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Introduction: Global health, food security, and agricultural production are all
seriously threatened by soil pollution. The main objective of this work is to
conduct a comprehensive assessment of soil pollution in the Al-Muzahmiya
region west of Riyadh, Saudi Arabia using a multidisciplinary approach.
Methodology: This involves measuring concentrations of nine heavy metals (Co,
Cr, Cu, Fe, Mn, Ni, Pb, V, Zn), applying contamination indices, and employing
Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), and
Geographic Information System (GIS) for source identification and spatial
analysis. To determine the level of heavy metal (Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and
Zn) contamination in the soil, 31 surface soil samples were selected at random
from the study area. The PLI ranged from 0.23 to 0.85, with an average of 0.49,
suggesting relatively uncontaminated soil pollution load index (PLI < 1). With the
exception of sample number 12 (1.09), all nine soil heavy metals in the research
region had Nemerow pollution index (NPI) values less than 0.7, indicating that
the study area samples were not affected by pollution.

Results and discussion: The PCA analysis revealed two primary components.
For the HMs being studied, the correlation matrix of the geogenic source is
supported by PC1. The loadings suggest that zinc on PC2 may have originated
from the application of phosphate fertilizers and fungicides in agricultural fields
to boost yields. The research region was split into two clusters according to
the concentrations of HMs. Higher concentrations of particular heavy metals
most likely identify the samples in the second cluster. This increase may be due
to their proximity to agricultural areas, where practices such as the usage of
phosphate fertilizers may help to accumulate these elements in the soil.
Conclusions: In conclusion, the integrated approach of contamination indices,
PCA, and GIS successfully established a comprehensive environmental baseline. The
results confirm that the area is currently unpolluted, underscoring the importance
of periodic monitoring to preserve this condition. Future food security, sustainable
agricultural development (which is in line with UN SDG 2: Zero Hunger), and the
preservation of the region’s natural resources for future generations all depend on
this recent findings.
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1 Introduction

Humans rely on soil as a habitat in addition to it being a valuable
natural resource (Zhao et al., 2021). Due to rapid economic growth
and human activities like mining, metal processing, smelting,
chemical production, factory drainage, and sewage irrigation, the
concentration of heavy metals in soil has increased, placing a
significant strain on ecosystem, human health, and soil resources (Xu
etal, 2014; Yang et al., 2018). A global problem for the management
of the environment and human health is the emergence of new
contaminants in the environment as a result of economic expansion
(El-Sorogy and Al Khathlan, 2024). Heavy element soil pollution is a
serious and persistent environmental problem with significant
ramifications for human society (Wang et al., 2008; Ali et al., 2013; Ali
etal, 2017; Alharbi et al,, 2018a; Alharbi et al,, 2018b). In addition to
being naturally occurring, these heavy metals are also produced by a
variety of human activities (Wang et al., 2018).

