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The AquaCrop model was calibrated and validated for durum wheat in the arid 
region of Biskra, Algeria. using field data from the CAZDA COSIDER farm during 
the 2022/2023 growing season. The wheat field was irrigated using a center 
pivot system with saline water at 4.45 dS m−1. Validation was performed with 
independent yield data from the Technical Institute for the Development of Saharan 
Agronomy (TIDSA) in Biskra region; to take into consideration the differences in 
weather conditions, soil, salinity levels and irrigation management. The calibration 
process involved adjusting only the non-conservative crop parameters. The model 
accurately simulated canopy cover (RMSE = 3.7%, NRMSE = 5.5%, EF = 0.99, 
R = 1) and above-ground biomass (RMSE = 1.1 t ha−1, NRMSE = 9.6%, EF = 0.78, 
R = 0.95), with a slight underestimation of 0.25 t ha−1 in the final above-ground 
biomass. The model captured the temporal trends in soil water content, but 
with low quantitative accuracy (RMSE = 40.2 mm, NRMSE = 14.9%, EF = −0.42, 
R = 0.94). Validation confirmed very good predictive performance for grain yield 
(R2 = 0.92, RMSE = 0.2 t ha−1, NRMSE = 2.76%, EF = 0.9, d = 0.98). Overall, the 
results demonstrate that, with rigorous calibration using field measured data, 
the AquaCrop model can accurately predict durum wheat grain yield and final 
above-ground biomass under the arid and saline conditions of the studied area. In 
contrast, the use of default parameters resulted in poor yield prediction performance, 
underscoring the critical need for site-specific calibration. The locally calibrated 
AquaCrop model can effectively support water managers and decision-makers 
in optimizing irrigation scheduling and enhancing durum wheat yields under 
the challenging saline and arid conditions characteristic of the Biskra region. 
Serving as a robust decision support tool, the model enables the implementation 
of improved agricultural practices that ultimately benefit farmers and promote 
sustainable agriculture in the area.
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1 Introduction

The increasing problem of water scarcity (WS) has limited not 
only the amount of water available for current agriculture, but also 
the expansion of irrigated land in many regions worldwide (FAO, 
2011). As the most countries in semi-arid and arid regions, Algeria 
is experiencing a growing water crisis, particularly in the south, 
where there is a dry desert climate and scarcity of surface water 
(Kendouci et al., 2023). However, agricultural production in these 
areas is heavily dependent on irrigation, with significant quantities of 
groundwater used every year (Fadl et al., 2024b). Furthermore, the 
water available is often saline, and crops are often exposed to both 
water stress and salinity (Fadl et al., 2024a). These factors not only 
destabilize yields but also complicate sustainable water management. 
For these reasons, Algeria faces a major challenge to produce more 
food with less water due to the increasing demand for irrigation water 
and other sectors that use water. Ensuring global food security by 
increasing food production with less water is the main challenge for 
the coming decades (Toumi et al., 2016). One key strategy to address 
this challenge is to enhance water management and improve water 
productivity (Molden and Sakthivadivel, 1999). Crop simulation 
models, such as AquaCrop, have emerged as essential tools for 
understanding crop-water relationships, optimizing irrigation 
practices, and predicting crop yields under varying environmental 
conditions. The Water-driven AquaCrop model developed by the 
Food and Agriculture Organization (FAO) in 2009 (Raes et al., 2009; 
Steduto et al., 2009a), requires minimal input data compared to other 
models. The model is a valuable tool for enhancing crop water 
productivity in both rainfed and irrigated production systems, suited 
to regions where WS significantly impacts crop production (Raes, 
2023). According to Steduto et al. (2009a) AquaCrop has achieved a 
commendable balance, among simplicity, accuracy, robustness, and 
ease of use. The model has been used for many purposes in different 
studies at the plot scale (Andarzian et al., 2011; Kumar et al., 2014; 
Rai et al., 2025), farm scale (García-Vila and Fereres, 2012; Rai et al., 
2025; Wellens et al., 2013), and regional scale (Alvar-Beltrán et al., 
2021; Han et  al., 2020). AquaCrop supports decision-making at 
various levels, particularly in improving irrigation water management 
for crops (Garcia-Vila et al., 2019). It is necessary to calibrate and 
assess all models before to their application to ensure their reliability 
and accuracy (Bannayan et al., 2003, 2007). In 2021, wheat is the 
third most important cereal crop globally, following maize and rice 
(FAOSTAT, 2023). The Algerian government considers cereal crops, 
particularly wheat and barley, as strategic sectors due to their 
significant role in the household consumption pattern (Benmehaia, 
2023), and durum wheat (Triticum durum Desf.) is a vital crop in 
Algeria, contributing significantly to food security and agricultural 
economies. In southern Algeria, particularly in the Biskra region, 
durum wheat production faces significant challenges despite its 
national importance. Agriculture in these areas routinely contends 
with an arid climate, saline soils, and a growing reliance on irrigation 
with saline groundwater, compounded by inefficient water 
management practices. These conditions pose significant difficulties 
for durum wheat cultivation and threaten the sustainability of its 
production (Fadl et al., 2024a). Accurate simulation of crop growth 
and yield under these conditions is critical for developing sustainable 
agricultural practices and improving resource use efficiency. In recent 
years, the use of crop models has become widespread worldwide. In 

this regard, there are multiple crop models used predominantly by 
scientists to simulate wheat production in different environments and 
under various management practices (Iqbal et al., 2014; Kumar et al., 
2014; Mkhabela and Bullock, 2012; Zeleke and Nendel, 2016; Zheng 
et al., 2025). The model has demonstrated effectiveness in analyzing 
wheat yield response to saline conditions, as evidenced by studies of 
Goosheh et al. (2018), Kumar et al. (2014), and Rai et al. (2019). 
Furthermore, Mohammadi et al. (2016) applied different levels of 
irrigation water and salinity treatments in an arid region, and 
demonstrated the strong performance of AquaCrop in predicting 
wheat grain yield, soil water content, biomass, and water productivity. 
AquaCrop has also been applied to develop and optimize irrigation 
schedules across various salinity and irrigation regimes (Rinaldi et al., 
2011). There are a limited articles published about AquaCrop in 
Algeria (Belkhiri et al., 2019; Guendouz et al., 2014, 2017), these 
studies have not specifically addressed durum wheat under any saline 
or arid conditions in different irrigated systems. In the current study, 
the performance of the AquaCrop model was evaluated for durum 
wheat under the specific arid and saline conditions of Biskra. The 
calibration process was carried out using experimental data from 
CAZDA COSIDER farm. While validation was performed with data 
from the Technical Institute for the Development of Saharan 
Agronomy (TIDSA). The objectives were to (1) test the model’s 
predictive capacity using both default and locally calibrated 
parameters; (2) assess model accuracy in simulating key parameters 
such as canopy cover development, soil water content, above-ground 
biomass, grain yield and final above-ground biomass.

2 Materials and methods

2.1 The study area and experimental field

To calibrate the AquaCrop model, a field experiment was 
conducted during the 2022/2023 cropping season at the farm of 
CAZDA COSIDER company (Figure 1a), located in Dris Amor farm 
(34°58′10.74”N, 5°37′48.81″E, at an elevation of 222 m above mean 
sea level), south of El’Outaya municipality in Biskra province, in the 
southeast of Algeria (Figure 1b), this region is considered one of the 
largest agricultural hubs in the country. To validate the model, data 
from experiments conducted by engineers of the Technical Institute 
for the Development of Saharan Agronomy (TIDSA) during 2020–
2021, 2021–2022 and 2022–2023 cropping seasons, were used 
(Figure 1c). The main objective was to evaluate the adaptation rate 
of different wheat varieties in the arid zones, TIDSA Engineers 
collected detailed data on crop, soil proprieties, irrigation 
management and yield, the experiments were carried out at the Ain 
Ben Naoui demonstration and seed production farm in Biskra 
(34°48′00.11”N, 5°39′00.10″E at an elevation of 121 m above sea 
level (asl)), as show in Figure 2. Climate data for the period 1989–
2018, obtained from the National Meteorological Office (NMO), 
Algeria, indicate that the study area has a Saharan climate; 
characterized by a dry period extending throughout the entire year. 
The coldest period (Tmin) was recorded in January, with an average 
temperature of 12.5o C and The highest temperature (Tmax) was 
reached in July 38.72 °C, with a total annual precipitation of 
116.23 mm, and the mean monthly relative humidity was 40.4% 
(NMO, 2022).
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2.2 Field experiments

In the current study, a pivotal irrigation system of ANABIB type 
was used to provide irrigation water during the growing period, this 
system consisted of seven span towers, with a total length of 356 
meters, irrigating a total area of 40 hectares. The experimental field 

used for model calibration was included in a quarter section of the 
center pivot, which covered 10 ha out of the total of 40 ha due to its 
large surface area, to ensure the validity of the results, it was crucial to 
consider the spatial heterogeneity of the soil, crop yield, canopy cover, 
and water distribution. Consequently, 21 experimental plots were 
arranged along the pivoting ramp, with 3 plots in each span, each plot 

FIGURE 1

Location map (https://earthexplorer.usgs.gov/) of the study area and experimental field (a), Calibration (b), and Validation (c) process of AquaCrop for 
durum wheat.

