
Frontiers in Sustainable Food Systems 01 frontiersin.org

An integrated GIS–statistical 
approach to assess soil 
contamination in Al-Muzahmiya, 
Saudi Arabia: implications for 
food security
Abdelbaset S. El-Sorogy 1, Talal Alharbi 1, Sattam A. Almadani 1, 
Salim Shoaib 1, Naji Rikan 1, Jose Emilio Meroño de Larriva 2 and 
Mohamed S. Shokr 3*
1Department of Geology and Geophysics, College of Science, King Saud University, Riyadh, Saudi 
Arabia, 2Department of Graphic Engineering and Geomatics, Campus de Rabanales, University of 
Cordoba, Cordoba, Spain, 3Department of Soil and Water, Faculty of Agriculture, Tanta University, 
Tanta, Egypt

Introduction: Global health, food security, and agricultural production are all 
seriously threatened by soil pollution. The main objective of this work is to 
conduct a comprehensive assessment of soil pollution in the Al-Muzahmiya 
region west of Riyadh, Saudi Arabia using a multidisciplinary approach.
Methodology: This involves measuring concentrations of nine heavy metals (Co, 
Cr, Cu, Fe, Mn, Ni, Pb, V, Zn), applying contamination indices, and employing 
Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), and 
Geographic Information System (GIS) for source identification and spatial 
analysis. To determine the level of heavy metal (Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and 
Zn) contamination in the soil, 31 surface soil samples were selected at random 
from the study area. The PLI ranged from 0.23 to 0.85, with an average of 0.49, 
suggesting relatively uncontaminated soil pollution load index (PLI < 1). With the 
exception of sample number 12 (1.09), all nine soil heavy metals in the research 
region had Nemerow pollution index (NPI) values less than 0.7, indicating that 
the study area samples were not affected by pollution.
Results and discussion: The PCA analysis revealed two primary components. 
For the HMs being studied, the correlation matrix of the geogenic source is 
supported by PC1. The loadings suggest that zinc on PC2 may have originated 
from the application of phosphate fertilizers and fungicides in agricultural fields 
to boost yields. The research region was split into two clusters according to 
the concentrations of HMs. Higher concentrations of particular heavy metals 
most likely identify the samples in the second cluster. This increase may be due 
to their proximity to agricultural areas, where practices such as the usage of 
phosphate fertilizers may help to accumulate these elements in the soil.
Conclusions: In conclusion, the integrated approach of contamination indices, 
PCA, and GIS successfully established a comprehensive environmental baseline. The 
results confirm that the area is currently unpolluted, underscoring the importance 
of periodic monitoring to preserve this condition. Future food security, sustainable 
agricultural development (which is in line with UN SDG 2: Zero Hunger), and the 
preservation of the region’s natural resources for future generations all depend on 
this recent findings.
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1 Introduction

Humans rely on soil as a habitat in addition to it being a valuable 
natural resource (Zhao et al., 2021). Due to rapid economic growth 
and human activities like mining, metal processing, smelting, 
chemical production, factory drainage, and sewage irrigation, the 
concentration of heavy metals in soil has increased, placing a 
significant strain on ecosystem, human health, and soil resources (Xu 
et al., 2014; Yang et al., 2018). A global problem for the management 
of the environment and human health is the emergence of new 
contaminants in the environment as a result of economic expansion 
(El-Sorogy and Al Khathlan, 2024). Heavy element soil pollution is a 
serious and persistent environmental problem with significant 
ramifications for human society (Wang et al., 2008; Ali et al., 2013; Ali 
et al., 2017; Alharbi et al., 2018a; Alharbi et al., 2018b). In addition to 
being naturally occurring, these heavy metals are also produced by a 
variety of human activities (Wang et al., 2018).

Even while these components are necessary for biological 
processes, high amounts of them can be harmful. Indeed, even at very 
low concentrations, certain heavy metals are harmful (Alloway, 2012). 
Arsenic (As), asbestos, cadmium (Cd), uranium, lead (Pb), thallium, 
mercury (Hg), antimony, manganese (Mn), barium, chlorine (Cl), 
zinc (Zn), beryllium (Be), bromine, and bismuth are among the heavy 
metals that are especially dangerous (Benhaddya and Hadjel, 2014). 
Importantly, since recent times, some heavy metals have been 
recognized as highly dangerous compounds. Saudi Arabia is the 
largest nation in the Middle East, with a total area of over 2.25 million 
km2 (Al-Dosary, 2022). Mountains, plateaus, plains, valleys, and sand 
dunes are just a few of the topographic elements that define it. Saudi 
Arabia is divided into four different geological terrains (Laurent, 
1993). The narrow Red Sea coastal plain of Tertiary and Quaternary 
sedimentary rocks and coral reefs, the Proterozoic Arabian Shield of 
metamorphosed volcano sedimentary successions intruded by granite 
and gabbro, the Arabian platform gently dipping eastward, and the 
Tertiary “harrats” primarily covering the Shield (Sheta, 2004). Saudi 
Arabian soil can be classified as follows using the current US soil 
classification system: Mollisols, which are rich in organic matter and 
concentrated in the southwest region of the Saudi Kingdom; Entisols, 
which are sandy soils and valleys that make up modern landforms; 
and Aridisols, which are dry soils with lime and salt accumulations 
(Sheta, 2004; Al-Dosary, 2022). Due mainly to a lack of rainfall, the 
majority of Saudi Arabia’s soils are regarded as immature or young 
(Ashraf, 1991). The soil in the research area and the central region of 
Saudi Arabia can be divided into three types: Torriorthents, 
Torrifluvents, and Torripsamments (Shadfan et al., 1984; Alharbi et al., 
2024). Torriorthents are shallow soils that can be loamy sand, fine 
sandy loam, sandy loam, loam, or clay loam. They usually form in 
weathering-resistant rocks and residuum or colluvium on slopes that 
are actively eroding. Conversely, stratified Entisols known as 
Torrifluvents form in alluvial sediments as a result of sporadic stream 
flooding. On stream terraces, well-sorted sandy deposits with a 
turbulent moisture regime give rise to Torripsamments. Two well-
known multivariate analytic methods that are frequently used for data 
identification, classification, and modeling are (PCA) and Hierarchical 
Cluster Analysis (HCA). PCA has ability to process large amounts of 
data without being limited to a particular number (Abdel-Fattah et al., 
2020). Additionally, PCA was utilized to identify various sources of 
soil pollution, including industrial or agricultural processes, as well as 