Even while these components are necessary for biological
processes, high amounts of them can be harmful. Indeed, even at very
low concentrations, certain heavy metals are harmful (Alloway, 2012).
Arsenic (As), asbestos, cadmium (Cd), uranium, lead (Pb), thallium,
mercury (Hg), antimony, manganese (Mn), barium, chlorine (Cl),
zinc (Zn), beryllium (Be), bromine, and bismuth are among the heavy
metals that are especially dangerous (Benhaddya and Hadjel, 2014).
Importantly, since recent times, some heavy metals have been
recognized as highly dangerous compounds. Saudi Arabia is the
largest nation in the Middle East, with a total area of over 2.25 million
km? (Al-Dosary, 2022). Mountains, plateaus, plains, valleys, and sand
dunes are just a few of the topographic elements that define it. Saudi
Arabia is divided into four different geological terrains (Laurent,
1993). The narrow Red Sea coastal plain of Tertiary and Quaternary
sedimentary rocks and coral reefs, the Proterozoic Arabian Shield of
metamorphosed volcano sedimentary successions intruded by granite
and gabbro, the Arabian platform gently dipping eastward, and the
Tertiary “harrats” primarily covering the Shield (Sheta, 2004). Saudi
Arabian soil can be classified as follows using the current US soil
classification system: Mollisols, which are rich in organic matter and
concentrated in the southwest region of the Saudi Kingdom; Entisols,
which are sandy soils and valleys that make up modern landforms;
and Aridisols, which are dry soils with lime and salt accumulations
(Sheta, 2004; Al-Dosary, 2022). Due mainly to a lack of rainfall, the
majority of Saudi Arabia’s soils are regarded as immature or young
(Ashraf, 1991). The soil in the research area and the central region of
Saudi Arabia can be divided into three types: Torriorthents,
Torrifluvents, and Torripsamments (Shadfan et al., 1984; Alharbi et al.,
2024). Torriorthents are shallow soils that can be loamy sand, fine
sandy loam, sandy loam, loam, or clay loam. They usually form in
weathering-resistant rocks and residuum or colluvium on slopes that
are actively eroding. Conversely, stratified Entisols known as
Torrifluvents form in alluvial sediments as a result of sporadic stream
flooding. On stream terraces, well-sorted sandy deposits with a
turbulent moisture regime give rise to Torripsamments. Two well-
known multivariate analytic methods that are frequently used for data
identification, classification, and modeling are (PCA) and Hierarchical
Cluster Analysis (HCA). PCA has ability to process large amounts of
data without being limited to a particular number (Abdel-Fattah et al,,
2020). Additionally, PCA was utilized to identify various sources of
soil pollution, including industrial or agricultural processes, as well as
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the proportion of heavy metals that contribute to soil contamination
in arid areas (Mohamed et al., 2023; Alzahrani et al., 2024; Mohamed
etal., 2024). Additionally, HCA looks at sample distances, grouping
the most comparable spots into a single cluster. It is an unsupervised
classification method that iteratively combines the closest two clusters.
The most crucial aspect of HCA, because to its recursive structure, is
figuring out how to automatically halt the procedure when the
clustering error rate drops to its lowest value 22 (Irpino and
Verde, 2006).

These analytical techniques greatly advance our comprehension
of the data and play a crucial role in directing well-informed
decision-making across a range of domains, such as environmental
management and soil science (Csomos et al., 2002; Jalhoum et al.,
2024). Although soil pollution has been identified in Saudi Arabia
by earlier studies, there is a substantial lack of thorough spatial
analysis and mapping of a larger range of heavy metals and
petrochemical pollutants using sophisticated geostatistical
techniques combined with GIS to pinpoint contamination hotspots
and their sources. Thus, the primary aim of this study is to evaluate
the level of soil pollution in the Al-Muzahmiya region, which is
located west of Riyadh, Saudi Arabia, by combining contamination
indicators, multivariate techniques, and GIS. The specific objectives
are: (i) to use GIS to measure the concentrations of Co, Cr, Cu, Fe,
Mn, Ni, Pb, V, and Zn contamination in the research area’s soils and
map their spatial distribution; (ii) to compare the concentrations of
these heavy metals in the study area with those in soils throughout
the world and in various environmental contexts; (iii) to calculate
the degree of contamination using contamination indices; (iv) and
to identify the heavy metal source using multivariate analysis.

2 Materials and methods
2.1 Study area

Al-Muzahmiya region located west of Riyadh, Saudi Arabia. With
a total area of 14918.28 ha, it is located between latitudes 46° 930",
46°0.20'30” N, and longitudes 24° 1930 and 24°0.30” E (Figure 1).
Riyadh’s weather is characterized by persistent hot winds and little
precipitation. Temperatures in the summer range from 45 to 50 °C
Celsius. Temperatures can change by 15 °C on a regular basis.
Temperatures in the winter range from 20 to 5 °C (Alsabhan et al.,
2022). The geology of the Al-Muzahmiya region is defined by
sedimentary rock formations, principally limestone and sandstone,
that date back to the Paleozoic and Mesozoic eras. The regions
proximity to the Tuwaiq Escarpment increases its geological richness
and attracts scholars interested in sedimentary basins (Alsharhan and
Rizk, 2020). The geological sequence in the studied region consists of
the Middle Jurassic Dhruma and Tuwaiq Mountain Limestone
formations, as well as Quaternary eolian sand, alluvial terraces, and
gravel sheets. The sequence is distinguished by limestones, claystones,
and sands (Youssef and El-Sorogy, 2015; EL-Sorogy et al., 2016). The
geological composition has a direct influence on the region’s soil
quality, which is generally calcareous and mineral-rich. This type of
soil is ideal for date palm production, a primary crop in the area.
However, its low organic content is a barrier for other forms of
agriculture, necessitating the application of fertilizers and soil
conditioners. The interaction between geology and agriculture
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Geologic map of the study area with sampling locations.
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FIGURE 1

empbhasizes the significance of sustainable land management methods
in Al-Muzahmiya (FAO, 2022).

