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Neglected and underutilised crop species (NUS) such as orange-fleshed 
sweet potato (OFSP) and taro are nutrient-dense, climate-resilient crops 
with high potential to diversify food systems. While the AquaCrop model 
has been calibrated to simulate canopy cover (CC), biomass, and yield for 
both crops, independent testing across diverse agro-ecological zones is 
required to critically assess model robustness. We, therefore, evaluated 
AquaCrop’s ability to simulate the growth and yield of OFSP and taro at three 
locations in the KwaZulu-Natal province, South Africa. Critical recalibration 
adjustments included reducing taro’s maximum rooting depth, modifying soil 
water depletion thresholds to better reflect water stress, and parameterising 
phenology based on tuber mass stabilisation. Recalibration improved model 
performance for CC (R2, coefficient of determination, up to 0.954 for OFSP; 
0.632 for taro), biomass (NSE, Nash-Sutcliffe efficiency, up to 0.975), and 
final yield (absolute deviations ≤ 6% under optimal irrigation). Validation 
across three locations confirmed that AquaCrop reliably simulates growth 
and yield under non-stressed conditions, although performance declined 
under water-limited environments. The model was run in growing degree-day 
mode to account for climate variability, which is recommended for future 
validations. These results demonstrate that, with high-quality calibration 
datasets representing multiple landraces, AquaCrop can provide reliable 
yield predictions for NUS. This enables more accurate water management, 
operational yield predictions, and climate risk assessments for both smallholder 
and commercial farmers. By bridging the modelling gap for NUS, this work 
supports their integration into climate adaptation strategies, strengthens 
food and nutrition security, and promotes resilient agricultural diversification 
under variable climatic conditions.
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1 Introduction

Neglected and underutilised crop species (NUS) are indigenous 
crops that are well adapted to local growing conditions but remain 
under-researched (Dansi et al., 2012; Chimonyo et al., 2022). NUS 
such as sweet potato and taro are nutrient-dense and exhibit resilience 
to drought and heat stress (Mabhaudhi et al., 2017). Their high yield 
potential and low water use under rainfed agriculture demonstrate 
adaptability to variable climates and potential contributions to 
Sustainable Development Goals (SDGs), including zero poverty and 
hunger (Kunz et  al., 2024). NUS are increasingly recognised as 
climate-resilient, as tolerance to heat, drought, and low-fertility soils 
positions them as viable alternatives in marginal environments where 
mainstream staples may fail. Integrating NUS into diversified farming 
systems enhances adaptation to climate-induced stresses, reduces 
production risks, and strengthens food system resilience (Mabhaudhi 
et al., 2017). Despite these advantages, NUS remain excluded from 
mainstream production (Modi and Mabhaudhi, 2016), with 
cultivation largely confined to smallholder farmers for subsistence.

Worldwide, major staples (e.g., maize and soybean) are 
commercially produced and extensively studied with measured 
datasets readily available from local and global sources (Chimonyo 
et al., 2022; Mohd Nizar et al., 2021). In contrast, limited agronomic 
and field experimental data on NUS yield and water use across 
different environments has hindered their adoption by commercial 
farmers. Enhancing the knowledge base on NUS is therefore critical 
for improving rural development, agricultural diversification, and 
food and nutrition security.

Field experiments across different agro-ecological zones, which 
are areas characterised by similar climate, soil, and terrain, are 
costly and labour-intensive (Mabhaudhi, 2012; Choruma et  al., 
2019). Crop simulation models (CSMs) provide a cost-effective 
interim solution by generating modelled data while field trials 
progress (Mthembu et al., 2024). CSMs support decision-making 
by assessing climate and management impacts on yields (Yadav 
et al., 2012; Choruma et al., 2019). They also inform adaptation 
strategies, guide sustainable agricultural transformation, and 
evaluate the potential of landraces, which are traditional crop 
varieties that have evolved by adapting to local environments (Villa 
et al., 2005).

Reliable simulations require high-quality input data across 
multiple agro-ecological zones (Zhao et al., 2016). In South Africa, 
this is challenging due to (i) limited field data, (ii) declining availability 
of weather station data (Pegram et al., 2016), (iii) faulty data-collecting 
instruments (Chisanga et al., 2017), and (iv) a lack of funding for field 
experiments. Calibrating CSMs requires comprehensive datasets on 
climate, soil, field management, and crop-specific characteristics. Data 
scarcity has restricted reliable parameterisation for NUS, highlighting 
the need for models capable of producing robust simulations with 
fewer input parameters. AquaCrop meets this requirement, balancing 
reduced input needs with strong performance (Todorovic et al., 2009; 
Saab et al., 2015).

The latest DSSAT (Decision Support System for 
Agrotechnology Transfer; Jones et  al., 2003), APSIM 
(Agricultural Production Systems sIMulator; Keating et  al., 
2003), and AquaCrop models simulate 42, 39, and 17 crops, 
respectively (Wimalasiri et al., 2021; Wellens et al., 2022; Raes 
et al., 2023). Despite a smaller crop range, AquaCrop is the most 

widely used CSM in South Africa (Kephe et al., 2021), partly due 
to an automated procedure enabling simulations across more 
than 5,800 homogeneous regions in southern Africa (Kunz 
et al., 2024). Furthermore, AquaCrop has been calibrated for 
various NUS landraces in South  Africa including amaranth 
(Nyathi et  al., 2018), bambara groundnut (Mabhaudhi et  al., 
2014a), cowpea (Kanda et  al., 2020), pearl millet (Bello and 
Walker, 2016), sorghum (Hadebe et  al., 2017), spider flower 
(Nyathi et al., 2018), sweet potato (Beletse et al., 2013; Nyathi 
et  al., 2016), Swiss chard (Nyathi et  al., 2018), and taro 
(Mabhaudhi et al., 2014b).

Key CSM terms are essential for understanding model application. 
Parameterisation defines crop-specific parameters derived from in situ 
data or literature (FAO, 2023). Calibration involves adjusting 
parameters iteratively to minimise the difference between simulated 
and measured data, thus enhancing model accuracy (FAO, 2023). 
Validation involves evaluating model performance using independent 
datasets (FAO, 2023). Recalibration involves refining parameters with 
additional datasets to enhance simulation accuracy in different 
environments, soils, cultivars, or management practices (Gowda 
et al., 2013).

AquaCrop calibration for NUS in South  Africa has been 
limited. Beletse et al. (2013) parameterised AquaCrop for orange-
fleshed sweet potato (OFSP; Ipomoea batatas L. Lam) using a rain 
shelter experiment and validated against data from the following 
season. This approach was not ideal since both datasets were from 
one location, restricting representativeness across other agro-
ecological zones. Mabhaudhi et al. (2014b) parameterised and 
validated AquaCrop for taro (Colocasia esculenta L. Schott) but 
recommended further refinement due to high variability across 
environments. These cases highlight the need for recalibrating 
AquaCrop for both OFSP and taro using multi-location datasets. 
Multi-environment calibration aligns with the objectives of the 
Agricultural Model Intercomparison and Improvement Project 
(Rosenzweig et al., 2013), which promotes standardised protocols 
and cross-site evaluation of CSMs.

This study therefore aims to recalibrate and validate AquaCrop for 
OFSP and taro using secondary datasets from multiple locations to 
improve accuracy. AquaCrop was selected for its simplicity, 
robustness, and capacity to simulate multiple seasons across diverse 
environments. By enhancing predictive accuracy, this work supports 
more reliable yield forecasting, optimised water management, and 
improved climate adaptation planning for farmers. Ultimately, these 
outcomes contribute to integrating underutilised crops into 
mainstream production systems, enhancing food and nutrition 
security, and promoting resilient agricultural diversification under 
climate variability.

