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The AquaCrop model was calibrated and validated for durum wheat in the arid
region of Biskra, Algeria. using field data from the CAZDA COSIDER farm during
the 2022/2023 growing season. The wheat field was irrigated using a center
pivot system with saline water at 4.45 dS m~. Validation was performed with
independent yield data from the Technical Institute for the Development of Saharan
Agronomy (TIDSA) in Biskra region; to take into consideration the differences in
weather conditions, soil, salinity levels and irrigation management. The calibration
process involved adjusting only the non-conservative crop parameters. The model
accurately simulated canopy cover (RMSE = 3.7%, NRMSE = 55%, EF = 0.99,
R = 1) and above-ground biomass (RMSE = 1.1t ha™, NRMSE = 9.6%, EF = 0.78,
R = 0.95), with a slight underestimation of 0.25 t ha™t in the final above-ground
biomass. The model captured the temporal trends in soil water content, but
with low quantitative accuracy (RMSE = 40.2 mm, NRMSE = 14.9%, EF = —0.42,
R = 0.94). Validation confirmed very good predictive performance for grain yield
(R =0.92, RMSE = 0.2t ha™, NRMSE = 2.76%, EF = 0.9, d = 0.98). Overall, the
results demonstrate that, with rigorous calibration using field measured data,
the AquaCrop model can accurately predict durum wheat grain yield and final
above-ground biomass under the arid and saline conditions of the studied area. In
contrast, the use of default parameters resulted in poor yield prediction performance,
underscoring the critical need for site-specific calibration. The locally calibrated
AquaCrop model can effectively support water managers and decision-makers
in optimizing irrigation scheduling and enhancing durum wheat yields under
the challenging saline and arid conditions characteristic of the Biskra region.
Serving as a robust decision support tool, the model enables the implementation
of improved agricultural practices that ultimately benefit farmers and promote
sustainable agriculture in the area.
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1 Introduction

The increasing problem of water scarcity (WS) has limited not
only the amount of water available for current agriculture, but also
the expansion of irrigated land in many regions worldwide (FAO,
2011). As the most countries in semi-arid and arid regions, Algeria
is experiencing a growing water crisis, particularly in the south,
where there is a dry desert climate and scarcity of surface water
(Kendouci et al., 2023). However, agricultural production in these
areas is heavily dependent on irrigation, with significant quantities of
groundwater used every year (Fadl et al., 2024b). Furthermore, the
water available is often saline, and crops are often exposed to both
water stress and salinity (Fadl et al., 2024a). These factors not only
destabilize yields but also complicate sustainable water management.
For these reasons, Algeria faces a major challenge to produce more
food with less water due to the increasing demand for irrigation water
and other sectors that use water. Ensuring global food security by
increasing food production with less water is the main challenge for
the coming decades (Toumi et al., 2016). One key strategy to address
this challenge is to enhance water management and improve water
productivity (Molden and Sakthivadivel, 1999). Crop simulation
models, such as AquaCrop, have emerged as essential tools for
understanding crop-water relationships, optimizing irrigation
practices, and predicting crop yields under varying environmental
conditions. The Water-driven AquaCrop model developed by the
Food and Agriculture Organization (FAO) in 2009 (Raes et al., 2009;
Steduto et al., 2009a), requires minimal input data compared to other
models. The model is a valuable tool for enhancing crop water
productivity in both rainfed and irrigated production systems, suited
to regions where WS significantly impacts crop production (Raes,
2023). According to Steduto et al. (2009a) AquaCrop has achieved a
commendable balance, among simplicity, accuracy, robustness, and
ease of use. The model has been used for many purposes in different
studies at the plot scale (Andarzian et al,, 2011; Kumar et al., 2014;
Rai et al., 2025), farm scale (Garcia-Vila and Fereres, 2012; Rai et al.,
2025; Wellens et al., 2013), and regional scale (Alvar-Beltran et al,
2021; Han et al.,, 2020). AquaCrop supports decision-making at
various levels, particularly in improving irrigation water management
for crops (Garcia-Vila et al., 2019). It is necessary to calibrate and
assess all models before to their application to ensure their reliability
and accuracy (Bannayan et al., 2003, 2007). In 2021, wheat is the
third most important cereal crop globally, following maize and rice
(FAOSTAT, 2023). The Algerian government considers cereal crops,
particularly wheat and barley, as strategic sectors due to their
significant role in the household consumption pattern (Benmehaia,
2023), and durum wheat (Triticum durum Desf.) is a vital crop in
Algeria, contributing significantly to food security and agricultural
economies. In southern Algeria, particularly in the Biskra region,
durum wheat production faces significant challenges despite its
national importance. Agriculture in these areas routinely contends
with an arid climate, saline soils, and a growing reliance on irrigation
with saline groundwater, compounded by inefficient water
management practices. These conditions pose significant difficulties
for durum wheat cultivation and threaten the sustainability of its
production (Fadl et al., 2024a). Accurate simulation of crop growth
and yield under these conditions is critical for developing sustainable
agricultural practices and improving resource use efficiency. In recent
years, the use of crop models has become widespread worldwide. In
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this regard, there are multiple crop models used predominantly by
scientists to simulate wheat production in different environments and
under various management practices (Iqbal et al., 2014; Kumar et al.,
2014; Mkhabela and Bullock, 2012; Zeleke and Nendel, 2016; Zheng
et al,, 2025). The model has demonstrated effectiveness in analyzing
wheat yield response to saline conditions, as evidenced by studies of
Goosheh et al. (2018), Kumar et al. (2014), and Rai et al. (2019).
Furthermore, Mohammadi et al. (2016) applied different levels of
irrigation water and salinity treatments in an arid region, and
demonstrated the strong performance of AquaCrop in predicting
wheat grain yield, soil water content, biomass, and water productivity.
AquaCrop has also been applied to develop and optimize irrigation
schedules across various salinity and irrigation regimes (Rinaldi et al,,
2011). There are a limited articles published about AquaCrop in
Algeria (Belkhiri et al., 2019; Guendouz et al., 2014, 2017), these
studies have not specifically addressed durum wheat under any saline
or arid conditions in different irrigated systems. In the current study,
the performance of the AquaCrop model was evaluated for durum
wheat under the specific arid and saline conditions of Biskra. The
calibration process was carried out using experimental data from
CAZDA COSIDER farm. While validation was performed with data
from the Technical Institute for the Development of Saharan
Agronomy (TIDSA). The objectives were to (1) test the model’s
predictive capacity using both default and locally calibrated
parameters; (2) assess model accuracy in simulating key parameters
such as canopy cover development, soil water content, above-ground
biomass, grain yield and final above-ground biomass.