the proportion of heavy metals that contribute to soil contamination 
in arid areas (Mohamed et al., 2023; Alzahrani et al., 2024; Mohamed 
et al., 2024). Additionally, HCA looks at sample distances, grouping 
the most comparable spots into a single cluster. It is an unsupervised 
classification method that iteratively combines the closest two clusters. 
The most crucial aspect of HCA, because to its recursive structure, is 
figuring out how to automatically halt the procedure when the 
clustering error rate drops to its lowest value 22 (Irpino and 
Verde, 2006).

These analytical techniques greatly advance our comprehension 
of the data and play a crucial role in directing well-informed 
decision-making across a range of domains, such as environmental 
management and soil science (Csomós et al., 2002; Jalhoum et al., 
2024). Although soil pollution has been identified in Saudi Arabia 
by earlier studies, there is a substantial lack of thorough spatial 
analysis and mapping of a larger range of heavy metals and 
petrochemical pollutants using sophisticated geostatistical 
techniques combined with GIS to pinpoint contamination hotspots 
and their sources. Thus, the primary aim of this study is to evaluate 
the level of soil pollution in the Al-Muzahmiya region, which is 
located west of Riyadh, Saudi Arabia, by combining contamination 
indicators, multivariate techniques, and GIS. The specific objectives 
are: (i) to use GIS to measure the concentrations of Co, Cr, Cu, Fe, 
Mn, Ni, Pb, V, and Zn contamination in the research area’s soils and 
map their spatial distribution; (ii) to compare the concentrations of 
these heavy metals in the study area with those in soils throughout 
the world and in various environmental contexts; (iii) to calculate 
the degree of contamination using contamination indices; (iv) and 
to identify the heavy metal source using multivariate analysis.

2 Materials and methods

2.1 Study area

Al-Muzahmiya region located west of Riyadh, Saudi Arabia. With 
a total area of 14918.28 ha, it is located between latitudes 46° 9′30′′, 
46°0.20′30′′ N, and longitudes 24° 19′30′′ and 24°0.30′′ E (Figure 1). 
Riyadh’s weather is characterized by persistent hot winds and little 
precipitation. Temperatures in the summer range from 45 to 50 °C 
Celsius. Temperatures can change by 15 °C on a regular basis. 
Temperatures in the winter range from 20 to 5 °C (Alsabhan et al., 
2022). The geology of the Al-Muzahmiya region is defined by 
sedimentary rock formations, principally limestone and sandstone, 
that date back to the Paleozoic and Mesozoic eras. The region’s 
proximity to the Tuwaiq Escarpment increases its geological richness 
and attracts scholars interested in sedimentary basins (Alsharhan and 
Rizk, 2020). The geological sequence in the studied region consists of 
the Middle Jurassic Dhruma and Tuwaiq Mountain Limestone 
formations, as well as Quaternary eolian sand, alluvial terraces, and 
gravel sheets. The sequence is distinguished by limestones, claystones, 
and sands (Youssef and El-Sorogy, 2015; EL-Sorogy et al., 2016). The 
geological composition has a direct influence on the region’s soil 
quality, which is generally calcareous and mineral-rich. This type of 
soil is ideal for date palm production, a primary crop in the area. 
However, its low organic content is a barrier for other forms of 
agriculture, necessitating the application of fertilizers and soil 
conditioners. The interaction between geology and agriculture 
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emphasizes the significance of sustainable land management methods 
in Al-Muzahmiya (FAO, 2022).

2.2 Soil survey and laboratory analysis

Thirty-one surface soil samples were randomly chosen from the 
study region in January 2025 to assess the degree of heavy metal 
pollution in the soil (Figure 1) and ensure that the samples collected 
cover a wide range of possible soil conditions within the site’s 
geographic area. A representative sample was created by mixing three 
subsamples into a composite sample, which was thereafter packed in 
plastic bags and kept in box. The samples were gathered at a depth of 
less than 30 cm using a hard plastic hand trowel to prevent 
contamination. The soil samples were carefully cleaned of big stones 
and organic materials after being allowed to dry in the atmosphere. 
Agate mortar and pestle were then used to grind the material into a 
powder. Inductively coupled plasma-atomic emission spectrometry 
(ICP-AES) has been used in the ALS Geochemistry Lab, Jeddah 
branch in Saudi Arabia, to analyze major elements (Ca, Mg, and K) 
and nine heavy metals (Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn). Using 
aqua regia, roughly and 0.50 g of each sample is digested for 45 min at 
temperatures ranging from 60 to 120 °C in a graphite heating block. 
Their vulnerability to risks to human health and the environment is 
acknowledged for the chosen HMs (Jaishankar et al., 2014; El-Sorogy 
and Al Khathlan, 2024). By computing the concentration equal to 
three times the standard deviation of blank solution measurements 
divided by the slope of the measurement, the limit of detection (LOD) 
for the ICP-AES technique was determined curves of calibration for 
every component. This validation method follows accepted practices 

(Papadoyannis and Samanidou, 2004). The precision and accuracy of 
the analytical methods used for the multi-element evaluation of soil 
samples, including two certified reference materials from Western 
Australia (CRM11: EMOG17 and CRM2: OREAS 45f) to ensure data 
precision prior to release and a blank agent to measure the 
background, were evaluated using Certified Reference Material 
(CRM) (Supplementary Tables S1, S2). The precision of the employed 
methodology is reliably indicated by recoveries with a range of 98.07–
118.18% (Nazzal et al., 2016; Chandrasiri et al., 2019).