2 Materials and methods

2.1 AquaCrop model description

In 2009, the Food and Agriculture Organisation (FAO) developed 
AquaCrop to simulate biomass production and crop yield under 
rainfed and irrigated conditions (Steduto et  al., 2009). AquaCrop 
evolved from the CROPWAT model (Doorenbos and Kassam, 1979), 
with improvements made to ensure AquaCrop is more robust and 
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simpler to use. Both models are therefore based on the following 
relationship between yield formation and transpired water:

	

   − −
=   

   
C A C A
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Y Y ET ETK
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(1)

Where KY is a proportionality factor describing yield loss due to 
decreasing crop transpiration. YC and YA represent potential and actual 
yield (t ha−1), respectively. Similarly, ETC and ETA denote potential and 
actual evapotranspiration (mm), respectively.

AquaCrop requires input data on crop, soil, climate, and 
management conditions (Hsiao et al., 2009). Daily climate inputs 
include the following: rainfall, maximum (Tx) and minimum 
(Tn) temperature, reference evapotranspiration (ETO), and annual 
(and/or decadal) atmospheric carbon dioxide (CO2) levels. 
Irrigation (I) is specified in the management input. Temperature 
data are used to estimate growing degree days (GDD) and to 
assess cold or heat stress, while ETO is used to quantify 
atmospheric demand that drives crop transpiration (Tr) and soil 
evaporation (E) rates (Allen et al., 1998). AquaCrop uses canopy 
cover (CC) instead of leaf area index to calculate Tr, which is then 
used to estimate above-ground biomass (B in kg ha−1) as the 
product of the water productivity parameter (WP in kg m−3) and 
accumulated Tr (m3) as follows:

	 = ΣB WP x Tr	 (2)

The model calculates harvestable yield (Y in kg ha−1) as a product 
of B and the harvest index (HI in %) as follows:

	 =Y B x HI 	 (3)

AquaCrop calculates soil water content via the soil water balance 
method (FAO, 2023) by accounting for soil water gains (rainfall, 
irrigation, and capillary rise) and losses (Tr, E, deep percolation, and 
runoff). Interception loss is not accounted for by the model, nor are 
biotic factors such as pests and diseases (Steduto et al., 2012). The 
model’s management component describes the influence of irrigation, 
weeds, soil bunds, soil fertility, and soil salinity on crop growth 
(FAO, 2023).

Plant stress due to limited soil water is controlled by four stress 
coefficients linked to (i) leaf expansion, (ii) stomatal closure, (iii) 
early canopy senescence, and (iv) aeration stress (Vanuytrecht et al., 
2014). Soil water stress reduces leaf expansion and, in severe cases, 
may trigger early canopy senescence. It also negatively impacts 
canopy development and induces stomatal closure, thereby 
reducing Tr and biomass production (FAO, 2023). The model also 
modifies HI when soil water stress occurs pre- and post-flowering, 
thus affecting yield formation (Raes et al., 2009). Generally, water 
stress reduces HI; however, it may also increase it by limiting 
vegetative growth, thereby directing more assimilates to grain, seed, 
or fruit development (Vanuytrecht et  al., 2014). Limited soil 
aeration due to prolonged waterlogging reduces Tr, which negatively 
affects biomass production (Steduto et al., 2012). CC development 
and the WP parameter are both affected by (i) the ambient CO₂ 
level and (ii) soil fertility and salinity stress (Steduto et al., 2012).

2.2 Description of experimental sites

Summarised information for experimental datasets obtained for 
model calibration and testing is provided in Table 1. Calibration 
data for OFSP were obtained from the University of KwaZulu-Natal 
(UKZN) in Pietermaritzburg, KwaZulu-Natal province, 
South  Africa (29°37’S; 30°23′E; 750 m a.s.l.). Kunz et  al. (2024) 
conducted the experiment where OFSP was grown in raised soil 
beds in a greenhouse during the 2022/23 growing season. For taro, 
the calibration dataset was measured by Mabhaudhi (2012) during 
the 2010/11 growing seasons at the Agricultural Research Council’s 
rain shelter in Roodeplaat (25°36’S; 28°21′E; 1,168 m a.s.l.), situated 
north-east of Pretoria (Gauteng province). This dataset is the same 
as that originally used by Mabhaudhi et al. (2014b) to parameterise 
AquaCrop for taro.

Growth and yield data from the unstressed water treatment (100% 
of crop water requirement or CWR in mm) were used for recalibration. 
CWR is the amount of irrigated water required to meet a crop’s maximum 
evapotranspiration demand (ETC in mm). The calculation of CWR is 
based on FAO’s Penman-Monteith equation to calculate ETO (Allen et al., 
1998), which is then adjusted using a crop coefficient (KC) as follows:

	 = =C O CCWR ET ET x K 	 (4)

TABLE 1  Summary of experimental datasets obtained for model calibration and testing of sweet potato and taro in South Africa.

Experimental 
site

Experiment 
type

Season Crop(s) Water 
treatment

Calibration Testing Source

UKZN Greenhouse 2022/23 OFSP 40 & 100% of CWR ✓
Kunz et al. 

(2024)

ARC Rain shelter 2010/11 Taro
30, 60, & 100% of 

CWR
✓

Mabhaudhi 

(2012)

Swayimane Field 2023/24 OFSP & taro Rainfed ✓ This study

Fountainhill Field 2021/22 OFSP & taro Rainfed ✓
Kunz et al. 

(2024)

Ukulinga Field 2010/11 Taro Optimally irrigated ✓
Mabhaudhi 

(2012)

ARC, Agricultural Research Council; UKZN, University of KwaZulu-Natal; CWR, crop water requirement.
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For both OFSP and taro experiments, restricted irrigation 
treatments (40% of CWR for OFSP, and 30 and 60% of CWR for taro) 
were applied consistently throughout the entire crop development.

For both crops, AquaCrop was validated using data from 
Swayimane and Fountainhill (Table  1). The latter datasets were 
sourced from Kunz et  al. (2024), who conducted rainfed field 
experiments over the 2021/22 growing season at Fountainhill (29°27’S; 
30°32′E; 851 m a.s.l.), located approximately 32 km north-east of 
Pietermaritzburg. For this study, data were collected from a 
smallholder farming community in Swayimane (29°31’S; 30°42′E; 
878 m a.s.l.), situated near Wartburg in KwaZulu-Natal, at the end of 
the 2023/24 season. Another dataset collected by Mabhaudhi (2012) 
was used to test taro’s recalibration. The irrigated field experiment was 
undertaken at Ukulinga (29°39’S; 30°24′E; 775 m a.s.l.), UKZN’s 
research farm located in Pietermaritzburg. Figure 1 shows the location 
of each experimental site selected for model recalibration and testing.

2.3 Model inputs

The original databases for the experimental sites listed in Table 1 
were provided by the respective authors. Input data describing soil, 
climate, and field management were used to develop the corresponding 
AquaCrop input files for each site, as described below.

2.3.1 Soil data
Data provided in Table 2 were used to develop an input soil (. 

SOL) file for each experimental site. These include the soil water 
content at permanent wilting point (PWP), field capacity (FC), and 
saturation (SAT), as well as total available water (TAW), and saturated 
hydraulic conductivity (KSAT). For the Swayimane validation site, soil 
samples were collected from 0.15, 0.30, and 0.60 m depths using an 
auger. Soil texture was determined in the soil and water laboratory at 
UKZN using the hydrometer method (Bouyoucos, 1962). Soil water 

FIGURE 1

Experimental sites selected for model recalibration and testing of sweet potato and taro in South Africa.

