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Neglected and underutilised crop species (NUS) such as orange-fleshed
sweet potato (OFSP) and taro are nutrient-dense, climate-resilient crops
with high potential to diversify food systems. While the AquaCrop model
has been calibrated to simulate canopy cover (CC), biomass, and yield for
both crops, independent testing across diverse agro-ecological zones is
required to critically assess model robustness. We, therefore, evaluated
AquaCrop'’s ability to simulate the growth and yield of OFSP and taro at three
locations in the KwaZulu-Natal province, South Africa. Critical recalibration
adjustments included reducing taro’s maximum rooting depth, modifying soil
water depletion thresholds to better reflect water stress, and parameterising
phenology based on tuber mass stabilisation. Recalibration improved model
performance for CC (R?, coefficient of determination, up to 0.954 for OFSP;
0.632 for taro), biomass (NSE, Nash-Sutcliffe efficiency, up to 0.975), and
final yield (absolute deviations < 6% under optimal irrigation). Validation
across three locations confirmed that AquaCrop reliably simulates growth
and yield under non-stressed conditions, although performance declined
under water-limited environments. The model was run in growing degree-day
mode to account for climate variability, which is recommended for future
validations. These results demonstrate that, with high-quality calibration
datasets representing multiple landraces, AquaCrop can provide reliable
yield predictions for NUS. This enables more accurate water management,
operational yield predictions, and climate risk assessments for both smallholder
and commercial farmers. By bridging the modelling gap for NUS, this work
supports their integration into climate adaptation strategies, strengthens
food and nutrition security, and promotes resilient agricultural diversification
under variable climatic conditions.
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1 Introduction

Neglected and underutilised crop species (NUS) are indigenous
crops that are well adapted to local growing conditions but remain
under-researched (Dansi et al., 2012; Chimonyo et al., 2022). NUS
such as sweet potato and taro are nutrient-dense and exhibit resilience
to drought and heat stress (Mabhaudhi et al., 2017). Their high yield
potential and low water use under rainfed agriculture demonstrate
adaptability to variable climates and potential contributions to
Sustainable Development Goals (SDGs), including zero poverty and
hunger (Kunz et al., 2024). NUS are increasingly recognised as
climate-resilient, as tolerance to heat, drought, and low-fertility soils
positions them as viable alternatives in marginal environments where
mainstream staples may fail. Integrating NUS into diversified farming
systems enhances adaptation to climate-induced stresses, reduces
production risks, and strengthens food system resilience (Mabhaudhi
et al,, 2017). Despite these advantages, NUS remain excluded from
mainstream production (Modi and Mabhaudhi, 2016), with
cultivation largely confined to smallholder farmers for subsistence.

Worldwide, major staples (e.g., maize and soybean) are
commercially produced and extensively studied with measured
datasets readily available from local and global sources (Chimonyo
etal., 2022; Mohd Nizar et al., 2021). In contrast, limited agronomic
and field experimental data on NUS yield and water use across
different environments has hindered their adoption by commercial
farmers. Enhancing the knowledge base on NUS is therefore critical
for improving rural development, agricultural diversification, and
food and nutrition security.

Field experiments across different agro-ecological zones, which
are areas characterised by similar climate, soil, and terrain, are
costly and labour-intensive (Mabhaudhi, 2012; Choruma et al.,
2019). Crop simulation models (CSMs) provide a cost-effective
interim solution by generating modelled data while field trials
progress (Mthembu et al., 2024). CSMs support decision-making
by assessing climate and management impacts on yields (Yadav
et al, 2012; Choruma et al., 2019). They also inform adaptation
strategies, guide sustainable agricultural transformation, and
evaluate the potential of landraces, which are traditional crop
varieties that have evolved by adapting to local environments (Villa
et al., 2005).

Reliable simulations require high-quality input data across
multiple agro-ecological zones (Zhao et al., 2016). In South Africa,
this is challenging due to (i) limited field data, (ii) declining availability
of weather station data (Pegram et al., 2016), (iii) faulty data-collecting
instruments (Chisanga et al., 2017), and (iv) a lack of funding for field
experiments. Calibrating CSMs requires comprehensive datasets on
climate, soil, field management, and crop-specific characteristics. Data
scarcity has restricted reliable parameterisation for NUS, highlighting
the need for models capable of producing robust simulations with
fewer input parameters. AquaCrop meets this requirement, balancing
reduced input needs with strong performance (Todorovic et al., 2009;
Saab et al., 2015).

The
Agrotechnology Transfer;

latest DSSAT (Decision Support System for
2003), APSIM

(Agricultural Production Systems sIMulator; Keating et al.,

Jones et al.,
2003), and AquaCrop models simulate 42, 39, and 17 crops,

respectively (Wimalasiri et al., 2021; Wellens et al., 2022; Raes
etal,, 2023). Despite a smaller crop range, AquaCrop is the most
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widely used CSM in South Africa (Kephe et al., 2021), partly due
to an automated procedure enabling simulations across more
than 5,800 homogeneous regions in southern Africa (Kunz
et al., 2024). Furthermore, AquaCrop has been calibrated for
various NUS landraces in South Africa including amaranth
(Nyathi et al., 2018), bambara groundnut (Mabhaudhi et al.,
2014a), cowpea (Kanda et al., 2020), pearl millet (Bello and
Walker, 2016), sorghum (Hadebe et al., 2017), spider flower
(Nyathi et al., 2018), sweet potato (Beletse et al., 2013; Nyathi
et al., 2016), Swiss chard (Nyathi et al., 2018), and taro
(Mabhaudhi et al., 2014b).

Key CSM terms are essential for understanding model application.
Parameterisation defines crop-specific parameters derived from in situ
data or literature (FAO, 2023). Calibration involves adjusting
parameters iteratively to minimise the difference between simulated
and measured data, thus enhancing model accuracy (FAO, 2023).
Validation involves evaluating model performance using independent
datasets (FAO, 2023). Recalibration involves refining parameters with
additional datasets to enhance simulation accuracy in different
environments, soils, cultivars, or management practices (Gowda
etal., 2013).

AquaCrop calibration for NUS in South Africa has been
limited. Beletse et al. (2013) parameterised AquaCrop for orange-
fleshed sweet potato (OFSP; Ipomoea batatas L. Lam) using a rain
shelter experiment and validated against data from the following
season. This approach was not ideal since both datasets were from
one location, restricting representativeness across other agro-
ecological zones. Mabhaudhi et al. (2014b) parameterised and
validated AquaCrop for taro (Colocasia esculenta L. Schott) but
recommended further refinement due to high variability across
environments. These cases highlight the need for recalibrating
AquaCrop for both OFSP and taro using multi-location datasets.
Multi-environment calibration aligns with the objectives of the
Agricultural Model Intercomparison and Improvement Project
(Rosenzweig et al., 2013), which promotes standardised protocols
and cross-site evaluation of CSMs.

This study therefore aims to recalibrate and validate AquaCrop for
OFSP and taro using secondary datasets from multiple locations to
improve accuracy. AquaCrop was selected for its simplicity,
robustness, and capacity to simulate multiple seasons across diverse
environments. By enhancing predictive accuracy, this work supports
more reliable yield forecasting, optimised water management, and
improved climate adaptation planning for farmers. Ultimately, these
outcomes contribute to integrating underutilised crops into
mainstream production systems, enhancing food and nutrition
security, and promoting resilient agricultural diversification under
climate variability.