FIGURE 2

Quarter section of the center pivot showing the experimental design.
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size was 5.0 m × 10.0 m (50 m2) as illustrated in Figure  2, this 
experimental design was specifically implemented to minimize the 
impact of variability in water distribution on the accuracy of field 
measurements. All essential model input parameters and observed 
data necessary for the simulation were measured and calculated for 
each plot individually, the averaged values across these plots were then 
used. Unlike the traditional irrigation methods commonly practiced 
in the region, the center pivot system used in this study incorporates 
enhanced large-scale coverage. Although not yet widely adopted, this 
approach was selected to evaluate the model’s performance under 
optimized irrigation conditions, and to explore its potential 
applicability in modernizing irrigation practices in the area.

2.3 Crop management

In this study, all cultivation practices followed the approved 
agricultural protocol of the farm, which is designed to optimize wheat 
productivity and water use efficiency. Stubble cultivation was initiated 
on 11 August 2022; seedbed preparation involved deep plowing on 25 
September 2022, followed by a second plowing on 29 October 2022. 
Wheat sowing took place on 22 November 2022 using a seeder at a 
rate of 160 kg ha−1, and harvesting occurred on 20 May 2023. All 
cultivation operations were conducted in accordance with the farm’s 
protocol and under the supervision of its agricultural engineers. The 
protocol includes the following steps: stubble cultivation was initiated 
on 11 August 2022; the seedbed was prepared by deep plowing on 25 
September 2022, followed by a second plowing on 29 October 2022. 
The wheat was sown on 22 November 2022 using a seeder at a rate of 
160 kg ha−1. Fertilization was applied as follows: 300 kg ha−1 of Mono-
Ammonium Phosphate (MAP) before sowing; 100 kg ha−1 of urea 
(46% N) broadcasted at 60 days after sowing (DAS); followed by a 
second fertigation application of 50 kg ha−1 at 120 DAS. Additionally, 
2 liters per hectare of liquid potassium were applied via fertigation at 
155 DAS. Weed and disease management included herbicide 
application at the beginning of February 2023, and preventive 
fungicide (Amistar Xtra) application at the end of February 2023 at a 
dose of 1 L ha−1. For the validation site, each plot was planted at a 
density of 300 seeds per m2, this site was carefully selected after 
confirming that the crop did not experience water stress or nutrient 

deficiency during the growing season. The seeding density was defined 
according to the local agricultural practices at each site. This site-
specific approach ensures that the model is tested and validated under 
realistic and diverse planting conditions, enhancing both robustness 
and practical applicability.

2.4 Data collection

2.4.1 Soil data
At the calibration site, soil samples were collected from nine 

randomly selected locations within the experimental field to a 
maximum depth of 1.0 m. Sampling was conducted at fixed depth 
intervals of 20 cm before the beginning of the cropping season. 
Physical and chemical parameters such as texture, soil water content, 
electrical conductivity (EC) and bulk density were determined in the 
laboratory. Soil texture at different depths was classified using the soil 
textural triangle. Additionally, the hydraulic properties of the soils 
(wilting point, water content at saturation, saturation hydraulic 
conductivity) were estimated for both the calibration and validation 
sites using the soil hydraulic properties calculator based on 
predetermined soil particle size distribution (Saxton and Rawls, 2006). 
A curve number of 61 was employed as the default value for effective 
field management. The initial soil water content was assumed to be at 
the wilting point due to the arid conditions and absence of 
precipitation prior to sowing. The simulation period began in August 
to accurately represent field conditions at the start of the growing 
season. Table  1 summarizes the soil characteristics for both the 
calibration and validation locations used in this study.

The soil water contents (SWC in % vol.) were measured 5 times 
during the cropping seasons by the gravimetric method, on 20 
December, 17 January, 15 March, 20 March and 11 April. at soil depths 
20, 40, 60, 80 and 100 cm, then, soil samples were dried in an oven for 
24 h at 105 °C. SWC was calculated by multiplying the gravimetric soil 
water content by the soil’s bulk density.

2.4.2 Crop data
Oued El-Bared is a durum wheat variety used in this study, that 

was monitored weekly to collect both model input parameters and 
observed field data; such as sowing date, the appearance of 

TABLE 1  Soil dataset used for calibration and validation of AquaCrop for the durum wheat crop.

Location
Soil 

depth
(cm)

Particle size distribution 
(%) Textural 

class

Bulk 
density
(g cm−3)

Moisture content
(vol. %)

Ksat 
(mm 
day−1)

Soil 
salinity
(ECs, dS 

m−1)Sand Silt Clay WP FC Sat

Calibration

CAZDA 

COSIDER farm

0–20 2 82 15

Silt loam

1.38 10.6 30 48 576.9 3.87

20–40 19 67 15 1.41 10.6 28.7 46.8 453.8 2.01

40–60 11 74 15 1.39 10.6 30 47.4 504.7 1.40

60–80 11 74 15 1.39 10.6 30 47.4 504.7 1.40

80–100 8 82 10 Silt 1.45 10 30 45.4 824.7 1.01

Validation

TIDSA 0–30 59.7 12.48 27.78
Sandy clay 

loam
1.4 16.2 25.7 47.3 76.8

2.16–3.88-

3.11*

FC, field capacity; WP, wilting point; Sat, water content at saturation; Ksat, saturation hydraulic conductivity; *ECs for 3 years of validation, respectively.
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phenological stages; including days to reach the germination, 
maximum canopy cover, flowering, canopy senescence, and crop 
maturity, were observed and recorded throughout the growing 
season. The green canopy cover development was monitored every 
week; a measurement point was identified for each plot, and 
photographs were taken at noon above the plant cover with a digital 
camera. The images were analyzed using the Green Crop Tracker 
(Version 1.0) software, developed by Agriculture and Agri-Food 
Canada (Liu and Pattey, 2010) to determine the crop canopy cover 
rate (CC in %). Plant density was estimated by counting the number 
of plants within a 1 m2 quadrat placed in each plot. The wheat was 
sampled 5 times from crop establishment to harvest on 15 March, 23 
March, 12 April, 25 April and 14 May. For each sample; micro-plots 
of ¼ m2 were selected in each plot, and the aboveground biomass was 
determined by drying the samples in an oven (at 70 °C) until a 
constant weight was obtained, to evaluate the temporal evolution of 
the wheat biomass. Finally, representative samples of 1 m2 from the 
middle of each plot was harvested and dried in a safe location to 
determine the final grain yield and above-ground biomass (B in ton 
ha−1). The harvest index (HI) was defined as the percentage ratio of 
wheat grain yield to final above-ground biomass. At the TIDSA 
validation site, field experiments were carried out over three 
consecutive cropping seasons: 2020/2021, 2021/2022, and 2022/2023, 
using the same durum wheat variety. The sowing dates were 
November 23, 2020, November 28, 2021, and November 23, 2022, 
respectively, while crop maturity was reached on May 4, 2021, May 
11, 2022, and May 4, 2023.