2.2 Soil survey and laboratory analysis

Thirty-one surface soil samples were randomly chosen from the
study region in January 2025 to assess the degree of heavy metal
pollution in the soil (Figure 1) and ensure that the samples collected
cover a wide range of possible soil conditions within the site’s
geographic area. A representative sample was created by mixing three
subsamples into a composite sample, which was thereafter packed in
plastic bags and kept in box. The samples were gathered at a depth of
less than 30 cm using a hard plastic hand trowel to prevent
contamination. The soil samples were carefully cleaned of big stones
and organic materials after being allowed to dry in the atmosphere.
Agate mortar and pestle were then used to grind the material into a
powder. Inductively coupled plasma-atomic emission spectrometry
(ICP-AES) has been used in the ALS Geochemistry Lab, Jeddah
branch in Saudi Arabia, to analyze major elements (Ca, Mg, and K)
and nine heavy metals (Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn). Using
aqua regia, roughly and 0.50 g of each sample is digested for 45 min at
temperatures ranging from 60 to 120 °C in a graphite heating block.
Their vulnerability to risks to human health and the environment is
acknowledged for the chosen HMs (Jaishankar et al., 2014; El-Sorogy
and Al Khathlan, 2024). By computing the concentration equal to
three times the standard deviation of blank solution measurements
divided by the slope of the measurement, the limit of detection (LOD)
for the ICP-AES technique was determined curves of calibration for
every component. This validation method follows accepted practices
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(Papadoyannis and Samanidou, 2004). The precision and accuracy of
the analytical methods used for the multi-element evaluation of soil
samples, including two certified reference materials from Western
Australia (CRM11: EMOG17 and CRM2: OREAS 45f) to ensure data
precision prior to release and a blank agent to measure the
background, were evaluated using Certified Reference Material
(CRM) (Supplementary Tables S1, 52). The precision of the employed
methodology is reliably indicated by recoveries with a range of 98.07-
118.18% (Nazzal et al., 2016; Chandrasiri et al., 2019).

2.3 Pollution indices

2.3.1 Contamination factor

The degree of soil contamination is frequently ascertained using
the factor of contamination. It is described by the following
Equation 1 (Hakanson, 1980). The classification of CF illustrated in
Supplementary Table S3

CF=C,, (sample) +Cm (background) (1)

From which the element’s geochemical background is represented
by Cm geochemical background, whereas the metal content in the
sample is represented by C,, sample.

2.3.2 Pollution load index

PLI is mostly used to assess the total level of soil heavy metal
pollution in a study region as well as each sample site (Zhou et al,
2016). PLI can show which heavy metals are the most dangerous as
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well as how much each one contributes to pollution in the
environment. The following is the PLI Equation 2:

PLI=(CE xCFyx.........CE,)"" )

where n is the number of soil heavy metals. The background
values of Wedepohl (1994) were used for evaluation standard in this
work. PLI less than or equal 1 indicates uncontaminated; 1 < PLI < 2
indicates uncontaminated to moderately contaminated; 2 < PLI < 3
indicates moderately to strongly contaminated; and PLI > 3 indicates
strongly contaminated.

2.3.3 Nemerow pollution index

To fully reflect the average pollution level of different pollutants
in the soil and draw attention to the role of more dangerous
pollutants, the comprehensive pollution index considers both the
average value and the highest value of the single factor pollution
index (Guan et al,, 2014; Kowalska et al., 2018). The Nemerow
pollution index (NPI) is typically used to assess the overall level of
heavy metal pollution in soil (Ma et al., 2018). The Equation 3 for

NPI =|CEpyg” + CEpax” 12 3)

Where n is the number of HMs, where CF,, is the average value

calculation is:

of the single pollution index for each heavy metal, and the CF,y is
the maximum value of the single pollution index for each heavy metal.
According to Kowalska et al. (2018) NPI classified soil quality into five
classes: clean (<0.7), warning limit (0.7-1.0), slight pollution (1-2),
moderate pollution (2-3), and serious contamination (>3).

