
SPWs induced by tetanic stimulation in dorsal hippocampal slices (ul
Haq et al, 2016), and blockade of 5-HT3 receptors enhance
hippocampal ripple oscillation (Ponomarenko et al., 2003). An inverse
correlation between the serotonin’s levels and ripples has been also
found recently (Cooper et al., 2025). Notably, all these studies were
conducted in dorsal hippocampus preparations. Yet, a recent study
shows that SSRIs selectively reduce SPWs in the ventral hippocampus
(Shiozaki et al., 2023), though these drug effects could be accounted
by mechanisms other than direct serotonergic modulation.

These observations have led to the idea that serotonin has an
inhibitory action on SPWs (Wang et al., 2015; ul Haq et al.,, 2016;
Jelitai et al., 2021; Shiozaki et al., 2023). However, the serotonergic
modulation of SPWs may be more complicated than it seems. For
instance, blockade of 5-HT1A receptors reduce the number of ripple
events in the hippocampus (Ponomarenko et al., 2003), suggesting
that the serotonergic modulation of SPWs may be bidirectional and
receptor-specific.

Interestingly, both serotonergic modulation and SPWs display
regional specialization along the dorsoventral (longitudinal) axis of
the hippocampus. Both the anatomical distribution and the
physiological actions of serotonergic fibers and receptors exhibit
marked differences between the dorsal and ventral hippocampus,
resulting in region-specific influences on neural excitability
(Kandilakis and Papatheodoropoulos, 2025). More specifically, the
serotonergic innervation to the ventral hippocampus is denser from
the dorsal hippocampus, originates from the dorsal raphe nucleus, and
exerts mainly volume transmission, while the serotonergic projection
to the dorsal hippocampus originates primarily from the median
raphe nucleus and exerts synapse-specific transmission (Molliver,
1987; Oleskevich and Descarries, 1990; Kandilakis and
Papatheodoropoulos, 2025). Furthermore, 5-HT1 and 5-HT2
receptors display different expression in dorsal and ventral
hippocampal layers (Mengod et al., 1990; Kinsey et al., 2001; Tanaka
etal,, 2012), and serotonin levels are higher in the ventral than in the
dorsal hippocampus (Hortnagl et al., 1991). This specialization is part
of a more general functional segregation that has been established
along the long axis of the hippocampus, with the dorsal hippocampus
more heavily involved in cognition and processing of spatial
information, and the ventral hippocampus more implicated in
emotional behavior and stress reactivity (Fanselow and Dong, 20105
Bannerman et al., 2014; Strange et al., 2014).

Regarding SPWs, recent studies have revealed regional
specializations in the properties of this network activity along the
dorsoventral axis of the hippocampus (Kouvaros and
Papatheodoropoulos, 2017; De Filippo and Schmitz, 2023). SPWs
generated in the dorsal hippocampus are more strongly associated
with cognitive functions such as spatial navigation and episodic
memory, whereas ventral SPWs may be more involved in emotional
processing and stress regulation (Sosa et al., 2019; Kuga et al., 2023).
For instance, dorsal and ventral SPWs preferentially activate distinct,
largely non-overlapping neuronal populations in the nucleus
accumbens. Notably, dorsal rather than ventral hippocampal SPW's
are linked to nucleus accumbens activation during processing of
spatial and reward-related information (Sosa et al., 2019).
Furthermore, ventral hippocampus SPWs support stress-associated
memory processing (Kuga et al., 2023). Also, in a model of Fragile X
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syndrome, SPWs and associated multiunit activity were impaired in
the dorsal but not ventral hippocampus (Leontiadis et al., 2023).

Despite emerging evidence of serotonergic modulation of SPWs,
the comparative effects of serotonin on SPWs in dorsal vs. ventral
hippocampus remain poorly understood. Given this distinct
anatomical and functional organization of the hippocampus along its
dorsoventral axis, it is particularly important to investigate
serotonergic modulation of SPWs in both the dorsal and ventral
hippocampus. Understanding whether and how 5-HT differentially
modulates SPWs in these regions could provide critical insights into
both normal hippocampal function and the pathophysiology of
neuropsychiatric disorders in which serotonergic and hippocampal
function are disrupted.