2.4.3 Meteorological data
The meteorological data used in this study to calibrate and validate 

the model were collected from the Biskra meteorological station, the 
dataset included daily precipitation, relative humidity, temperatures 
(maximum and minimum), solar radiation, and wind speed. The 
annual mean CO2 concentration data from the Mauna Loa 
Observatory in Hawaii, included as a default file in AquaCrop, was 
used in the model. To calculate the daily reference evapotranspiration 
(ETo) values; ETo calculator (version 3.2, September 2012) for Land 
and Water Division in FAO organization was used, based on Penman-
Monteith method (Allen et  al., 1998). Figure  3 presents the daily 
meteorological data, including maximum and minimum air 
temperatures, reference evapotranspiration (ETo), precipitation, wind 
speed, and relative humidity, from 1 August 2020 to 31 May 2023, 
used for model calibration and validation. The region exhibited 
significant seasonal temperature variations. Maximum temperatures 
(Tmax) often exceed 40 °C during the summer months (June to August), 
with peaks reaching up to 48.7 °C. In contrast, the winter months 
(December to February) experienced cooler temperatures, with 
minimum temperatures (Tmin) occasionally dropping below 10 °C 
(Figure 3a). The average daily maximum and minimum temperature 
during the wheat growing seasons were 19.2 ± 7.1 and 10.3 ± 6.8 °C, 
respectively. Precipitation was sparse and highly variable, with most 
precipitation concentrated between late autumn to late spring 
(Figure 3c). Total precipitation during the wheat growing seasons 
exhibited substantial interannual variability across the study period: 
30.99 mm in 2020–2021, 45.72 mm in 2021–2022, and 54.10–
58.42 mm in 2022–2023 and ET0 during the seasons analyzed in this 
study was 728, 579.7, 622.6, 771 mm, respectively. The Lowest ET0 
consistently occurred in winter months (December–January), while 

the highest ET0 was observed in spring (March–May), as represent in 
Figure 3c.

2.5 Irrigation practices

Irrigation was conducted using 3 wells in CAZDA COSIDER 
farm. Water is pumped into a geomembrane basin with a capacity of 
30,000 m3 according to the water consumption of the wheat. The 
irrigation applied in this study followed the irrigation practices 
implemented by the farm engineers at CAZDA COSIDER throughout 
the growing season. A total of 25 irrigations were applied during the 
season, the volume of water for each irrigation event was measured 
accurately using a water meter. Using the start dates of the pivoting 
ramp rotation and the rotation angles, the irrigation events in the 
experimental plots were identified. The irrigation volumes varied 
widely (from 10 to 120 mm per event) according to the growth stage 
of the crop and prevailing climatic conditions, with larger amounts 
during early establishment and reduced volumes during later growth 
stages. Each irrigation event was entered into the AquaCrop model 
with its specific date and applied amount, to ensure accurate field 
management and simulate soil water dynamics. Electrical conductivity 
(ECiw) and pH of the irrigation water were measured in situ using a 
multi-parameter manual instrument HI98129 and HI98130 
waterproof pH, EC/TDS and Temperature tester, water electrical 
conductivity (ECiw) was 4.46 dS m−1 and a pH of 7.95. For model 
validation at the TIDSA site, irrigation was supplied by drip systems 
over three seasons; in 2020/2021, 52 irrigation events were applied 
(ECiw: 6.05 dS m−1, pH: 7.73); in 2021/2022, 38 events were applied 
(ECiw: 4.52 dS m−1, pH: 7.53); and in 2022/2023, 42 irrigation events 
were applied (ECiw: 6.18 dS m−1, pH: 7.87). All irrigation data collected 
throughout three growing seasons directly entered into the model, a 
description of the irrigation water used to calibrate and validate the 
AquaCrop model is provided in the Table 2. The differences in the 
number and frequency of irrigation events between the calibration 
and validation sites are attributed to key factors including the 
irrigation systems and soil characteristics. The calibration site 
employed center pivot irrigation, which covered a larger area and 
required longer durations to complete each event, resulting in fewer 
but larger irrigation applications. In contrast, the validation site 
employed drip irrigation, which delivered smaller amounts of water 
more frequently. The site’s soil texture exhibits intermediate water-
holding capacity and permeability, which, when combined with 
elevated evapotranspiration rates, requires more frequent irrigation to 
sustain optimal soil moisture levels for crop growth. These site-specific 
irrigation practices were incorporated into the simulation model to 
ensure accurate representation of soil water dynamics and 
crop response.

2.6 AquaCrop model description

The AquaCrop simulation model developed to predict the yield 
of herbaceous crops response to water (Steduto et al., 2012). The 
model’s detailed descriptions are presented by Hsiao et al., 2009, 
Raes et al. (2009), Steduto et al. (2009a), and Raes et al. (2018). In 
various studies, the model has been employed to simulate the growth 
responses of various crops to irrigation water and environmental 
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conditions in several regions; wheat (Andarzian et  al., 2011; 
Goosheh et al., 2018; Iqbal et al., 2014; Jin et al., 2018; Kumar et al., 
2014), maize (Greaves and Wang, 2016; Paredes et  al., 2014b), 
sugarbeet (Garcia-Vila et al., 2019), grain sorghum (Araya et al., 
2016). AquaCrop is designed to be widely applicable across different 
climates and soil conditions, minimizing the need for extensive local 
calibration. To achieve this, the model constructed with two main 
groups of parameters: conservative parameters (Raes et al., 2009; 
Steduto et al., 2009a), which remain constant across different crop 
cultivar, location and time (Steduto et al., 2012). The second group 

non-conservative parameters, obtained through field measurements, 
as detailed in Tables 3, 4. In the calibration and validation phases, it 
is necessary to compare the simulated results with the field 
measurements. During the calibration of the model; the values of the 
non-conservative crop parameters were employed to minimize the 
differences between the predicted and observed results (Steduto 
et al., 2012). The model simulates crop growth on a daily time step 
and requires a reduced set of input parameters for its operation, 
including weather data, crop characteristics, soil properties, and 
management practices (such as irrigation and field operations) 
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FIGURE 3

Daily weather data at the study area (from 1 august 2020 to 31 may 2023), (a) maximum (Tmax) and minimum (Tmin) air temperatures (°C), (b) wind 
speed (m s−1), (c) rainfall and reference evapotranspiration (ETo) (mm), (d) relative humidity.

https://doi.org/10.3389/fsufs.2025.1709629
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Sekhri et al.� 10.3389/fsufs.2025.1709629

Frontiers in Sustainable Food Systems 07 frontiersin.org

specific to the site. In this study, AquaCrop (version 7.1, graphical 
user interface [GUI] edition, FAO, Rome, Italy) was used for 
simulation. AquaCrop simulates crop yield in response to water 
availability through five interconnected phases that integrate soil, 
crop, and atmospheric conditions. The process begins by modeling 
the development of the crop canopy cover (CC, %), which is 
calculated from the maximum canopy cover (CCx, %) and a canopy 
expansion rate coefficient (Kc) over time (Equation 1). Next, crop 
transpiration (Tr, mm) is estimated as a function of an adjusted 
canopy cover (CC*, %), a maximum crop transpiration coefficient 
(KCTr, x), and the potential crop evapotranspiration (ETo, mm) and 
water stress (Equation 2). Biomass production (B, t/ha) is then 
calculated by multiplying a water productivity factor (WP, g/m2) by 
the cumulative transpiration (ΣTr, mm) over the growing season 
(Equation 3). The final crop yield (Y, t/ha) is derived from the 
produced biomass and a harvest index (HI) (Equation 4). Finally, the 
overall water productivity (WPET, kg/m3) is computed as the ratio of 
yield to the total evapotranspiration water loss (ET, mm) as represent 
in Equation 5 (Iqbal et al., 2014; Raes et al., 2009; Steduto et al., 
2009b; Wang et al., 2022; Zhai et al., 2022):

	
( )( )− −= −1 cK t to

xCC CC e
	

(1)

	 ( )∗= × ,rr C T x oT CC K ET
	

(2)

	 = ×∑ rB WP T 	 (3)

	 = ×Y HI B	 (4)