2 Materials and methods
2.1 AquaCrop model description

In 2009, the Food and Agriculture Organisation (FAO) developed
AquaCrop to simulate biomass production and crop yield under
rainfed and irrigated conditions (Steduto et al., 2009). AquaCrop
evolved from the CROPWAT model (Doorenbos and Kassam, 1979),
with improvements made to ensure AquaCrop is more robust and
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simpler to use. Both models are therefore based on the following
relationship between yield formation and transpired water:

Yo=Ya)_ o (ETc—ETs "
Yo ET.

Where Ky is a proportionality factor describing yield loss due to
decreasing crop transpiration. Y¢ and Y, represent potential and actual
yield (t ha™"), respectively. Similarly, ET. and ET, denote potential and
actual evapotranspiration (mm), respectively.

AquaCrop requires input data on crop, soil, climate, and
management conditions (Hsiao et al., 2009). Daily climate inputs
include the following: rainfall, maximum (Tx) and minimum
(Tn) temperature, reference evapotranspiration (ET,), and annual
(and/or decadal) atmospheric carbon dioxide (CO,) levels.
Irrigation (I) is specified in the management input. Temperature
data are used to estimate growing degree days (GDD) and to
assess cold or heat stress, while ET, is used to quantify
atmospheric demand that drives crop transpiration (7r) and soil
evaporation (E) rates (Allen et al., 1998). AquaCrop uses canopy
cover (CC) instead of leaf area index to calculate Tr, which is then
used to estimate above-ground biomass (B in kg ha™') as the
product of the water productivity parameter (WP in kg m~°) and
accumulated Tr (m?) as follows:

B=WPxXTr (2)

The model calculates harvestable yield (Y in kg ha™") as a product
of B and the harvest index (HI in %) as follows:

Y=BxHI (3)

AquaCrop calculates soil water content via the soil water balance
method (FAO, 2023) by accounting for soil water gains (rainfall,
irrigation, and capillary rise) and losses (17, E, deep percolation, and
runoff). Interception loss is not accounted for by the model, nor are
biotic factors such as pests and diseases (Steduto et al., 2012). The
model’s management component describes the influence of irrigation,
weeds, soil bunds, soil fertility, and soil salinity on crop growth
(FAO, 2023).

10.3389/fsufs.2025.1698211

Plant stress due to limited soil water is controlled by four stress
coefficients linked to (i) leaf expansion, (ii) stomatal closure, (iii)
early canopy senescence, and (iv) aeration stress (Vanuytrecht et al.,
2014). Soil water stress reduces leaf expansion and, in severe cases,
may trigger early canopy senescence. It also negatively impacts
canopy development and induces stomatal closure, thereby
reducing Tr and biomass production (FAO, 2023). The model also
modifies HI when soil water stress occurs pre- and post-flowering,
thus affecting yield formation (Raes et al., 2009). Generally, water
stress reduces HI; however, it may also increase it by limiting
vegetative growth, thereby directing more assimilates to grain, seed,
or fruit development (Vanuytrecht et al, 2014). Limited soil
aeration due to prolonged waterlogging reduces Tr, which negatively
affects biomass production (Steduto et al., 2012). CC development
and the WP parameter are both affected by (i) the ambient CO,
level and (ii) soil fertility and salinity stress (Steduto et al., 2012).

2.2 Description of experimental sites

Summarised information for experimental datasets obtained for
model calibration and testing is provided in Table 1. Calibration
data for OFSP were obtained from the University of KwaZulu-Natal
(UKZN) in Pietermaritzburg, KwaZulu-Natal province,
South Africa (29°37’S; 30°23’E; 750 m a.s.l.). Kunz et al. (2024)
conducted the experiment where OFSP was grown in raised soil
beds in a greenhouse during the 2022/23 growing season. For taro,
the calibration dataset was measured by Mabhaudhi (2012) during
the 2010/11 growing seasons at the Agricultural Research Council’s
rain shelter in Roodeplaat (25°36’S; 28°21'E; 1,168 m a.s.l.), situated
north-east of Pretoria (Gauteng province). This dataset is the same
as that originally used by Mabhaudhi et al. (2014b) to parameterise
AquaCrop for taro.

Growth and yield data from the unstressed water treatment (100%
of crop water requirement or CWR in mm) were used for recalibration.
CWR is the amount of irrigated water required to meet a crop’s maximum
evapotranspiration demand (ET¢ in mm). The calculation of CWR is
based on FAO’s Penman-Monteith equation to calculate ET,, (Allen et al,,
1998), which is then adjusted using a crop coeflicient (K) as follows:

CWRZETC =ETO xKC (4)

TABLE 1 Summary of experimental datasets obtained for model calibration and testing of sweet potato and taro in South Africa.

Experimental Experiment Season Crop(s) Water Calibration Testing Source
site type treatment
Kunz et al.
UKZN Greenhouse 2022/23 OFSP 40 & 100% of CWR v (2024)
30, 60, & 100% of Mabhaudhi
ARC Rain shelter 2010/11 Taro v
CWR (2012)
Swayimane Field 2023/24 OFSP & taro Rainfed v This study
Kunz et al.
Fountainhill Field 2021/22 OFSP & taro Rainfed v (
2024)
Mabhaudhi
Ukulinga Field 2010/11 Taro Optimally irrigated v (2012)
01

ARG, Agricultural Research Council; UKZN, University of KwaZulu-Natal; CWR, crop water requirement.

Frontiers in Sustainable Food Systems

frontiersin.org


https://doi.org/10.3389/fsufs.2025.1698211
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org

Mthembu et al.

For both OFSP and taro experiments, restricted irrigation
treatments (40% of CWR for OFSP, and 30 and 60% of CWR for taro)
were applied consistently throughout the entire crop development.

For both crops, AquaCrop was validated using data from
Swayimane and Fountainhill (Table 1). The latter datasets were
sourced from Kunz et al. (2024), who conducted rainfed field
experiments over the 2021/22 growing season at Fountainhill (29°27’S;
30°32E; 851 ma.s.l.), located approximately 32 km north-east of
Pietermaritzburg. For this study, data were collected from a
smallholder farming community in Swayimane (29°31°S; 30°42'E;
878 m a.s.l.), situated near Wartburg in KwaZulu-Natal, at the end of
the 2023/24 season. Another dataset collected by Mabhaudhi (2012)
was used to test taros recalibration. The irrigated field experiment was
undertaken at Ukulinga (29°39’S; 30°24’E; 775 m a.s.l.), UKZN’s
research farm located in Pietermaritzburg. Figure 1 shows the location
of each experimental site selected for model recalibration and testing.

10.3389/fsufs.2025.1698211

2.3 Model inputs

The original databases for the experimental sites listed in Table 1
were provided by the respective authors. Input data describing soil,
climate, and field management were used to develop the corresponding
AquaCrop input files for each site, as described below.