2.4 Statistical analysis

Three duplicates of each sample were taken, and the mean,
standard deviation, skewness, kurtosis, and coefficient of variance
were used to summarize the data. SPSS v.22 (IBM, United States) and
Python software V3.10 were the tools utilized for this analysis.
Principal component analysis (PCA) and hierarchical cluster analysis
(HCA) are two effective multivariate approaches for identifying the
origins of variability in the HM; contents (Sun et al., 2010). To
determine the connections between HMs and their mode of origin,
HCA was utilized. Ward’s technique was followed, and Euclidean
distance was used as a similarity metric. The findings, which provide
an overview of clusters for HMs, are displayed as dendrogram
(Marrugo-Negrete et al., 2017). The fundamental purpose of PCA is
to reduce the HM:s to a more manageable set of variables. Following
the Kaiser-Meyer-Olkin (KMO) test, which evaluated the
appropriateness of sampling for every variable, PCA was carried out
(Peres-Neto et al,, 2005). The KMO value of 0.745 was determined to
be more than 0.5 since soil samples were judged suitable
(Supplementary Table 54; Said et al., 2020). The Shapiro-Wilk test was
used to determine whether the distribution of metals in soil was
normal (Korzeniowska, 2022). To investigate the correlations between
metals in soils, Pearson’s correlation was used (Abuzaid et al., 2023).
Absolute loading values over 0.75, 0.75-0.5, and 0.49-0.30 were
regarded as significantly, moderately, and weakly associated to the PC,
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respectively, and only PCs with eigenvalues >1.0 were taken into
consideration (Fan et al., 2019).

2.5 Method of spatial distribution

The Inverse Distance Weighting (IDW) interpolation technique is
used in ArcGIS software 10.8 to estimate attribute values of HM:s at
unsampled locations using data obtained at sample sites IDW is an
accurate interpolation technique that bases weighting on the distance
impact is IDW interpolation. The local maximum’s effect range and
the polluted area’s prediction range both increase with the significance
of the distance weighting coefficient (Isaaks and Srivastava, 1989
Hodam et al.,, 2017; Zhao et al., 2021). The most dependable IDW
interpolation results occur when the power parameter values fall
between 0.5 and 3, with 2 being the most commonly used value
(Gotway et al., 1996; Gong et al., 2014). As a result, the value of p was
set at 2, and the search radius varied with 12 nearby samples. The
selection of soil samples for this study was based on their unequal
distribution. This distribution resulted from problems encountered
during sample collection on the site, including access problems in
certain areas and the presence of private farms that made routine or
dense sampling challenging.

2.6 Calculation of vegetation status in the
study area

The most used index for examining the condition of vegetation is
the Normalized difference vegetation index (NDVI) (Tarpley et al.,
1984; Gitelson et al., 2003; Thenkabail and Gamage, 2004; Dutta et al.,
2015). Google Earth Engine (GEE) uses Sentinel-2 data collected in
January 2025 to calculate NDV], a high-spatial resolution evaluation
of vegetation density and health. The Equation 4 was used to
determine the NDVIL.

NDVI = B8$— B4+ B8+ B4 (4)

Where: B8 and B4=band 8, and band 4 of Sentinel-2
satellite image.

A red channel at around 0.66 pm and a near-IR channel at about
0.86 pm are used to derive the index based on radiances or reflectance
(Gao, 1996).

While leaf chlorophyll and other pigments absorb a significant
amount of the visible (VIS) radiation, the inner mesophyll of healthy
green leaves, which is highly reflective of near-infrared (NIR)
radiation, is what the NDVI measures. When unwholesome vegetation
is present, the range reflecting the inverted composition of the inner
leaf (Dutta et al., 2015; Ghafarian Malamiri et al., 2018). Healthy
vegetation often falls between values of 0.2 and 0.8 on the NDVI
index, which by definition spans from —1 to +1 (Chuvieco et al., 2004;
Cai et al., 2014; Gandhi et al., 2015).

The detection and recognition of diverse land cover and land use
types are one of the most significant applications of remote sensing.
Machine learning techniques for crop classification have been evolving
recently. Users can apply a range of advanced categorization
approaches to examine different satellite datasets using a cloud-based
platform called Google Earth Engine (Clemente et al., 2020; Xue et al.,
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2023). Using Landsat 5 optical data from January 2000 and Sentinel-2
(10 m) high-resolution optical data from January 2025, crops were
categorized using the Random Forest (RF) algorithm (Akbari et al.,
20205 Tariq and Shu, 2020). Seventy percent of the 3,000 ground truth
data points that were used to evaluate the accuracy of the model were
reserved for model calibration, allowing for the adjustment of features
and parameters. By ensuring that the model can consistently
generalize its findings outside of the calibration dataset, the
calibration-validations split enhances the model’s credibility. The
remaining type center was set aside for the validation of the model.
For agricultural planning, management, and observation, this tool

10.3389/fsufs.2025.1695962

aids in more precise and dependable crop pattern identification
(Hendawy et al., 2024).