2 Materials and methods
2.1 The study area and experimental field

To calibrate the AquaCrop model, a field experiment was
conducted during the 2022/2023 cropping season at the farm of
CAZDA COSIDER company (Figure 1a), located in Dris Amor farm
(34°58’10.74”N, 5°37°48.81"E, at an elevation of 222 m above mean
sea level), south of El'Outaya municipality in Biskra province, in the
southeast of Algeria (Figure 1b), this region is considered one of the
largest agricultural hubs in the country. To validate the model, data
from experiments conducted by engineers of the Technical Institute
for the Development of Saharan Agronomy (TIDSA) during 2020-
2021, 2021-2022 and 2022-2023 cropping seasons, were used
(Figure 1c). The main objective was to evaluate the adaptation rate
of different wheat varieties in the arid zones, TIDSA Engineers
collected detailed data on crop, soil proprieties, irrigation
management and yield, the experiments were carried out at the Ain
Ben Naoui demonstration and seed production farm in Biskra
(34°48’00.11”N, 5°39’00.10”E at an elevation of 121 m above sea
level (asl)), as show in Figure 2. Climate data for the period 1989-
2018, obtained from the National Meteorological Office (NMO),
Algeria, indicate that the study area has a Saharan climate;
characterized by a dry period extending throughout the entire year.
The coldest period (T,,;,) was recorded in January, with an average
temperature of 12.5° C and The highest temperature (T;,,,) was
reached in July 38.72 °C, with a total annual precipitation of
116.23 mm, and the mean monthly relative humidity was 40.4%
(NMO, 2022).
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FIGURE 1
Location map (https://earthexplorer.usgs.gov/) of the study area and experimental field (a), Calibration (b), and Validation (c) process of AquaCrop for

durum wheat.
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FIGURE 2
Quiarter section of the center pivot showing the experimental design.
2.2 Field experiments used for model calibration was included in a quarter section of the

center pivot, which covered 10 ha out of the total of 40 ha due to its

In the current study, a pivotal irrigation system of ANABIB type  large surface area, to ensure the validity of the results, it was crucial to
was used to provide irrigation water during the growing period, this  consider the spatial heterogeneity of the soil, crop yield, canopy cover,
system consisted of seven span towers, with a total length of 356  and water distribution. Consequently, 21 experimental plots were
meters, irrigating a total area of 40 hectares. The experimental field  arranged along the pivoting ramp, with 3 plots in each span, each plot
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size was 5.0m x 10.0 m (50 m?) as illustrated in Figure 2, this
experimental design was specifically implemented to minimize the
impact of variability in water distribution on the accuracy of field
measurements. All essential model input parameters and observed
data necessary for the simulation were measured and calculated for
each plot individually, the averaged values across these plots were then
used. Unlike the traditional irrigation methods commonly practiced
in the region, the center pivot system used in this study incorporates
enhanced large-scale coverage. Although not yet widely adopted, this
approach was selected to evaluate the model’s performance under
optimized irrigation conditions, and to explore its potential
applicability in modernizing irrigation practices in the area.

2.3 Crop management

In this study, all cultivation practices followed the approved
agricultural protocol of the farm, which is designed to optimize wheat
productivity and water use efficiency. Stubble cultivation was initiated
on 11 August 2022; seedbed preparation involved deep plowing on 25
September 2022, followed by a second plowing on 29 October 2022.
Wheat sowing took place on 22 November 2022 using a seeder at a
rate of 160 kg ha™', and harvesting occurred on 20 May 2023. All
cultivation operations were conducted in accordance with the farm’s
protocol and under the supervision of its agricultural engineers. The
protocol includes the following steps: stubble cultivation was initiated
on 11 August 2022; the seedbed was prepared by deep plowing on 25
September 2022, followed by a second plowing on 29 October 2022.
The wheat was sown on 22 November 2022 using a seeder at a rate of
160 kg ha™". Fertilization was applied as follows: 300 kg ha™' of Mono-
Ammonium Phosphate (MAP) before sowing; 100 kg ha™" of urea
(46% N) broadcasted at 60 days after sowing (DAS); followed by a
second fertigation application of 50 kg ha™' at 120 DAS. Additionally,
2 liters per hectare of liquid potassium were applied via fertigation at
155 DAS. Weed and disease management included herbicide
application at the beginning of February 2023, and preventive
fungicide (Amistar Xtra) application at the end of February 2023 at a
dose of 1 L ha™". For the validation site, each plot was planted at a
density of 300 seeds per m? this site was carefully selected after
confirming that the crop did not experience water stress or nutrient

10.3389/fsufs.2025.1709629

deficiency during the growing season. The seeding density was defined
according to the local agricultural practices at each site. This site-
specific approach ensures that the model is tested and validated under
realistic and diverse planting conditions, enhancing both robustness
and practical applicability.

2.4 Data collection

2.4.1 Soil data

At the calibration site, soil samples were collected from nine
randomly selected locations within the experimental field to a
maximum depth of 1.0 m. Sampling was conducted at fixed depth
intervals of 20 cm before the beginning of the cropping season.
Physical and chemical parameters such as texture, soil water content,
electrical conductivity (EC) and bulk density were determined in the
laboratory. Soil texture at different depths was classified using the soil
textural triangle. Additionally, the hydraulic properties of the soils
(wilting point, water content at saturation, saturation hydraulic
conductivity) were estimated for both the calibration and validation
sites using the soil hydraulic properties calculator based on
predetermined soil particle size distribution (Saxton and Rawls, 2006).
A curve number of 61 was employed as the default value for effective
field management. The initial soil water content was assumed to be at
the wilting point due to the arid conditions and absence of
precipitation prior to sowing. The simulation period began in August
to accurately represent field conditions at the start of the growing
season. Table 1 summarizes the soil characteristics for both the
calibration and validation locations used in this study.

The soil water contents (SWC in % vol.) were measured 5 times
during the cropping seasons by the gravimetric method, on 20
December, 17 January, 15 March, 20 March and 11 April. at soil depths
20, 40, 60, 80 and 100 cm, then, soil samples were dried in an oven for
24 hat 105 °C. SWC was calculated by multiplying the gravimetric soil
water content by the soil’s bulk density.

2.4.2 Crop data

Oued El-Bared is a durum wheat variety used in this study, that
was monitored weekly to collect both model input parameters and
observed field data; such as sowing date, the appearance of

TABLE 1 Soil dataset used for calibration and validation of AquaCrop for the durum wheat crop.

. Particle size distribution Moisture content Soil
Nelll ° Bulk A Ksat "
. (V4] Textural ) (vol. %) salinity
Location depth class density (mm (ECs, dS
a -3 =il ,
(cm) Sand Silt Clay (gem™)  wp FC  Sat day?) m-Y)
Calibration
0-20 2 82 15 1.38 10.6 30 48 576.9 3.87
20-40 19 67 15 1.41 10.6 28.7 46.8 453.8 2,01
CAZDA Silt loam
40-60 11 74 15 1.39 10.6 30 474 504.7 1.40
COSIDER farm
60-80 11 74 15 1.39 10.6 30 47.4 504.7 1.40
80-100 8 82 10 Silt 1.45 10 30 454 824.7 1.01
Validation
Sandy clay 2.16-3.88-
TIDSA 0-30 59.7 12.48 27.78 1.4 16.2 25.7 473 76.8
loam 3.11%

FC, field capacity; WP, wilting point; Sat, water content at saturation; K, saturation hydraulic conductivity; *ECs for 3 years of validation, respectively.
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phenological stages; including days to reach the germination,
maximum canopy cover, flowering, canopy senescence, and crop
maturity, were observed and recorded throughout the growing
season. The green canopy cover development was monitored every
week; a measurement point was identified for each plot, and
photographs were taken at noon above the plant cover with a digital
camera. The images were analyzed using the Green Crop Tracker
(Version 1.0) software, developed by Agriculture and Agri-Food
Canada (Liu and Pattey, 2010) to determine the crop canopy cover
rate (CC in %). Plant density was estimated by counting the number
of plants within a 1 m* quadrat placed in each plot. The wheat was
sampled 5 times from crop establishment to harvest on 15 March, 23
March, 12 April, 25 April and 14 May. For each sample; micro-plots
of ¥ m” were selected in each plot, and the aboveground biomass was
determined by drying the samples in an oven (at 70 °C) until a
constant weight was obtained, to evaluate the temporal evolution of
the wheat biomass. Finally, representative samples of 1 m* from the
middle of each plot was harvested and dried in a safe location to
determine the final grain yield and above-ground biomass (B in ton
ha™"). The harvest index (HI) was defined as the percentage ratio of
wheat grain yield to final above-ground biomass. At the TIDSA
validation site, field experiments were carried out over three
consecutive cropping seasons: 2020/2021, 2021/2022, and 2022/2023,
using the same durum wheat variety. The sowing dates were
November 23, 2020, November 28, 2021, and November 23, 2022,
respectively, while crop maturity was reached on May 4, 2021, May
11,2022, and May 4, 2023.