	
=ET

YWP
ET 	

(5)

2.7 Sensitivity analysis

Sensitivity analysis (SA) is a useful tool for identifying the 
parameters that exert the most significant influence on model outputs 
(Cao and Petzold, 2006). Thereby guiding the calibration of the model 
and enhancing the accuracy of simulations. The SA identifies the 
parameters that most strongly influence model outputs, highlighting 

those that require the most precise field measurements and careful 
calibration (Mohammadi et al., 2016). To assess the robustness of the 
AquaCrop model for durum wheat and to determine the quality 
requirements of its input data, a sensitivity analysis was conducted 
prior to model calibration by varying key crop, soil, and climatic 
parameters. An input variation range of ± 20% was applied to each 
parameter during the sensitivity analysis. The analysis focused on a 
selected set of crop, soil, and irrigation management parameters 
(Table 5), with simulations performed with the corresponding data of 
the calibration field conditions. Simulated wheat grain yield was used 
as the primary output for evaluating sensitivity. This approach 
provided a systematic assessment of how variations in input 
parameters affect model performance and identified the most critical 
parameters requiring careful consideration for reliable model 
application. After changing the input parameters, the model outputs 
were evaluated against the baseline outputs by calculating the 
sensitivity coefficient (Sc), as defined by Geerts et  al. (2009), as 
represent in Equation 6.

	

−
= ×100a b

C
b

P PS
P 	

(6)

where; Pa is the model output after changing the input value and 
Pb is the output before the change. Sensitivity classes were defined as 
high, moderate, or low when the model response to input changes was 
greater than 15%, between 15 and 2%, or less than 2%, respectively 
(Geerts et al., 2009).

2.8 Calibration and validation procedures

In this study, AquaCrop was calibrated and validated, for durum 
wheat, using field data from agricultural sites affected by salinity. 
Validation under real field conditions provides practical insights into 
model performance and supports its adoption in actual agricultural 
production, complementing results obtained from controlled 
experiments. The AquaCrop model was parameterized for the 
experimental field within a central pivot irrigation system, and the 
calibration process was performed by running the model with the 
specific input data on weather conditions, soil characteristics, field 
managements practice, and crop parameters. It was selected because 
it provided a comprehensive and well-documented dataset, including 
regular measurements of CC, above-ground biomass, SWC, and final 
grain yield. Regarding model validation, data from a different site 
(TIDSA) were used; the validation process involved comparing the 
simulated and observed values of final gains yield only, using a 
combined dataset, which included: (1) Experimental data from the 
CAZDA COSIDER farm during the 2022–2023 cropping season. (2) 
Data from experiments conducted by TIDSA engineers during 2020–
2021, 2021–2022 and 2022–2023 cropping seasons. It should be noted 
that the validation was restricted to grain yield due to the unavailability 
of measured data on SWC and CC at the validation site; however, 
grain yield is a key indicator of overall crop performance and provides 
meaningful insights into the model’s predictive capability under the 
studied conditions. Future studies should aim to include additional 
datasets to allow a more comprehensive validation of model outputs. 
The methodological steps followed in this study are summarized in 
Figure 4.

TABLE 2  Irrigation depths (mm) for calibration and validation locations.

Month

Depth of irrigation (mm)

Calibration Validation

2022–2023
2020–
2021

2021–
2022

2022–
2023

November 122 31 15 31

December 183 88 63 89

January 70 92 42 77

February 123 86 53 121

March 76 227 208 195

April 63 194 227 94

May 28 – 60 –

Total 665 717 668 608
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The conservative parameters in AquaCrop should initially 
be  retained at their default values and may be  adjusted when 
strong supporting data is available if there is a clear need, because 
these values were determined using modern high-yielding 
cultivars grown under ideal water and soil conditions, adjusting 
these parameters may be justified when applying the model to 
lower-yielding or rustic crop cultivars (Steduto et  al., 2012). 
Boulange et  al. (2025) demonstrated that in the published 
literature, there is a widespread tendency to calibrate both 
conservative and non-conservative parameters of the AquaCrop 

model for cotton crop, even in studies conducted under similar 
environmental and climatic conditions, this practice results in 
significant variation of calibrated parameter values, which raises 
concerns about over-calibration and diminishes the model’s 
transferability across different sites or conditions. The AquaCrop 
handbook emphasizes that the model relies on a group of 
conservative parameters, described as “generally applicable and 
not requiring local calibration” or “parameters that should 
remain largely unchanged across different growing conditions 
and water management regimes (Raes, 2023; Raes et al., 2023). 

TABLE 3  The conservative input parameters used in the study to calibrate AquaCrop, and values used in previous studies for wheat crop.

Parameters Unit Default
In this 
study

Zhai 
et al. 

(2022)

Kumar 
et al. 

(2014)

Andarzian 
et al. (2011)

Wang 
et al. 

(2022)

Benabdelouahab 
et al. (2016)

AquaCrop version – 4.0 6.1 - 4.0 – – 4.0

Zone – Italy Algeria China India Iran China Morocco

Climate – – Arid Semi-humid Semi-arid arid – Semi-arid

Base temperature, 

Tbase
C° 0 0 0 1.4 0 0 0

Upper temperature, 

Tupper
C° 26 26 26 40.8 26 35 26

Canopy cover per 

seeding at 90% 

emergence (CCo)

cm2 1.5 1.5 1.5 – 1.5 – 1.5

Normalized water 

productivity, WP*♣
g m−2 15 15 15 15–20 15 16 15

Crop transpiration 

coefficient (KcTr)
% 1.1 1.1 1.1 11–12.9 1.1 1.1 1.1

Decline in crop 

coefficient after 

reaching CCx

% 0.15 0.15 – – 1.15 – 0.15

Effect of canopy 

cover in reducing 

soil evaporation in 

late season stage.

% 50 50 – – – – –

Canopy expansion

Pupper – 0.20 0.20 0.20 0.15–0.30 0.2 0.25 0.2

Plower – 0.65 0.65 0.65 0.46–0.73 0.65 0.6 0.65

Shape factor – 5 5 – 1.4–4.5 5 – 5

Early canopy senescence

Pupper – 0.7 0.7 0.7 0.63–0.81 0.7 0.65 0.7

Shape factor – 2.5 2.5 – 2.0–4.5 2.5 3 –

Stomatal closure

Pupper – 0.65 0.65 0.65 0.62–0.79 0.65 – 0.65

Shape factor – 2.5 2.5 – 4.4–2.5 2.5 – 2.5

EC threshold

Pupper dS m−1 20 20 18 18 – – –

Plower dS m−1 6 6 5 5 – – –

♣Described in the AquaCrop manual as ‘generally conservative, though potentially cultivar-specific.
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They are also generally considered invariant across cultivars 
unless demonstrated otherwise; examples include the stress 
thresholds and the normalized water productivity (WP*) 
(Raes, 2023).

Previous calibration and validation efforts in AquaCrop 
produced favorable results for wheat crop, the cases cited in 
Table  3 illustrate that some studies maintain conservative 
parameters at their default values, will others show variability in 
the adjustments of these parameters such as WP*, base 
temperature, and stress thresholds. In the current study, 
conservative parameters were not calibrated, and maintained at 
their default values, as specified in the AquaCrop wheat crop file 
(Table  3); because the Oued El-Bared cultivar is a modern, 

TABLE 4  Non-conservative crop parameters used for calibration of the 
model.

Parameters
Unit or 

meaning
Value Determination

Plant density Plant ha−1 2,750,952 M

Initial canopy 

cover (CCo)
%

4.13 E

Maximum canopy 

cover
95

M

Time from sowing 

to emergence

Day (GDD)

15 (240)

Time from sowing 

to maximum 

canopy

122 (1825)

Time from sowing 

to senescence
145 (2277)

Time from sowing 

to maturity
179 (3037)

Time from sowing 

to flowering
139 (2152)

Duration of 

flowering
6 (125)

Time from sowing 

to maximum 

rooting depth

127 (1927)

Canopy growth 

coefficient, CGC
% day−1 (GDD) 5.3 (0.357)

E
Canopy decline 

coefficient, CDC
% GDD−1 0.321

Reference harvest 

index (HIo)♣
% 38 M

Length building up 

of HI
Day (GDD) 40 (885) E

Maximum effective 

rooting depth
m

0.8 C

Minimum effective 

rooting depth
0.3 D

C, calibrated; D, default (as provided in “Wheat. CRO” file); E, estimated; M, measured; 
♣Described in the AquaCrop manual as generally conservative, though potentially cultivar-
specific.