2.7 Creation of land surface parameters of
the study area

The elevation and slope of the research region were determined
using the Digital Elevation Model (DEM), which was created by the
NASA Shuttle Radar Topographic Mission (SRTM) and has a spatial
resolution of 30 m.
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(a) NDVI, (b) LULC (2000), and (c) LULC (2025) of the study area.
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3 Results and discussion

3.1 Land use and land cover (LILC) pattern
and NDVI in the investigated area

Sentinel-2 image of the study region is ranked by NDVT values
in the figure; an NDVTI of less than 0.60 corresponds to orange and
yellow, while an NDVI of more than 0.6 indicates green (NDVI is
calculated in the range of —1 to 1) (Figure 2a). By using satellite
imagery and the NDVI to monitor land quality, we can determine
the extent of soil contamination and soil cover (Gantumur et
al,, 2021).

Our knowledge of historical trends is improved by tracking and
studying land use and land cover. Land cover change models can be
used to examine the intricate driving forces that affect the
spatiotemporal patterns of land use/land cover changes, as well as to
analyze and better understand the causes and effects of such changes
(Verburg et al., 2004). Land use and landcover variations in Riyadh
City which the study area is a part of it have been the subject of
numerous research (e.g., Rahman, and Planning, 2016; AlQurashi and
Kumar, 2017; Aina et al., 2019; Alghamdi and Cummings, 2019).

The main land use patterns in the study region are trees,
shrubland, grassland, field crops, urban areas, and barren soils, as
shown by the comparison of the Sentinel-2 image taken in January
2025 with the Landsat-5 image taken in January 2000 (Figures 2b,c).
The development of the study area for these primary classes was
investigated from 2000 to 2025. 9.90 ha of trees, 6.39 ha of shrubland,
0.81 ha of grassland, 129.90 ha of field crops, 1109.85 ha of urban, and
13661.43 ha of bare soils were the primary LULC classes in the
research region in 2000. The field crop was 386.92 ha (257 ha
increase), the urban area was 1953.48 ha (843.63 ha increase), the bare
soils area was 12,513 ha (a 1148.4 ha decrease), the trees were 48.28 ha
(a 38.38 ha increase), the shrubland was 15.86 ha (a 9.47 ha increase),
and the grassland was 0.74 ha (0.07 ha decrease) in 2025 (Table 1)
Saudi Arabias primary strategic objectives were agricultural
productivity, rural development, food security, and sustainable
resource management, all of which contributed to the growth of
agricultural regions. Geographically, the expansion has been
dispersed, and the Agricultural Development Fund has played a
crucial role in promoting technology utilization, investment
facilitation, and the wise use of resources (Shomrany, 2024). The
overall classification accuracy for sentential 2 and Landsat-5 images

TABLE 1 Areas of LULC in 2000 and 2025.

Year 2000 (Landsat 5)

Year 2025 (Sentinel 2)

Classes Area (ha)  Area Area (ha) Area

(VA] (%)
Trees 9.90 0.07% 48.28 0.32%
Shrubland 6.39 0.04% 15.86 0.11%
Grassland 0.81 0.01% 0.74 0.00%
Field crops 129.90 0.87% 386.92 2.59%
Urban 1109.85 7.44% 1953.48 13.09%
Bare soils 13661.43 91.58% 12,513 83.88%
Total 14918.28 14918.28
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was 99.40 and 98.2%, respectively. These findings are consistent with
those of Abdelkarim (2025), who showed that over the next three
decades, urbanization and the expansion of agricultural activities will
continue to result in built-up areas and agricultural fields in
arid regions.

3.2 Land surface parameters and heavy
metal concentration in the study area

The elevation of the study area ranged from 590 to 950 m.a.s.1
(Figure 3). The following is a decreasing order of the average
concentrations of the investigated HMs (mg kg™') in the study
area: Table 2 shows that Fe (16819) > Mn (234.52) > Zn
(40.45) > Cr (24.94) > V (17.13) > Ni (16.32) > Cu (9.32) > Pb
(4.71) > Co (3.45).