TABLE 2  Soil data used to develop an AquaCrop soil file for each experimental site.

Experimental site Crop PWP FC SAT TAW KSAT Soil textural 
class

Source

(%) mm mm d−1

UKZN OFSP 29.5 37.5 43.5 32 77 Clay loam Kunz et al. (2024)

ARC Taro 16.1 24.1 42.1 80 324 Sandy clay loam Mabhaudhi (2012)

Fountainhill
OFSP 7.0 23.0 33.8 160 541 Loamy sand

Kunz et al. (2024)
Taro 10.3 23.5 38.3 85 27 Sandy loam

Swayimane
OFSP 27.8 34.5 48.3 67 1,131 Sandy loam

This study
Taro 22.5 34.3 50.0 118 584 Sandy loam

Ukulinga Taro 15.9 23.8 41.9 80 320 Sandy clay loam Mabhaudhi (2012)
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retention curves were obtained using controlled outflow pressure 
apparatus and fitted with the Van Genuchten equation (Van 
Genuchten, 1980), from which soil water content at FC and PWP was 
estimated at −10 kPa and −1,500 kPa, respectively. KSAT was measured 
using the constant-head permeameter method (Klute, 1965).

2.3.2 Climate data
Daily climate files for minimum and maximum air temperature (. 

TNX) and rainfall (. PLU) were developed using measurements from an 
automatic weather station (AWS) installed at or near each site by the 
research team. At the Swayimane, Fountainhill, and Ukulinga validation 
sites, a Davis Vantage Pro2 AWS was installed. For calibration, climate data 
were recorded inside the UKZN greenhouse experiment using an AWS of 
the same type, operated under controlled indoor conditions, while the ARC 
rain shelter experiment used a similar AWS positioned approximately 
100 m from the site. All meteorological sensors were connected to a 
CR1000 data logger (Campbell Scientific Inc., Logan, Utah, USA). ETO 
input files were generated directly in AquaCrop using its internal FAO 
Penman-Monteith algorithm (Allen et al., 1998), based on daily inputs of 
solar radiation, wind speed, air temperature, and relative humidity. No 
external software (e.g., FAO ETo Calculator) was used. For all sites, 
AquaCrop’s default CO2 file (MaunaLoa. CO2) was used, which has mean 
annual values measured at the Mauna Loa Observatory in Hawaii. A 
summary of the climate data inputs for each site is presented in Table 3.

2.3.3 Management
Irrigation input files (. IRR) were developed for the sites that 

received irrigation, namely UKZN, ARC, and Ukulinga, which received 
seasonal totals of 347, 385, and 315 mm, respectively. Irrigation was 
applied using a drip irrigation system, and the volume of water applied 
was measured using two inline water meters, which were read after 
each irrigation event. Groundwater input (. GWT) files were not 
created as the water table is too deep (> 0.60 m) to influence soil water 
content in the root zone. Field management (. MAN) files were created 
for each experimental site to represent actual conditions. OFSP was 
transplanted using vine cuttings, while taro was planted using cormels. 
Soil fertility was non-limiting, and no practices were implemented to 
prevent runoff, such as mulching or soil bunds. Fertilisation, weed 
control, and pest or disease management were applied according to the 
protocols of the original experiments used for calibration and 
validation, which provided all necessary information on these practices.

2.3.4 Initial crop parameters
Attempts to obtain copies of AquaCrop parameter files for OFSP 

developed locally by Beletse et al. (2013) and Nyathi et al. (2016) were 

unsuccessful. Furthermore, neither study published a full set of 
parameterised values. Instead, a sweet potato parameter file developed 
by Rankine et al. (2015) was obtained from the primary author and 
utilised in this study. Similarly, the taro parameter file originally 
developed by Mabhaudhi et  al. (2014b) was obtained from the 
primary author.

2.4 Recalibration procedure

Using guidelines developed by Steduto et al. (2012), model recalibration 
involved fine-tuning specific parameters initially developed by Rankine 
et al. (2015) and Mabhaudhi et al. (2014b) to represent local landrace and 
growing conditions adequately. In AquaCrop, crop parameters are classified 
as conservative (stable across environments and management practices) or 
non-conservative (vary with cultivar., location, and management). While 
conservative parameters are generally stable (FAO, 2023), they were refined 
in this study to account for the high genetic variability among local 
landraces. For example, the adjustment of HIO was done using observations 
from the non-stressed (i.e., fully irrigated) treatments (cf. Table 1) to ensure 
that AquaCrop predicts the highest yield under well-watered conditions 
(FAO, 2023). Other conservative parameters linked to water stress 
responses (e.g., soil water depletion factors and associated shape factors for 
canopy expansion, stomatal closure, and senescence) were also fine-tuned. 
Parameters intrinsic to crop species, such as the cut-off temperature for 
development, were retained to avoid compromising accuracy. For 
parameters that were not measured (e.g., basal crop coefficient), 
representative values were sourced from literature (e.g., Pereira et al., 2021).

Non-conservative parameters should be fine-tuned to improve 
model performance for different cultivars, landraces, and 
environmental conditions (FAO, 2023). Therefore, the canopy growth 
coefficient (CGC) and canopy decline coefficient (CDC) parameters 
were recalibrated to better capture CC development. For taro, CC was 
estimated by Mabhaudhi et  al. (2014b) using Diffuse 
Non-Interceptance measurements obtained with an LAI-2200 Plant 
Canopy Analyzer (LI-COR, 2009). For OFSP, Kunz et  al. (2024) 
derived CC indirectly by converting measured leaf area index values 
using the Beer–Lambert law (Swinehart, 1962). At the Swayimane 
validation site, the same approach was employed to convert measured 
leaf area index values to CC.

The time (in calendar days) to reach each phenological growth 
stage (i.e., emergence, maximum rooting depth, canopy senescence, 
maturity, and yield formation) was also adjusted to improve 
simulation accuracy. However, this was affected by the lack of 
measurements during the initial growth period at some sites. 

TABLE 3  Total accumulated precipitation (P), total reference evapotranspiration (ETO), and average seasonal temperature (TAVG) for each experimental 
site.

Experimental site Planting date (yyyy/mm/dd) Crop P (mm) Total ETO (mm) TAVG (°C)

UKZN 2022/10/27 OFSP - 425.3 25.5

ARC 2010/09/08 Taro - 1219.1 18.7

Swayimane 2023/10/01
OFSP 1102.3 780.0 17.4

Taro 1132.1 801.2 18.0

Fountainhill
2021/12/14 OFSP 472.9 489.7 21.1

2021/11/19 Taro 692.6 611.0 20.2

Ukulinga 2010/09/08 Taro 646.7 817.1 19.4
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Canopy senescence begins when the chlorophyll content of upper 
leaves declines or when 10% of lower leaves begin to yellow under 
non-stressed conditions (Mabhaudhi, 2012). The physiological 
maturity date occurs when root/tuber growth stabilises. Despite 
flowering being linked to the photoperiod for root and tuber crops 
(RTCs), it does not occur often, especially for sweet potato 
(Rankine et al., 2015) and taro (Mabhaudhi, 2012). Hence, the start 
and duration of flowering were set to zero.

All adjustments were made iteratively through a trial-and-error 
process until model simulations aligned closely with observed data. 
AquaCrop was run in calendar day mode, which is the standard 
approach in parameterisation and calibration studies. AquaCrop v7.1 
(FAO, 2023) was used, with the simulation period linked to the 
growing cycle, i.e., day one after sowing up to physiological maturity. 
For OFSP and taro, planting dates were set at 27 October 2022 and 8 
September 2010, respectively (cf. Table 3). Planting densities were set 
to 55,556 and 20,000 plants per ha−1 for OFSP and taro, respectively. 
These settings were applied to mimic experimental conditions.