2.3 Pollution indices

2.3.1 Contamination factor
The degree of soil contamination is frequently ascertained using 

the factor of contamination. It is described by the following 
Equation 1 (Hakanson, 1980). The classification of CF illustrated in 
Supplementary Table S3

	 ( ) ( )= ÷mCF C sample Cm background 	 (1)

From which the element’s geochemical background is represented 
by Cm geochemical background, whereas the metal content in the 
sample is represented by Cm sample.

2.3.2 Pollution load index
PLI is mostly used to assess the total level of soil heavy metal 

pollution in a study region as well as each sample site (Zhou et al., 
2016). PLI can show which heavy metals are the most dangerous as 

FIGURE 1

Geologic map of the study area with sampling locations.
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well as how much each one contributes to pollution in the 
environment. The following is the PLI Equation 2:

	 ( )= × ×……… 1/
1 2 . n

nPLI CF CF CF 	 (2)

where n is the number of soil heavy metals. The background 
values of Wedepohl (1994) were used for evaluation standard in this 
work. PLI less than or equal 1 indicates uncontaminated; 1 ≤ PLI < 2 
indicates uncontaminated to moderately contaminated; 2 ≤ PLI < 3 
indicates moderately to strongly contaminated; and PLI ≥ 3 indicates 
strongly contaminated.

2.3.3 Nemerow pollution index
To fully reflect the average pollution level of different pollutants 

in the soil and draw attention to the role of more dangerous 
pollutants, the comprehensive pollution index considers both the 
average value and the highest value of the single factor pollution 
index (Guan et al., 2014; Kowalska et al., 2018). The Nemerow 
pollution index (NPI) is typically used to assess the overall level of 
heavy metal pollution in soil (Ma et al., 2018). The Equation 3 for 
calculation is:

	 = +2 2
max /2avgNPI CF CF 	 (3)

Where n is the number of HMs, where avgCF  is the average value 
of the single pollution index for each heavy metal, and the maxCF  is 
the maximum value of the single pollution index for each heavy metal. 
According to Kowalska et al. (2018) NPI classified soil quality into five 
classes: clean (≤0.7), warning limit (0.7–1.0), slight pollution (1–2), 
moderate pollution (2–3), and serious contamination (≥3).

2.4 Statistical analysis

Three duplicates of each sample were taken, and the mean, 
standard deviation, skewness, kurtosis, and coefficient of variance 
were used to summarize the data. SPSS v.22 (IBM, United States) and 
Python software V3.10 were the tools utilized for this analysis. 
Principal component analysis (PCA) and hierarchical cluster analysis 
(HCA) are two effective multivariate approaches for identifying the 
origins of variability in the HMS contents (Sun et al., 2010). To 
determine the connections between HMs and their mode of origin, 
HCA was utilized. Ward’s technique was followed, and Euclidean 
distance was used as a similarity metric. The findings, which provide 
an overview of clusters for HMs, are displayed as dendrogram 
(Marrugo-Negrete et al., 2017). The fundamental purpose of PCA is 
to reduce the HMs to a more manageable set of variables. Following 
the Kaiser–Meyer–Olkin (KMO) test, which evaluated the 
appropriateness of sampling for every variable, PCA was carried out 
(Peres-Neto et al., 2005). The KMO value of 0.745 was determined to 
be more than 0.5 since soil samples were judged suitable 
(Supplementary Table S4; Said et al., 2020). The Shapiro–Wilk test was 
used to determine whether the distribution of metals in soil was 
normal (Korzeniowska, 2022). To investigate the correlations between 
metals in soils, Pearson’s correlation was used (Abuzaid et al., 2023). 
Absolute loading values over 0.75, 0.75–0.5, and 0.49–0.30 were 
regarded as significantly, moderately, and weakly associated to the PC, 

respectively, and only PCs with eigenvalues >1.0 were taken into 
consideration (Fan et al., 2019).

2.5 Method of spatial distribution

The Inverse Distance Weighting (IDW) interpolation technique is 
used in ArcGIS software 10.8 to estimate attribute values of HMs at 
unsampled locations using data obtained at sample sites IDW is an 
accurate interpolation technique that bases weighting on the distance 
impact is IDW interpolation. The local maximum’s effect range and 
the polluted area’s prediction range both increase with the significance 
of the distance weighting coefficient (Isaaks and Srivastava, 1989; 
Hodam et al., 2017; Zhao et al., 2021). The most dependable IDW 
interpolation results occur when the power parameter values fall 
between 0.5 and 3, with 2 being the most commonly used value 
(Gotway et al., 1996; Gong et al., 2014). As a result, the value of p was 
set at 2, and the search radius varied with 12 nearby samples. The 
selection of soil samples for this study was based on their unequal 
distribution. This distribution resulted from problems encountered 
during sample collection on the site, including access problems in 
certain areas and the presence of private farms that made routine or 
dense sampling challenging.

2.6 Calculation of vegetation status in the 
study area

The most used index for examining the condition of vegetation is 
the Normalized difference vegetation index (NDVI) (Tarpley et al., 
1984; Gitelson et al., 2003; Thenkabail and Gamage, 2004; Dutta et al., 
2015). Google Earth Engine (GEE) uses Sentinel-2 data collected in 
January 2025 to calculate NDVI, a high-spatial resolution evaluation 
of vegetation density and health. The Equation 4 was used to 
determine the NDVI.

	 = − ÷ +8 4 8 4NDVI B B B B 	 (4)

Where: B8 and B4 = band 8, and band 4 of Sentinel-2 
satellite image.

A red channel at around 0.66 μm and a near-IR channel at about 
0.86 μm are used to derive the index based on radiances or reflectance 
(Gao, 1996).

While leaf chlorophyll and other pigments absorb a significant 
amount of the visible (VIS) radiation, the inner mesophyll of healthy 
green leaves, which is highly reflective of near-infrared (NIR) 
radiation, is what the NDVI measures. When unwholesome vegetation 
is present, the range reflecting the inverted composition of the inner 
leaf (Dutta et al., 2015; Ghafarian Malamiri et al., 2018). Healthy 
vegetation often falls between values of 0.2 and 0.8 on the NDVI 
index, which by definition spans from −1 to +1 (Chuvieco et al., 2004; 
Cai et al., 2014; Gandhi et al., 2015).