In the present study we examined the effects of serotonin on
dorsal and ventral hippocampal slices. We found that serotonin
exerted distinct, region-specific effects. In the dorsal hippocampus,
serotonin dose-dependently reduced SPWs. In contrast, in the ventral
hippocampus we mainly observed an increase in SPW frequency at
relatively low concentrations of serotonin, and primarily a reduction
in SPW amplitude at relatively high concentrations of serotonin. These
results may provide important implications for the functional
organization along the hippocampal longitudinal axis. For instance,
serotonergic modulation of dorsal SPWs may be related to normal
cognitive processes and cognitive impairments associated with
psychiatric disorders, while serotonergic modulation of SPWs in the
ventral hippocampus may underlie affective and anxiety-
related disturbances.

2 Materials and methods
2.1 Hippocampal slice preparation

Wistar rats 3-4 months old of both sexes were used in this study.
Rats were obtained from the Laboratory of Experimental Animals of
the Department of Medicine, University of Patras (licence no: EL-13-
BIOexp-04). Rats treatment and all experimental procedures were
performed in accordance with the European Communities Council
Directive Guidelines for the care and use of Laboratory animals
(2010/63/EU - European Commission), and the experimental
protocol has been approved by the Protocol Evaluation Committee of
the Department of Medicine of the University of Patras and the
Directorate of Veterinary Services of the Achaia Prefecture of Western
Greece Region (reg. Number: 187531/626, 26/06/2018). Rats were
maintained under standard conditions of temperature (20-22°C) and
light-dark cycle (12/12 h), and they were free access to food and water.
Transverse slices were prepared from the dorsal and ventral
hippocampus as previously described (Trompoukis and
Papatheodoropoulos, 2020). Briefly, rats were decapitated under deep
anesthesia with diethyl-ether. The brain was removed and placed in
chilled artificial cerebrospinal fluid (ACSF) at a temperature of 2-4°C,
equilibrated with 95% O, and 5% CO, gas mixture. The composition
of ACSF was (in mM): 124 NaCl, 4 KCl, 2 CaCl, 2 MgSO, 26
NaHCO;, 1.25 NaH,PO, and 10 glucose and a pH=7.4. The
hippocampi were removed and 550 pm thick slices were prepared
from the dorsal and ventral end of the hippocampus extending
between 0.5 mm and 4.0 mm from each end, using a MclIlwain tissue
chopper. Slices were immediately transferred to an interface type
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recording chamber where they were maintained for the rest of the
experiment continuously perfused with ACSF at a rate of ~1.5 mL/
min and humidified with 95% O, and 5% CO, gas mixture at a
temperature of 30.0 + 0.5°C. Slices were allowed to recover for about
1.5 h before recordings were started.

2.2 Electrophysiology and data analysis

Spontaneous field potentials were recorded from the stratum
pyramidale of the CAl hippocampal field, using carbon fiber
electrodes 7 pm-thick (Kation Scientific, Minneapolis, USA). Signal
was acquired and amplified X500 and then filtered at 0.5 Hz-2 kHz
using Neurolog systems (Digitimer Ltd., UK), consisting of AC
preamplifier (NL 104A with NL 100AK headstage), AC/DC
amplifier (NL 106) and band pass filter (NL 125/6). Analog signal
was digitized at 10 kHz using a CED 1401-plus interface and the
Spike software (Cambridge Electronic Design, Cambridge, UK),
then, stored on a computer disk for off-line analysis using the same
software. We used the agonist of 5-HT (Cayman Chemical
Company, USA) (1-100 pM). Activity consisted of sharp waves
ridden by multiunit activity (MUA) (Figure 1). Events of SPWs were
quantified by their amplitude measured as the voltage difference
between the positive peak and the baseline. (1) The duration of
single SPW events measured as the time interval between the two
points of the positive phase that intersect the baseline. (2) The inter-
event interval (IEI) measured as the time between successive
individual SPWs. Measures of SPWs were performed after original
records were down sampled (at 1 kHz) and low-pass filtered at
35 Hz. Then, individual events were detected after setting a
threshold at a level where all putative events were identified as
verified by visual inspection as previously described (Giannopoulos
and Papatheodoropoulos, 2013). Multiunit activity (MUA) was
revealed in band-pass filtered records (at 400-1.5 kHz) and was
detected by setting a threshold level at a value that all putative events
(i.e., negative spikes) were identified as verified by visual inspection,
as previously described (Kouvaros and Papatheodoropoulos, 2017).
MUA occurred between events of SPWs is called MUA-Base, and
during SPWs called MUA-SPW. We quantified both MUA-Base and
MUA-SPW by its frequency of occurrence (Hz). MUA-Base was
measured by the frequency of MUA at steady state between
consecutive events of SPWs. We measured MUA-SPW by the
maximum frequency of MUA in peri-event histograms between
SPWs and MUA, where we used the positive peaks of low-pass
filtered SPWss as reference events (Figure 1D).