TABLE 5  Crop parameters evaluated in the sensitivity analysis of 
AquaCrop, for durum wheat yield under ±20% variation of input 
parameter.

Parameter Sc (+20%) Sc (−20%)
Sensitivity 

level

Crop parameters

Upper temperature 

(Tupper)
−0.55 −0.74 Low

WP* 20.07 −20.07 High

KcTr 6.08 −9.58 Moderate

CGC 9.94 −15.12 Moderate-high

CDC −10.87 −12.89

ModerateMaximum effective 

rooting depth
7.00 −6.08

Stomatal closure

Pupper 0.55 −0.55
Low

Shape factor 0.55 −0.18

EC threshold

Pupper −0.18 −0.18
Low

Plower 0.55 −1.66

Canopy expansion

Pupper 0.04 −0.18

LowPlower 0.74 −0.18

Shape factor 0 −0.18

Early canopy senescence

Pupper 0 −0.55 Low

Shape factor 0 0

emergence −1.29 2.21 Low-moderate

Initial canopy cover 

(CCo)
4.6 −9.76 Moderate

Time from sowing 

to maximum CC
−17.13 14.18 Moderate-high

Time from sowing 

to flowering
0.18 −0.18 Low

Time from sowing 

to senescence
3.68 −3.87 Moderate

Duration of 

flowering
1.29 1.10 Low

Maximum canopy 

cover
4.24 −13.26 Moderate

HIo 17.5 −20.44 High

Soil parameters

WP −3.85 3.66 Moderate

FC 6.61 −20.92 Moderate-high

Sat −0.91 0

LowKsat 0.91 −2

ECs −0.36 0.18

Irrigation management

Amount −0.55 −24.95 Low -high

Eciw −0.92 0.73 low
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high-yielding variety, it is unnecessary to adjust these 
conservative parameters.

Afterwards, based on the averaged measurements obtained 
from the CAZDA COSIDER field experiment, the available 
monitored data were assigned to the corresponding 
non-conservative parameters (Table 4). Parameters that could not 
be  measured in the field were either calibrated based on the 
available data or estimated internally by the model. The model 
estimated CCo based on the measured planting density and the 
default value of canopy cover per seedling at 90% emergence. 
Canopy growth coefficient (CGC) and the canopy decline 
coefficient (CDC) were not directly quantified through field 
measurements. Instead, by entering key phenological dates for the 
studied crop cultivar (dates of emergence, maximum canopy 
cover, senescence and maturity), the model automatically 
estimated their values. Iterative model simulations were conducted 
to finely adjust the rooting depth, aiming to achieve the best 
agreement between simulated and observed values of canopy 
cover, above-ground biomass, final above-ground biomass and 
soil water content at different growth stages. In this study, most of 
the non-conservative parameters were obtained directly from field 
measurements. As a result, only minimal manual adjustments 
were applied, and a trial-and-error calibration approach was not 
required extensively.

After the calibration process, model validation was performed 
while all other calibrated parameters were considered as constants 
during this stage; the validation process involved assessing the 
agreement between simulated and observed final grain yield 
values, to ensure that the model accurately represented all crop 
growth phases, including the final yield. The model was also run 
with the default wheat crop file in the Growing Degree Days 
(GDD) mode, the process was carried out for both locations to 
evaluate the model’s performance in predicting key outputs, 
including final grain yield, above-ground biomass, soil water 
content (SWC) and final above-ground biomass.

2.9 Model evaluation

Green canopy cover, above-ground biomass development, soil 
water content, final grain yield and final above-ground biomass 
were considered for model evaluation, model outputs were 
assessed against field measurements using statistical indices, 
which included:

	 1	 The root means square error (RMSE), presented by 
Equation 7, was applied to evaluate the model performance, 
when RMSE value close to zero indicates better model 
performance, 0 indicating perfect and indicating poor 
model performance.
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	 2	 Normalized root-mean square error (NRMSE), presented by 
Equation 8:
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The simulation is considered excellent with a NRMSE < 10%, good 
if it is between 10 and 20%, fair if it is between 20 and 30%, and poor 
if the NRMSE >30% (Jamieson et al., 1991).

	 3	 Nash-Sutcliffe model efficiency coefficient (EF), presented by 
Equation 9 a normalized statistic determines the relative 
magnitude of the residual variance compared to the measured 
data variance (Nash and Sutcliffe, 1970).
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where; EF ranges between -∞ < ≤EF  1; EF = 1 being the 
optimal value, 0 < <EF  1 acceptable levels of performance, 
negative values indicate that the mean measured value is a better 
predictor than the simulated value (unacceptable performance) 
(Moriasi et al., 2007).

	 4	 Willmott’s index of agreement (d), was developed by Willmott 
(1981), which is a standardized measure of the degree of model 
prediction error (Equation 10); it ranges between 0 and 1; d = 1 
indicates a perfect agreement between measured and simulated 
values, and d = 0 indicates no agreement (Willmott, 1981).
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where; − ∞ < ≤d  1; better agreement between simulated and 
measured values achieved when values of d close to 1.

	 5	 Pearson Correlation Coefficient (R), ranges from 0 to 1, with 
values close to 1 indicating good agreement (Equation 11).
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where; Mi and Si (i = 1, 2,…, n) indicate measured and simulated 
values, respectively, and M : the mean of measured values and n is the 
total number of observations in all statistical indices.

3 Results and discussion

3.1 Sensitivity analysis (SA)

Table 5 presents the results of the SA conducted using a ±20% 
variation in each individual parameter while keeping all other 
parameters constant. The purpose of the SA is to identify the 
differences in the way AquaCrop responds to changes in specific 
inputs for simulating grain yield. The Sc values and their signs indicate 
both the magnitude and direction of change in grain yield relative to 
the baseline simulation.

The results of the SA for simulated final grain yield indicated that 
AquaCrop was highly sensitive to changes in WP* and HI₀, which 
exhibited the largest absolute sensitivity coefficients. Soil and irrigation 
water salinity collectively impose osmotic and ionic stresses that limit 
the plant’s ability to take up water and disrupt physiological processes 
essential for biomass production and partitioning. This stress reduces 

WP* and negatively affects the allocation of biomass to the grain 
(lowering HI₀). Under arid conditions such as those in Biskra, this 
combined salinity stress leads to significant declines in both WP* 
and HI₀.

Canopy development parameters such us CGC, time from sowing 
to maximum canopy cover, CCx, and CCo showed moderate 
sensitivity, suggesting that early-season canopy structure plays an 
important role in determining final yield. In particular, when these 
parameters were decreased, slower canopy development or delayed 
attainment of maximum cover markedly reduced grain yield. The 
canopy decline coefficient (CDC) also demonstrated consistent 
moderate sensitivity, reflecting the importance of maintaining canopy 
cover during the late growth stages to optimize yield formation. 
Similarly, the crop transpiration coefficient (KcTr) and maximum 
rooting depth had moderate influence, highlighting the link between 
water uptake dynamics and yield outcomes.

In contrast, the model showed low sensitivity to changes in 
phenological parameters such as time to flowering, flowering duration, 
and emergence, as well as to stress-related parameters including EC 
thresholds, canopy expansion, and early canopy senescence. Under the 
environmental conditions of this study, these factors had minimal 
impact on simulated yield.

FIGURE 4

Flowchart summarizing the methodological steps in this study for the calibration, simulation, evaluation, and validation of AquaCrop 7.1 model for 
durum wheat.
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The sensitivity analysis of soil parameters in AquaCrop revealed 
that FC exhibited moderate to high sensitivity, indicating that 
variations in FC substantially affect model output and should 
be  carefully parameterized. WP showed moderate sensitivity, 
suggesting a secondary impact on simulated yield. Sat, Ksat, and ECs 
displayed low sensitivity, so variations in these parameters have a 
limited influence on model predictions. These findings highlight that 
accurate determination of FC is particularly critical for robust 
model performance.