The detection and recognition of diverse land cover and land use 
types are one of the most significant applications of remote sensing. 
Machine learning techniques for crop classification have been evolving 
recently. Users can apply a range of advanced categorization 
approaches to examine different satellite datasets using a cloud-based 
platform called Google Earth Engine (Clemente et al., 2020; Xue et al., 
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2023). Using Landsat 5 optical data from January 2000 and Sentinel-2 
(10 m) high-resolution optical data from January 2025, crops were 
categorized using the Random Forest (RF) algorithm (Akbari et al., 
2020; Tariq and Shu, 2020). Seventy percent of the 3,000 ground truth 
data points that were used to evaluate the accuracy of the model were 
reserved for model calibration, allowing for the adjustment of features 
and parameters. By ensuring that the model can consistently 
generalize its findings outside of the calibration dataset, the 
calibration-validations split enhances the model’s credibility. The 
remaining type center was set aside for the validation of the model. 
For agricultural planning, management, and observation, this tool 

aids in more precise and dependable crop pattern identification 
(Hendawy et al., 2024).

2.7 Creation of land surface parameters of 
the study area

The elevation and slope of the research region were determined 
using the Digital Elevation Model (DEM), which was created by the 
NASA Shuttle Radar Topographic Mission (SRTM) and has a spatial 
resolution of 30 m.

FIGURE 2

(a) NDVI, (b) LULC (2000), and (c) LULC (2025) of the study area.
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3 Results and discussion

3.1 Land use and land cover (LILC) pattern 
and NDVI in the investigated area

Sentinel-2 image of the study region is ranked by NDVI values 
in the figure; an NDVI of less than 0.60 corresponds to orange and 
yellow, while an NDVI of more than 0.6 indicates green (NDVI is 
calculated in the range of −1 to 1) (Figure 2a). By using satellite 
imagery and the NDVI to monitor land quality, we can determine 
the extent of soil contamination and soil cover (Gantumur et 
al., 2021).

Our knowledge of historical trends is improved by tracking and 
studying land use and land cover. Land cover change models can be 
used to examine the intricate driving forces that affect the 
spatiotemporal patterns of land use/land cover changes, as well as to 
analyze and better understand the causes and effects of such changes 
(Verburg et al., 2004). Land use and landcover variations in Riyadh 
City which the study area is a part of it have been the subject of 
numerous research (e.g., Rahman, and Planning, 2016; AlQurashi and 
Kumar, 2017; Aina et al., 2019; Alghamdi and Cummings, 2019).

The main land use patterns in the study region are trees, 
shrubland, grassland, field crops, urban areas, and barren soils, as 
shown by the comparison of the Sentinel-2 image taken in January 
2025 with the Landsat-5 image taken in January 2000 (Figures 2b,c). 
The development of the study area for these primary classes was 
investigated from 2000 to 2025. 9.90 ha of trees, 6.39 ha of shrubland, 
0.81 ha of grassland, 129.90 ha of field crops, 1109.85 ha of urban, and 
13661.43 ha of bare soils were the primary LULC classes in the 
research region in 2000. The field crop was 386.92 ha (257 ha 
increase), the urban area was 1953.48 ha (843.63 ha increase), the bare 
soils area was 12,513 ha (a 1148.4 ha decrease), the trees were 48.28 ha 
(a 38.38 ha increase), the shrubland was 15.86 ha (a 9.47 ha increase), 
and the grassland was 0.74 ha (0.07 ha decrease) in 2025 (Table 1) 
Saudi Arabia’s primary strategic objectives were agricultural 
productivity, rural development, food security, and sustainable 
resource management, all of which contributed to the growth of 
agricultural regions. Geographically, the expansion has been 
dispersed, and the Agricultural Development Fund has played a 
crucial role in promoting technology utilization, investment 
facilitation, and the wise use of resources (Shomrany, 2024). The 
overall classification accuracy for sentential 2 and Landsat-5 images 

was 99.40 and 98.2%, respectively. These findings are consistent with 
those of Abdelkarim (2025), who showed that over the next three 
decades, urbanization and the expansion of agricultural activities will 
continue to result in built-up areas and agricultural fields in 
arid regions.

3.2 Land surface parameters and heavy 
metal concentration in the study area

The elevation of the study area ranged from 590 to 950 m.a.s.l 
(Figure 3). The following is a decreasing order of the average 
concentrations of the investigated HMs (mg kg−1) in the study 
area: Table 2 shows that Fe (16819) > Mn (234.52) > Zn 
(40.45) > Cr (24.94) > V (17.13) > Ni (16.32) > Cu (9.32) > Pb 
(4.71) > Co (3.45).

The findings show that all of the metals under study have positive 
skewness, which is characterized by longer tails to the right, a 
concentration of lower values, and a few high outliers. Kurtosis 
findings show that whereas Cr (−0.76), Cu (−0.52), Mn (−0.04), and 
Ni (−0.55) have the lowest kurtosis values, indicating flatter 
distributions, K (5.27), Co (4.37), and Zn (18.89) have high kurtosis 
values, indicating peaked distributions with extreme values (Yousif et 
al., 2025). According to the spatial analysis, the northwestern region’s 
sites 11 and 12 have the highest concentrations of Fe (31,200 mg kg−1), 
Mn (450 mg kg−1), and Zn (238 mg kg−1). Cr (45 mg kg−1) is more 
prevalent in the central section, particularly at site 19, while Co 
(9 mg kg−1) Cu (16 mg kg−1), Ni (29 mg kg−1), and Pb (11 mg kg−1) are 
showing higher concentrations in the northern region at site-4 
(Figures 4a–h). Possible depletion of the local geological composition 
and decreased anthropogenic input are indicated by the observed 
changes in Mn concentration levels, which are much lower than 
regional and global reference values. Its comparatively low levels 
indicate restricted industrial discharge and a natural deficiency in 
Mn-rich minerals in the sedimentary source materials. Mn frequently 

FIGURE 3

Digital elevation model (DEM) of the study area.

TABLE 1  Areas of LULC in 2000 and 2025.