2.4.3 Meteorological data

The meteorological data used in this study to calibrate and validate
the model were collected from the Biskra meteorological station, the
dataset included daily precipitation, relative humidity, temperatures
(maximum and minimum), solar radiation, and wind speed. The
annual mean CO, concentration data from the Mauna Loa
Observatory in Hawaii, included as a default file in AquaCrop, was
used in the model. To calculate the daily reference evapotranspiration
(ETo) values; ETo calculator (version 3.2, September 2012) for Land
and Water Division in FAO organization was used, based on Penman-
Monteith method (Allen et al., 1998). Figure 3 presents the daily
meteorological data, including maximum and minimum air
temperatures, reference evapotranspiration (ETo), precipitation, wind
speed, and relative humidity, from 1 August 2020 to 31 May 2023,
used for model calibration and validation. The region exhibited
significant seasonal temperature variations. Maximum temperatures
(Tmax) often exceed 40 °C during the summer months (June to August),
with peaks reaching up to 48.7 °C. In contrast, the winter months
(December to February) experienced cooler temperatures, with
minimum temperatures (T,,,) occasionally dropping below 10 °C
(Figure 3a). The average daily maximum and minimum temperature
during the wheat growing seasons were 19.2 £ 7.1 and 10.3 + 6.8 °C,
respectively. Precipitation was sparse and highly variable, with most
precipitation concentrated between late autumn to late spring
(Figure 3c). Total precipitation during the wheat growing seasons
exhibited substantial interannual variability across the study period:
30.99 mm in 2020-2021, 45.72 mm in 2021-2022, and 54.10-
58.42 mm in 2022-2023 and ET, during the seasons analyzed in this
study was 728, 579.7, 622.6, 771 mm, respectively. The Lowest ET,
consistently occurred in winter months (December-January), while
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the highest ET, was observed in spring (March-May), as represent in

Figure 3c.

2.5 Irrigation practices

Irrigation was conducted using 3 wells in CAZDA COSIDER
farm. Water is pumped into a geomembrane basin with a capacity of
30,000 m’ according to the water consumption of the wheat. The
irrigation applied in this study followed the irrigation practices
implemented by the farm engineers at CAZDA COSIDER throughout
the growing season. A total of 25 irrigations were applied during the
season, the volume of water for each irrigation event was measured
accurately using a water meter. Using the start dates of the pivoting
ramp rotation and the rotation angles, the irrigation events in the
experimental plots were identified. The irrigation volumes varied
widely (from 10 to 120 mm per event) according to the growth stage
of the crop and prevailing climatic conditions, with larger amounts
during early establishment and reduced volumes during later growth
stages. Each irrigation event was entered into the AquaCrop model
with its specific date and applied amount, to ensure accurate field
management and simulate soil water dynamics. Electrical conductivity
(EC,,) and pH of the irrigation water were measured in situ using a
multi-parameter manual instrument HI98129 and HI98130
waterproof pH, EC/TDS and Temperature tester, water electrical
conductivity (EC,,) was 4.46 dS m™" and a pH of 7.95. For model
validation at the TIDSA site, irrigation was supplied by drip systems
over three seasons; in 2020/2021, 52 irrigation events were applied
(ECyy: 6.05 dS m™, pH: 7.73); in 2021/2022, 38 events were applied
(ECyy: 4.52 dS m™", pH: 7.53); and in 2022/2023, 42 irrigation events
were applied (ECy,: 6.18 dS m™', pH: 7.87). All irrigation data collected
throughout three growing seasons directly entered into the model, a
description of the irrigation water used to calibrate and validate the
AquaCrop model is provided in the Table 2. The differences in the
number and frequency of irrigation events between the calibration
and validation sites are attributed to key factors including the
irrigation systems and soil characteristics. The calibration site
employed center pivot irrigation, which covered a larger area and
required longer durations to complete each event, resulting in fewer
but larger irrigation applications. In contrast, the validation site
employed drip irrigation, which delivered smaller amounts of water
more frequently. The site’s soil texture exhibits intermediate water-
holding capacity and permeability, which, when combined with
elevated evapotranspiration rates, requires more frequent irrigation to
sustain optimal soil moisture levels for crop growth. These site-specific
irrigation practices were incorporated into the simulation model to
ensure accurate representation of soil water dynamics and
crop response.

2.6 AquaCrop model description

The AquaCrop simulation model developed to predict the yield
of herbaceous crops response to water (Steduto et al., 2012). The
model’s detailed descriptions are presented by Hsiao et al., 2009,
Raes et al. (2009), Steduto et al. (2009a), and Raes et al. (2018). In
various studies, the model has been employed to simulate the growth
responses of various crops to irrigation water and environmental
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N

conditions in several regions; wheat ( ;

), maize ( ; )
sugarbeet ( ), grain sorghum (

). AquaCrop is designed to be widely applicable across different
climates and soil conditions, minimizing the need for extensive local
calibration. To achieve this, the model constructed with two main
groups of parameters: conservative parameters ( ;

), which remain constant across different crop

cultivar, location and time ( ). The second group

Frontiers in

non-conservative parameters, obtained through field measurements,
as detailed in , 4. In the calibration and validation phases, it
is necessary to compare the simulated results with the field
measurements. During the calibration of the model; the values of the
non-conservative crop parameters were employed to minimize the
differences between the predicted and observed results (

). The model simulates crop growth on a daily time step
and requires a reduced set of input parameters for its operation,
including weather data, crop characteristics, soil properties, and

management practices (such as irrigation and field operations)


https://doi.org/10.3389/fsufs.2025.1709629
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org

Sekhri et al.

TABLE 2 lIrrigation depths (mm) for calibration and validation locations.

Depth of irrigation (mm)

Calibration Validation
2020- 2021- 2022-

2022-2023 5071 2022 2023
November 122 31 15 31
December 183 88 63 89
January 70 92 42 77
February 123 86 53 121
March 76 227 208 195
April 63 194 227 94
May 28 - 60 -
Total 665 717 668 608

specific to the site. In this study, AquaCrop (version 7.1, graphical
user interface [GUI] edition, FAO, Rome, Italy) was used for
simulation. AquaCrop simulates crop yield in response to water
availability through five interconnected phases that integrate soil,
crop, and atmospheric conditions. The process begins by modeling
the development of the crop canopy cover (CC, %), which is
calculated from the maximum canopy cover (CC,, %) and a canopy
expansion rate coefficient (K.) over time (Equation 1). Next, crop
transpiration (Tr, mm) is estimated as a function of an adjusted
canopy cover (CC*, %), a maximum crop transpiration coeflicient
(Kcry, x)» and the potential crop evapotranspiration (ET,, mm) and
water stress (Equation 2). Biomass production (B, t/ha) is then
calculated by multiplying a water productivity factor (WP, g/m?) by
the cumulative transpiration (ZT,, mm) over the growing season
(Equation 3). The final crop yield (Y, t/ha) is derived from the
produced biomass and a harvest index (HI) (Equation 4). Finally, the
overall water productivity (WP, kg/m?) is computed as the ratio of
yield to the total evapotranspiration water loss (ET, mm) as represent
in Equation 5 (Igbal et al., 2014; Raes et al., 2009; Steduto et al.,
2009b; Wang et al., 2022; Zhai et al., 2022):

CC=CCx(1—e_K‘(t_m)) 1)
T, = (cc* xKcr ,x)ETo @)
B=WPxXT, (3)
Y =HIxB 4)
WPgr =% (5)
2.7 Sensitivity analysis

Sensitivity analysis (SA) is a useful tool for identifying the
parameters that exert the most significant influence on model outputs
(Cao and Petzold, 2006). Thereby guiding the calibration of the model
and enhancing the accuracy of simulations. The SA identifies the
parameters that most strongly influence model outputs, highlighting
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those that require the most precise field measurements and careful
calibration (Mohammadi et al., 2016). To assess the robustness of the
AquaCrop model for durum wheat and to determine the quality
requirements of its input data, a sensitivity analysis was conducted
prior to model calibration by varying key crop, soil, and climatic
parameters. An input variation range of + 20% was applied to each
parameter during the sensitivity analysis. The analysis focused on a
selected set of crop, soil, and irrigation management parameters
(Table 5), with simulations performed with the corresponding data of
the calibration field conditions. Simulated wheat grain yield was used
as the primary output for evaluating sensitivity. This approach
provided a systematic assessment of how variations in input
parameters affect model performance and identified the most critical
parameters requiring careful consideration for reliable model
application. After changing the input parameters, the model outputs
were evaluated against the baseline outputs by calculating the
sensitivity coefficient (S,), as defined by Geerts et al. (2009), as
represent in Equation 6.