2.3.1 Soil data

Data provided in Table 2 were used to develop an input soil (.
SOL) file for each experimental site. These include the soil water
content at permanent wilting point (PWP), field capacity (FC), and
saturation (SAT), as well as total available water (TAW), and saturated
hydraulic conductivity (Ksr). For the Swayimane validation site, soil
samples were collected from 0.15, 0.30, and 0.60 m depths using an
auger. Soil texture was determined in the soil and water laboratory at
UKZN using the hydrometer method (Bouyoucos, 1962). Soil water

0 195 390 780

Kilometers

X ARC - Calibration site

+ UKZN - Calibration site
4 Swayimane - Testing site
% Fountainhill - Testing site
® Ukulinga - Testing site

KwaZulu-Natal

55 110

220
"Kilometers '

FIGURE 1

Experimental sites selected for model recalibration and testing of sweet potato and taro in South Africa.

TABLE 2 Soil data used to develop an AquaCrop soil file for each experimental site.

Experimental site

Crop

Soil textural = Source

class

UKZN OFSP 29.5 375 43.5 32 77 Clay loam Kunz et al. (2024)
ARC Taro 16.1 24.1 42.1 80 324 Sandy clay loam Mabhaudhi (2012)
OFSP 7.0 23.0 33.8 160 541 Loamy sand
Fountainhill Kunz et al. (2024)
Taro 10.3 23.5 38.3 85 27 Sandy loam
OFSP 27.8 34.5 483 67 1,131 Sandy loam
Swayimane This study
Taro 225 34.3 50.0 118 584 Sandy loam
Ukulinga Taro 15.9 23.8 41.9 80 320 Sandy clay loam Mabhaudhi (2012)
Frontiers in Sustainable Food Systems 04 frontiersin.org
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retention curves were obtained using controlled outflow pressure
apparatus and fitted with the Van Genuchten equation (Van
Genuchten, 1980), from which soil water content at FC and PWP was
estimated at —10 kPa and —1,500 kPa, respectively. Kqxr was measured
using the constant-head permeameter method (Klute, 1965).

2.3.2 Climate data

Daily climate files for minimum and maximum air temperature (.
TNX) and rainfall (. PLU) were developed using measurements from an
automatic weather station (AWS) installed at or near each site by the
research team. At the Swayimane, Fountainhill, and Ukulinga validation
sites, a Davis Vantage Pro2 AWS was installed. For calibration, climate data
were recorded inside the UKZN greenhouse experiment using an AWS of
the same type, operated under controlled indoor conditions, while the ARC
rain shelter experiment used a similar AWS positioned approximately
100 m from the site. All meteorological sensors were connected to a
CR1000 data logger (Campbell Scientific Inc., Logan, Utah, USA). ET,,
input files were generated directly in AquaCrop using its internal FAO
Penman-Monteith algorithm (Allen et al., 1998), based on daily inputs of
solar radiation, wind speed, air temperature, and relative humidity. No
external software (e.g., FAO ETo Calculator) was used. For all sites,
AquaCropss default CO, file (MaunaLoa. CO2) was used, which has mean
annual values measured at the Mauna Loa Observatory in Hawaii. A
summary of the climate data inputs for each site is presented in Table 3.

2.3.3 Management

Irrigation input files (. IRR) were developed for the sites that
received irrigation, namely UKZN, ARC, and Ukulinga, which received
seasonal totals of 347, 385, and 315 mm, respectively. Irrigation was
applied using a drip irrigation system, and the volume of water applied
was measured using two inline water meters, which were read after
each irrigation event. Groundwater input (. GWT) files were not
created as the water table is too deep (> 0.60 m) to influence soil water
content in the root zone. Field management (. MAN) files were created
for each experimental site to represent actual conditions. OFSP was
transplanted using vine cuttings, while taro was planted using cormels.
Soil fertility was non-limiting, and no practices were implemented to
prevent runoff, such as mulching or soil bunds. Fertilisation, weed
control, and pest or disease management were applied according to the
protocols of the original experiments used for calibration and
validation, which provided all necessary information on these practices.

2.3.4 Initial crop parameters
Attempts to obtain copies of AquaCrop parameter files for OFSP
developed locally by Beletse et al. (2013) and Nyathi et al. (2016) were

10.3389/fsufs.2025.1698211

unsuccessful. Furthermore, neither study published a full set of
parameterised values. Instead, a sweet potato parameter file developed
by Rankine et al. (2015) was obtained from the primary author and
utilised in this study. Similarly, the taro parameter file originally
developed by Mabhaudhi et al. (2014b) was obtained from the
primary author.

2.4 Recalibration procedure

Using guidelines developed by Steduto et al. (2012), model recalibration
involved fine-tuning specific parameters initially developed by Rankine
etal. (2015) and Mabhaudhi et al. (2014b) to represent local landrace and
growing conditions adequately. In AquaCrop, crop parameters are classified
as conservative (stable across environments and management practices) or
non-conservative (vary with cultivar., location, and management). While
conservative parameters are generally stable (FAO, 2023), they were refined
in this study to account for the high genetic variability among local
landraces. For example, the adjustment of HI, was done using observations
from the non-stressed (i.e., fully irrigated) treatments (cf. Table 1) to ensure
that AquaCrop predicts the highest yield under well-watered conditions
(FAO, 2023). Other conservative parameters linked to water stress
responses (e.g., soil water depletion factors and associated shape factors for
canopy expansion, stomatal closure, and senescence) were also fine-tuned.
Parameters intrinsic to crop species, such as the cut-off temperature for
development, were retained to avoid compromising accuracy. For
parameters that were not measured (e.g., basal crop coefficient),
representative values were sourced from literature (e.g., Pereira etal,, 2021).

Non-conservative parameters should be fine-tuned to improve
model performance for different cultivars, landraces, and
environmental conditions (FAO, 2023). Therefore, the canopy growth
coeflicient (CGC) and canopy decline coefficient (CDC) parameters
were recalibrated to better capture CC development. For taro, CC was
estimated by Mabhaudhi et al. (2014b) wusing Diffuse
Non-Interceptance measurements obtained with an LAI-2200 Plant
Canopy Analyzer (LI-COR, 2009). For OFSP, Kunz et al. (2024)
derived CC indirectly by converting measured leaf area index values
using the Beer-Lambert law (Swinehart, 1962). At the Swayimane
validation site, the same approach was employed to convert measured
leaf area index values to CC.

The time (in calendar days) to reach each phenological growth
stage (i.e., emergence, maximum rooting depth, canopy senescence,
maturity, and yield formation) was also adjusted to improve
simulation accuracy. However, this was affected by the lack of
measurements during the initial growth period at some sites.

TABLE 3 Total accumulated precipitation (P), total reference evapotranspiration (ET,), and average seasonal temperature (T,yc) for each experimental

site.
Experimental site = Planting date (yyyy/mm/dd) Crop P (mm) Total ETo (mm) Tave (°C)
UKZN 2022/10/27 OFSP - 4253 25.5
ARC 2010/09/08 Taro - 1219.1 187
OFSP 1102.3 780.0 17.4
Swayimane 2023/10/01
Taro 1132.1 801.2 18.0
2021/12/14 OFSP 472.9 489.7 211
Fountainhill
2021/11/19 Taro 692.6 611.0 20.2
Ukulinga 2010/09/08 Taro 646.7 817.1 19.4
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Canopy senescence begins when the chlorophyll content of upper
leaves declines or when 10% of lower leaves begin to yellow under
non-stressed conditions (Mabhaudhi, 2012). The physiological
maturity date occurs when root/tuber growth stabilises. Despite
flowering being linked to the photoperiod for root and tuber crops
(RTCs), it does not occur often, especially for sweet potato
(Rankine et al., 2015) and taro (Mabhaudhi, 2012). Hence, the start
and duration of flowering were set to zero.