Year 2000 (Landsat 5) Year 2025 (Sentinel 2)

Classes Area (ha) Area 
(%)

Area (ha) Area 
(%)

Trees 9.90 0.07% 48.28 0.32%

Shrubland 6.39 0.04% 15.86 0.11%

Grassland 0.81 0.01% 0.74 0.00%

Field crops 129.90 0.87% 386.92 2.59%

Urban 1109.85 7.44% 1953.48 13.09%

Bare soils 13661.43 91.58% 12,513 83.88%

Total 14918.28 14918.28
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plays a crucial role in redox reactions and biogeochemical cycling 
(El-Sorogy A. S. et al., 2025). The HMs’ spatial patterns were 
comparatively consistent. The conclusion drawn from PCA and 
correlation analysis that these elements are primarily sourced from 
natural geological sources is supported by their homogenous 
distribution (Fehér et al., 2025).

3.3 Comparison between current study and 
other regions concentrations

Understanding environmental contamination requires 
comparing the concentrations of heavy metals in soils across various 
regions of Saudi Arabia. A comparison between the actual 

TABLE 2  Statistics of HMs concentration within investigated area.

Samples Co Cr Cu Fe Mn Ni Pb V Zn

mg kg−1

1 6 34 16 26,000 316 27 8 29 64

2 4 40 6 20,500 249 21 5 25 24

3 2 18 5 11,100 146 10 4 17 19

4 9 33 16 19,600 336 29 11 28 70

5 3 19 7 10,700 146 13 4 14 24

6 2 17 10 12,700 184 13 4 14 41

7 3 28 9 16,300 213 16 4 18 31

8 3 15 7 16,700 278 13 4 12 17

9 4 28 12 21,300 375 21 5 21 63

10 2 29 7 20,100 247 13 7 16 23

11 5 34 15 31,200 450 25 7 23 67

12 4 11 4 12,100 136 9 3 9 238

13 5 27 11 15,800 283 25 5 24 47

14 4 21 10 25,900 361 17 4 17 35

15 4 27 12 13,400 206 17 6 17 44

16 3 36 9 13,400 180 16 6 17 35

17 4 38 11 27,200 336 18 4 19 29

18 2 15 8 12,800 166 11 4 12 21

19 3 45 10 15,100 193 15 6 18 35

20 2 21 10 25,200 300 11 5 11 21

21 4 25 13 16,100 227 19 4 17 26

22 3 14 6 13,700 181 11 3 12 15

23 5 25 13 16,200 328 23 5 19 61

24 3 16 8 13,400 173 13 3 17 20

25 2 18 7 12,600 164 11 3 14 16

26 2 17 7 14,300 178 13 3 17 21

27 3 31 8 12,400 178 16 4 16 27

28 2 13 4 11,000 137 9 3 12 13

29 1 17 5 12,800 143 9 2 7 8

30 4 29 12 14,200 219 22 6 20 69

31 4 32 11 17,600 241 20 4 19 30

min 1 11 4 10,700 136 9 2 7 8

max 9 45 16 31,200 450 29 11 29 238

mean 3.5 24.9 9.3 16819.4 234.5 16.3 4.7 17.1 40.5

STD 1.5 8.9 3.3 5417.2 82.0 5.6 1.8 5.1 40.9

Skewness 1.544 0.352 0.339 1.15 0.831 0.61 1.581 0.438 3.978

Kurtosis 4.379 −0.768 −0.524 0.468 −0.044 −0.557 3.706 0.322 18.894

STD, stander deviation.
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FIGURE 4

Interpolated maps of HMs concentration in mg Kg−1 within study area: (a) Co, (b) Cr, (c) Cu, (d) Fe, (e) Mn, (f) Ni, (g) Pb, and (h) Zn.
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concentrations of heavy metals in the soil of different sites has been 
applied in numerous studies across arid regions (El-Sorogy A. et al., 
2025; Hendawy et al., 2025; Kahal et al., 2025). This comparison 
makes it possible to identify regions with higher levels, which could 
be caused by human activities like industrialization or agriculture or 
by natural factors. Implementing focused monitoring and 
remediation measures to safeguard the environment and public 
health requires such assessments. The average concentration of Co 
was higher than the concentrations from the Al-Ahsa Oasis, and Al 
Uyaynah–Al Jubailah soils (Alharbi et al., 2024; Alharbi and 
El-Sorogy, 2021), but lower than the other concentrations displayed 
in Table 3 (Al-Boghdady and Hassanein, 2019; Kahal et al., 2025; 
Kabata-Pendias and Pendias, 2011). The average Cr concentration 
was higher than the background values by Wedepohl (1994) and the 
soil from Al-Ammariah, Saudi Arabia and lower than the other 

concentrations displayed in Table 3 (Alarifi et al., 2022). Compared 
to the other values in Table 3, the average of Cu and Fe were lower 
(Alharbi et al., 2024; Alharbi and El-Sorogy, 2021; Al-Boghdady and 
Hassanein, 2019; Kahal et al., 2025; Kabata-Pendias and Pendias, 
2011). The current study’s Mn concentration was lower than the other 
concentrations in Table 3, and greater than the soils of Al-Ammariah 
and Al-Ahsa Oasis. Our average Ni, Pb, V, and Zn concentrations 
were lower than those shown in Table 3. This comparative analysis 
consistently demonstrates that the heavy metal levels in the 
Al-Muzahmiya region are generally lower than or comparable to 
those in many other studied areas, reinforcing the conclusion that the 
area is currently unpolluted and providing a valuable baseline for 
future monitoring.

3.4 Statistical analysis

3.4.1 Normality test
For heavy metal concentrations (n = 31 samples), the Shapiro–

Wilk normality test results show clear distribution patterns. This test 
is a statistical process used to ascertain whether a full sample of data 
is representative of a normal distribution, which is a fundamental 
premise of many statistical techniques. In order to perform the test, 
the symmetric estimate of variance is divided by the square of a linear 
combination of sample order statistics (Shapiro and Wilk, 1965). 
Strong deviations from normality are shown by the significantly 
non-normal distributions (p < 0.05) for cobalt (Co, p = 0.001), iron 
(Fe, p = 0.001), lead (Pb, p = 0.001), manganese (Mn, p = 0.018), and 
zinc (Zn, p = 0.001). Vanadium (V, p = 0.372), Nickel (Ni, p = 0.058), 
Copper (Cu, p = 0.357), and Chromium (Cr, p = 0.239) all showed no 
statistically significant deviation from normality (p > 0.05) (Table 4 
and Figure 5).