The serotonin receptor agonist 3-(2-aminpethyl)-1H-indol-5-ol,
monohydrochloride (5-HT, Cayman #153-98-0, USA) was used in
this study. We used the Shapiro-Wilk test to assess the normality of
the value distributions for the various variables and Levene’s test to
examine the equality of population variances. Drug effects in each
hippocampal segment were statistically evaluated using ANOVA and
either a two-tailed paired ¢-test or the corresponding non-parametric
Wilcoxon signed-ranks test. The number of slices and rats (slices/rats)
used in each experimental condition are provided. Group data are
presented either as mean + S. E. M. (in the text) or as box plots
showing the median with the 25th and 75th quartiles, the mean, the
5th and 95th percentile, the outliers, and the normal distribution
curve (in the figures).
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Ventral

FIGURE 1

Method used to prepare dorsal and ventral hippocampal slices and record spontaneous activity. (A) Schematic illustration of the rat brain showing the
dorsal and ventral hippocampal regions. (B) Outline of a hippocampus indicating the dorsal and ventral segments used to prepare transverse slices.
(C) Photograph of a hippocampal slice with the recording electrode positioned in CAL. (D) Example trace of spontaneous activity.

3 Results

3.1 Comparison of SPWs and MUA in dorsal
and ventral hippocampus

We compared sharp wave events (SPWs) and multi-unit activity
(MUA) recorded from the dorsal and ventral hippocampus.

The ventral compared with the dorsal hippocampus generated
SPWs with significantly higher amplitude (93.5 + 8.3 uV, n = 64/25 vs.
47.6 £ 3.7 uV, n = 42/24; z = —4.56, p < 0.001), and shorter duration
(483 +2.2ms, n= 60/24 vs. 50.0 + 0.4 ms, n= 37/20; z=—2.83,
p =0.005) (Figure 2). In addition, SPWs occurred more frequently in
the ventral hippocampus (IEL: 468.8 + 26.3 ms, n = 64/25) compared
with the dorsal hippocampus (IEL: 820.0 £ 100.5 ms, n = 42/24)
(z=—4.02, p < 0.001) (Figure 2). These findings are consistent with
previous studies reporting higher-amplitude SPWs occurring at a
faster rate in the ventral compared with the dorsal hippocampus
(Kouvaros and Papatheodoropoulos, 2017; Trompoukis et al., 2020;
Trompoukis et al., 2021; Leontiadis et al., 2023).

Regarding MUA, we found a significantly higher frequency of
MUA-SPWs (MUA occurring during SPWs) in the ventral
hippocampus (213.45 + 16.84 Hz, n = 58/25) compared with the
dorsal hippocampus (70.9 + 10.6 Hz, n = 31/23) (t = =7.17, p < 0.001).
In addition, the frequency of MUA-Base (MUA occurring between
SPWs) was significantly higher in the ventral hippocampus
(38.1 £ 24.2 Hz, n = 59/25) compared with the dorsal hippocampus
(9.9 + 1.4 Hz, n = 42/23; 2= —2.92, p = 0.003).

It should also be noted that previous studies reporting greater
SPW amplitude in the dorsal compared with the ventral hippocampus
(Patel et al., 2013; Sosa et al., 2019) were performed in freely moving
rats during sleep and awake immobility, which makes a significant
difference compared with our isolated slice preparation. Transverse
slices lack both extrahippocampal inputs and the intrinsic longitudinal
connections that extend along the septotemporal axis of the
hippocampus (Swanson et al., 1978; Ishizuka et al., 1990), which are
preserved in vivo and are thought to contribute critically to the
modulation of SPWs across hippocampal segments (Sullivan et al.,
2011; Patel et al., 2013). Thus, SPWs recorded in slices most likely
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reflect the local dynamics of dorsal or ventral hippocampal circuits in
isolation, whereas in vivo recordings capture the integrated activity of
longitudinally connected networks. These methodological differences
may underlie the apparent discrepancy in dorsoventral SPWs
amplitude observed between in vivo and in vitro conditions.