B -5

Sc= x100 (6)

where; P, is the model output after changing the input value and
P, is the output before the change. Sensitivity classes were defined as
high, moderate, or low when the model response to input changes was
greater than 15%, between 15 and 2%, or less than 2%, respectively
(Geerts et al., 2009).

2.8 Calibration and validation procedures

In this study, AquaCrop was calibrated and validated, for durum
wheat, using field data from agricultural sites affected by salinity.
Validation under real field conditions provides practical insights into
model performance and supports its adoption in actual agricultural
production, complementing results obtained from controlled
experiments. The AquaCrop model was parameterized for the
experimental field within a central pivot irrigation system, and the
calibration process was performed by running the model with the
specific input data on weather conditions, soil characteristics, field
managements practice, and crop parameters. It was selected because
it provided a comprehensive and well-documented dataset, including
regular measurements of CC, above-ground biomass, SWC, and final
grain yield. Regarding model validation, data from a different site
(TIDSA) were used; the validation process involved comparing the
simulated and observed values of final gains yield only, using a
combined dataset, which included: (1) Experimental data from the
CAZDA COSIDER farm during the 2022-2023 cropping season. (2)
Data from experiments conducted by TIDSA engineers during 2020-
2021, 2021-2022 and 2022-2023 cropping seasons. It should be noted
that the validation was restricted to grain yield due to the unavailability
of measured data on SWC and CC at the validation site; however,
grain yield is a key indicator of overall crop performance and provides
meaningful insights into the model’s predictive capability under the
studied conditions. Future studies should aim to include additional
datasets to allow a more comprehensive validation of model outputs.
The methodological steps followed in this study are summarized in
Figure 4.
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TABLE 3 The conservative input parameters used in the study to calibrate AquaCrop, and values used in previous studies for wheat crop.

: In this
Parameters Unit Default
study

AquaCrop version - 4.0 6.1 - 4.0 - - 4.0
Zone - Italy Algeria China India Iran China Morocco
Climate - - Arid Semi-humid Semi-arid arid - Semi-arid
Base temperature,

c° 0 0 0 1.4 0 0 0
Tbase
Upper temperature,

c° 26 26 26 40.8 26 35 26
Tupper
Canopy cover per
seeding at 90% cm, 1.5 1.5 1.5 - 1.5 - 1.5
emergence (CCo)
Normalized water

gm™ 15 15 15 15-20 15 16 15

productivity, WP*#
Crop transpiration

% 1.1 1.1 1.1 11-12.9 1.1 1.1 1.1
coeflicient (K.p,)
Decline in crop
coefficient after % 0.15 0.15 - - 1.15 - 0.15
reaching CC,
Effect of canopy
cover in reducing

% 50 50 - - - - -
soil evaporation in
late season stage.
Canopy expansion
Popper - 0.20 0.20 0.20 0.15-0.30 0.2 0.25 0.2
Pioyer - 0.65 0.65 0.65 0.46-0.73 0.65 0.6 0.65
Shape factor - 5 5 - 1.4-45 5 - 5
Early canopy senescence
Popper - 0.7 0.7 0.7 0.63-0.81 0.7 0.65 0.7
Shape factor - 2.5 2.5 - 2.0-4.5 2.5 3 -
Stomatal closure
Popper - 0.65 0.65 0.65 0.62-0.79 0.65 - 0.65
Shape factor - 2.5 2.5 - 4.4-25 2.5 - 2.5
EC threshold
Ppper dSm., 20 20 18 18 - - -
Piower dSm_, 6 6 5 5 . - _

*Described in the AquaCrop manual as ‘generally conservative, though potentially cultivar-specific.

The conservative parameters in AquaCrop should initially
be retained at their default values and may be adjusted when
strong supporting data is available if there is a clear need, because
these values were determined using modern high-yielding
cultivars grown under ideal water and soil conditions, adjusting
these parameters may be justified when applying the model to
lower-yielding or rustic crop cultivars (Steduto et al., 2012).
Boulange et al. (2025) demonstrated that in the published
literature, there is a widespread tendency to calibrate both
conservative and non-conservative parameters of the AquaCrop
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model for cotton crop, even in studies conducted under similar
environmental and climatic conditions, this practice results in
significant variation of calibrated parameter values, which raises
concerns about over-calibration and diminishes the model’s
transferability across different sites or conditions. The AquaCrop
handbook emphasizes that the model relies on a group of
conservative parameters, described as “generally applicable and
not requiring local calibration” or “parameters that should
remain largely unchanged across different growing conditions
and water management regimes (Raes, 2023; Raes et al., 2023).
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TABLE 4 Non-conservative crop parameters used for calibration of the
model.

Unit or

Parameters . Value Determination
meaning
Plant density Plant ha™! 2,750,952 M
Initial cano
Py 4.13 E
cover (CCo)
%
Maximum cano
Py 95
cover
Time from sowing
15 (240)
to emergence
Time from sowing
to maximum 122 (1825)
canopy
Time from sowing
145 (2277)
to senescence
M
Time from sowing
Day (GDD) 179 (3037)
to maturity
Time from sowing
139 (2152)
to flowering
Duration of
6 (125)
flowering
Time from sowing
to maximum 127 (1927)
rooting depth
Canopy growth
% day™' (GDD) = 5.3 (0.357)
coefficient, CGC
E
Canopy decline
% GDD™! 0.321
coefficient, CDC
Reference harvest
% 38 M
index (HIo)*
Length building up
Day (GDD) 40 (885) E
of HI
Maximum effective
0.8 C
rooting depth
m
Minimum effective
0.3 D
rooting depth

C, calibrated; D, default (as provided in “Wheat. CRO” file); E, estimated; M, measured;
*Described in the AquaCrop manual as generally conservative, though potentially cultivar-
specific.

They are also generally considered invariant across cultivars
unless demonstrated otherwise; examples include the stress
thresholds and the normalized water productivity (WP¥*)
(Raes, 2023).

Previous calibration and validation efforts in AquaCrop
produced favorable results for wheat crop, the cases cited in
Table 3
parameters at their default values, will others show variability in

illustrate that some studies maintain conservative

the adjustments of these parameters such as WP¥*, base
temperature, and stress thresholds. In the current study,
conservative parameters were not calibrated, and maintained at
their default values, as specified in the AquaCrop wheat crop file
(Table 3); because the Oued El-Bared cultivar is a modern,
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TABLE 5 Crop parameters evaluated in the sensitivity analysis of
AquaCrop, for durum wheat yield under +20% variation of input
parameter.