TABLE 3  Comparison between heavy metals concentrations and other concentrations in the study area.

Areas Co Cr Cu Fe Mn Ni Pb V Zn References

Current study 3.45 24.94 9.32 16,819 234.52 16.32 4.71 17.13 40.45

Wadi Jazan, Saudi 

Arabia
77.22 77.22 72.85 23,811 583.58 48.66 19.41 122.03 75.80

Al-Boghdady and 

Hassanein (2019)

Al Uyaynah–Al 

Jubailah soil, Saudi 

Arabia

2.45 30.18 10.56 35,667 ND 19.25 28.48 ND 64.33
Alharbi and El-

Sorogy (2021)

Al-Ammariah, 

Saudi Arabia
3.89 19.97 11.36 11,581 179.43 26.94 5.08 18.94 52.16 Alarifi et al. (2022)

Al-Ahsa Oasis 2.87 28.67 10.83 11,790 176.43 14.53 5.23 12.33 54.43 Alharbi et al. (2024)

Southwest of Saudi 

Arabia
12.31 41.17 24.11 32,508 – 30.17 4.97 73 50.40 Kahal et al. (2025)

Worldwide soils 11.30 59.50 38.90 35,000 488 29 27 129 70
Kabata-Pendias and 

Pendias (2011)

Background values 11.60 35 14.30 30,890 527 18.60 17 53 52 Wedepohl (1994)

Recommended 

concentration by 

Department of 

Environmental 

Affairs (DEA)

300 6.5 16 – – 91 20 150 240 Affairs (2013)

TABLE 4  Shapiro–Wilk normality test of studied HMs.

HMs P-values Normal distribution 
conclusion

Co 0.001 Not normal (p ≤ 0.05)

Cr 0.239 Possibly normal (p > 0.05)

Cu 0.357 Possibly normal (p > 0.05)

Fe 0.001 Not normal (p ≤ 0.05)

Mn 0.018 Not normal (p ≤ 0.05)

Ni 0.058 Possibly normal (p > 0.05)

Pb 0.001 Not normal (p ≤ 0.05)

V 0.372 Possibly normal (p > 0.05)

Zn 0.000 Not normal (p ≤ 0.05)
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FIGURE 5

Normality test distribution test of studied HMs.
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3.4.2 Correlation matrix for studied elements
Relationships between elements reveal information on the 

sources and routes of heavy metals. Except for Zn, all metals showed 
high significant (p < 0.01) based on the Pearson correlation coefficient 
values (Figure 6). The strong positive correlations observed between 
most heavy metals in this study (Figure 6) align with findings from 
other arid regions, such as those reported by El-Sorogy et al. (2021), 
who also documented significant inter-element relationships. The 
significant correlations between elements like Cd, Co, and Pb with Fe 
and Mn, as reported by Nieder et al. (2018), indicate a likely 
mechanism of adsorption onto or co-precipitation with Fe-Mn 
oxides, which could explain the cohesive behavior of the main metal 
group in our soils. Only with Co did Zn exhibit a substantial positive 
correlation (p < 0.05). This could suggest that the Zn in the studied 
soils has a different origin or governing factors (Dragović et al., 2008).

3.4.3 Non-linear relationships between major 
cations and heavy metals in soil samples

According to the graphical analysis, there is a positive but 
non-linear correlation between cobalt (Co) and magnesium (Mg), 
however the relationships between Co and calcium (Ca) seem to be 
non-linear. On the other hand, there is a weak or no correlation 
between Co and potassium (K). Similar to this, there are non-linear 
trends rather than strict linearity in the interactions of chromium 
(Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), 
vanadium (V), and zinc (Zn) with Ca, Mg, and K. This implies that 
the impact of Ca, Mg, and K on the mobility and distribution of these 
trace elements vary with changes in cation levels rather than remaining 
constant throughout all concentration ranges. These results 
demonstrate the complexity of soil geochemistry, where cation–trace 
element interactions are probably controlled by a number of factors 

FIGURE 6

Heat map correlation matrix of studied elements. * Correlation is significant at the 0.05 level; ** Correlation is significant at the 0.01 level.
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such as ionic strength fluctuations, competition, and adsorption 
(Figure 7).

3.4.4 PCA and cluster analysis
A strong technique for locating possible sources of Heavy 

metals in agricultural soils, Principal Component Analysis (PCA) 
successfully outlined the sources of heavy metals in the study area 
(Hammam et al., 2022; Abuzaid and Bassouny, 2020; Emam and 
Soliman, 2022). For Co, Cr, Cu, Fe, Mn, Ni, Pb, and V, Principal 
Component 1 (PC1), which explains most of the variance (62.87%), 
displayed substantial positive loadings. A shared origin or 
governing factor, most likely the natural geogenic background 
generated from parent rock materials, is indicated by the high 
clustering of the majority of metals inside a single component. In 
contrast, a very high loading for Zn (0.904) dominates Principal 
Component 2 (PC2), which accounts for 13.03% of the variation 
(Figure 8 and Table 5). As previously indicated by the correlation 
study, Zn′s distinct and separate origin is clearly confirmed by its 
obvious segregation from the major elemental group. This particular 
source of zinc is probably caused by a particular anthropogenic 
activity, such farming (e.g., usage of phosphate fertilizers).