2.5 Validation procedure

AquaCrop was validated for both crops using data from 
Fountainhill and Swayimane, with an additional site (Ukulinga) 
used for taro (cf. Table 1). These locations span a range of agro-
climatic conditions, enabling an evaluation of model robustness 
across different environments. AquaCrop was run in thermal time 
(i.e., GDD mode), which standardises phenological development 
against heat accumulation rather than calendar days. No 
recalibration was performed during validation, ensuring that the 
model’s predictive capability was reflected under independent 
conditions. Including multiple sites served to assess the model’s 
transferability and identify potential limitations in performance 
under diverse locations.

2.6 Model evaluation statistics

Model performance was quantified by comparing simulated and 
observed CC development (in %), biomass production and harvestable 
yield (both in t ha−1), and HI (in %). As suggested by Chibarabada 
et al. (2020), the following statistical indicators were used to evaluate 
model performance since each statistic offers specific advantages and 
drawbacks: coefficient of determination (R2), root mean square error 
(RMSE), normalised RMSE (NRMSE), Nash-Sutcliffe model efficiency 
(NSE), and Willmott’s index of agreement (d-index), including the 
percentage error (i.e., deviation).

3 Results and discussion

3.1 Model recalibration

Recalibrated values for selected crop parameters are presented in 
Table 4 and Table 5 for OFSP and taro, respectively. The inclusion of 
additional parameters reflects a commitment to transparency, relative 
to 23 and 26 values published by Rankine et al. (2015) and Mabhaudhi 
et al. (2014b), respectively.

3.1.1 Canopy cover development
For OFSP, AquaCrop simulations showed a good match 

(0.925 ≤ R2 ≤ 0.954; 6.186 ≤ MAE ≤ 9.485%; 7.537 ≤ RMSE ≤ 
11.434%; 9.372 ≤ NRMSE ≤ 14.098%; 0.765 ≤ NSE ≤ 0.880; 
0.940 ≤ d-index ≤ 0.975) between observed and simulated CC values 
for both the unstressed (100% of CWR) and stressed (40% of CWR) 
treatments (Figure  2). The R2 and RMSE statistics showed better 
model performance relative to those obtained by Nyathi et al. (2016), 
which were 0.77 and 12.10%, respectively. However, AquaCrop mostly 
over- and under-estimated CC development for the unstressed and 
stressed treatments, respectively, which aligns with findings by 
Rankine et al. (2015). Improvements in CC simulation accuracy are 
not only a technical calibration success but also enhance the model’s 
operational value for real-world applications such as predicting 
growth trajectories under climate stress. Accurate CC simulation 
allows for better estimation of light interception and 
evapotranspiration patterns, which are critical for yield forecasting 
and water resource planning, especially in water-scarce environments.

The CGC parameter in AquaCrop determines the rate of initial 
CC development, which generally follows a concave shape for most 
crops (FAO, 2023). However, OFSP’s CC development initially 
followed a convex-shaped curve, thus highlighting very rapid crop 
development during the early growth stages (Figure 2). To mimic this 
behaviour, the parameter representing the soil surface area covered by 
an individual seedling was adjusted to the highest permissible value 
of 50 cm2 for a transplanted crop (cf. Table 4). OFSP rapidly establishes 
ground cover, which is consistent with the vigorous vegetative growth 
trait of RTCs (Mabhaudhi, 2012; Masango, 2015). This rapid 
establishment is facilitated by OFSP’s method of propagation, as the 
crop is transplanted using vine cuttings rather than being grown from 
seed, which facilitates immediate vegetative growth from established 
nodes. Rapid canopy closure reduces the soil evaporation window, 
improves early-season soil moisture conservation, and provides a 
competitive advantage against weed establishment. Simulating this 
accurately is essential for realistic water productivity estimates and 
designing planting strategies that optimise early-season 
resource capture.

For taro, model evaluation showed a moderate to good agreement 
(0.519 ≤ R2 ≤ 0.632; 6.005 ≤ MAE ≤ 9.408%; 7.193 ≤ RMSE ≤ 
9.615%; 25.675 ≤ NRMSE ≤ 34.840%; 0.044 ≤ NSE ≤ 0.485; 
0.757 ≤ d-index ≤ 0.773) between simulated and observed CC values 
for the unstressed (100% of CWR) and moderately stressed (60% of 
CWR) treatments (Figure 3). RMSE and NRMSE values were lower 
relative to those generated using the original crop file by Mabhaudhi 
et  al. (2014b), which ranged from 10.123–16.817% and 46.614–
54.862%, respectively. Thus, the recalibrated crop parameters are 
better than the original values. This improvement has practical 
significance as better CC prediction for taro in moderately stressed 
environments suggests that the model can be  used as a decision-
support tool to reliably inform farmers and policymakers about 
potential yield reductions under water-limited scenarios, enabling 
proactive adaptation measures such as irrigation scheduling 
or mulching.

Measured CC development was highest at 119 days after planting 
(DAP) across all treatments. This indicates crop senescence occurred 
between 119 to 154 DAP, which the model did not simulate well. This 
discrepancy suggests that the CDC senescence parameter may require 
further calibration. Additionally, it may indicate that the model does 
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not fully account for the physiological ageing of taro or possible stress 
factors (e.g., nutrient depletion or disease onset) that could have 
triggered earlier or more rapid senescence as was observed. Identifying 
and addressing these gaps is essential for improving predictive 
reliability under variable nutrient and pest pressures, which are 
conditions that are common in smallholder systems.

AquaCrop showed limited accuracy in simulating taro’s CC 
development under water-stressed conditions (Figure 3). The negative 
NSE (−0.077) suggests that predictions had a higher error variance 
relative to variability in observations. This highlights AquaCrop’s 
inability to adequately simulate taro’s CC development under water-
stressed conditions, which was also noted by Mabhaudhi et  al. 
(2014b). This limitation may suggest the need for further refinement 
of taro’s water stress response parameters. From a broader perspective, 

this indicates that AquaCrop’s current structure may not fully capture 
the physiological and morphological adaptations of taro under severe 
drought. For decision-makers relying on these simulations, 
particularly in climate-vulnerable regions, such underperformance 
under water stress could underestimate the urgency of adaptation 
interventions needed.

For the stressed treatment, MAE (11.956%) was lower than RMSE 
(15.442%), which is expected as the latter statistic is more sensitive to 
outliers. Observed CC development increased sharply from 41% at 
112 DAP to 76% at 119 DAP, which raises concerns about data validity. 
This highlights the importance of scrutinising data from secondary 
sources for potential errors before being used for model calibration. 
This also reflects a common challenge in modelling under-researched 
crops as the scarcity of high-quality field data can limit calibration 

TABLE 4  Comparison of important parameters derived by Rankine et al. (2015) for sweet potato, to those fine-tuned in this study for OFSP.