3.2 Distinct effects of serotonin between
the dorsal and ventral hippocampus

We perfused dorsal and ventral hippocampal slices with various
concentrations of serotonin (1 pM, 10 pM, 25 pM, and 100 pM) and
observed its effects on SPWs and MUA. Examples of these actions are
shown in Figure 3 for the dorsal hippocampus and in Figure 4 for the
ventral hippocampus. In the dorsal hippocampus, serotonin produced
a significant reduction in SPW amplitude (average change
—14.38 £3.24%, z=—-4.158, p <0.001, n= 42/28) and rate of
occurrence (average change of IEI 94.76 + 26.0%, z = —4.49, p < 0.001,
n = 42/28), without significantly affecting the duration of individual
SPW events (average change —2.31 +2.91%, t=1.266, p = 0.213,
n =41/28) (Figure 5). Furthermore, these effects were accompanied
by a significant reduction in MUA-SPW frequency (average change
—22.1+9.42%, z=-3.175, p= 0.002, n= 29/28), but not in
MUA-Base (average change 25.1 £ 15.76%, z = —0.388, p = 0.698,
n = 30/28), suggesting that serotonin disrupts neuronal firing during
SPWs without significantly affecting background neuronal excitability.
The statistical results of serotonin’s effects in the dorsal hippocampus
at each concentration are presented separately in Figure 5.

Application of serotonin to ventral hippocampal slices revealed a
response pattern that partially differed from that observed in dorsal
slices (Figures 4, 5). Specifically, as in the dorsal hippocampus,
serotonin significantly reduced the amplitude of SPWs (average
change —14.43 £2.57%, z=—4.456, p <0.001, n= 62/23) and
MUA-SPW (average change —18.97 + 3.03%, z = —4.81, p < 0.001,
n = 53/21), without significantly affecting SPW duration (average
change 3.31 £ 2.75%, z = —0.02, p = 0.986, n = 60/23). Furthermore,
serotonin significantly affected the rate of SPW occurrence (z = —3.25,
p =0.001, n = 62/23), an effect that was mainly due to an enhancing
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Comparison of SPWs and MUA in dorsal and ventral hippocampus. (A) Ten-second recordings from a dorsal (upper trace) and a ventral (middle trace)
hippocampal slice illustrating SPW occurrence. The bottom trace shows the MUA associated with SPWs (MUA-SPW) in the ventral hippocampal slice,
as well as the MUA occurring between SPWs (MUA-Base), occasionally indicated by arrows. (B) A single SPW (original trace, upper) and the
corresponding MUA (MUA-SPW, lower) obtained by high-pass filtering of the original recording. (C) Box plots comparing the various variable between
the dorsal and ventral hippocampus. Asterisks indicate statistically significant interregional differences for SPW amplitude (z = —4.56, p < 0.001),
duration (z = =2.83, p = 0.005), IEl (z = —4.02, p < 0.001), MUA-SPW (t = —=7.17, p < 0.001), and MUA-Base (z = —2.92, p = 0.003).

effect produced at relatively low serotonin concentrations (1-10 pM,
average change —11.50 + 2.34%, z = —4.257, p < 0.001, n = 34/18).
This enhancing effect was accompanied by a significant increase in the
baseline excitation level (by 21.0 +7.3%, z=-2.39, p= 0.017,
n = 12/7; see Figure 5B). The statistical results of serotonin’s effects in
the ventral hippocampus at each concentration are presented
separately in Figure 5.

These findings suggest that serotonin consistently reduces activity
in the dorsal hippocampus, whereas it exerts a biphasic effect in the
ventral hippocampus. Relatively low serotonin levels accelerate SPW
occurrence and enhance baseline excitation in the ventral

hippocampus, whereas higher concentrations suppress activity.