The 31 sampled sites were divided into two groups via the Q-mode 
hierarchical cluster analysis (HCA) based on the HMs concentrations 
(Figure 9). Samples 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 
23, 24, 25, 26,27,28, 29, 30, and 31 made up the first group. Their mean 
concentrations of Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn were 3.31 ± 
1.54, 24.04 ± 8.94, 8.73 ± 3.09, 14842.31 ± 3,014, 15.69 ± 64.75, 454 ± 
1.3, 4.54 ± 1.79 16.62 ± 4.73, and 39.92 ± 44 mg kg−1, respectively. 
Higher concentrations of Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn were 
shown by the second group, which was represented by samples 1, 11, 
14, 17, and 20 (4.2 ± 1.48, 29.6 ± 8.01, 12.4 ± 12.40, 27,100 ± 2,402, 
352.6 ± 59, 19.6 ± 6.46, 5.6 ± 1.81, 19.8 ± 6.72, and 43.2 ± 
20.98 mg kg−1, respectively) (Table 6). The second cluster’s samples are 
probably distinguished by higher levels of specific heavy metals. Their 
closeness to agricultural regions, where methods like applying 
phosphate fertilizers might lead to in the buildup of these elements in 
the soil, may be the cause of this growth (Khan et al., 2024). The 
concentration levels of all heavy metals in this cluster stay below the 
acceptable and safe ranges set by environmental regulations. This 
suggests that although anthropogenic farming practices are a 
noticeable contributing factor, the environmental impact is not yet a 
serious concern. These findings are consistent with studies conducted 
in other agricultural regions of Saudi Arabia, such as Al Qassim, and 
Jazan, which also reported generally low levels of heavy metal 
contamination in soils (El-Sorogy A. et al., 2025; Kahal et al., 2025).

3.5 Contamination status

Low contamination with all HMs was indicated by the average CF 
values for the HMs in the soil under investigation (Table 7). 
Furthermore, some individual samples showed very high 
contamination for Zn (CF = 4.58) and moderate contamination for Cr 
(CF = 1.29). Agricultural practices and the nonferrous metal industry 
are examples of anthropogenic sources of zinc (Kabata-Pendias and 
Pendias, 2011). All nine soil heavy metals in the research region had 
NPI values less than 1, with the exception of sample number 12 (1.09), 

FIGURE 7

Non-linear relationships between major cations and heavy metals 
(HMs) in soil samples.
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suggesting that there were no enrichment effects on the study area 
samples (Table 7 and Figure 10a).

PLI is used to show how soil conditions have deteriorated as a 
result of HMs accumulation (Varol, 2011). It had an average of 0.49 
and ranged from 0.23 to 0. 85 (Table 7 and Figure 10b), indicating 
comparatively uncontaminated soil (PLI < 1). The results of the NDVI 
analysis show that there is vegetation cover in the Al-Muzahimiyah 
area, despite the low level of pollution currently observed there. 
Additionally, it is anticipated that this green cover would greatly 
increase in alignment with the lofty objectives of the Saudi Green 
Initiative, which is a pillar of Saudi Arabia’s Vision 2030. Despite the 
fact that this environmental development is very beneficial, these areas 
still require vigilant and ongoing environmental monitoring. The 

main worry is that future pollution levels may rise as a result of 
increased human activity brought on by urbanization and agricultural 
growth. Thus, it is not only advised but also necessary to put in place 
a strict program for routine monitoring in order to stop future 
contamination and guarantee sustainable development in tandem 
with greening initiatives.

3.6 Limitations of the current study

This study has limitations even if it offers insightful information. 
Predicting the spatial distribution of heavy metals using the Inverse 
Distance Weighting (IDW) interpolation approach is the main 
methodological limitation. IDW is a popular and practical 
deterministic approach, but it has built-in limitations. Its primary flaw 
is that it has a propensity to create “bull’s-eye” patterns around sample 
locations, which could over smooth the real spatial variability and 
result in artifacts that do not accurately represent contamination 
gradients. Additionally, the sample size and distribution limited the 
interpolation’s accuracy. An optimal sampling method was hampered 
by a number of field challenges, despite the fact that a larger number 
of systematically distributed samples is always preferred for reliable 
geostatistical analysis. Physical access was restricted due to the difficult 
terrain, which was characterized by steep hills and mountainous 
places. Furthermore, the existence of private farms and limited 
properties made it impossible to get samples from otherwise 
appropriate sites, which led to a sampling network that was less 
homogeneous and dense than originally intended. The interpolated 
contamination surfaces are rather imprecise due to the combined 
effects of these factors. Although factors like pH, soil salinity and 
organic carbon, which might impact metal mobility, were not 
measured in this study, their impact is significantly less in arid 

FIGURE 8

Eigenvalues and explained variance of PCs.

TABLE 5  Prinicpls components (PC1, and PC2) of the studied elements.

HMs PC1 PC2

Co 0.863 0.376

Cr 0.725 −0.268

Cu 0.887 −0.021

Fe 0.714 −0.304

Mn 0.824 −0.186

Ni 0.949 0.052

Pb 0.829 0.100

V 0.890 −0.040

Zn 0.179 0.904

Total eigenvalue 5.658 1.172

% of variance 62.869 13.025

Cumulative % 62.869 75.894
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FIGURE 9

Dendrogram of studied HMs.

TABLE 6  Comparison between two studied clusters.

Clusters Co Cr Cu Fe Mn Ni Pb V Zn

C1 3.31 ± 1.54 24.04 ± 8.94 8.73 ± 3.09 14842.31 ± 3,014
211.81 ± 

64.75
15.69 ± 5.37 4.54 ± 1.79 16.62 ± 4.73 39.92 ± 44

C2 4.2 ± 1.48 29.6 ± 8.01 12.4 ± 12.40 27,100 ± 2,402 352.6 ± 59 19.6 ± 6.46 5.6 ± 1.81 19.8 ± 6.72 43.2 ± 20.98

conditions. The solubility and translocation of heavy metals are 
restricted by the research area’s typical low rainfall and negligible 
leaching, which increases the accuracy of the total concentration data 
for source identification. This will be a crucial factor in upcoming, 
in-depth assessments.