All adjustments were made iteratively through a trial-and-error
process until model simulations aligned closely with observed data.
AquaCrop was run in calendar day mode, which is the standard
approach in parameterisation and calibration studies. AquaCrop v7.1
(FAO, 2023) was used, with the simulation period linked to the
growing cycle, i.e., day one after sowing up to physiological maturity.
For OFSP and taro, planting dates were set at 27 October 2022 and 8
September 2010, respectively (cf. Table 3). Planting densities were set
to 55,556 and 20,000 plants per ha™' for OFSP and taro, respectively.
These settings were applied to mimic experimental conditions.

2.5 Validation procedure

AquaCrop was validated for both crops using data from
Fountainhill and Swayimane, with an additional site (Ukulinga)
used for taro (cf. Table 1). These locations span a range of agro-
climatic conditions, enabling an evaluation of model robustness
across different environments. AquaCrop was run in thermal time
(i.e., GDD mode), which standardises phenological development
against heat accumulation rather than calendar days. No
recalibration was performed during validation, ensuring that the
model’s predictive capability was reflected under independent
conditions. Including multiple sites served to assess the model’s
transferability and identify potential limitations in performance
under diverse locations.

2.6 Model evaluation statistics

Model performance was quantified by comparing simulated and
observed CC development (in %), biomass production and harvestable
yield (both in t ha™), and HI (in %). As suggested by Chibarabada
etal. (2020), the following statistical indicators were used to evaluate
model performance since each statistic offers specific advantages and
drawbacks: coefficient of determination (R?), root mean square error
(RMSE), normalised RMSE (NRMSE), Nash-Sutcliffe model efficiency
(NSE), and Willmott’s index of agreement (d-index), including the
percentage error (i.e., deviation).

3 Results and discussion
3.1 Model recalibration

Recalibrated values for selected crop parameters are presented in
Table 4 and Table 5 for OFSP and taro, respectively. The inclusion of
additional parameters reflects a commitment to transparency, relative
to 23 and 26 values published by Rankine et al. (2015) and Mabhaudhi
etal. (2014b), respectively.
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3.1.1 Canopy cover development

For OFSP, AquaCrop simulations showed a good match
(0.925 <R*<0.954; 6.186 < MAE <9.485%; 7.537 <RMSE <
11.434%; 9.372 < NRMSE < 14.098%; 0.765 < NSE < 0.880;
0.940 < d-index < 0.975) between observed and simulated CC values
for both the unstressed (100% of CWR) and stressed (40% of CWR)
treatments (Figure 2). The R* and RMSE statistics showed better
model performance relative to those obtained by Nyathi et al. (2016),
which were 0.77 and 12.10%, respectively. However, AquaCrop mostly
over- and under-estimated CC development for the unstressed and
stressed treatments, respectively, which aligns with findings by
Rankine et al. (2015). Improvements in CC simulation accuracy are
not only a technical calibration success but also enhance the model’s
operational value for real-world applications such as predicting
growth trajectories under climate stress. Accurate CC simulation
better of light
evapotranspiration patterns, which are critical for yield forecasting

allows for estimation interception and
and water resource planning, especially in water-scarce environments.

The CGC parameter in AquaCrop determines the rate of initial
CC development, which generally follows a concave shape for most
crops (FAO, 2023). However, OFSP’s CC development initially
followed a convex-shaped curve, thus highlighting very rapid crop
development during the early growth stages (Figure 2). To mimic this
behaviour, the parameter representing the soil surface area covered by
an individual seedling was adjusted to the highest permissible value
of 50 cm? for a transplanted crop (cf. Table 4). OFSP rapidly establishes
ground cover, which is consistent with the vigorous vegetative growth
trait of RTCs (Mabhaudhi, 2012; Masango, 2015). This rapid
establishment is facilitated by OFSP’s method of propagation, as the
crop is transplanted using vine cuttings rather than being grown from
seed, which facilitates immediate vegetative growth from established
nodes. Rapid canopy closure reduces the soil evaporation window,
improves early-season soil moisture conservation, and provides a
competitive advantage against weed establishment. Simulating this
accurately is essential for realistic water productivity estimates and
designing planting strategies that optimise early-season
resource capture.

For taro, model evaluation showed a moderate to good agreement
(0.519 <R*<0.632; 6.005 < MAE <9.408%; 7.193<RMSE <
9.615%; 25.675 < NRMSE < 34.840%; 0.044 < NSE <0.485;
0.757 < d-index < 0.773) between simulated and observed CC values
for the unstressed (100% of CWR) and moderately stressed (60% of
CWR) treatments (Figure 3). RMSE and NRMSE values were lower
relative to those generated using the original crop file by Mabhaudhi
et al. (2014b), which ranged from 10.123-16.817% and 46.614-
54.862%, respectively. Thus, the recalibrated crop parameters are
better than the original values. This improvement has practical
significance as better CC prediction for taro in moderately stressed
environments suggests that the model can be used as a decision-
support tool to reliably inform farmers and policymakers about
potential yield reductions under water-limited scenarios, enabling
proactive adaptation measures such as irrigation scheduling
or mulching.

Measured CC development was highest at 119 days after planting
(DAP) across all treatments. This indicates crop senescence occurred
between 119 to 154 DAP, which the model did not simulate well. This
discrepancy suggests that the CDC senescence parameter may require

further calibration. Additionally, it may indicate that the model does
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TABLE 4 Comparison of important parameters derived by Rankine et al. (2015) for sweet potato, to those fine-tuned in this study for OFSP.

Crop parameter This study = Source
Crop is transplanted - Unchanged
Base temperature for no crop development (°C) 15 - Unchanged
Cut-off temperature for no crop development (°C) 35 - Unchanged
Soil water depletion factors for:
c ( hreshold) 0.26 0.22
anopy expansion (upper thresho!
pyer PP 0.66 0.58
Canopy expansion (lower threshold)
0.65 0.70 Recalibrated
Stomatal control
0.69 0.53
Canopy senescence
0.80 0.80
Pollination/flowering
Shape factor for:
3.3 6.0
Water stress coefficient for canopy expansion 4 60
Water stress coefficient for stomatal control 2.7 3.0 Recalibrated
Water stress coefficient for canopy senescence 1.5 1.5
Describing root zone expansion
Basal crop coefficient 1.10 1.05 Pereira et al. (2021)
Minimum effective rooting depth (m) 0.30 0.30
Pereira et al. (2021)
Maximum effective rooting depth (m) 1.60 1.20
Soil surface area covered by seedling at 90% emergence (cm?) 10 50 Recalibrated
Canopy size of individual plant (re-growth) at 1st day (cm?) 50 - Unchanged
Number of plants per hectare 90,000 55,556 Recalibrated
Canopy growth coefficient (CGC in % day™) 13.420 11.139 Recalibrated
Maximum canopy cover (CCx) 0.94 0.91 Recalibrated
Canopy decline coefficient (CDC in % day™") 9.529 3.000 Recalibrated
Calendar days from transplanting to: . ‘
Emergence/recovered transplant
56 95
Maximum rooting depth
80 120 Recalibrated
Start of senescence
96 140
Physiological maturity (length of crop cycle) 5 6
1
Start of yield formation/initiation
Crop determinacy unlinked with flowering 0 -
Calendar days from sowing/transplanting to flowering 0 - Unchanged
Length of the flowering stage (calendar days) 0 -
Building up of harvest index starting at root/tuber enlargement (calendar days) 65 72 Recalibrated
Normalised water productivity (WP* in g m™) 20.0 - Unchanged
WP normalised for ET, and CO, during yield formation (%) 100 - Unchanged
Reference harvest index (HI, in %) 55 77 Recalibrated

not fully account for the physiological ageing of taro or possible stress
factors (e.g., nutrient depletion or disease onset) that could have
triggered earlier or more rapid senescence as was observed. Identifying
and addressing these gaps is essential for improving predictive
reliability under variable nutrient and pest pressures, which are
conditions that are common in smallholder systems.