4 Discussion

In this study, we examined the effects of serotonin on SPWs and
MUA in dorsal and ventral hippocampal slices. Based on the results
obtained, the following pattern of serotonin action across the two
hippocampal segments emerges: serotonin reduces SPW amplitude
in both segments, decreases the rate of occurrence only in the
dorsal hippocampus, and increases the rate of occurrence in the
ventral hippocampus, but only at relatively low concentrations. The
suppressive effect on SPW amplitude is accompanied by a reduction
in firing frequency during SPWs (MUA-SPW) in both regions, a
mechanism that may contribute to the observed amplitude
decrease, whereas the enhancing effect of low serotonin
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concentrations on SPW occurrence was associated with an
excitatory action on basal neuronal activity (MUA-Base). These
findings reveal a clear region-specific and dose-dependent
modulation of SPW dynamics, suggesting differential roles of
serotonergic modulation in dorsal and ventral hippocampal
networks. To our knowledge, this is the first direct comparison of
serotonergic modulation of SPWs in isolated dorsal and
ventral hippocampus.

Most prior studies on serotonergic regulation of SPWs have
focused on the dorsal hippocampus. The inhibitory effects
we observed dorsally are consistent with earlier in vitro and in vivo
reports showing serotonin-dependent suppression of SPW amplitude
and rate (ul Haq et al., 2016; Jelitai et al., 2021; Cooper et al., 2025).
More specifically, the reduction in the amplitude and rhythm of SPWs
by dorsal hippocampal serotonin that we found here is generally in
agreement with previous in vitro (ul Haq et al., 2016) and in vivo
studies (Cooper et al., 2025). The complete suppression previously
reported at 20 pM serotonin in dorsal slices (ul Haq et al., 2016) may
reflect methodological differences, as those SPWs were evoked by
tetanic stimulation, whereas our study examined spontaneously
generated events.

The enhancing effect of low serotonin in the ventral hippocampus
contrasts with in vivo data showing that selective serotonin reuptake
inhibitors (SSRIs) suppress ventral SPWs (Shiozaki et al., 2023).
Methodological differences likely account for this discrepancy. In the
intact hippocampus, dorsal and ventral segments are connected via
intrinsic longitudinal pathways (Swanson et al., 1978; Yang et al,,
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FIGURE 3

Examples of the effects of serotonin on SPWs and MUA in the dorsal hippocampus. (A—-D) Effects of 10 pM serotonin. Continuous recordings (A),
instantaneous histograms of SPW amplitude (B), inter-event interval (IEl, C), and peri-event histograms of MUA triggered by SPW peak positivity (D) are
shown. (E=H). Effects of 100 uM serotonin. Continuous recordings (E), instantaneous histograms of SPW amplitude (F), inter-event interval (IEl, G), and
peri-event histograms of MUA triggered by SPW peak positivity (H) are shown. Calibration bars in continuous recordings: 0.1 mV, 2s.
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2014), and SPWs are typically generated dorsally and propagate
ventrally (Sullivan et al., 2011; Patel et al., 2012). Thus, serotonergic
suppression in the dorsal hippocampus in vivo would be expected to
secondarily reduce ventral SPWs via polysynaptic longitudinal or
extrahippocampal circuits. In addition, SSRIs exhibit affinity also for
dopamine and noradrenaline transporters (Tatsumi et al., 1997) that
may further influence their effects on SPW activity.

Our data, demonstrating facilitation in the ventral region at low
5-HT, and suppression in both regions at high 5-HT, are also
compatible with those of a recent study that reveals an inverted-U
curve of serotonin which dynamically modulates SPW timing and
power, with intermediate 5-HT levels favoring ripple generation
during ultraslow (~0.01 Hz) endogenous serotonin oscillations
(Cooper et al., 2025). Therefore, the present findings provide further
information about possible distinct regional-related modulation of
SPWs, pointing toward a receptor subtype- and dose-dependent
profile of serotonergic modulation, as also suggested by regional
differences in interneuron and pyramidal cell sensitivity (Kandilakis
and Papatheodoropoulos, 2025). Accordingly, the contrasting effects
of serotonin on SPWs across the dorsal and ventral hippocampus
likely reflect differences in 5-HT receptor subtype expression between
the two hippocampal regions (Tanaka et al., 2012).