The findings show that all of the metals under study have positive
skewness, which is characterized by longer tails to the right, a
concentration of lower values, and a few high outliers. Kurtosis
findings show that whereas Cr (—0.76), Cu (—0.52), Mn (—0.04), and
Ni (—0.55) have the lowest kurtosis values, indicating flatter
distributions, K (5.27), Co (4.37), and Zn (18.89) have high kurtosis
values, indicating peaked distributions with extreme values (Yousif et
al., 2025). According to the spatial analysis, the northwestern region’s
sites 11 and 12 have the highest concentrations of Fe (31,200 mg kg™),
Mn (450 mg kg™'), and Zn (238 mg kg™"). Cr (45 mgkg™) is more
prevalent in the central section, particularly at site 19, while Co
(9 mgkg™) Cu (16 mgkg™), Ni (29 mg kg™'), and Pb (11 mg kg™') are
showing higher concentrations in the northern region at site-4
(Figures 4a-h). Possible depletion of the local geological composition
and decreased anthropogenic input are indicated by the observed
changes in Mn concentration levels, which are much lower than
regional and global reference values. Its comparatively low levels
indicate restricted industrial discharge and a natural deficiency in
Mn-rich minerals in the sedimentary source materials. Mn frequently
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Digital elevation model (DEM) of the study area.
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plays a crucial role in redox reactions and biogeochemical cycling
(El-Sorogy A. S. et al., 2025). The HMs spatial patterns were
comparatively consistent. The conclusion drawn from PCA and
correlation analysis that these elements are primarily sourced from
natural geological sources is supported by their homogenous
distribution (Fehér et al., 2025).

TABLE 2 Statistics of HMs concentration within investigated area.

10.3389/fsufs.2025.1695962

3.3 Comparison between current study and
other regions concentrations

Understanding  environmental — contamination  requires
comparing the concentrations of heavy metals in soils across various
regions of Saudi Arabia. A comparison between the actual

Samples
1 6 34 16 26,000 316 27 8 29 64
2 4 40 6 20,500 249 21 5 25 24
3 2 18 5 11,100 146 10 4 17 19
4 9 33 16 19,600 336 29 11 28 70
5 3 19 7 10,700 146 13 4 14 24
6 2 17 10 12,700 184 13 4 14 41
7 3 28 9 16,300 213 16 4 18 31
8 3 15 7 16,700 278 13 4 12 17
9 4 28 12 21,300 375 21 5 21 63
10 2 29 7 20,100 247 13 7 16 23
11 5 34 15 31,200 450 25 7 23 67
12 4 11 4 12,100 136 9 3 9 238
13 5 27 11 15,800 283 25 5 24 47
14 4 21 10 25,900 361 17 4 17 35
15 4 27 12 13,400 206 17 6 17 44
16 3 36 9 13,400 180 16 6 17 35
17 4 38 11 27,200 336 18 4 19 29
18 2 15 8 12,800 166 11 4 12 21
19 3 45 10 15,100 193 15 6 18 35
20 2 21 10 25,200 300 11 5 11 21
21 4 25 13 16,100 227 19 4 17 26
22 3 14 6 13,700 181 11 3 12 15
23 5 25 13 16,200 328 23 5 19 61
24 3 16 8 13,400 173 13 3 17 20
25 2 18 7 12,600 164 11 3 14 16
26 2 17 7 14,300 178 13 3 17 21
27 3 31 8 12,400 178 16 4 16 27
28 2 13 4 11,000 137 9 3 12 13
29 1 17 5 12,800 143 9 2 7 8
30 4 29 12 14,200 219 22 6 20 69
31 4 32 11 17,600 241 20 4 19 30
min 1 11 4 10,700 136 9 2 7 8
max 9 45 16 31,200 450 29 11 29 238
mean 35 249 9.3 16819.4 234.5 16.3 4.7 17.1 40.5
STD 1.5 8.9 33 5417.2 82.0 5.6 1.8 5.1 40.9
Skewness 1.544 0.352 0.339 1.15 0.831 0.61 1.581 0.438 3.978
Kurtosis 4.379 —0.768 —0.524 0.468 —0.044 —0.557 3.706 0.322 18.894

STD, stander deviation.
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TABLE 3 Comparison between heavy metals concentrations and other concentrations in the study area.