AquaCrop showed limited accuracy in simulating taros CC
development under water-stressed conditions (Figure 3). The negative
NSE (—0.077) suggests that predictions had a higher error variance
relative to variability in observations. This highlights AquaCrop’s
inability to adequately simulate taro’s CC development under water-
stressed conditions, which was also noted by Mabhaudhi et al.
(2014b). This limitation may suggest the need for further refinement
of taro’s water stress response parameters. From a broader perspective,
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this indicates that AquaCrop’s current structure may not fully capture
the physiological and morphological adaptations of taro under severe
drought. For decision-makers relying on these simulations,
particularly in climate-vulnerable regions, such underperformance
under water stress could underestimate the urgency of adaptation
interventions needed.

For the stressed treatment, MAE (11.956%) was lower than RMSE
(15.442%), which is expected as the latter statistic is more sensitive to
outliers. Observed CC development increased sharply from 41% at
112 DAP to 76% at 119 DAP, which raises concerns about data validity.
This highlights the importance of scrutinising data from secondary
sources for potential errors before being used for model calibration.
This also reflects a common challenge in modelling under-researched
crops as the scarcity of high-quality field data can limit calibration
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TABLE 5 Comparison of taro parameters derived by Mabhaudhi et al. (2014b) to those fine-tuned in this study.

Crop parameter This study  Source
Crop is transplanted - Unchanged
Base temperature for no crop development (°C) 10 - Unchanged
Cut-off temperature for no crop development (°C) 35 - Unchanged
Soil water depletion factors for:
c fon ( hreshold) 0.10 0.02
anopy expansion (upper thresho!
Py e PP 0.45 0.35
Canopy expansion (lower threshold)
0.45 0.25 Recalibrated
Stomatal control
0.45 0.55
Canopy senescence
0.90 0.90
Pollination/flowering
Shape factor for:
3.0 3.2
Water stress coefficient for canopy expansion 30 .
Water stress coefficient for stomatal control 3.0 3.2 Recalibrated
Water stress coefficient for canopy senescence 1.5 1.5
Describing root zone expansion
Basal crop coefficient 1.15 1.05 Pereira et al. (2021)
Minimum effective rooting depth (m) 0.10 0.10
Recalibrated
Maximum effective rooting depth (m) 0.80 0.40
Soil surface area covered by seedling at 90% emergence (cm?) 25 - Unchanged
Canopy size of individual plant (re-growth) at 1st day (cm?) 25 - Unchanged
Number of plants per hectare 20,000 - Unchanged
Canopy growth coefficient (CGC in % day™) 7.730 7.878 Recalibrated
Maximum canopy cover (CCx) 0.85 0.78 Recalibrated
Canopy decline coefficient (CDC in % day™") 3.000 - Unchanged
Calendar days from transplanting to:
v P 8 42 30
Emergence/recovered transplant
140 90
Maximum rooting depth
199 166 Recalibrated
Start of senescence
Physiol 1 (length of le) 258 180
siological maturity (length of crop cycle
7 ¢ Y ¢ Py 137 120
Start of yield formation/initiation
Crop determinacy unlinked with flowering 0 -
Calendar days from sowing/transplanting to flowering 0 - Unchanged
Length of the flowering stage (calendar days) 0 -
Building up of harvest index starting at root/tuber enlargement (calendar days) 110 60 Recalibrated
Normalised water productivity (WP* in g m™) 15 - Unchanged
WP normalised for ET, and CO, during yield formation (%) 100 - Unchanged
Reference harvest index (HI in %) 83 - Unchanged

quality and mask true crop-environment interactions, which in turn
reduces confidence in long-term projections.

The low NSE values for the moderately stressed and stressed
treatments also highlight that this statistic is sensitive to a low number
of observations (McCuen et al., 2006). In contrast to the OFSP dataset
(Figure 2), only four CC measurements were made. The lack of
observations during the early growth stages hindered the ability to
accurately recalibrate initial CC development, thus limiting the
robustness of model validation. This issue highlights the importance
of improving the quality of in situ datasets by ensuring that
measurements span the entire growing season to support effective
model calibration. From an applied research standpoint, this finding
reinforces the need for systematic phenotyping campaigns for NUS
across agro-ecologies. Such efforts would enable stronger model
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parameterisation and reduce uncertainty in growth predictions,
ultimately improving advisory services for farmers.

The simulated CC development curves for OFSP (Figure 2) and
taro (Figure 3) did not decline towards the end of the season. This can
be attributed to their stay-green trait (Adugna and Tirfessa, 2014;
Wirojsirasak et al., 2024), which enables both crops to retain leaf
chlorophyll for prolonged periods during their latter growth stages.
This stay-green trait makes it difficult to determine the start of
senescence. For both crops, the model's CDC parameter was therefore
set to the lowest value of 3% to prevent the decline in CC development
as the crop approaches physiological maturity. Accurately representing
stay-green behaviour is particularly relevant for climate adaptation
modelling, as it is linked to drought resilience and sustained
photosynthesis under late-season stress. Failure to simulate it correctly
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FIGURE 3

Simulated versus observed canopy cover development for taro under (a) unstressed, (b) moderately stressed, and (c) stressed growing conditions

could lead to underestimation of yield stability in marginal
environments, which is crucial for positioning NUS as climate-
resilient alternatives to conventional staples.

3.1.2 Above-ground biomass production

Based on high R? (0.985-0.989) and d-index (0.817-0.871)
values, AquaCrop adequately captured above-ground biomass
production for OFSP under (a) unstressed and (b) stressed
treatments, despite the consistent over-simulation (Figure 4). The
other metrics (MAE, NRMSE, and NSE) suggest the model was
less successful in simulating biomass production under stressed
conditions, compared to the unstressed treatment. The decline in
NSE from 0.521 to 0.138 highlights the model’s inability to
adequately simulate crop physiology under water deficit
conditions. This again suggests the need for improving the
model’s response to water-limiting conditions. This limitation is
critical as biomass accumulation directly influences yield and
water productivity estimates. If stressed-condition biomass is
overestimated, water-saving interventions

may  not
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be implemented, potentially leading to misallocation of scarce
irrigation resources in practice.

From Figure 5, all model evaluation statistics highlight AquaCrop’s
ability to accurately simulate above-ground biomass production for
taro, despite the slight decline in model performance for the stressed
treatment. These results suggest that AquaCrop reliably captures
biomass accumulation in taro across varying water regimes, although
further refinement may be needed to enhance its sensitivity to stress
conditions. For agricultural planning, this means AquaCrop could
be a viable decision-support tool for taro yield estimation under
moderate to optimal water availability but would require caution or
further calibration before being used for drought-response planning
in severely water-stressed areas.