More specifically, inhibitory receptors such as 5-HT1A and
5-HT1B, which couple to G, proteins and activate GIRK potassium
channels causing hyperpolarization and reduced neuronal excitability
(Beck and Goldfarb, 1985; Schmitz et al., 1995; Kasamo et al., 2001);
see also review by (Kandilakis and Papatheodoropoulos, 2025), are
expressed in both the dorsal and ventral hippocampus (Berumen
et al., 2012; Tanaka et al., 2012) and may play a key role in these
suppressive effects. 5-HT1A receptors inhibit both pyramidal neurons
and interneurons in the two regions; however, in the ventral
hippocampus, 5-HT1A receptor activation can become functionally
excitatory due to disinhibition via GABAergic modulation (Mlinar
and Corradetti, 2018; Kandilakis and Papatheodoropoulos, 2025).

Conversely, the enhancement of activity observed at low
serotonin concentrations in the ventral hippocampus may result from
the activation of excitatory receptors such as 5-HT2A/2C, 5-HT4,
and 5-HT?7 (Alves et al., 2004; Tanaka et al., 2012; Zareifopoulos and
Papatheodoropoulos, 2016). The 5-HT2A/2C receptors facilitate the
release of both glutamate and GABA through Gg;-mediated
increases in Ca** conductance and decreases in K* conductance
(reviewed in Kandilakis and Papatheodoropoulos, 2025). Both
glutamate and GABA are fundamental components in the generation
of SPWs (Buzsaki, 2015). The 5-HT4 (Andrade and Chaput, 1991;
Torres et al., 1995; Chapin et al., 2002; Mlinar et al., 2006) and 5-HT7
receptors (Gill et al., 2002; Tokarski et al., 2003; Andreetta et al.,
2016) increase intracellular cAMP levels, leading to excitation of
pyramidal neurons and facilitation of neuronal firing. Therefore, the
enhancing effects may be attributed to differences in receptor
expression and/or the strength of downstream signaling pathways
rather than to receptor affinity per se. Interestingly, 5-HT2A/2C,
5-HT4, and 5-HT7 receptors are highly expressed in the CA3 region
of the ventral hippocampus (Andrade and Chaput, 1991;
Roychowdhury et al., 1994; Gill et al., 2002; Tokarski et al., 2003;
Ohmura et al., 2015). Given that SPWs are predominantly initiated
in CA3 and propagate to CA1 (Buzséki, 2015), activation of these
receptors in CA3 could contribute to the acceleration of activity
observed in the ventral hippocampus.
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SPWs are, by definition, synchronous population events generated
by the coordinated activity of neurons in the CA3-CAl circuit
(Buzsaki, 2015). The degree of synchrony and the amplitude of each
SPW vary from event to event, likely reflecting both the number of
participating neurons and their temporal coordination. Thus, while
the field SPW potential reflects the summed synaptic currents, the
MUA-SPW directly represents the intensity and temporal coincidence
of neuronal discharges contributing to that population event. Evidence
supporting the relationship between MUA and synchrony includes the
observation that MUA frequency peaks within a few milliseconds of
(Buzséki, 2015;
Papatheodoropoulos, 2017); present results), and that the number of

the SPW  maximum Kouvaros  and
action potentials during SPWs determines ripple amplitude and
population synchrony (Schlingloff et al., 2014). Therefore, MUA-SPW
provides a quantitative measure of how strongly neurons fire together
during each SPW. A reduction in MUA-SPW, as observed with
serotonin, thus indicates weaker synchrony and/or reduced neuronal
participation in each SPW. Therefore, quantifying MUA-SPW
complements field-potential analysis by providing a more direct
measure of neuronal coactivation during SPWs.

Finally, baseline network excitability differences may also
contribute to the observed serotonin effects. The ventral hippocampus
is intrinsically more excitable, exhibiting a lower inhibition compared
to the dorsal region (Papatheodoropoulos, 2018), thereby exhibiting
a different set point of E/I balance compared to the dorsal
hippocampus. This differential “background” of E/I balance likely
shapes the distinct responses to serotonin. Low concentrations of
5-HT may preferentially recruit excitatory networks ventrally, possibly
via 5-HT2A/2C or 5-HT4 receptor activation (Mlinar et al., 2006; Li
etal,, 2018), thereby facilitating SPW generation. Activation of ventral
5-HT3 receptors may enhance SPWs by modulating interneuron
activity that orchestrates hippocampal network rhythms. However, at
higher concentrations, serotonergic actions may shift the E/I balance
toward inhibition, reducing SPWs. In the dorsal hippocampus, where
the baseline inhibitory tone is higher and the network more tightly
regulated, serotonin consistently suppresses network activity,
potentially by enhancing GABAergic tone and suppressing pyramidal
cell output.