Areas Co Cr Cu Fe Mn Ni Pb \' Zn References
Current study 3.45 24.94 9.32 16,819 234.52 16.32 4.71 17.13 40.45
Wadi Jazan, Saudi Al-Boghdady and
77.22 77.22 72.85 23,811 583.58 48.66 19.41 122.03 75.80
Arabia Hassanein (2019)
Al Uyaynah-Al
ey Alharbi and El-
Jubailah soil, Saudi 2.45 30.18 10.56 35,667 ND 19.25 28.48 ND 64.33
Sorogy (2021)
Arabia
Al-Ammariah, X
3.89 19.97 11.36 11,581 179.43 26.94 5.08 18.94 52.16 Alarifi et al. (2022)
Saudi Arabia
Al-Ahsa Oasis 2.87 28.67 10.83 11,790 176.43 14.53 5.23 12.33 54.43 Alharbi et al. (2024)
Southwest of Saudi
12.31 41.17 24.11 32,508 30.17 4.97 73 50.40 Kahal et al. (2025)
Arabia
Kabata-Pendias and
Worldwide soils 11.30 59.50 38.90 35,000 488 29 27 129 70
Pendias (2011)
Background values 11.60 35 14.30 30,890 18.60 17 53 52 Wedepohl (1994)
Recommended
concentration by
Department of 300 6.5 16 - 91 20 150 240 Affairs (2013)
Environmental
Affairs (DEA)

TABLE 4 Shapiro—Wilk normality test of studied HMs.

HMs P-values Normal distribution
conclusion

Co 0.001 Not normal (p < 0.05)

Cr 0.239 Possibly normal (p > 0.05)
Cu 0.357 Possibly normal (p > 0.05)
Fe 0.001 Not normal (p < 0.05)
Mn 0.018 Not normal (p < 0.05)

Ni 0.058 Possibly normal (p > 0.05)
Pb 0.001 Not normal (p < 0.05)

v 0.372 Possibly normal (p > 0.05)
Zn 0.000 Not normal (p < 0.05)

concentrations of heavy metals in the soil of different sites has been
applied in numerous studies across arid regions (Fl-Sorogy A. et al.,
2025; Hendawy et al., 2025; Kahal et al., 2025). This comparison
makes it possible to identify regions with higher levels, which could
be caused by human activities like industrialization or agriculture or
by natural factors. Implementing focused monitoring and
remediation measures to safeguard the environment and public
health requires such assessments. The average concentration of Co
was higher than the concentrations from the Al-Ahsa Oasis, and Al
Uyaynah-Al Jubailah soils (Alharbi et al., 2024; Alharbi and
El-Sorogy, 2021), but lower than the other concentrations displayed
in Table 3 (Al-Boghdady and Hassanein, 2019; Kahal et al., 2025;
Kabata-Pendias and Pendias, 2011). The average Cr concentration
was higher than the background values by Wedepohl (1994) and the
soil from Al-Ammariah, Saudi Arabia and lower than the other
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concentrations displayed in Table 3 (Alarifi et al., 2022). Compared
to the other values in Table 3, the average of Cu and Fe were lower
(Alharbi et al., 2024; Alharbi and El-Sorogy, 2021; Al-Boghdady and
Hassanein, 2019; Kahal et al., 2025; Kabata-Pendias and Pendias,
2011). The current study’s Mn concentration was lower than the other
concentrations in Table 3, and greater than the soils of Al-Ammariah
and Al-Ahsa Oasis. Our average Ni, Pb, V, and Zn concentrations
were lower than those shown in Table 3. This comparative analysis
consistently demonstrates that the heavy metal levels in the
Al-Muzahmiya region are generally lower than or comparable to
those in many other studied areas, reinforcing the conclusion that the
area is currently unpolluted and providing a valuable baseline for
future monitoring.