Crop parameter Rankine et al. (2015) This study Source

Crop is transplanted - Unchanged

Base temperature for no crop development (°C) 15 - Unchanged

Cut-off temperature for no crop development (°C) 35 - Unchanged

Soil water depletion factors for:

Canopy expansion (upper threshold)

Canopy expansion (lower threshold)

Stomatal control

Canopy senescence

Pollination/flowering

0.26

0.66

0.65

0.69

0.80

0.22

0.58

0.70

0.53

0.80

Recalibrated

Shape factor for:

Water stress coefficient for canopy expansion

Water stress coefficient for stomatal control

Water stress coefficient for canopy senescence

Describing root zone expansion

3.3

3.4

2.7

15

6.0

6.0

3.0

15

Recalibrated

Basal crop coefficient 1.10 1.05 Pereira et al. (2021)

Minimum effective rooting depth (m)

Maximum effective rooting depth (m)

0.30

1.60

0.30

1.20
Pereira et al. (2021)

Soil surface area covered by seedling at 90% emergence (cm2) 10 50 Recalibrated

Canopy size of individual plant (re-growth) at 1st day (cm2) 50 - Unchanged

Number of plants per hectare 90,000 55,556 Recalibrated

Canopy growth coefficient (CGC in % day−1) 13.420 11.139 Recalibrated

Maximum canopy cover (CCX) 0.94 0.91 Recalibrated

Canopy decline coefficient (CDC in % day−1) 9.529 3.000 Recalibrated

Calendar days from transplanting to:

Emergence/recovered transplant

Maximum rooting depth

Start of senescence

Physiological maturity (length of crop cycle)

Start of yield formation/initiation

6

56

80

96

31

6

95

120

140

68

Recalibrated

Crop determinacy unlinked with flowering

Calendar days from sowing/transplanting to flowering

Length of the flowering stage (calendar days)

0

0

0

-

-

-

Unchanged

Building up of harvest index starting at root/tuber enlargement (calendar days) 65 72 Recalibrated

Normalised water productivity (WP* in g m−2) 20.0 - Unchanged

WP normalised for ETO and CO2 during yield formation (%) 100 - Unchanged

Reference harvest index (HIO in %) 55 77 Recalibrated
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quality and mask true crop-environment interactions, which in turn 
reduces confidence in long-term projections.

The low NSE values for the moderately stressed and stressed 
treatments also highlight that this statistic is sensitive to a low number 
of observations (McCuen et al., 2006). In contrast to the OFSP dataset 
(Figure  2), only four CC measurements were made. The lack of 
observations during the early growth stages hindered the ability to 
accurately recalibrate initial CC development, thus limiting the 
robustness of model validation. This issue highlights the importance 
of improving the quality of in situ datasets by ensuring that 
measurements span the entire growing season to support effective 
model calibration. From an applied research standpoint, this finding 
reinforces the need for systematic phenotyping campaigns for NUS 
across agro-ecologies. Such efforts would enable stronger model 

parameterisation and reduce uncertainty in growth predictions, 
ultimately improving advisory services for farmers.

The simulated CC development curves for OFSP (Figure 2) and 
taro (Figure 3) did not decline towards the end of the season. This can 
be attributed to their stay-green trait (Adugna and Tirfessa, 2014; 
Wirojsirasak et  al., 2024), which enables both crops to retain leaf 
chlorophyll for prolonged periods during their latter growth stages. 
This stay-green trait makes it difficult to determine the start of 
senescence. For both crops, the model’s CDC parameter was therefore 
set to the lowest value of 3% to prevent the decline in CC development 
as the crop approaches physiological maturity. Accurately representing 
stay-green behaviour is particularly relevant for climate adaptation 
modelling, as it is linked to drought resilience and sustained 
photosynthesis under late-season stress. Failure to simulate it correctly 

TABLE 5  Comparison of taro parameters derived by Mabhaudhi et al. (2014b) to those fine-tuned in this study.

Crop parameter Mabhaudhi et al. (2014b) This study Source

Crop is transplanted - Unchanged

Base temperature for no crop development (°C) 10 - Unchanged

Cut-off temperature for no crop development (°C) 35 - Unchanged

Soil water depletion factors for:

Canopy expansion (upper threshold)

Canopy expansion (lower threshold)

Stomatal control

Canopy senescence

Pollination/flowering

0.10

0.45

0.45

0.45

0.90

0.02

0.35

0.25

0.55

0.90

Recalibrated

Shape factor for:

Water stress coefficient for canopy expansion

Water stress coefficient for stomatal control

Water stress coefficient for canopy senescence

Describing root zone expansion

3.0

3.0

3.0

15

3.2

3.2

3.2

15

Recalibrated

Basal crop coefficient 1.15 1.05 Pereira et al. (2021)

Minimum effective rooting depth (m)

Maximum effective rooting depth (m)

0.10

0.80

0.10

0.40
Recalibrated

Soil surface area covered by seedling at 90% emergence (cm2) 25 - Unchanged

Canopy size of individual plant (re-growth) at 1st day (cm2) 25 - Unchanged

Number of plants per hectare 20,000 - Unchanged

Canopy growth coefficient (CGC in % day−1) 7.730 7.878 Recalibrated

Maximum canopy cover (CCX) 0.85 0.78 Recalibrated

Canopy decline coefficient (CDC in % day−1) 3.000 - Unchanged

Calendar days from transplanting to:

Emergence/recovered transplant

Maximum rooting depth

Start of senescence

Physiological maturity (length of crop cycle)

Start of yield formation/initiation

42

140

199

258

137

30

90

166

180

120

Recalibrated

Crop determinacy unlinked with flowering

Calendar days from sowing/transplanting to flowering

Length of the flowering stage (calendar days)

0

0

0

-

-

-

Unchanged

Building up of harvest index starting at root/tuber enlargement (calendar days) 110 60 Recalibrated

Normalised water productivity (WP* in g m−2) 15 - Unchanged

WP normalised for ETO and CO2 during yield formation (%) 100 - Unchanged

Reference harvest index (HIO in %) 83 - Unchanged
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could lead to underestimation of yield stability in marginal 
environments, which is crucial for positioning NUS as climate-
resilient alternatives to conventional staples.

3.1.2 Above-ground biomass production
Based on high R2 (0.985–0.989) and d-index (0.817–0.871) 

values, AquaCrop adequately captured above-ground biomass 
production for OFSP under (a) unstressed and (b) stressed 
treatments, despite the consistent over-simulation (Figure 4). The 
other metrics (MAE, NRMSE, and NSE) suggest the model was 
less successful in simulating biomass production under stressed 
conditions, compared to the unstressed treatment. The decline in 
NSE from 0.521 to 0.138 highlights the model’s inability to 
adequately simulate crop physiology under water deficit 
conditions. This again suggests the need for improving the 
model’s response to water-limiting conditions. This limitation is 
critical as biomass accumulation directly influences yield and 
water productivity estimates. If stressed-condition biomass is 
overestimated, water-saving interventions may not 

be  implemented, potentially leading to misallocation of scarce 
irrigation resources in practice.

From Figure 5, all model evaluation statistics highlight AquaCrop’s 
ability to accurately simulate above-ground biomass production for 
taro, despite the slight decline in model performance for the stressed 
treatment. These results suggest that AquaCrop reliably captures 
biomass accumulation in taro across varying water regimes, although 
further refinement may be needed to enhance its sensitivity to stress 
conditions. For agricultural planning, this means AquaCrop could 
be  a viable decision-support tool for taro yield estimation under 
moderate to optimal water availability but would require caution or 
further calibration before being used for drought-response planning 
in severely water-stressed areas.

3.1.3 Final biomass and yield at harvest
Model performance for final above-ground biomass, yield, and HI 

using the recalibrated crop parameters is summarised in Table  6. 
AquaCrop simulated all three variables with high accuracy, 
particularly for OFSP. Absolute deviations are within 6%, which is 
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FIGURE 2

Simulated versus observed canopy cover development for OFSP grown under (a) unstressed and (b) stressed conditions in a greenhouse at UKZN 
during the 2022/23 season.
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Simulated versus observed canopy cover development for taro under (a) unstressed, (b) moderately stressed, and (c) stressed growing conditions 
under the rain shelter at Roodeplaat during the 2010/11 season.
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considered negligible by Dua et al. (2014). The model simulated high 
HI values for both crops, which ranged from 76 to 88% under all 
treatments. This was influenced by the high reference HI parameter 
for both crops.