These results have significant implications for understanding the
functional role of serotonin in hippocampal physiology and its
potential contribution to neuropathology. Given the role of dorsal
hippocampus in spatial memory and cognitive functions, serotonergic
suppression of SPWs in this region could modulate memory
consolidation, navigation, and decision-making (Joo and Frank,
2018). For instance, strong suppression of SPWs by 5-HT is consistent
with a gating role for 5-HT in cognitive processing and limiting
memory consolidation when serotonergic tone is high. In contrast, the
ventral hippocampus, more involved in emotion and stress, may rely
on serotonin to modulate affective responses and stress-related
memory encoding (Ishikawa and Nakamura, 2006; Kuga et al., 2023).
The dose-dependent bidirectional modulation in the ventral region
may serve to fine-tune emotional processing, increasing encoding at
low levels of serotonin, for instance during mild arousal, and
suppressing overactivation at higher levels, for instance during
heightened stress.

The different effects of serotonin in dorsal and ventral regions
could also contribute to the regional susceptibility observed in
psychiatric conditions. Dysregulation of both serotonin signaling
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Examples of the effects of serotonin on SPWs and MUA in the ventral hippocampus. (A,B) Effects of 1 uM serotonin. Continuous recordings (A), and
peri-event histograms of MUA triggered by SPW peak positivity (B) are shown. (C—F) Effects of 10 pM serotonin. Continuous recordings (C),

instantaneous histograms of SPW amplitude (D), inter-event interval (IEl, E), and peri-event histograms of MUA triggered by SPW peak positivity (F).
(G-J) Effects of 100 pM serotonin. Continuous recordings (G), instantaneous histograms of SPW amplitude (H), inter-event interval (IEI, 1), and peri-
event histograms of MUA triggered by SPW peak positivity (J). Calibration bars in continuous recordings: 0.1 mV, 2 s.
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Summary data showing the effects of serotonin on SPW amplitude, IEl, MUA-SPW, and MUA-Base. Breaks in the Y-axis in some graphs are shown for
clarity. The results of the ANOVA are indicated at the top of the plots. Asterisks denote statistically significant drug effects (p < 0.05). The statistical
evaluation of serotonin’s effects at concentrations of 1 uM, 10 pM, 25 pM, and 100 uM is as follows: Dorsal hippocampus - Amplitude: z = —2.197,
p=0.028;t=-1492,p = 0.161; z = —0.944, p = 0.345; t = —=4.029, p = 0.002 - |El: z = 0.711, p = 0477; z = 3.040, p = 0.002; z = 2.023, p = 0.043;
t=2.367 p=0.037 - Duration: z = —0.580, p = 0.532; t = 0.184, p = 0.857; z = —0.730, p = 0.465; z = —0.786, p = 0432 — MUA-SPW: z = —0.280,
p=0779;z=-2903,p =0.004;z=-0.730, p = 0465; t = —=2.192, p = 0.071 - MUA-Base: t = 1.219, p = 0.248; z = —-0.804, p = 0422; z = —-1.753,
p =0.080; z=-0.392, p = 0.695. Ventral hippocampus: Amplitude: t = 0.515, p = 0.617; t = —2.484, p = 0.022; z = -2.999, p = 0.003; z = —3.059,

p =0.002 - IEl: t = =2.920, p = 0.014; z = —=3.393, p < 0.001; z = -0.672, p = 0.501; z = —0.392, p = 0.695; Duration: t = 1.871, p = 0.088; t = —1.142,
p=0.268t=0.232, p =0.819; t = 1.075, p = 0.305 - MUA-SPW: t = —0.751, p = 0470; t = —4.314, p < 0.001; z = —=2.103, p = 0.035; t = —=3.593,