The SA of irrigation management parameters in AquaCrop 
indicated that the amount of irrigation exhibited a wide range of 
sensitivity, from low to high, which reflects its variable influence on 
model outputs depending. Notably, the model showed high sensitivity 
to reductions in irrigation amount, which highlights the significant 
effect of water deficit on yield simulation. Conversely, irrigation water 
salinity (Eciw) displayed low sensitivity, suggesting that reasonable 
variations in water salinity have a limited effect on model predictions 
under the studied conditions.

SA itself does not improve the accuracy of field measurements. 
However, in this study, it provided critical insights into the relative 
influence of key parameters on model outputs. WP* and HIo were 
identified as the most influential parameters affecting these outputs. 
This finding informed targeted adjustments of these parameters 
within physiologically realistic ranges during the calibration 
process. Sensitivity analysis was therefore valuable not only for 
prioritizing parameters but also for optimizing the calibration 
strategy, resulting in reliable and accurate simulation outcomes 
under local conditions.

According to Geerts et al. (2009), a lack of sensitivity to certain 
parameters indicates possible over-parameterization of the model, 
whereas high sensitivity to others reflects a strong dependence of 
specific calculation processes on a limited set of parameters.

3.2 Model calibration

As stated in the previous section, the AquaCrop model was 
calibrated for durum wheat using experimental data of the CAZDA 
COSIDER farm, from the period: November 22, 2022, to May 20, 2023, 
The model was used with the specific conditions of the pivot irrigation 
system, which is crucial for enhancing water management strategies 
and achieving optimal crop yields, Validation was performed using the 
TIDSA dataset. The model’s performance and robustness were assessed 
by comparing simulated and observed values of green canopy cover, 
above-ground biomass, soil water content, final above-ground biomass, 
and final grain yield. Besides the differences in irrigation methods, the 
two sites varied in key agronomic and environmental factors 
influencing irrigation performance. The calibration site, which used 
center pivot irrigation, had a different soil texture and water retention 
capacity compared to the validation site, where drip irrigation was 
employed. Additionally, planting densities varied, with the validation 
site typically using denser planting. The frequency and volume of water 
applications (number of irrigations) also differed between sites, shaped 
by the irrigation system capabilities and crop water requirements. The 
model was calibrated and validated using modern irrigation techniques 
to encourage the adoption of advanced irrigation technologies, 
particularly under the current conditions where surface irrigation 
remains widely used despite growing water scarcity in Biskra as well as 

across Algeria. According to recent statistics, approximately 43.54% of 
the total irrigated areas in Biskra still rely on traditional surface 
irrigation methods, whereas water-saving techniques like drip 
irrigation cover about 49.26%, while sprinkler and center pivot 
irrigation occupy smaller proportions, approximately 5.66 and 1.52%, 
respectively (DSA, 2022). This highlights the urgent need to promote 
efficient irrigation systems to better conserve scarce water resources 
and support sustainable agricultural development in the region. 
Fonteyne et  al. (2021) reported that water use in the barley-maize 
production system can be  reduced by 20–40% through the 
implementation of conservation agriculture, drip irrigation, or a 
combination of both. Similarly, Tang et al. (2025) demonstrated that 
combining wide–narrow row spacing with moderate drip irrigation 
significantly maintained yield and improved water-use efficiency in 
winter wheat production in arid regions. Ahmed et al. (2017) showed 
that high-efficiency irrigation systems, particularly center pivot 
irrigation, significantly enhance water and crop productivity in seed 
multiplication, reducing water losses by about 10 to 20%.

3.2.1 Canopy cover (CC)
Figure  5 displays a comparison between the observed and 

simulated CC values over different days after sowing using both the 
calibrated and default crop parameters. A strong linear correlation was 
found between the observed and simulated values for both cases, with 
R2 values of 0.98 for the calibrated simulation and 0.89 for the default 
simulation, the statistical evaluation of this parameter is presented in 
Table 6.

Simulation results using default parameters indicated that the 
model demonstrated excellent performance in simulating CC, with 
high statistical indicators (R = 0.99, RMSE = 3.9, NRMSE = 5.9%, 
EF = 0.99 and d = 1) (Table  6). However, slight differences can 
be noted; the default parameterization led to minor deviations and, 
overall, produced a marginally higher error compared to the 
calibrated scenario.

The model showed better prediction of CC when calibrated 
parameters were used, and demonstrated excellent performance in 
simulating CC development, with a very strong agreement between 
observed and simulated CC values, the statistical indicators confirm 
that model calibration improved the accuracy of canopy cover 
simulations, as reflected by lower values of RMSE = 3.7%, 
NRMSE = 5.5%, and a high model efficiency (EF = 0.99). The (d) 
values obtained indicate perfect agreement between the simulated and 
measured data (d = 1). Furthermore, the elevated R values suggested 
a perfect linear correlation between simulated and measured CC 
(R = 1). The model slightly underestimated CC during the early and 
mid-growth stages, specifically from 42 to 70 DAS and from 122 to 
139 DAS (Figure 5). However, this underestimation, particularly in the 
later days of the season, coincided with reduced simulated available 
soil water (as shown in Figure 6), which is primarily attributed to the 
model’s increased sensitivity to water stress during this period. Hsiao 
et  al. (2009), reported that there was an overestimation of the 
inhibitory effect of a slight water deficit on the growth of the CC in 
maize. Sandhu and Irmak, 2019, reported that sampling and 
measurement errors, the influence of extreme temperatures and 
aridity could be caused differences in CC. Similar results observed by 
Rinaldi et al. (2011) and Heng et al. (2009) as underestimation in the 
simulation. Overall, only minor differences were observed, and the 
model provided a reliable estimation throughout the growing season.
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3.2.2 Soil water content
In this study, the model was applied in a large area under center 

pivot irrigation conditions. To enhance the precision of the soil water 
content (SWC) simulation, spatial heterogeneity of soil properties, 
irrigation amounts, and the occurrence of irrigation events were taken 
into-consideration. For Simulation results using calibrated parameters, 
SWC approached or exceeded the field capacity line during the early 
vegetative growth stage, which caused percolation; during this period 
the model simulated well the SWC. In contrast, in the residual 
cropping season, SWC remained between the field capacity and 
wilting point lines, the linear correlation between observed and 
simulated SWC was strong (R2 = 0.77), the model trended to 
underestimate the SWC in this period. For comparison, simulations 
based on the model’s default crop parameters generally resulted in 
higher SWC values throughout the season, clearly visible as an 
overestimation trend in (Figure 6). When the default parameters were 

used, the model’s ability to simulate SWC declined, as reflected by 
higher error indices (RMSE = 50.3 mm, NRMSE = 18.6%), slightly 
improved correlation (R = 0.97), but lower index of agreement 
(d = 0.75) and a more negative EF (EF = −1.22). This suggests that 
while the default parameters allowed the model to capture the general 
fluctuations in SWC, its performance was poorer compared to the 
calibrated scenario. Paredes et al. (2014b) reported similar findings 
and emphasized the importance of parameterizing the AquaCrop 
model using accurate and continuous SWC observations throughout 
the crop growing season. They highlighted that thorough calibration 
based on detailed field measurements significantly enhances the 
model’s reliability in simulating SWC and crop performance.