3.1.3 Final biomass and yield at harvest

Model performance for final above-ground biomass, yield, and HI
using the recalibrated crop parameters is summarised in Table 6.
AquaCrop simulated all three variables with high accuracy,
particularly for OFSP. Absolute deviations are within 6%, which is
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TABLE 6 Observed (obs) and simulated (sim) above-ground biomass (B), yield (Y), and harvest index (HI) for OFSP and taro after model recalibration.

Crop B (dry t ha™}) Y (dry t ha™) HI (%) Absolute deviation (%)
(Location) . . .
Obs Nl Obs Sim Obs Sim B Y HI
100 19.35 19.77 15.14 15.09 78 76 22 0.3 2.6
OFSP (UKZN)
30 16.95 16.39 12.25 12.51 72 76 33 2.1 5.6
100 10.60 10.97 9.00 9.38 85 86 35 42 12
Taro (Roodeplaat) 60 10.30 9.98 9.31 8.77 90 88 3.1 5.8 22
30 7.00 6.66 6.10 5.82 87 87 49 46 0.0

considered negligible by Dua et al. (2014). The model simulated high
HI values for both crops, which ranged from 76 to 88% under all
treatments. This was influenced by the high reference HI parameter
for both crops.

Prior to recalibration (i.e., using parameters derived by Rankine
etal, 2015), above-ground biomass simulations were reasonable with
absolute deviations of 3.9-15.4%. However, the model under-
estimated yield due to a low HI (~50%), with absolute deviations
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ranging from 30.3-45.5%. These simulations were conducted in a
previous study by Rankine et al. (2015). This suggests that HI varies
substantially across different sweet potato cultivars and landraces.
Hence, deriving a reference value that is universal for all sweet potato
genotypes will prove difficult. Similarly, AquaCrop grossly over-
estimated taro’s biomass and yield, especially for the fully irrigated
treatment, as indicated by Mabhaudhi et al. (2014b). These differences
highlight the need to recalibrate the crop parameters, i.e., the main
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aim of this study. The implication is that default parameter sets, often
used where local data is lacking, may lead to highly misleading outputs
for NUS, emphasising the necessity for site and genotype specific
calibration before operational deployment.

The marked improvement in absolute deviations for taros biomass
and yield (Table 6) is due to the adjustments made in crop parameters
to reflect better the crop’s growth and response to water stress.
Reducing the model’s soil water depletion factors for canopy expansion
and stomatal control, enhanced its ability to simulate water stress
effects on taro growth (cf. Table 5). Additionally, lowering maximum
CC (from 0.85 to 0.78) and maximum rooting depth (from 0.80 to
0.40 m) prevented the model from over-estimating taro’s biomass and
yield for each treatment. This adjustment aligns with findings that taro
is a shallow-rooted crop, typically developing roots within the
top 30-45 cm of soil (Onwueme, 1999), thereby limiting its access to
deeper soil moisture under stress conditions. By accurately
constraining rooting depth, the model can now more realistically
assess taro’s vulnerability to in-season dry spells, making it more
suitable for climate risk modelling in shallow-soil agro-
ecological zones.

Phenological calibration posed challenges due to limited early
growth observations and taro’s stay-green trait, which prevents
canopy decline from signalling maturity. AquaCrop does not
simulate this behaviour, assuming instead a direct link between
senescence and tuber maturity. For RTCs such as OFSP and taro,
physiological maturity can be more reliably indicated by the
stabilisation of tuber mass than by the onset of leaf senescence,
which has been demonstrated in various RTC studies. For example,
Kunz et al. (2024) observed that for taro, tuber yield stabilised
between 180 and 191 DAP, but the crop was harvested at 206
DAP. Similarly, observations at Fountainhill, one of the sites used
for model validation, showed that OFSP tuber yield stabilised
around 105 DAP, yet harvesting occurred at 118 DAP. To address
this issue, phenological growth stages for taro, such as the time to
reach maximum rooting depth, senescence, and yield formation,
were shortened to reflect actual crop growth dynamics, which
resulted in improved yield predictions. In practical terms, using
tuber mass stabilisation as a maturity indicator could improve
harvest-timing recommendations, reduce post-maturity losses and
improve resource-use efficiency, which is particularly important
for resource-constrained farmers seeking to maximise yield under
climate-stress.

The recalibration of AquaCrop for OFSP and taro was improved
by adjusting 21 and 19 parameters, respectively (cf. Section 3.1). This
is comparable to Mabhaudhi et al. (2014a, 2014b), where 21
parameters were adjusted to parameterise the model for bambara
groundnut and taro. With these refinements, AquaCrop reliably
simulated biomass and yield for both crops under unstressed and
stressed conditions. The latter outcome is different to other studies
(e.g., Patel et al.,, 2008; Heng et al., 2009; Hsiao et al., 2009), which
highlighted AquaCrop’s inability to adequately simulate maize and
potato yield under water-stressed conditions. Rankine et al. (2015)
highlighted the difficulty of calibrating RTCs relative to major staples;
the present study demonstrates that targeted recalibration can
overcome these challenges, producing predictive performance on par
with or better than that for conventional crops. This strengthens the
case for mainstreaming NUS in crop modelling portfolios and
integrating them into climate adaptation and food security policies.
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To date, AquaCrop v7.1 has been parameterised for 17 herbaceous
crops using data collected from 1978 to 2019 across 28 locations (Raes
etal, 2023). For example, Raes et al. (2023) stated that potato has the
least reliable AquaCrop parameterisation relative to other crops,
which is based on experimental data from 1995 for a single site. This
raises concerns when using default crop parameters to simulate the
growth and yield of recent cultivars. Genetic modifications have
enhanced disease resistance, nutritional value, and yield of crops over
the past decades. For example, modern plant breeding tools and
molecular manipulation techniques, such as TALENS, CRISPR-Cas9,
RNAI, and cisgenesis, have been used to improve potato yield and
nutritional content (Ahmad et al., 2022). Since genetic improvements
are continually phasing out old cultivars, regular recalibration of crop
models is necessary to reflect these advancements.

3.2 Model validation

Crop parameters should produce reliable results across a wide
range of acro-ecological zones. Therefore, AquaCrops ability to
simulate CC development, above-ground biomass, yield, and HI was
tested against secondary datasets obtained from experiments
conducted at Fountainhill (rainfed), Swayimane (rainfed), and
Ukulinga (optimally irrigated) (cf. Table 1). For model validation,
AquaCrop was run in GDD mode to account for climatic variations
between the calibration locations and validation sites.

3.2.1 Canopy cover development

AquaCrop performed poorly in simulating CC development for
OFSP at Fountainhill under rainfed conditions compared to
Swayimane (Figure 6). Relatively high R? values can be misleading as
models may perform poorly by grossly under- or over-estimating
measured data (Krause et al., 2005), which highlights the importance
of considering other statistical indicators to evaluate models. If the
simulation of CC development at Fountainhill was delayed, resulting
in the curve shifting to the right (Figure 6a), the correlation would
be substantially improved. This discrepancy may be attributed to site-
specific microclimatic conditions during the study period, which may
have constrained AquaCrop’s parameterisation of early-stage canopy
development at this site. For decision-making, this highlights the
importance of site-specific model calibration, as a single recalibration
may not always account for factors across multiple sites during
validation. Accurate simulation of early canopy development is
critical, as errors at this stage can cascade into biomass and yield
overestimations. Similar challenges have also been reported by
Rankine et al. (2015), where AquaCrop simulations for sweet potato
did not agree well with measured values.