p =0.006 - MUA-Base: t = 2.835, p = 0.016; t = 0.658, p = 0.518; z = —0.596, p = 0.551; t = 1.290, p = 0.229. Typically, the effects of serotonin were
reversible upon washout of the drug in the dorsal hippocampus: Amplitude: z = —1.376, p = 0.169; t = 0.076, p = 0.941; z = —0.674, p = 0.500;
t=1575p = 0146 - [El: z = -1.274, p = 0.203; z = —0.943, p = 0.345; z = -0.674, p = 0.500; t = —1.111, p = 0.293; Duration: t = 1.526, p = 0.161;
t=0.313, p = 0.760; z = —=0.730, p = 0465; t = 0.590, p = 0.568 — MUA-SPW: t = 0.147, p = 0.889; z = —1.255, p = 0.209; z = 0.000, p = 1.000;
t=-1895, p = 0.107 - MUA-Base: t = 1.833, p = 0.100; z = —0.804, p = 0422; z = —1461, p = 0.144; z = —1.334, p = 0.182. Ventral hippocampus:

z=-2017,p = 0.044; t = 0.794, p = 0.446 - Duration: z = —-1.824, p = 0.0
SPW: t = —1.977, p = 0.076; t = —0.644, p = 0.528; z = —1.013, p = 0.311; t
z=-1570,p = 0.116; t = 1.214, p = 0.259.

Amplitude: z = =0.178, p = 0.859; z = -0.035, p = 0.972; z = -0.672, p = 0.501; z = —=0.622, p = 0.534 - |El: t = 1.219, p = 0.251; z = —0.081, p = 0.935;

68;t=-0459,p = 0.652; t = 1.253, p = 0.229; t = 2.643, p = 0.025 - MUA-
= —1.368, p = 0.209 - MUA-Base: t = 0.673, p = 0.516; z = —0.926, p = 0.355;

(Bai et al., 2014; Miiller and Homberg, 2015; Muller et al., 2016;
Yamazaki et al., 2022; Lin et al., 2023; Yu et al., 2025) and hippocampal
SPWs (Gao et al., 2019; Jones et al., 2019; Munn et al., 2023; Ohki
etal,, 2024) has been implicated in schizophrenia, depression, autism
spectrum disorders, and Alzheimer’s disease. Disorders with dorsal
hippocampal dysfunction, such as memory impairment in
Alzheimer’s disease or schizophrenia, might, in part, reflect altered
serotonergic gating of SPWs and associated network replay. For
example, in schizophrenia, cognitive deficits are linked to dorsal
hippocampal serotonin dysregulation, while positive symptoms
(hallucinations, delusions), negative symptoms (apathy, avolition,
asociality), and affective comorbidities (anxiety, mood instability)
involve dysregulation of the ventral hippocampus serotonergic
system (Kandilakis and Papatheodoropoulos, 2025). Abnormal
serotonergic modulation of SPWs in these regions may contribute to
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symptom heterogeneity, such as impaired memory formation (via
dorsal suppression) or maladaptive emotional encoding (via altered
ventral SPWs). For instance, disruption of serotonergic modulation
in the dorsal hippocampus could disrupt the accuracy of SPWs,
leading to poor memory encoding and cognitive dysfunction,
contributing to cognitive impairment in Alzheimer’s disease or
schizophrenia (Adams et al., 2008; Chen et al., 2024). On the other
hand, dysregulated serotonin levels may lead to hyperexcitability of
the ventral hippocampus network, excessive SPWs, and aberrant
emotional significance processing, possibly contributing to positive
symptoms such as hallucinations and delusions in schizophrenia, and
emotional dysregulation in depression (McHugo et al, 2019;
Hernandes et al., 2021). Accordingly, symptom- and region-specific
interventions targeting 5-HT signaling may maximize therapeutic
efficacy and minimize side effects.
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In summary, these results reveal that serotonin exerts distinct
modulation of hippocampal SPW events in the dorsal and ventral
hippocampus. These findings highlight the complex, region-specific
serotonergic modulation of hippocampal network patterns and
suggest a mechanistic basis for the differential roles of serotonin in
cognitive and affective functions linked to the dorsal and ventral
hippocampus, respectively. Further, these serotonergic actions in the
intrinsic hippocampal pattern point to the possible distinct
dorsoventral roles of serotonin dysregulation in neuropsychiatric
disorders. Further work clarifying receptor-specific contributions and
network interactions will help to better understand how serotonergic
modulation of SPWs shapes memory and emotion in health
and disease.
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