The results of the SWC using calibrated parameters show that 
the model performed well for simulating the SWC in the root zone 
(0–100 cm), as shown by the statistical indices: RMSE = 40.2 mm, 
NRMSE = 14.9%, R = 0.94 and d = 0.79 indicating a good 
agreement between measured and simulated values. Despite the 
negative value of the Nash–Sutcliffe Efficiency (EF = −0.42), other 
model performance indicators showed good values, indicating 
that the model was able to capture the temporal patterns and 
general trends of soil water content dynamics. However, the 
negative EF indicates that the observed mean of soil water content 
(SWC) would provide a better estimate than the model 
simulations. This suggests that, although the model was able to 
capture the general temporal trends of SWC, it exhibited 
significant differences in simulating the actual observed values, 
particularly during the late season under combined water deficit 
and salinity stress (Table 6). A positive Nash–Sutcliffe Efficiency 
(EF) is considered the minimum criterion for reliable soil water 
content simulation in crop models (Yang et  al., 2014). Terán-
Chaves et al. (2022) has been documented similar discrepancy in 
simulating SWC using AquaCrop, characterized by negative EF 
values, and reported that the observed mean serves as a better 
predictor than the model simulations. The negative EF value 
observed reveals the model’s limitations in accurately simulating 
observed SWC, particularly under the combined influence of 
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Observed and simulated values of canopy cover (CC) on different days after sowing (DAS) during model calibration: (a) temporal comparison of 
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TABLE 6  Statistical performance indicators for observed and simulated 
canopy cover, Above-ground biomass, and soil water content for both 
calibrated and default model settings.

Variable

Indicator

RMSE
NRMSE 

(%)
R EF d

Calibration

CC (%) 3.7 5.5 1 0.99 1

B 

(t ha−1)
1.1 9.6 0.95 0.78 0.93

SWC 

(mm)
40.2 14.9 0.94 −0.42 0.79

Default

CC (%) 3.9 5.9 0.99 0.98 1

B 

(t ha−1)
2.7 24 0.95 −0.37 0.78

SWC 

(mm)
50.3 18.6 0.97 −1.22 0.75
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salinity and drought stresses during the late growing season. The 
underestimation of SWC most likely resulted from an inaccurate 
estimation of evapotranspiration and the model’s inability to fully 
capture the combined effects of salinity and water stress on plant 
water uptake. These stresses reduce root water absorption 
efficiency and disrupt the soil–plant-water balance, leading to 
lower simulated SWC. Additionally, simplified parameterization 
under stress conditions may have contributed to an overestimation 
of water loss. This interpretation aligns with numerous studies 
worldwide, which report that the interaction between salinity and 
limited irrigation reduces water availability to plants and 
challenges the model’s capacity to accurately represent these 

complex stress conditions. Zhai et  al. (2022) reported that the 
AquaCrop model demonstrated good performance in simulating 
SWC across various irrigation levels and water salinity conditions 
for winter wheat, model performance indicators (R2, RMSE, 
NRMSE) were 0.87–0.95, 1.22–2.59%, and 8.09–12.95% during 
calibration, and 0.88–0.96, 1.52–2.75%, and 10.32–18.12% during 
validation, respectively, however, simulation accuracy declined 
under deficit irrigation with saline water. Mohammadi et  al. 
(2016) calibrated and validated the AquaCrop model for wheat to 
simulate SWC under combined salinity and water stress conditions 
in an arid region, their results showed good agreement between 
simulated and observed soil moisture, with an average normalized 

0

50

100

150

200

250

300

350

400

450

500

1 21 41 61 81 101 121 141 161 181

SW
C

 (m
m

)

DAS

a)
Observed Calibration PWP FC Default

y = 0.8785x
R² = 0.7766

y = 1.2866x
R² = 0.9717

150

200

250

300

350

400

150 200 250 300 350 400

Si
m

ul
at

ed
 S

W
C

 (m
m

) 

Observed SWC (mm) 

b)
Calibration Default

FIGURE 6

Observed and simulated values of soil water content (SWC) in the top 1 m on different days after sowing (DAS) during model calibration: (a) temporal 
comparison of observed and simulated SWC throughout the growing season; (b) relationship between simulated and observed SWC, with diagonal 
lines represent 1:1 line.

https://doi.org/10.3389/fsufs.2025.1709629
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Sekhri et al.� 10.3389/fsufs.2025.1709629

Frontiers in Sustainable Food Systems 15 frontiersin.org

root mean square error (NRMSE) of 11.8%, an index of agreement 
(d) of 0.79, and a coefficient of determination (R2) of 0.61, the 
model exhibited a tendency to systematically underestimate 
SWC. In contrast, Mkhabela and Bullock (2012) reported the 
overestimation of SWC for wheat, with corresponding model 
performance statistics of RMSE = 49.4 mm, R2 = 0.9, and d = 0.99 
Their evaluation metrics showed strong agreement between 
observed and simulated SWC values, with R2 ranging from 0.87 to 
0.96 and normalized root mean square errors (NRMSE) between 
8.09 and 18.12% during both calibration and validation phases. 
However, they noted that simulation accuracy decreased under 
deficit irrigation combined with saline water. The accuracy in 
simulating SWC through the AquaCrop model is affirmed by 
results in other research for wheat (Andarzian et  al., 2011; 
Benabdelouahab et al., 2016) which similarly reported a tendency 
to overestimate SWC.

Additionally, several studies have reported limitations in 
AquaCrop’s ability to accurately simulate soil water content, 
attributing underestimation or overestimation errors to various 
factors. Paredes et al. (2014b) found that AquaCrop shows a tendency 
to underestimate evaporation and overestimate transpiration, leading 
to a bias in SWC simulations. Farahani et al. (2009) found that errors 
in simulating SWC were non-uniformly distributed across the soil 
profile, with a tendency to overestimate in the surface layer and 
underestimate in deeper soil layers. Sandhu and Irmak (2019) 
reported that the inaccurate estimates of SWC could result from 
imprecise estimations of transpiration and evaporation, which relate 
to the utilization of inadequate or less accurate coefficients for 
transpiration and evaporation.

To improve model performance, future studies should refine the 
calibration of stress response parameters. Additionally, measuring 
SWC at multiple depths and at shorter intervals would provide a more 
detailed understanding of soil moisture dynamics and enable more 
robust model validation.

3.2.3 Above-ground biomass
Figure  7 illustrates the comparison between observed and 

simulated Above-ground biomass (B) values for durum wheat, using 
both calibrated and default crop parameters. When the default 
parameterization was applied, model performance declined 
noticeably, errors increased (RMSE = 2.7 t ha−1, NRMSE = 24%) and 
a lower index of agreement (d = 0.78), and model efficiency became 
negative (EF = −0.37) (Table  6). This indicates that, although the 
default settings allowed the model to capture general B development 
trends, they led to larger deviations between observed and simulated 
values, especially during critical growth stages. The lower model 
efficiency and greater error metrics further underline the value of 
site-specific calibration for improving the accuracy of 
biomass simulation.

When using calibrated parameters, the linear correlation between 
observed and simulated values was strong (R2 = 0.81), the model 
slightly overestimates B accumulation at 112, 140, and 148 
DAS. Generally, AquaCrop performed very well in simulating the 
accumulation of (B) throughout the growing season, as shown by the 
model performance indicators; a root means square error (RMSE) of 
1.1 t ha−1, and a normalized RMSE (NRMSE) of 9.6% indicate a high 
level of model accuracy. A strong positive relationship was found 
between observed and simulated B (R = 0.95). Moreover, the model’s 
good performance is supported by the high value of EF, and an index 
of agreement (d = 0.93), which is close to 1, indicates a strong 
agreement between simulated and observed values (Table 5).

The predicted final above-ground biomass through the 
AquaCrop model was 14.1 t ha−1, while the observed value was 
14.35 t ha−1, resulting in a very slight underestimation of 0.25 t ha−1. 
This minor difference indicates that the model provides a close 
approximation of biomass accumulation under the studied 
conditions. Similar slight underestimation for wheat have been 
reported by Salemi et al. (2011) in arid region and Benabdelouahab 
et al. (2016) in semi arid region, Araya et al. (2010) for barley, and 
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maize Hsiao et al. (2009). Contrasting results as an overestimation 
was noted by Andarzian et al. (2011) using the model for wheat. 
These variations observed across different crops and environments 
can be attributed to differences in cultivar characteristics, soil and 
climatic conditions, management practices and the specific 
methodologies employed for model calibration.