Sensitivity

Parameter Sc (+20%) Sc (—20%)

level

Crop parameters
Upper temperature
—0.55 —0.74 Low
(Toppe)
WP* 20.07 —20.07 High
K., 6.08 —9.58 Moderate
CGC 9.94 —15.12 Moderate-high
CDC —10.87 —12.89
Maximum effective Moderate
7.00 —6.08
rooting depth
Stomatal closure
Pupper 0.55 —-0.55
Low
Shape factor 0.55 —0.18
EC threshold
Popper —0.18 -0.18
Low
Proer 0.55 -1.66
Canopy expansion
Pupper 0.04 —0.18
Pioer 0.74 —0.18 Low
Shape factor 0 —-0.18
Early canopy senescence
Pipper 0 —0.55 Low
Shape factor 0 0
emergence -1.29 2.21 Low-moderate
Initial canopy cover
4.6 -9.76 Moderate
(CCo)
Time from sowing
-17.13 14.18 Moderate-high
to maximum CC
Time from sowing
0.18 —0.18 Low
to flowering
Time from sowing
3.68 —3.87 Moderate
to senescence
Duration of
1.29 1.10 Low
flowering
Maximum canopy
4.24 —13.26 Moderate
cover
HIo 17.5 —20.44 High
Soil parameters
WP -3.85 3.66 Moderate
FC 6.61 —20.92 Moderate-high
Sat —0.91 0
K 0.91 -2 Low
EC, ~0.36 0.18
Irrigation management
Amount —0.55 —24.95 Low -high
Eg, —0.92 0.73 low
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high-yielding variety, it is unnecessary to adjust these
conservative parameters.

Afterwards, based on the averaged measurements obtained
from the CAZDA COSIDER field experiment, the available
the
non-conservative parameters (Table 4). Parameters that could not

monitored data were assigned to corresponding
be measured in the field were either calibrated based on the
available data or estimated internally by the model. The model
estimated CCo based on the measured planting density and the
default value of canopy cover per seedling at 90% emergence.
Canopy growth coefficient (CGC) and the canopy decline
coefficient (CDC) were not directly quantified through field
measurements. Instead, by entering key phenological dates for the
studied crop cultivar (dates of emergence, maximum canopy
cover, senescence and maturity), the model automatically
estimated their values. Iterative model simulations were conducted
to finely adjust the rooting depth, aiming to achieve the best
agreement between simulated and observed values of canopy
cover, above-ground biomass, final above-ground biomass and
soil water content at different growth stages. In this study, most of
the non-conservative parameters were obtained directly from field
measurements. As a result, only minimal manual adjustments
were applied, and a trial-and-error calibration approach was not
required extensively.

After the calibration process, model validation was performed
while all other calibrated parameters were considered as constants
during this stage; the validation process involved assessing the
agreement between simulated and observed final grain yield
values, to ensure that the model accurately represented all crop
growth phases, including the final yield. The model was also run
with the default wheat crop file in the Growing Degree Days
(GDD) mode, the process was carried out for both locations to
evaluate the model’s performance in predicting key outputs,
including final grain yield, above-ground biomass, soil water
content (SWC) and final above-ground biomass.

2.9 Model evaluation

Green canopy cover, above-ground biomass development, soil
water content, final grain yield and final above-ground biomass
were considered for model evaluation, model outputs were
assessed against field measurements using statistical indices,
which included:

1 The root means square error (RMSE), presented by
Equation 7, was applied to evaluate the model performance,
when RMSE value close to zero indicates better model
performance, 0 indicating perfect and indicating poor
model performance.

@)
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2 Normalized root-mean square error (NRMSE), presented by
Equation 8:

®)

The simulation is considered excellent with a NRMSE < 10%, good
if it is between 10 and 20%, fair if it is between 20 and 30%, and poor
if the NRMSE >30% (Jamieson et al., 1991).

3 Nash-Sutcliffe model efficiency coeflicient (EF), presented by
Equation 9 a normalized statistic determines the relative
magnitude of the residual variance compared to the measured
data variance (Nash and Sutcliffe, 1970).

“ 2
2(Si—Mi)
EF =1 —’:17 )
—\2
(24 -31)
i=1
where; EF ranges between -co <EF< 1; EF =1 being the
optimal value, 0 <EF< 1 acceptable levels of performance,
negative values indicate that the mean measured value is a better
predictor than the simulated value (unacceptable performance)

(Moriasi et al., 2007).

4 Willmott’s index of agreement (d), was developed by Willmott
(1981), which is a standardized measure of the degree of model
prediction error (Equation 10); it ranges between 0 and 1;d = 1
indicates a perfect agreement between measured and simulated
values, and d = 0 indicates no agreement (Willmott, 1981).

n

(si-mi)’

d=1-——-"=—1 (10)

S (Isi ] +| ;- ]2
i=1

where; — o0 <d < 1; better agreement between simulated and
measured values achieved when values of d close to 1.

5 Pearson Correlation Coefficient (R), ranges from 0 to 1, with
values close to 1 indicating good agreement (Equation 11).

€3]
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Flowchart summarizing the methodological steps in this study for the calibration, simulation, evaluation, and validation of AquaCrop 7.1 model for

where; M; and S; (i = 1, 2,..., n) indicate measured and simulated
values, respectively, and M : the mean of measured values and 7 is the
total number of observations in all statistical indices.

3 Results and discussion
3.1 Sensitivity analysis (SA)

Table 5 presents the results of the SA conducted using a +20%
variation in each individual parameter while keeping all other
parameters constant. The purpose of the SA is to identify the
differences in the way AquaCrop responds to changes in specific
inputs for simulating grain yield. The S, values and their signs indicate
both the magnitude and direction of change in grain yield relative to
the baseline simulation.

The results of the SA for simulated final grain yield indicated that
AquaCrop was highly sensitive to changes in WP* and HI,, which
exhibited the largest absolute sensitivity coefficients. Soil and irrigation
water salinity collectively impose osmotic and ionic stresses that limit
the plant’s ability to take up water and disrupt physiological processes
essential for biomass production and partitioning. This stress reduces
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WP* and negatively affects the allocation of biomass to the grain
(lowering HI,). Under arid conditions such as those in Biskra, this
combined salinity stress leads to significant declines in both WP*
and HI,.

Canopy development parameters such us CGC, time from sowing
to maximum canopy cover, CCx, and CCo showed moderate
sensitivity, suggesting that early-season canopy structure plays an
important role in determining final yield. In particular, when these
parameters were decreased, slower canopy development or delayed
attainment of maximum cover markedly reduced grain yield. The
canopy decline coefficient (CDC) also demonstrated consistent
moderate sensitivity, reflecting the importance of maintaining canopy
cover during the late growth stages to optimize yield formation.
Similarly, the crop transpiration coefficient (KcTr) and maximum
rooting depth had moderate influence, highlighting the link between
water uptake dynamics and yield outcomes.

In contrast, the model showed low sensitivity to changes in
phenological parameters such as time to flowering, flowering duration,
and emergence, as well as to stress-related parameters including EC
thresholds, canopy expansion, and early canopy senescence. Under the
environmental conditions of this study, these factors had minimal
impact on simulated yield.
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The sensitivity analysis of soil parameters in AquaCrop revealed
that FC exhibited moderate to high sensitivity, indicating that
variations in FC substantially affect model output and should
be carefully parameterized. WP showed moderate sensitivity,
suggesting a secondary impact on simulated yield. Sat, Ksat, and ECs
displayed low sensitivity, so variations in these parameters have a
limited influence on model predictions. These findings highlight that
accurate determination of FC is particularly critical for robust
model performance.

The SA of irrigation management parameters in AquaCrop
indicated that the amount of irrigation exhibited a wide range of
sensitivity, from low to high, which reflects its variable influence on
model outputs depending. Notably, the model showed high sensitivity
to reductions in irrigation amount, which highlights the significant
effect of water deficit on yield simulation. Conversely, irrigation water
salinity (Ec;,) displayed low sensitivity, suggesting that reasonable
variations in water salinity have a limited effect on model predictions
under the studied conditions.