Prior to recalibration (i.e., using parameters derived by Rankine 
et al., 2015), above-ground biomass simulations were reasonable with 
absolute deviations of 3.9–15.4%. However, the model under-
estimated yield due to a low HI (~50%), with absolute deviations 

ranging from 30.3–45.5%. These simulations were conducted in a 
previous study by Rankine et al. (2015). This suggests that HI varies 
substantially across different sweet potato cultivars and landraces. 
Hence, deriving a reference value that is universal for all sweet potato 
genotypes will prove difficult. Similarly, AquaCrop grossly over-
estimated taro’s biomass and yield, especially for the fully irrigated 
treatment, as indicated by Mabhaudhi et al. (2014b). These differences 
highlight the need to recalibrate the crop parameters, i.e., the main 
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FIGURE 4

Simulated versus observed above-ground biomass accumulation for OFSP grown under (a) unstressed and (b) stressed conditions in a greenhouse at 
UKZN during the 2022/23 season.
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FIGURE 5

Simulated versus observed above-ground biomass production for taro under (a) unstressed, (b) moderately stressed, and (c) stressed conditions at 
Roodeplaat during the 2010/11 season.

TABLE 6  Observed (obs) and simulated (sim) above-ground biomass (B), yield (Y), and harvest index (HI) for OFSP and taro after model recalibration.

Crop 
(Location)

% of 
CWR

B (dry t ha−1) Y (dry t ha−1) HI (%) Absolute deviation (%)

Obs Sim Obs Sim Obs Sim B Y HI

OFSP (UKZN)
100 19.35 19.77 15.14 15.09 78 76 2.2 0.3 2.6

30 16.95 16.39 12.25 12.51 72 76 3.3 2.1 5.6

Taro (Roodeplaat)

100 10.60 10.97 9.00 9.38 85 86 3.5 4.2 1.2

60 10.30 9.98 9.31 8.77 90 88 3.1 5.8 2.2

30 7.00 6.66 6.10 5.82 87 87 4.9 4.6 0.0
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aim of this study. The implication is that default parameter sets, often 
used where local data is lacking, may lead to highly misleading outputs 
for NUS, emphasising the necessity for site and genotype specific 
calibration before operational deployment.

The marked improvement in absolute deviations for taro’s biomass 
and yield (Table 6) is due to the adjustments made in crop parameters 
to reflect better the crop’s growth and response to water stress. 
Reducing the model’s soil water depletion factors for canopy expansion 
and stomatal control, enhanced its ability to simulate water stress 
effects on taro growth (cf. Table 5). Additionally, lowering maximum 
CC (from 0.85 to 0.78) and maximum rooting depth (from 0.80 to 
0.40 m) prevented the model from over-estimating taro’s biomass and 
yield for each treatment. This adjustment aligns with findings that taro 
is a shallow-rooted crop, typically developing roots within the 
top 30–45 cm of soil (Onwueme, 1999), thereby limiting its access to 
deeper soil moisture under stress conditions. By accurately 
constraining rooting depth, the model can now more realistically 
assess taro’s vulnerability to in-season dry spells, making it more 
suitable for climate risk modelling in shallow-soil agro-
ecological zones.

Phenological calibration posed challenges due to limited early 
growth observations and taro’s stay-green trait, which prevents 
canopy decline from signalling maturity. AquaCrop does not 
simulate this behaviour, assuming instead a direct link between 
senescence and tuber maturity. For RTCs such as OFSP and taro, 
physiological maturity can be  more reliably indicated by the 
stabilisation of tuber mass than by the onset of leaf senescence, 
which has been demonstrated in various RTC studies. For example, 
Kunz et  al. (2024) observed that for taro, tuber yield stabilised 
between 180 and 191 DAP, but the crop was harvested at 206 
DAP. Similarly, observations at Fountainhill, one of the sites used 
for model validation, showed that OFSP tuber yield stabilised 
around 105 DAP, yet harvesting occurred at 118 DAP. To address 
this issue, phenological growth stages for taro, such as the time to 
reach maximum rooting depth, senescence, and yield formation, 
were shortened to reflect actual crop growth dynamics, which 
resulted in improved yield predictions. In practical terms, using 
tuber mass stabilisation as a maturity indicator could improve 
harvest-timing recommendations, reduce post-maturity losses and 
improve resource-use efficiency, which is particularly important 
for resource-constrained farmers seeking to maximise yield under 
climate-stress.

The recalibration of AquaCrop for OFSP and taro was improved 
by adjusting 21 and 19 parameters, respectively (cf. Section 3.1). This 
is comparable to Mabhaudhi et  al. (2014a, 2014b), where 21 
parameters were adjusted to parameterise the model for bambara 
groundnut and taro. With these refinements, AquaCrop reliably 
simulated biomass and yield for both crops under unstressed and 
stressed conditions. The latter outcome is different to other studies 
(e.g., Patel et al., 2008; Heng et al., 2009; Hsiao et al., 2009), which 
highlighted AquaCrop’s inability to adequately simulate maize and 
potato yield under water-stressed conditions. Rankine et al. (2015) 
highlighted the difficulty of calibrating RTCs relative to major staples; 
the present study demonstrates that targeted recalibration can 
overcome these challenges, producing predictive performance on par 
with or better than that for conventional crops. This strengthens the 
case for mainstreaming NUS in crop modelling portfolios and 
integrating them into climate adaptation and food security policies.

To date, AquaCrop v7.1 has been parameterised for 17 herbaceous 
crops using data collected from 1978 to 2019 across 28 locations (Raes 
et al., 2023). For example, Raes et al. (2023) stated that potato has the 
least reliable AquaCrop parameterisation relative to other crops, 
which is based on experimental data from 1995 for a single site. This 
raises concerns when using default crop parameters to simulate the 
growth and yield of recent cultivars. Genetic modifications have 
enhanced disease resistance, nutritional value, and yield of crops over 
the past decades. For example, modern plant breeding tools and 
molecular manipulation techniques, such as TALENS, CRISPR-Cas9, 
RNAi, and cisgenesis, have been used to improve potato yield and 
nutritional content (Ahmad et al., 2022). Since genetic improvements 
are continually phasing out old cultivars, regular recalibration of crop 
models is necessary to reflect these advancements.

3.2 Model validation

Crop parameters should produce reliable results across a wide 
range of acro-ecological zones. Therefore, AquaCrop’s ability to 
simulate CC development, above-ground biomass, yield, and HI was 
tested against secondary datasets obtained from experiments 
conducted at Fountainhill (rainfed), Swayimane (rainfed), and 
Ukulinga (optimally irrigated) (cf. Table 1). For model validation, 
AquaCrop was run in GDD mode to account for climatic variations 
between the calibration locations and validation sites.

3.2.1 Canopy cover development
AquaCrop performed poorly in simulating CC development for 

OFSP at Fountainhill under rainfed conditions compared to 
Swayimane (Figure 6). Relatively high R2 values can be misleading as 
models may perform poorly by grossly under- or over-estimating 
measured data (Krause et al., 2005), which highlights the importance 
of considering other statistical indicators to evaluate models. If the 
simulation of CC development at Fountainhill was delayed, resulting 
in the curve shifting to the right (Figure 6a), the correlation would 
be substantially improved. This discrepancy may be attributed to site-
specific microclimatic conditions during the study period, which may 
have constrained AquaCrop’s parameterisation of early-stage canopy 
development at this site. For decision-making, this highlights the 
importance of site-specific model calibration, as a single recalibration 
may not always account for factors across multiple sites during 
validation. Accurate simulation of early canopy development is 
critical, as errors at this stage can cascade into biomass and yield 
overestimations. Similar challenges have also been reported by 
Rankine et al. (2015), where AquaCrop simulations for sweet potato 
did not agree well with measured values.