4 Conclusion

To ensure sustainable agricultural output and avoid the buildup of 
hazardous contaminants in the food chain, it is essential to preserve 
uncontaminated soil, as this study has demonstrated. A particularly 
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potent and comprehensive assessment of contamination in the study 
area was made possible by the combined use of sophisticated multivariate 
statistical techniques, particularly PCA and HCA, in conjunction with 
GIS and pollution indices. The PLI indicated comparatively 
uncontaminated soil (PLI < 1). All nine soil heavy metals in the 
investigated region had NPI values less than 0.7, with the exception of 
sample number 12 (1.09), suggesting that enrichment had no effect on 
the study area samples. Two principle components were identified by the 
PCA analysis. The PC1supports the correlation matrix of the geogenic 
source for the HMs under study. According to the loadings, phosphate 

fertilizers and fungicides used in agricultural fields to increase yields may 
be the source of zinc in PC2. Based on the HM concentrations, the study 
area was divided into two clusters. The samples in the second cluster are 
probably identified by higher quantities of specific heavy metals. Their 
closeness to agricultural areas, where methods like applying phosphate 
fertilizers may aid in the buildup of these elements in the soil, could be 
the cause of this increase. The absence of significant soil pollution is 
confirmed by this study, providing decision-makers with a crucial 
environmental baseline for the area under investigation. The preservation 
of the region’s natural resources for future generations, sustainable 

TABLE 7  Statistics of contamination indices of investigated area.

CF

Samples Co Cr Cu Fe Mn Ni Pb V Zn PLI NPI

1 0.52 0.97 1.12 0.84 0.60 1.45 0.47 0.55 1.23 0.80 0.40

2 0.34 1.14 0.42 0.66 0.47 1.13 0.29 0.47 0.46 0.54 0.30

3 0.17 0.51 0.35 0.36 0.28 0.54 0.24 0.32 0.37 0.33 0.15

4 0.78 0.94 1.12 0.63 0.64 1.56 0.65 0.53 1.35 0.85 0.42

5 0.26 0.54 0.49 0.35 0.28 0.70 0.24 0.26 0.46 0.37 0.19

6 0.17 0.49 0.70 0.41 0.35 0.70 0.24 0.26 0.79 0.41 0.21

7 0.26 0.80 0.63 0.53 0.40 0.86 0.24 0.34 0.60 0.47 0.24

8 0.26 0.43 0.49 0.54 0.53 0.70 0.24 0.23 0.33 0.39 0.19

9 0.34 0.80 0.84 0.69 0.71 1.13 0.29 0.40 1.21 0.64 0.33

10 0.17 0.83 0.49 0.65 0.47 0.70 0.41 0.30 0.44 0.46 0.23

11 0.43 0.97 1.05 1.01 0.85 1.34 0.41 0.43 1.29 0.79 0.37

12 0.34 0.31 0.28 0.39 0.26 0.48 0.18 0.17 4.58 0.39 1.09

13 0.43 0.77 0.77 0.51 0.54 1.34 0.29 0.45 0.90 0.61 0.35

14 0.34 0.60 0.70 0.84 0.69 0.91 0.24 0.32 0.67 0.54 0.26

15 0.34 0.77 0.84 0.43 0.39 0.91 0.35 0.32 0.85 0.53 0.25

16 0.26 1.03 0.63 0.43 0.34 0.86 0.35 0.32 0.67 0.49 0.27

17 0.34 1.09 0.77 0.88 0.64 0.97 0.24 0.36 0.56 0.58 0.30

18 0.17 0.43 0.56 0.41 0.31 0.59 0.24 0.23 0.40 0.35 0.16

19 0.26 1.29 0.70 0.49 0.37 0.81 0.35 0.34 0.67 0.52 0.33

20 0.17 0.60 0.70 0.82 0.57 0.59 0.29 0.21 0.40 0.43 0.22

21 0.34 0.71 0.91 0.52 0.43 1.02 0.24 0.32 0.50 0.50 0.27

22 0.26 0.40 0.42 0.44 0.34 0.59 0.18 0.23 0.29 0.33 0.16

23 0.43 0.71 0.91 0.52 0.62 1.24 0.29 0.36 1.17 0.63 0.33

24 0.26 0.46 0.56 0.43 0.33 0.70 0.18 0.32 0.38 0.38 0.19

25 0.17 0.51 0.49 0.41 0.31 0.59 0.18 0.26 0.31 0.33 0.16

26 0.17 0.49 0.49 0.46 0.34 0.70 0.18 0.32 0.40 0.36 0.19

27 0.26 0.89 0.56 0.40 0.34 0.86 0.24 0.30 0.52 0.44 0.24

28 0.17 0.37 0.28 0.36 0.26 0.48 0.18 0.23 0.25 0.28 0.13

29 0.09 0.49 0.35 0.41 0.27 0.48 0.12 0.13 0.15 0.23 0.13

30 0.34 0.83 0.84 0.46 0.42 1.18 0.35 0.38 1.33 0.60 0.35

31 0.34 0.91 0.77 0.57 0.46 1.08 0.24 0.36 0.58 0.53 0.29

Min 0.09 0.31 0.28 0.35 0.26 0.48 0.12 0.13 0.15 0.23 0.13

Max 0.78 1.29 1.12 1.01 0.85 1.56 0.65 0.55 4.58 0.85 1.09

Mean 0.30 0.71 0.65 0.54 0.45 0.88 0.28 0.32 0.78 0.49 0.28

STD 0.13 0.25 0.23 0.18 0.16 0.30 0.11 0.10 0.79 0.15 0.17
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FIGURE 10

Interpolation maps of (a) NPI, and (b) PLI contamination indices of the study area.

agricultural development (which aligns with UN SDG 2: Zero Hunger), 
and future food security all depend on these new findings. Establishing 
a regular monitoring program is highly advised to protect the 
environmental quality of the research region, even in light of the recent 
findings regarding safe heavy metal levels. To identify any possible future 
accumulation, this program should concentrate on monitoring the 
concentrations of important components. Moreover, to guarantee 
sustainable land-use practices, the thorough baseline data produced by 
this study should also be incorporated into agricultural and urban 
planning initiatives. And to maintain the area’s pristine state over time, 
it is also imperative to launch public awareness efforts to inform nearby 
people and companies about the significance of preventing soil pollution.
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