SA itself does not improve the accuracy of field measurements.
However, in this study, it provided critical insights into the relative
influence of key parameters on model outputs. WP* and Hlo were
identified as the most influential parameters affecting these outputs.
This finding informed targeted adjustments of these parameters
within physiologically realistic ranges during the calibration
process. Sensitivity analysis was therefore valuable not only for
prioritizing parameters but also for optimizing the calibration
strategy, resulting in reliable and accurate simulation outcomes
under local conditions.

According to Geerts et al. (2009), a lack of sensitivity to certain
parameters indicates possible over-parameterization of the model,
whereas high sensitivity to others reflects a strong dependence of
specific calculation processes on a limited set of parameters.

3.2 Model calibration

As stated in the previous section, the AquaCrop model was
calibrated for durum wheat using experimental data of the CAZDA
COSIDER farm, from the period: November 22, 2022, to May 20, 2023,
The model was used with the specific conditions of the pivot irrigation
system, which is crucial for enhancing water management strategies
and achieving optimal crop yields, Validation was performed using the
TIDSA dataset. The model’s performance and robustness were assessed
by comparing simulated and observed values of green canopy cover,
above-ground biomass, soil water content, final above-ground biomass,
and final grain yield. Besides the differences in irrigation methods, the
two sites varied in key agronomic and environmental factors
influencing irrigation performance. The calibration site, which used
center pivot irrigation, had a different soil texture and water retention
capacity compared to the validation site, where drip irrigation was
employed. Additionally, planting densities varied, with the validation
site typically using denser planting. The frequency and volume of water
applications (number of irrigations) also differed between sites, shaped
by the irrigation system capabilities and crop water requirements. The
model was calibrated and validated using modern irrigation techniques
to encourage the adoption of advanced irrigation technologies,
particularly under the current conditions where surface irrigation
remains widely used despite growing water scarcity in Biskra as well as

Frontiers in Sustainable Food Systems

12

10.3389/fsufs.2025.1709629

across Algeria. According to recent statistics, approximately 43.54% of
the total irrigated areas in Biskra still rely on traditional surface
irrigation methods, whereas water-saving techniques like drip
irrigation cover about 49.26%, while sprinkler and center pivot
irrigation occupy smaller proportions, approximately 5.66 and 1.52%,
respectively (DSA, 2022). This highlights the urgent need to promote
efficient irrigation systems to better conserve scarce water resources
and support sustainable agricultural development in the region.
Fonteyne et al. (2021) reported that water use in the barley-maize
production system can be reduced by 20-40% through the
implementation of conservation agriculture, drip irrigation, or a
combination of both. Similarly, Tang et al. (2025) demonstrated that
combining wide-narrow row spacing with moderate drip irrigation
significantly maintained yield and improved water-use efficiency in
winter wheat production in arid regions. Ahmed et al. (2017) showed
that high-efficiency irrigation systems, particularly center pivot
irrigation, significantly enhance water and crop productivity in seed
multiplication, reducing water losses by about 10 to 20%.

3.2.1 Canopy cover (CC)

Figure 5 displays a comparison between the observed and
simulated CC values over different days after sowing using both the
calibrated and default crop parameters. A strong linear correlation was
found between the observed and simulated values for both cases, with
R?values of 0.98 for the calibrated simulation and 0.89 for the default
simulation, the statistical evaluation of this parameter is presented in
Table 6.

Simulation results using default parameters indicated that the
model demonstrated excellent performance in simulating CC, with
high statistical indicators (R =0.99, RMSE = 3.9, NRMSE = 5.9%,
EF=0.99 and d=1) (Table 6). However, slight differences can
be noted; the default parameterization led to minor deviations and,
overall, produced a marginally higher error compared to the
calibrated scenario.

The model showed better prediction of CC when calibrated
parameters were used, and demonstrated excellent performance in
simulating CC development, with a very strong agreement between
observed and simulated CC values, the statistical indicators confirm
that model calibration improved the accuracy of canopy cover
simulations, as reflected by lower values of RMSE = 3.7%,
NRMSE = 5.5%, and a high model efficiency (EF = 0.99). The (d)
values obtained indicate perfect agreement between the simulated and
measured data (d = 1). Furthermore, the elevated R values suggested
a perfect linear correlation between simulated and measured CC
(R =1). The model slightly underestimated CC during the early and
mid-growth stages, specifically from 42 to 70 DAS and from 122 to
139 DAS (Figure 5). However, this underestimation, particularly in the
later days of the season, coincided with reduced simulated available
soil water (as shown in Figure 6), which is primarily attributed to the
model’s increased sensitivity to water stress during this period. Hsiao
et al. (2009), reported that there was an overestimation of the
inhibitory effect of a slight water deficit on the growth of the CC in
maize. Sandhu and Irmak, 2019, reported that sampling and
measurement errors, the influence of extreme temperatures and
aridity could be caused differences in CC. Similar results observed by
Rinaldietal. (2011) and Heng et al. (2009) as underestimation in the
simulation. Overall, only minor differences were observed, and the
model provided a reliable estimation throughout the growing season.
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FIGURE 5
Observed and simulated values of canopy cover (CC) on different days after sowing (DAS) during model calibration: (a) temporal comparison of
observed and simulated CC throughout the growing season; (b) relationship between simulated and observed CC, with diagonal lines represent 1:1
line.

TABLE 6 Statistical performance indicators for observed and simulated
canopy cover, Above-ground biomass, and soil water content for both
calibrated and default model settings.

Indicator
Variable NRMSE
RMSE R
(%)
CC (%) 37 55 1 0.99 1
B
1.1 9.6 0.95 0.78 0.93
Calibration (tha™)
SWC
40.2 14.9 0.94 —0.42 0.79
(mm)
CC (%) 39 59 0.99 0.98 1
B
2.7 24 0.95 -0.37 0.78
Default (tha™)
SWC
50.3 18.6 0.97 —-1.22 0.75
(mm)

3.2.2 Soil water content

In this study, the model was applied in a large area under center
pivot irrigation conditions. To enhance the precision of the soil water
content (SWC) simulation, spatial heterogeneity of soil properties,
irrigation amounts, and the occurrence of irrigation events were taken
into-consideration. For Simulation results using calibrated parameters,
SWC approached or exceeded the field capacity line during the early
vegetative growth stage, which caused percolation; during this period
the model simulated well the SWC. In contrast, in the residual
cropping season, SWC remained between the field capacity and
wilting point lines, the linear correlation between observed and
simulated SWC was strong (R*=0.77), the model trended to
underestimate the SWC in this period. For comparison, simulations
based on the model’s default crop parameters generally resulted in
higher SWC values throughout the season, clearly visible as an
overestimation trend in (Figure 6). When the default parameters were
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used, the model’s ability to simulate SWC declined, as reflected by
higher error indices (RMSE = 50.3 mm, NRMSE = 18.6%), slightly
improved correlation (R=0.97), but lower index of agreement
(d=0.75) and a more negative EF (EF = —1.22). This suggests that
while the default parameters allowed the model to capture the general
fluctuations in SWGC, its performance was poorer compared to the
calibrated scenario. Paredes et al. (2014b) reported similar findings
and emphasized the importance of parameterizing the AquaCrop
model using accurate and continuous SWC observations throughout
the crop growing season. They highlighted that thorough calibration
based on detailed field measurements significantly enhances the
model’s reliability in simulating SWC and crop performance.