The model performed well at Swayimane by accurately simulating
CC development for OFSP, achieving MAE, RMSE, and d-index
values of 1.400, 1.626%, and 0.722, respectively. However, the NRMSE
(42.790%) and NSE (—0.728) statistics for Swayimane indicate a poor
simulation, which is likely influenced by the low number of
observations (n = 5). Early canopy data were missing due to logistical
constraints, as the trials were embedded within a larger multi-crop
experiment with limited monitoring resources. This gap reduces
confidence in early-stage validation and illustrates a common
limitation in underutilised crop research, where resource constraints
often restrict high-resolution data collection. Future studies should
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Validation results showing the comparison between simulated and observed canopy cover development for taro at (a) Fountainhill, (b) Swayimane, and

prioritise season-long monitoring to support more robust
model testing.

AquaCrop over-estimated CC development for taro at
Fountainhill (Figure 7a) and Ukulinga (Figure 7¢), with overall poor

model performance at both sites (0.332 <R?<0.564;
7.257 < MAE < 16.753%; 8.381 < RMSE < 19.745%;
63.695 < NRMSE < 64.466%; —3.450 < NSE < —2.046;

0.540 < d-index < 0.566). While this over-estimation may stem from
inaccuracies in parameters governing early canopy development,
including the time to transplant recovery, initial CC, the CGC, and
time to reach maximum CC, climatic factors play a more substantial
role. Rainfall at these two sites (692.6 mm at Fountainhill and
646.7 mm at Ukulinga) was considerably lower relative to 1132.1 mm
at Swayimane (cf. Table 3). AquaCrop generally performs better when
simulating non-stressed conditions (FAO, 2023). This was
corroborated at Swayimane (Figure 7b), where the higher rainfall
likely contributed to the model’s excellent simulation of CC
development (R2=0.999; MAE=1.240%; RMSE = 1.741%;
NRMSE =3.922%; NSE =0.989; d-index =0.998). This strong
agreement indicates the model is well-suited to simulating conditions
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with no water stress, i.e., AquaCrop’s predictive accuracy declines
when modelling water-limited environments (Steduto et al., 2009;
FAO, 2023). This confirms that water stress remains a key weakness in
AquaCrop’s performance for NUS, meaning its outputs should
be interpreted with caution for drought-prone areas unless stress-
response parameters are further improved.

3.2.2 Above-ground biomass production

AquaCrop adequately captured the trend in above-ground
biomass production for OFSP grown at (a) Fountainhill and (b)
Swayimane (Figure 8), as shown by the high R? values (0.959-0.999).
Despite the good NSE (0.632) and d-index (0.834) statistics, high
MAE (4.043 tha™'), RMSE (4.475 t ha™!), and NRMSE (22.671%)
values highlighted the model’s inability to predict biomass production
for OFSP grown at Fountainhill accurately. This was expected since
biomass prediction is directly related to the model’s ability to simulate
CC development (cf. Figure 6a). The lower model performance at
Fountainhill can also be attributed to excessive weed growth after
planting, which delayed the collection of biomass data until 57 DAP
(Kunz et al., 2024). This suggests that early crop development was
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Validation results showing a comparison between simulated and observed above-ground biomass accumulation for taro at (a) Swayimane and (b)
Ukulinga.

suboptimal in the field and underrepresented in the observed dataset, ~ This finding is consistent with previous research on
which limited the accuracy of the model evaluation during the initial ~ underutilised crops, where AquaCrop performs reliably under
growth stages. In operational terms, this shows that unaccounted field ~ favourable water conditions but with limited accuracy under
factors, like weed pressure, can significantly reduce the reliability of =~ water stress (Mabhaudhi, 2012; Mabhaudhi et al, 2014a;
model outputs and must be documented alongside calibration datasets ~ Rankine et al., 2015).
to avoid misinterpretation of deviations. AquaCrop accurately simulated the biomass accumulation for
This is further supported by AquaCrop’s accurate simulation  taro at Swayimane (Figure 9), with excellent model evaluation
of CC development at Swayimane (cf. Figure 6b), which resulted  statistics (R*=1.000; MAE =0.084 tha™'; RMSE =0.089 t ha™;
in an excellent above-ground biomass simulation (R = 0.999; NRMSE = 1.240%; NSE=0.999;  d-index=1.000), further
MAE = 0.228 t ha™!, RMSE = 0.349 t ha™!, NRMSE = 3.120%,  highlighting the model's suitability for simulating unstressed
NSE =0.993; d-index = 0.998) at this site. This strong  conditions. Model performance at Ukulinga was satisfactory as
performance is again attributed to the high rainfall at indicated by adequate statistics (R*=0.977; NSE=0.801;
Swayimane, which resulted in non-stressed growing conditions.  d-index = 0.929). Despite taro grown at Ukulinga receiving 647 mm
This suggests that for reliable biomass predictions, AquaCrop is  of rainfall and 315 mm of supplemental irrigation to relieve any water
currently best suited to regions where supplementary irrigation  stress (cf. Table 3), AquaCrop under-estimated taro’s above-ground
or consistently high rainfall minimises water stress variability. ~ biomass towards the latter stages of the growing season, as indicated
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by relatively high MAE (1.996 tha™'), RMSE (2.786 tha™'), and
NRMSE (15.251%) values.

3.2.3 Final biomass and yield at harvest

AquaCrop predicted final yield at Fountainhill and Swayimane
adequately with absolute deviations between observations and
simulations ranging from 6.8-11.9% for OFSP and 0.3-5.3% for
taro (Table 7). The model exhibited acceptable deviations for taro’s
final above-ground biomass at Fountainhill (1.2%) and Swayimane
(7.9%). These results suggest that only minimal model calibration
may be required when applying AquaCrop to other OFSP and taro
landraces growing in similar agro-ecological zones. For
practitioners, this means once a robust calibration is done for a
representative landrace in a given area, it may be applied to other
nearby areas with only minor adjustments, reducing the time and
cost barriers to using modelling for production planning.

However, larger absolute deviations (15.2-28.6%) in final
above-ground biomass were identified for OFSP at Fountainhill
and Swayimane, and for taro at Ukulinga. This indicates the model
may inadequately simulate final biomass across different locations.
AquaCrop predicted the HI of OFSP at Swayimane and taro at
Fountainhill, Swayimane, and Ukulinga with high accuracy
(Table 7). However, the model failed to simulate the HI for OFSP
at Fountainhill accurately. Given that HI directly affects yield
estimation, inaccuracies in HI modelling under certain site
conditions may undermine AquaCrops utility for harvest
predictions unless these specific weaknesses are addressed in
future recalibrations.