The model performed well at Swayimane by accurately simulating 
CC development for OFSP, achieving MAE, RMSE, and d-index 
values of 1.400, 1.626%, and 0.722, respectively. However, the NRMSE 
(42.790%) and NSE (−0.728) statistics for Swayimane indicate a poor 
simulation, which is likely influenced by the low number of 
observations (n = 5). Early canopy data were missing due to logistical 
constraints, as the trials were embedded within a larger multi-crop 
experiment with limited monitoring resources. This gap reduces 
confidence in early-stage validation and illustrates a common 
limitation in underutilised crop research, where resource constraints 
often restrict high-resolution data collection. Future studies should 
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prioritise season-long monitoring to support more robust 
model testing.

AquaCrop over-estimated CC development for taro at 
Fountainhill (Figure 7a) and Ukulinga (Figure 7c), with overall poor 
model performance at both sites (0.332 ≤ R2 ≤ 0.564; 
7.257 ≤ MAE ≤ 16.753%; 8.381 ≤ RMSE ≤ 19.745%; 
63.695 ≤ NRMSE ≤ 64.466%; −3.450 ≤ NSE ≤ −2.046; 
0.540 ≤ d-index ≤ 0.566). While this over-estimation may stem from 
inaccuracies in parameters governing early canopy development, 
including the time to transplant recovery, initial CC, the CGC, and 
time to reach maximum CC, climatic factors play a more substantial 
role. Rainfall at these two sites (692.6 mm at Fountainhill and 
646.7 mm at Ukulinga) was considerably lower relative to 1132.1 mm 
at Swayimane (cf. Table 3). AquaCrop generally performs better when 
simulating non-stressed conditions (FAO, 2023). This was 
corroborated at Swayimane (Figure 7b), where the higher rainfall 
likely contributed to the model’s excellent simulation of CC 
development (R2 = 0.999; MAE = 1.240%; RMSE = 1.741%; 
NRMSE = 3.922%; NSE = 0.989; d-index = 0.998). This strong 
agreement indicates the model is well-suited to simulating conditions 

with no water stress, i.e., AquaCrop’s predictive accuracy declines 
when modelling water-limited environments (Steduto et al., 2009; 
FAO, 2023). This confirms that water stress remains a key weakness in 
AquaCrop’s performance for NUS, meaning its outputs should 
be interpreted with caution for drought-prone areas unless stress-
response parameters are further improved.

3.2.2 Above-ground biomass production
AquaCrop adequately captured the trend in above-ground 

biomass production for OFSP grown at (a) Fountainhill and (b) 
Swayimane (Figure 8), as shown by the high R2 values (0.959–0.999). 
Despite the good NSE (0.632) and d-index (0.834) statistics, high 
MAE (4.043 t ha−1), RMSE (4.475 t ha−1), and NRMSE (22.671%) 
values highlighted the model’s inability to predict biomass production 
for OFSP grown at Fountainhill accurately. This was expected since 
biomass prediction is directly related to the model’s ability to simulate 
CC development (cf. Figure 6a). The lower model performance at 
Fountainhill can also be attributed to excessive weed growth after 
planting, which delayed the collection of biomass data until 57 DAP 
(Kunz et al., 2024). This suggests that early crop development was 
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suboptimal in the field and underrepresented in the observed dataset, 
which limited the accuracy of the model evaluation during the initial 
growth stages. In operational terms, this shows that unaccounted field 
factors, like weed pressure, can significantly reduce the reliability of 
model outputs and must be documented alongside calibration datasets 
to avoid misinterpretation of deviations.

This is further supported by AquaCrop’s accurate simulation 
of CC development at Swayimane (cf. Figure 6b), which resulted 
in an excellent above-ground biomass simulation (R = 0.999; 
MAE = 0.228 t ha−1, RMSE = 0.349 t ha−1, NRMSE = 3.120%, 
NSE = 0.993; d-index = 0.998) at this site. This strong 
performance is again attributed to the high rainfall at 
Swayimane, which resulted in non-stressed growing conditions. 
This suggests that for reliable biomass predictions, AquaCrop is 
currently best suited to regions where supplementary irrigation 
or consistently high rainfall minimises water stress variability. 

This finding is consistent with previous research on 
underutilised crops, where AquaCrop performs reliably under 
favourable water conditions but with limited accuracy under 
water stress (Mabhaudhi, 2012; Mabhaudhi et  al., 2014a; 
Rankine et al., 2015).

AquaCrop accurately simulated the biomass accumulation for 
taro at Swayimane (Figure  9), with excellent model evaluation 
statistics (R2 = 1.000; MAE = 0.084 t ha−1; RMSE = 0.089 t ha−1; 
NRMSE = 1.240%; NSE = 0.999; d-index = 1.000), further 
highlighting the model’s suitability for simulating unstressed 
conditions. Model performance at Ukulinga was satisfactory as 
indicated by adequate statistics (R2 = 0.977; NSE = 0.801; 
d-index = 0.929). Despite taro grown at Ukulinga receiving 647 mm 
of rainfall and 315 mm of supplemental irrigation to relieve any water 
stress (cf. Table 3), AquaCrop under-estimated taro’s above-ground 
biomass towards the latter stages of the growing season, as indicated 
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Validation results showing a comparison between simulated and observed above-ground biomass accumulation for OFSP at (a) Fountainhill and (b) 
Swayimane.
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Ukulinga.
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by relatively high MAE (1.996 t ha−1), RMSE (2.786 t ha−1), and 
NRMSE (15.251%) values.

3.2.3 Final biomass and yield at harvest
AquaCrop predicted final yield at Fountainhill and Swayimane 

adequately with absolute deviations between observations and 
simulations ranging from 6.8–11.9% for OFSP and 0.3–5.3% for 
taro (Table 7). The model exhibited acceptable deviations for taro’s 
final above-ground biomass at Fountainhill (1.2%) and Swayimane 
(7.9%). These results suggest that only minimal model calibration 
may be required when applying AquaCrop to other OFSP and taro 
landraces growing in similar agro-ecological zones. For 
practitioners, this means once a robust calibration is done for a 
representative landrace in a given area, it may be applied to other 
nearby areas with only minor adjustments, reducing the time and 
cost barriers to using modelling for production planning.

However, larger absolute deviations (15.2–28.6%) in final 
above-ground biomass were identified for OFSP at Fountainhill 
and Swayimane, and for taro at Ukulinga. This indicates the model 
may inadequately simulate final biomass across different locations. 
AquaCrop predicted the HI of OFSP at Swayimane and taro at 
Fountainhill, Swayimane, and Ukulinga with high accuracy 
(Table 7). However, the model failed to simulate the HI for OFSP 
at Fountainhill accurately. Given that HI directly affects yield 
estimation, inaccuracies in HI modelling under certain site 
conditions may undermine AquaCrop’s utility for harvest 
predictions unless these specific weaknesses are addressed in 
future recalibrations.

Differences in model performance for various OFSP and taro 
landraces at different locations may be  influenced by genotypic 
variability. Landraces typically exhibit high genetic variation and 
are adapted to specific environments. Different landraces, 
therefore, have varying biomass accumulation rates, growth 
patterns, and yield potentials. The calibration for a specific landrace 
may therefore not be suitable for others, especially across diverse 
agro-ecological zones. This highlights the importance of calibrating 
AquaCrop using pooled data representing multiple landraces 
grown at different locations to improve its predictive performance, 
thus ensuring robust validation. This approach would also support 
scaling AquaCrop beyond research into policy and extension work, 
allowing it to inform crop diversification strategies at provincial or 
national levels.