The results of the SWC using calibrated parameters show that
the model performed well for simulating the SWC in the root zone
(0-100 cm), as shown by the statistical indices: RMSE = 40.2 mm,
NRMSE =14.9%, R=0.94 and d=0.79 indicating a good
agreement between measured and simulated values. Despite the
negative value of the Nash-Sutcliffe Efficiency (EF = —0.42), other
model performance indicators showed good values, indicating
that the model was able to capture the temporal patterns and
general trends of soil water content dynamics. However, the
negative EF indicates that the observed mean of soil water content
(SWC) would provide a better estimate than the model
simulations. This suggests that, although the model was able to
capture the general temporal trends of SWC, it exhibited
significant differences in simulating the actual observed values,
particularly during the late season under combined water deficit
and salinity stress (Table 6). A positive Nash—-Sutcliffe Efficiency
(EF) is considered the minimum criterion for reliable soil water
content simulation in crop models (Yang et al., 2014). Terdn-
Chaves et al. (2022) has been documented similar discrepancy in
simulating SWC using AquaCrop, characterized by negative EF
values, and reported that the observed mean serves as a better
predictor than the model simulations. The negative EF value
observed reveals the model’s limitations in accurately simulating
observed SWC, particularly under the combined influence of

frontiersin.org


https://doi.org/10.3389/fsufs.2025.1709629
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org

Sekhri et al. 10.3389/fsufs.2025.1709629
a) 500
®  Observed Calibration @~ ===-=- PWP — —FC eeseiess Default
50
0
1 21 41 61 81 101 121 141 161 181
DAS
b) =
7
400 # Calibration < Default [ Ve
4
l’,
y =1.2866x ’,’
R*=0.9717 .7
—_ 350
£
E
@)
e
»n
E 300
=
=
£
2
250
y = 0.8785x
200 R*=0.7766
150
150 200 250 300 350 400
Observed SWC (mm)
FIGURE 6
Observed and simulated values of soil water content (SWC) in the top 1 m on different days after sowing (DAS) during model calibration: (a) temporal
comparison of observed and simulated SWC throughout the growing season; (b) relationship between simulated and observed SWC, with diagonal
lines represent 1:1 line.

salinity and drought stresses during the late growing season. The
underestimation of SWC most likely resulted from an inaccurate
estimation of evapotranspiration and the model’s inability to fully
capture the combined effects of salinity and water stress on plant
water uptake. These stresses reduce root water absorption
efficiency and disrupt the soil-plant-water balance, leading to
lower simulated SWC. Additionally, simplified parameterization
under stress conditions may have contributed to an overestimation
of water loss. This interpretation aligns with numerous studies
worldwide, which report that the interaction between salinity and
limited irrigation reduces water availability to plants and
challenges the model’s capacity to accurately represent these

Frontiers in Sustainable Food Systems

14

complex stress conditions. Zhai et al. (2022) reported that the
AquaCrop model demonstrated good performance in simulating
SWC across various irrigation levels and water salinity conditions
for winter wheat, model performance indicators (R?, RMSE,
NRMSE) were 0.87-0.95, 1.22-2.59%, and 8.09-12.95% during
calibration, and 0.88-0.96, 1.52-2.75%, and 10.32-18.12% during
validation, respectively, however, simulation accuracy declined
under deficit irrigation with saline water. Mohammadi et al.
(2016) calibrated and validated the AquaCrop model for wheat to
simulate SWC under combined salinity and water stress conditions
in an arid region, their results showed good agreement between
simulated and observed soil moisture, with an average normalized

frontiersin.org


https://doi.org/10.3389/fsufs.2025.1709629
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org

Sekhri et al.

root mean square error (NRMSE) of 11.8%, an index of agreement
(d) of 0.79, and a coefficient of determination (R?) of 0.61, the
model exhibited a tendency to systematically underestimate
SWC. In contrast, Mkhabela and Bullock (2012) reported the
overestimation of SWC for wheat, with corresponding model
performance statistics of RMSE = 49.4 mm, R* = 0.9, and d = 0.99
Their evaluation metrics showed strong agreement between
observed and simulated SWC values, with R? ranging from 0.87 to
0.96 and normalized root mean square errors (NRMSE) between
8.09 and 18.12% during both calibration and validation phases.
However, they noted that simulation accuracy decreased under
deficit irrigation combined with saline water. The accuracy in
simulating SWC through the AquaCrop model is affirmed by
results in other research for wheat (Andarzian et al, 2011;
Benabdelouahab et al,, 2016) which similarly reported a tendency
to overestimate SWC.

Additionally, several studies have reported limitations in
AquaCrop’s ability to accurately simulate soil water content,
attributing underestimation or overestimation errors to various
factors. Paredes et al. (2014b) found that AquaCrop shows a tendency
to underestimate evaporation and overestimate transpiration, leading
to a bias in SWC simulations. Farahani et al. (2009) found that errors
in simulating SWC were non-uniformly distributed across the soil
profile, with a tendency to overestimate in the surface layer and
underestimate in deeper soil layers. Sandhu and Irmak (2019)
reported that the inaccurate estimates of SWC could result from
imprecise estimations of transpiration and evaporation, which relate
to the utilization of inadequate or less accurate coefficients for
transpiration and evaporation.

To improve model performance, future studies should refine the
calibration of stress response parameters. Additionally, measuring
SWC at multiple depths and at shorter intervals would provide a more
detailed understanding of soil moisture dynamics and enable more
robust model validation.

10.3389/fsufs.2025.1709629

3.2.3 Above-ground biomass

Figure 7 illustrates the comparison between observed and
simulated Above-ground biomass (B) values for durum wheat, using
both calibrated and default crop parameters. When the default
parameterization was applied, model performance declined
noticeably, errors increased (RMSE = 2.7 t ha™', NRMSE = 24%) and
a lower index of agreement (d = 0.78), and model efficiency became
negative (EF = —0.37) (Table 6). This indicates that, although the
default settings allowed the model to capture general B development
trends, they led to larger deviations between observed and simulated
values, especially during critical growth stages. The lower model
efficiency and greater error metrics further underline the value of
site-specific calibration for improving the accuracy of
biomass simulation.

When using calibrated parameters, the linear correlation between
observed and simulated values was strong (R* = 0.81), the model
slightly overestimates B accumulation at 112, 140, and 148
DAS. Generally, AquaCrop performed very well in simulating the
accumulation of (B) throughout the growing season, as shown by the
model performance indicators; a root means square error (RMSE) of
1.1 tha™', and a normalized RMSE (NRMSE) of 9.6% indicate a high
level of model accuracy. A strong positive relationship was found
between observed and simulated B (R = 0.95). Moreover, the model’s
good performance is supported by the high value of EF, and an index
of agreement (d=0.93), which is close to 1, indicates a strong
agreement between simulated and observed values (Table 5).

The predicted final above-ground biomass through the

-1 while the observed value was

AquaCrop model was 14.1 t ha
14.35 t ha™', resulting in a very slight underestimation of 0.25 t ha™'.
This minor difference indicates that the model provides a close
approximation of biomass accumulation under the studied
conditions. Similar slight underestimation for wheat have been
reported by Salemi et al. (2011) in arid region and Benabdelouahab

etal. (2016) in semi arid region, Araya et al. (2010) for barley, and
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maize Hsiao et al. (2009). Contrasting results as an overestimation
was noted by Andarzian et al. (2011) using the model for wheat.
These variations observed across different crops and environments
can be attributed to differences in cultivar characteristics, soil and
climatic conditions, management practices and the specific
methodologies employed for model calibration.

A slight overestimation of biomass accumulation occurred
during intermediate growth stages, whereas a modest
underestimation of the final above-ground biomass (0.25 t ha™)
was noted at maturity. The observed decrease in SWC during the
final growth stages (Figure 5) contributed to the decline in the
final above-ground biomass compared to field observations. It
becomes clear that the model overestimated the degree of water
stress experienced by the crop at the end of the season. This
outcome indicates that the model may be overly sensitive to
reductions in soil moisture under these conditions, resulting in a
reduction in predicted final above-ground biomass at maturity.
Additionally, uncertainty arising from measurement errors in
biomass sampling may also contribute to the observed differences
between simulated and measured values; small differences likely
reflect a combination of model sensitivity and unavoidable
measurement errors, rather than being solely attributable to
limitations in model performance.