Differences in model performance for various OFSP and taro
landraces at different locations may be influenced by genotypic
variability. Landraces typically exhibit high genetic variation and
are adapted to specific environments. Different landraces,
therefore, have varying biomass accumulation rates, growth
patterns, and yield potentials. The calibration for a specific landrace
may therefore not be suitable for others, especially across diverse
agro-ecological zones. This highlights the importance of calibrating
AquaCrop using pooled data representing multiple landraces
grown at different locations to improve its predictive performance,
thus ensuring robust validation. This approach would also support
scaling AquaCrop beyond research into policy and extension work,
allowing it to inform crop diversification strategies at provincial or
national levels.

From the literature, HI values ranged from 22 to 90% for
OFSP (Bouwkamp and MHM, 1988; Bhagsari and Doyle, 1990;
Beletse et al.,, 2013; Rankine et al., 2015) and 50 to 83% for taro

10.3389/fsufs.2025.1698211

(Mabhaudhi et al., 2014b). While part of this variability can
be explained by the genetic diversity of NUS, which consist of
multiple landraces with distinct physiological traits, climatic
and management factors are equally critical drivers of HI
variability. For instance, higher rainfall and favourable
conditions at Swayimane promoted more effective assimilate
partitioning to storage roots, whereas at Fountainhill, weed
competition under drier conditions reduced assimilate
translocation efficiency, resulting in lower HI. Temperature,
rainfall distribution, and soil water availability therefore interact
with management practices to shape HI outcomes, leading to
substantial differences between sites and seasons. These climate-
driven differences explain much of the observed discrepancies
in yield predictions and underscore the challenge of defining a
single representative HI value. A universal reference HI would
not adequately capture the physiological responses of genetically
diverse landraces grown under contrasting climatic regimes and
management conditions.

3.2.4 GDD vs. calendar day mode

It is important to specify the simulation mode used for AquaCrop,
especially when validating at sites with different climates compared to
that at the calibration location. Although studies by Mabhaudhi et al.
(2014b), Rankine et al. (2015), and Kanda et al. (2020) converted crop
parameters from calendar days to GDDs, they did not clarify whether
the model was run in GDD mode during validation. Running
AquaCrop in calendar day mode fixes crop cycle length, which may
not reflect site-specific conditions where temperatures are
substantially warmer or cooler than the calibration site. In contrast,
GDD mode integrates cumulative temperature effects on development,
allowing more accurate simulation of phenology and HI under
variable climates.

This distinction was evident in the comparison between
Swayimane and Fountainhill. At Swayimane, favourable rainfall and
temperatures enabled CC, biomass, and HI simulations in GDD mode
to align closely with observations. At Fountainhill, cooler early-season
temperatures and weed pressure delayed canopy recovery, and GDD
mode better reflected the slower heat accumulation and its impact on
phenology, leading to more realistic yield outcomes. Without GDD
mode, discrepancies across agro-ecological zones would likely have
been larger and required extensive recalibration. These findings
confirm that GDD mode improves AquaCrop’s transferability and
strengthens its value for climate adaptation modelling, where warming
trends are expected to alter phenology, water demand, and
yield potential.

TABLE 7 Observed (obs) and simulated (sim) above-ground biomass (B), yield (Y) and harvest index (HI) for OFSP and taro obtained during model

testing.
Crop Water B (dry t ha™) Y (dry t ha™) Absolute deviation (%)
(Location) treatment . . .
(0] Sim Obs Sim Y HI
OFSP (Fountainhill) | Rainfed 21.93 16.25 12.12 11.29 55 69 259 6.8 25.7
OFSP (Swayimane) Rainfed 19.28 2222 15.15 16.96 79 76 15.2 11.9 2.9
Taro (Fountainhill) Rainfed 5.68 5.75 491 4.65 86 81 1.2 53 6.4
Taro (Swayimane) Rainfed 13.75 12.67 10.65 10.62 77 84 7.9 0.3 8.2
Taro (Ukulinga) Optimal irrigation 20.70 14.79 17.10 12.00 83 81 28.6 29.8 1.8
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3.2.5 Implications for climate, SDGs, and policy

The recalibration for OFSP and taro provides actionable insights
for climate-resilient agriculture. Improved simulations of CC, biomass,
and yield under varying water regimes demonstrate that these NUS
can be reliably assessed for their performance under climate variability
to inform adaptive water management and irrigation planning. This
is directly relevant to SDG 2 (Zero Hunger) by supporting food and
nutrition security through diversification with nutrient-rich crops,
and SDG 6 (Clean Water and Sanitation) by enabling efficient
water allocation.

The integration of GDD-based phenology enhances the ability to
anticipate yield responses under future climate scenarios, offering
policymakers evidence to guide the inclusion of NUS in food security
programs, optimise planting calendars, and promote sustainable
intensification. These insights reinforce the role of crop models not
only as scientific tools but also as instruments for decision-making
that
water management.

bridge agricultural  productivity, nutrition, and

3.2.6 Study limitations and future research
directions

Despite the improvements, several limitations remain. AquaCrop’s
current parameterisation still underrepresents certain NUS
physiological traits, particularly under severe water stress, which
limits accuracy for stress-sensitive scenarios. While multi-location
datasets were used, temporal coverage remains limited, restricting the
long-term assessment of interannual climate variability. Soil and
microclimate heterogeneity at finer scales was not fully captured,
which could
heterogeneity in soils and microclimates was not fully captured, and

affect local-scale recommendations. Finer-scale

reliance on secondary environmental datasets introduced
potential biases.

Future research should expand multi-location, multi-season
datasets under both water-limited and well-watered conditions to
enhance model robustness. Incorporating high-resolution soil and
microclimate data, together with long-term climate simulations, will
help assess NUS resilience under projected extremes. Further field
trials, especially under stress conditions, are essential to provide in situ
validation and reduce data scarcity, improving predictive confidence.
Integrating phenological plasticity through GDD-based calibration
further

development. Linking these advances to policy applications such as

will improve representation of temperature-driven
regional food security planning, SDG reporting, and sustainable
water-use strategies will maximise AquaCrop’s utility for climate
adaptation and the evidence-based promotion of underutilised,

nutrient-rich crops.

4 Conclusion

This study recalibrated AquaCrop for OFSP and taro using
multi-location datasets, improving simulations of CC, biomass,
and yield compared to previous parameterisations. For OFSP, the
model performed well under both unstressed and stressed
conditions, while for taro, accuracy was high under non-stressed
conditions but declined under severe water stress. Key refinements
included adjustments to rooting depth, soil water depletion
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thresholds, and phenology to reflect tuber mass stabilisation, which
better captured crop-specific traits, including the stay-green
characteristic. Although challenges remain in fully representing
NUS physiology, AquaCrop was able to simulate yield response to
water availability with sufficient accuracy, reinforcing its value as a
decision-support tool for evaluating crop performance under
varying water regimes. The recalibration enhances AquaCrop’s
practical relevance for exploring climate risk scenarios, optimising
planting dates, and evaluating water management strategies. These
outcomes are especially relevant for integrating NUS into
diversified and climate-resilient food systems. Future work should
prioritise multi-location, season-long datasets under water-limited
conditions, complemented by expanded field trials to strengthen
in situ validation. Employing GDD mode can further improve
phenology representation across variable climates. Strengthening
predictive accuracy through these measures will enhance
AquaCrop’s role in supporting yield forecasting, agricultural
thereby
supporting both food security and sustainable water management

diversification, and climate adaptation planning,

in the face of climate change.
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