From the literature, HI values ranged from 22 to 90% for 
OFSP (Bouwkamp and MHM, 1988; Bhagsari and Doyle, 1990; 
Beletse et al., 2013; Rankine et al., 2015) and 50 to 83% for taro 

(Mabhaudhi et  al., 2014b). While part of this variability can 
be explained by the genetic diversity of NUS, which consist of 
multiple landraces with distinct physiological traits, climatic 
and management factors are equally critical drivers of HI 
variability. For instance, higher rainfall and favourable 
conditions at Swayimane promoted more effective assimilate 
partitioning to storage roots, whereas at Fountainhill, weed 
competition under drier conditions reduced assimilate 
translocation efficiency, resulting in lower HI. Temperature, 
rainfall distribution, and soil water availability therefore interact 
with management practices to shape HI outcomes, leading to 
substantial differences between sites and seasons. These climate-
driven differences explain much of the observed discrepancies 
in yield predictions and underscore the challenge of defining a 
single representative HI value. A universal reference HI would 
not adequately capture the physiological responses of genetically 
diverse landraces grown under contrasting climatic regimes and 
management conditions.

3.2.4 GDD vs. calendar day mode
It is important to specify the simulation mode used for AquaCrop, 

especially when validating at sites with different climates compared to 
that at the calibration location. Although studies by Mabhaudhi et al. 
(2014b), Rankine et al. (2015), and Kanda et al. (2020) converted crop 
parameters from calendar days to GDDs, they did not clarify whether 
the model was run in GDD mode during validation. Running 
AquaCrop in calendar day mode fixes crop cycle length, which may 
not reflect site-specific conditions where temperatures are 
substantially warmer or cooler than the calibration site. In contrast, 
GDD mode integrates cumulative temperature effects on development, 
allowing more accurate simulation of phenology and HI under 
variable climates.

This distinction was evident in the comparison between 
Swayimane and Fountainhill. At Swayimane, favourable rainfall and 
temperatures enabled CC, biomass, and HI simulations in GDD mode 
to align closely with observations. At Fountainhill, cooler early-season 
temperatures and weed pressure delayed canopy recovery, and GDD 
mode better reflected the slower heat accumulation and its impact on 
phenology, leading to more realistic yield outcomes. Without GDD 
mode, discrepancies across agro-ecological zones would likely have 
been larger and required extensive recalibration. These findings 
confirm that GDD mode improves AquaCrop’s transferability and 
strengthens its value for climate adaptation modelling, where warming 
trends are expected to alter phenology, water demand, and 
yield potential.

TABLE 7  Observed (obs) and simulated (sim) above-ground biomass (B), yield (Y) and harvest index (HI) for OFSP and taro obtained during model 
testing.

Crop 
(Location)

Water 
treatment

B (dry t ha−1) Y (dry t ha−1) HI (%) Absolute deviation (%)

Obs Sim Obs Sim Obs Sim B Y HI

OFSP (Fountainhill) Rainfed 21.93 16.25 12.12 11.29 55 69 25.9 6.8 25.7

OFSP (Swayimane) Rainfed 19.28 22.22 15.15 16.96 79 76 15.2 11.9 2.9

Taro (Fountainhill) Rainfed 5.68 5.75 4.91 4.65 86 81 1.2 5.3 6.4

Taro (Swayimane) Rainfed 13.75 12.67 10.65 10.62 77 84 7.9 0.3 8.2

Taro (Ukulinga) Optimal irrigation 20.70 14.79 17.10 12.00 83 81 28.6 29.8 1.8

https://doi.org/10.3389/fsufs.2025.1698211
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Mthembu et al.� 10.3389/fsufs.2025.1698211

Frontiers in Sustainable Food Systems 15 frontiersin.org

3.2.5 Implications for climate, SDGs, and policy
The recalibration for OFSP and taro provides actionable insights 

for climate-resilient agriculture. Improved simulations of CC, biomass, 
and yield under varying water regimes demonstrate that these NUS 
can be reliably assessed for their performance under climate variability 
to inform adaptive water management and irrigation planning. This 
is directly relevant to SDG 2 (Zero Hunger) by supporting food and 
nutrition security through diversification with nutrient-rich crops, 
and SDG 6 (Clean Water and Sanitation) by enabling efficient 
water allocation.

The integration of GDD-based phenology enhances the ability to 
anticipate yield responses under future climate scenarios, offering 
policymakers evidence to guide the inclusion of NUS in food security 
programs, optimise planting calendars, and promote sustainable 
intensification. These insights reinforce the role of crop models not 
only as scientific tools but also as instruments for decision-making 
that bridge agricultural productivity, nutrition, and 
water management.

3.2.6 Study limitations and future research 
directions

Despite the improvements, several limitations remain. AquaCrop’s 
current parameterisation still underrepresents certain NUS 
physiological traits, particularly under severe water stress, which 
limits accuracy for stress-sensitive scenarios. While multi-location 
datasets were used, temporal coverage remains limited, restricting the 
long-term assessment of interannual climate variability. Soil and 
microclimate heterogeneity at finer scales was not fully captured, 
which could affect local-scale recommendations. Finer-scale 
heterogeneity in soils and microclimates was not fully captured, and 
reliance on secondary environmental datasets introduced 
potential biases.

Future research should expand multi-location, multi-season 
datasets under both water-limited and well-watered conditions to 
enhance model robustness. Incorporating high-resolution soil and 
microclimate data, together with long-term climate simulations, will 
help assess NUS resilience under projected extremes. Further field 
trials, especially under stress conditions, are essential to provide in situ 
validation and reduce data scarcity, improving predictive confidence. 
Integrating phenological plasticity through GDD-based calibration 
will further improve representation of temperature-driven 
development. Linking these advances to policy applications such as 
regional food security planning, SDG reporting, and sustainable 
water-use strategies will maximise AquaCrop’s utility for climate 
adaptation and the evidence-based promotion of underutilised, 
nutrient-rich crops.

4 Conclusion

This study recalibrated AquaCrop for OFSP and taro using 
multi-location datasets, improving simulations of CC, biomass, 
and yield compared to previous parameterisations. For OFSP, the 
model performed well under both unstressed and stressed 
conditions, while for taro, accuracy was high under non-stressed 
conditions but declined under severe water stress. Key refinements 
included adjustments to rooting depth, soil water depletion 

thresholds, and phenology to reflect tuber mass stabilisation, which 
better captured crop-specific traits, including the stay-green 
characteristic. Although challenges remain in fully representing 
NUS physiology, AquaCrop was able to simulate yield response to 
water availability with sufficient accuracy, reinforcing its value as a 
decision-support tool for evaluating crop performance under 
varying water regimes. The recalibration enhances AquaCrop’s 
practical relevance for exploring climate risk scenarios, optimising 
planting dates, and evaluating water management strategies. These 
outcomes are especially relevant for integrating NUS into 
diversified and climate-resilient food systems. Future work should 
prioritise multi-location, season-long datasets under water-limited 
conditions, complemented by expanded field trials to strengthen 
in situ validation. Employing GDD mode can further improve 
phenology representation across variable climates. Strengthening 
predictive accuracy through these measures will enhance 
AquaCrop’s role in supporting yield forecasting, agricultural 
diversification, and climate adaptation planning, thereby 
supporting both food security and sustainable water management 
in the face of climate change.
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