A slight overestimation of biomass accumulation occurred 
during intermediate growth stages, whereas a modest 
underestimation of the final above-ground biomass (0.25 t ha−1) 
was noted at maturity. The observed decrease in SWC during the 
final growth stages (Figure 5) contributed to the decline in the 
final above-ground biomass compared to field observations. It 
becomes clear that the model overestimated the degree of water 
stress experienced by the crop at the end of the season. This 
outcome indicates that the model may be  overly sensitive to 
reductions in soil moisture under these conditions, resulting in a 
reduction in predicted final above-ground biomass at maturity. 
Additionally, uncertainty arising from measurement errors in 
biomass sampling may also contribute to the observed differences 
between simulated and measured values; small differences likely 
reflect a combination of model sensitivity and unavoidable 
measurement errors, rather than being solely attributable to 
limitations in model performance.

In brief, the model accurately predicted the final above-ground 
biomass of durum wheat under saline environment and arid 
conditions of Biskra region.

3.3 Validation of the model

The validation process seeks to assess the model’s accuracy 
through comparisons of experimental data with output results 
(Thacker et al., 2004). In the current study, the model was validated 
using the same sets of conservative parameters values and statistical 
indices as those applied during the calibration phase. It was 
conducted using the method that was previously explained, In 
addition, model simulations were also performed using the default 
crop parameters provided by AquaCrop. Details of the data used for 
the validation were presented in the previous section. The model 
validation results of observed and simulated grain yields (t ha−1) for 
durum wheat are presented in Table 7.

Figure  8 presents the relationship between simulated and 
observed final grain yield under both calibrated and default 
model parameter sets. The regression line for the calibrated 
simulation is closer to the 1:1 line compared to that obtained with 
default parameters, indicating improved model performance 
after calibration.

Model simulations with default parameters showed that 
AquaCrop was inadequate in predicting final grain yield, as indicated 
by high errors and low efficiency (RMSE = 1.7 t ha-1, NRMSE = 26.8%, 
EF = −5.1, and d = 0.46) (Figure  8). The default parameters in 
AquaCrop often lead to an overestimation of crop yields because they 
are based on generalized assumptions about plant transpiration. These 
parameters usually depict optimal or average growing conditions and 
do not fully capture field-specific constraints such as water deficits, 
soil and irrigation water salinity, or nutrient limitations, which can 
directly reduce crop growth and yield. This highlights the necessity of 
using appropriately calibrated crop parameters to achieve reliable 
yield predictions.

In contrast, when calibrated parameters were applied, AquaCrop 
model predictions of grain yield showed excellent agreement with 
measured data for both sites and years. The pooled dataset revealed a 
low RMSE of 0.2 t ha−1, NRMSE of 2.76%, high model efficiency 
(EF = 0.9), and index of agreement (d = 0.98). Additionally, there is a 
high correlation between the simulated and observed values, with a 
determination coefficient (R2) of 0.92. The slope is very close to 1, this 
demonstrates that the model’s predictions are unbiased, with no clear 
tendency for over- or under-prediction. Notably, all simulated yield 
values deviated from the observed values by less than 5%, this 
indicates a high level of model accuracy and no substantial bias in the 
predictions. Similarly, to assess the model’s robustness in simulating 
sugar beet yield in Spain, Garcia-Vila et al. (2019) used various factors 
including different locations, varieties, sowing dates, irrigation 
management and years to validate the model, and reported that the 
simulated yields showed a very good agreement with measured yields, 
with R2 value 0.908 =, a slope = 0.945, RMSE = 1.17 t ha−1, d = 0.998, 
without any clear trend for over-prediction or under-prediction. El 
Mokh et al. (2022) reported that the AquaCrop model is effective in 
simulating barley yield under saline and arid conditions in Tunisia, as 
evidenced by low RMSE values ranging from 0.36 to 1.6 t ha-1 and 
relatively high coefficients of determination between 0.77 and 0.81. 
Araya et al. (2010) used the model to simulate barley grain yield and 
reported an R2 > 0.80 and the RMSE values range from 0.07 to 
0.27 t ha−1.

Mkhabela and Bullock (2012) used the model to simulate soft 
wheat grain yield and obtained over-prediction by only 3%, and the 
difference between the observed and simulated grain yield was 
0.118 t ha−1. Andarzian et al. (2011) and Benabdelouahab et al. (2016) 
reported that AquaCrop over-predicted grain yield for wheat (Triticum 
aestivum L.) and durum wheat, respectively. Salemi et  al. (2011) 
reported that the model simulated very well winter wheat grain yield, 
with a slight under-prediction of 1.35%. These findings confirm the 
high predictive capacity of the AquaCrop model for durum wheat 
yield under the agro-climatic conditions of Biskra.

TABLE 7  Observed and simulated grain yields (Y) (t ha−1) of durum wheat for both sites: model validation results.

Location Season Observed Y (t ha−1)
Simulated Y (t ha−1)

Calibrated parameters Default parameters

TIDSA

2020/2021 6.76 6.85 8.15

2021/2022 6.16 6.04 6.33

2022/2023 7.23 7.06 7

CAZDA 2022/2023 5.38 5.43 7.65
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4 Conclusion

The calibration and validation of the AquaCrop model for durum 
wheat under the arid and saline conditions of Biskra, Algeria, 
demonstrated its strong capability in simulating key crop parameters, 
including canopy cover, above-ground biomass, soil water content, 
and final grain yield. In this study, the accurate calibration of canopy 
cover curve parameters, based on field-measured data, substantially 
improved the model’s performance. This enhancement is explained by 
the fact that the canopy cover curve in AquaCrop is a key driver in the 
daily computation of crop transpiration and soil evaporation, leading 
to more realistic simulations compared to those obtained using the 
default parameters.

Despite the negative EF value, other statistical indicators and the 
ability to capture temporal patterns indicate that AquaCrop performed 
reasonably well under the conditions of this study, with a tendency to 
underestimate SWC, particularly during the mid and late season. For 
management-oriented purposes, particularly irrigation scheduling, 
further calibration is required to enhance the accuracy of SWC 
simulations. Such refinement would increase the model’s reliability as 
a decision-support tool for sustainable water management in the area. 
Future research should incorporate detailed soil salinity 
measurements; explicitly monitor SWC at multiple soil depths. 
Additionally, assessing the model’s sensitivity to different soil 
properties and water regimes is recommended. Such approaches 
would help reduce uncertainties and enhance AquaCrop’s predictive 
reliability under diverse and challenging conditions, particularly 
where WS coincides with salinity stress.

The AquaCrop model can accurately predict durum wheat above-
ground biomass and final above-ground biomass when calibrated 
parameters are used. Above-ground biomass simulations showed a 
slight overestimation throughout the growing season, but the final 
harvested biomass exhibited a tendency toward underestimation, with 
a difference of 0.25 t ha−1.

Validation using independent datasets further confirmed the 
model’s reliability, with simulated grain yields closely matching 
observed values across different growing seasons and sites. The high 
correlation (R2 = 0.92) and low prediction errors (RMSE = 0.2 t ha−1, 
NRMSE = 2.76%) highlight AquaCrop’s robustness in diverse crop 
conditions. Although the validation was conducted for specific 
seasons, sites, and management practices, the strong results obtained 
suggest that the model is well-suited, in terms of grain yield within the 
region. However, the validation was limited to grain yield at the 
TIDSA site, with no available data for CC, B or SWC. This limitation 
constrains the comprehensive assessment of the model’s performance 
across all key parameters. Future research should focus on collecting 
and incorporating CC, B, and SWC validation data to fully evaluate 
and improve AquaCrop’s reliability under diverse environmental and 
management conditions. Expanding validation efforts in this way will 
enhance confidence in the model’s capacity to accurately simulate crop 
responses for sustainable water and crop management in the region.

This study provides a calibration and validation of the AquaCrop 
model over a short to medium-term time frame under current 
climatic conditions, establishing a foundational assessment of its 
reliability and predictive performance. However, it is acknowledged 
that this temporal scope inherently limits the model’s capacity to 
capture interannual climatic variability and extreme events, as well as 
the prospective impacts of climate change factors such as increased 
temperatures, altered precipitation patterns, and elevated atmospheric 
CO₂ concentrations. Consequently, to fully evaluate AquaCrop’s 
robustness and applicability, further investigations employing 
extended multi-year datasets alongside downscaled climate projection 
scenarios are imperative. Such research will be critical to refining the 
model’s utility for long-term decision support in the region.
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