In brief, the model accurately predicted the final above-ground
biomass of durum wheat under saline environment and arid

conditions of Biskra region.

3.3 Validation of the model

The validation process seeks to assess the model’s accuracy
through comparisons of experimental data with output results
(Thacker et al., 2004). In the current study, the model was validated
using the same sets of conservative parameters values and statistical
indices as those applied during the calibration phase. It was
conducted using the method that was previously explained, In
addition, model simulations were also performed using the default
crop parameters provided by AquaCrop. Details of the data used for
the validation were presented in the previous section. The model
validation results of observed and simulated grain yields (t ha™) for
durum wheat are presented in Table 7.

Figure 8 presents the relationship between simulated and
observed final grain yield under both calibrated and default
model parameter sets. The regression line for the calibrated
simulation is closer to the 1:1 line compared to that obtained with
default parameters, indicating improved model performance
after calibration.

10.3389/fsufs.2025.1709629

Model simulations with default parameters showed that
AquaCrop was inadequate in predicting final grain yield, as indicated
by high errors and low efficiency (RMSE = 1.7 t ha-1, NRMSE = 26.8%,
EF=-5.1, and d=0.46) (Figure 8). The default parameters in
AquaCrop often lead to an overestimation of crop yields because they
are based on generalized assumptions about plant transpiration. These
parameters usually depict optimal or average growing conditions and
do not fully capture field-specific constraints such as water deficits,
soil and irrigation water salinity, or nutrient limitations, which can
directly reduce crop growth and yield. This highlights the necessity of
using appropriately calibrated crop parameters to achieve reliable
yield predictions.

In contrast, when calibrated parameters were applied, AquaCrop
model predictions of grain yield showed excellent agreement with
measured data for both sites and years. The pooled dataset revealed a
low RMSE of 0.2 tha™', NRMSE of 2.76%, high model efficiency
(EF =0.9), and index of agreement (d = 0.98). Additionally, there is a
high correlation between the simulated and observed values, with a
determination coefficient (R*) of 0.92. The slope is very close to 1, this
demonstrates that the model’s predictions are unbiased, with no clear
tendency for over- or under-prediction. Notably, all simulated yield
values deviated from the observed values by less than 5%, this
indicates a high level of model accuracy and no substantial bias in the
predictions. Similarly, to assess the model's robustness in simulating
sugar beet yield in Spain, Garcia-Vila et al. (2019) used various factors
including different locations, varieties, sowing dates, irrigation
management and years to validate the model, and reported that the
simulated yields showed a very good agreement with measured yields,
with R? value 0.908 =, a slope = 0.945, RMSE = 1.17 tha™', d = 0.998,
without any clear trend for over-prediction or under-prediction. El
Mokh et al. (2022) reported that the AquaCrop model is effective in
simulating barley yield under saline and arid conditions in Tunisia, as
evidenced by low RMSE values ranging from 0.36 to 1.6 t ha-1 and
relatively high coefficients of determination between 0.77 and 0.81.
Araya et al. (2010) used the model to simulate barley grain yield and
reported an R*>0.80 and the RMSE values range from 0.07 to
0.27 tha™.

Mlkhabela and Bullock (2012) used the model to simulate soft
wheat grain yield and obtained over-prediction by only 3%, and the
difference between the observed and simulated grain yield was
0.118 t ha™!. Andarzian et al. (2011) and Benabdelouahab et al. (2016)
reported that AquaCrop over-predicted grain yield for wheat (Triticum
aestivum L.) and durum wheat, respectively. Salemi et al. (2011)
reported that the model simulated very well winter wheat grain yield,
with a slight under-prediction of 1.35%. These findings confirm the
high predictive capacity of the AquaCrop model for durum wheat
yield under the agro-climatic conditions of Biskra.

TABLE 7 Observed and simulated grain yields (Y) (t ha™) of durum wheat for both sites: model validation results.

Simulated Y (t ha™)

Location Season Observed Y (t ha™)
Calibrated parameters Default parameters
2020/2021 6.76 6.85 8.15
TIDSA 2021/2022 6.16 6.04 6.33
2022/2023 7.23 7.06 7
CAZDA 2022/2023 5.38 5.43 7.65
Frontiers in Sustainable Food Systems 16 frontiersin.org
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Relationship between observed and simulated durum wheat yield
(t ha™) for both sites combined for the model validation.

4 Conclusion

The calibration and validation of the AquaCrop model for durum
wheat under the arid and saline conditions of Biskra, Algeria,
demonstrated its strong capability in simulating key crop parameters,
including canopy cover, above-ground biomass, soil water content,
and final grain yield. In this study, the accurate calibration of canopy
cover curve parameters, based on field-measured data, substantially
improved the model’s performance. This enhancement is explained by
the fact that the canopy cover curve in AquaCrop is a key driver in the
daily computation of crop transpiration and soil evaporation, leading
to more realistic simulations compared to those obtained using the
default parameters.

Despite the negative EF value, other statistical indicators and the
ability to capture temporal patterns indicate that AquaCrop performed
reasonably well under the conditions of this study, with a tendency to
underestimate SWC, particularly during the mid and late season. For
management-oriented purposes, particularly irrigation scheduling,
further calibration is required to enhance the accuracy of SWC
simulations. Such refinement would increase the model’s reliability as
a decision-support tool for sustainable water management in the area.
should detailed
measurements; explicitly monitor SWC at multiple soil depths.

Future research incorporate soil salinity
Additionally, assessing the model’s sensitivity to different soil
properties and water regimes is recommended. Such approaches
would help reduce uncertainties and enhance AquaCrop’s predictive
reliability under diverse and challenging conditions, particularly
where WS coincides with salinity stress.

The AquaCrop model can accurately predict durum wheat above-
ground biomass and final above-ground biomass when calibrated
parameters are used. Above-ground biomass simulations showed a
slight overestimation throughout the growing season, but the final
harvested biomass exhibited a tendency toward underestimation, with

a difference of 0.25 t ha™'.
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Validation using independent datasets further confirmed the
model’s reliability, with simulated grain yields closely matching
observed values across different growing seasons and sites. The high
correlation (R* = 0.92) and low prediction errors (RMSE = 0.2 t ha™!,
NRMSE = 2.76%) highlight AquaCrop’s robustness in diverse crop
conditions. Although the validation was conducted for specific
seasons, sites, and management practices, the strong results obtained
suggest that the model is well-suited, in terms of grain yield within the
region. However, the validation was limited to grain yield at the
TIDSA site, with no available data for CC, B or SWC. This limitation
constrains the comprehensive assessment of the model’s performance
across all key parameters. Future research should focus on collecting
and incorporating CC, B, and SWC validation data to fully evaluate
and improve AquaCropss reliability under diverse environmental and
management conditions. Expanding validation efforts in this way will
enhance confidence in the model’s capacity to accurately simulate crop
responses for sustainable water and crop management in the region.

This study provides a calibration and validation of the AquaCrop
model over a short to medium-term time frame under current
climatic conditions, establishing a foundational assessment of its
reliability and predictive performance. However, it is acknowledged
that this temporal scope inherently limits the model’s capacity to
capture interannual climatic variability and extreme events, as well as
the prospective impacts of climate change factors such as increased
temperatures, altered precipitation patterns, and elevated atmospheric
CO, concentrations. Consequently, to fully evaluate AquaCrop’s
robustness and applicability, further investigations employing
extended multi-year datasets alongside downscaled climate projection
scenarios are imperative. Such research will be critical to refining the
model’s utility for long-term decision support in the region.
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