3.4 Statistical analysis

3.4.1 Normality test

For heavy metal concentrations (n = 31 samples), the Shapiro—
Wilk normality test results show clear distribution patterns. This test
is a statistical process used to ascertain whether a full sample of data
is representative of a normal distribution, which is a fundamental
premise of many statistical techniques. In order to perform the test,
the symmetric estimate of variance is divided by the square of a linear
combination of sample order statistics (Shapiro and Wilk, 1965).
Strong deviations from normality are shown by the significantly
non-normal distributions (p < 0.05) for cobalt (Co, p = 0.001), iron
(Fe, p=0.001), lead (Pb, p = 0.001), manganese (Mn, p = 0.018), and
zinc (Zn, p = 0.001). Vanadium (V, p = 0.372), Nickel (Ni, p = 0.058),
Copper (Cu, p = 0.357), and Chromium (Cr, p = 0.239) all showed no
statistically significant deviation from normality (p > 0.05) (Table 4
and Figure 5).
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FIGURE 5
Normality test distribution test of studied HMs.
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3.4.2 Correlation matrix for studied elements
Relationships between elements reveal information on the
sources and routes of heavy metals. Except for Zn, all metals showed
high significant (p < 0.01) based on the Pearson correlation coefficient
values (Figure 6). The strong positive correlations observed between
most heavy metals in this study (Figure 6) align with findings from
other arid regions, such as those reported by El-Sorogy et al. (2021),
who also documented significant inter-element relationships. The
significant correlations between elements like Cd, Co, and Pb with Fe
and Mn, as reported by Nieder et al. (2018), indicate a likely
mechanism of adsorption onto or co-precipitation with Fe-Mn
oxides, which could explain the cohesive behavior of the main metal
group in our soils. Only with Co did Zn exhibit a substantial positive
correlation (p < 0.05). This could suggest that the Zn in the studied
soils has a different origin or governing factors (Dragovic et al., 2008).
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3.4.3 Non-linear relationships between major
cations and heavy metals in soil samples

According to the graphical analysis, there is a positive but
non-linear correlation between cobalt (Co) and magnesium (Mg),
however the relationships between Co and calcium (Ca) seem to be
non-linear. On the other hand, there is a weak or no correlation
between Co and potassium (K). Similar to this, there are non-linear
trends rather than strict linearity in the interactions of chromium
(Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb),
vanadium (V), and zinc (Zn) with Ca, Mg, and K. This implies that
the impact of Ca, Mg, and K on the mobility and distribution of these
trace elements vary with changes in cation levels rather than remaining
constant throughout all concentration ranges. These results
demonstrate the complexity of soil geochemistry, where cation-trace
element interactions are probably controlled by a number of factors
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such as ionic strength fluctuations, competition, and adsorption
(Figure 7).

3.4.4 PCA and cluster analysis

A strong technique for locating possible sources of Heavy
metals in agricultural soils, Principal Component Analysis (PCA)
successfully outlined the sources of heavy metals in the study area
(Hammam et al., 2022; Abuzaid and Bassouny, 2020; Emam and
Soliman, 2022). For Co, Cr, Cu, Fe, Mn, Ni, Pb, and V, Principal
Component 1 (PC1), which explains most of the variance (62.87%),
displayed substantial positive loadings. A shared origin or
governing factor, most likely the natural geogenic background
generated from parent rock materials, is indicated by the high
clustering of the majority of metals inside a single component. In
contrast, a very high loading for Zn (0.904) dominates Principal
Component 2 (PC2), which accounts for 13.03% of the variation
(Figure 8 and Table 5). As previously indicated by the correlation
study, Zn's distinct and separate origin is clearly confirmed by its
obvious segregation from the major elemental group. This particular
source of zinc is probably caused by a particular anthropogenic
activity, such farming (e.g., usage of phosphate fertilizers).

The 31 sampled sites were divided into two groups via the Q-mode
hierarchical cluster analysis (HCA) based on the HMs concentrations
(Figure 9). Samples 2, 3,4,5,6,7,8,9, 10, 12, 13, 15, 16, 18, 19, 21, 22,
23,24,25,26,27,28, 29, 30, and 31 made up the first group. Their mean
concentrations of Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn were 3.31 +
1.54,24.04 + 8.94, 8.73 £ 3.09, 14842.31 + 3,014, 15.69 * 64.75, 454 +
1.3,4.54 £ 1.79 16.62 + 4.73, and 39.92 + 44 mg kg™, respectively.
Higher concentrations of Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn were
shown by the second group, which was represented by samples 1, 11,
14,17, and 20 (4.2 £+ 1.48,29.6 + 8.01, 12.4 + 12.40, 27,100 + 2,402,
352.6 + 59, 19.6 + 6.46, 5.6 + 1.81, 19.8 + 6.72, and 432 +
20.98 mg kg™, respectively) (Table 6). The second cluster’s samples are
probably distinguished by higher levels of specific heavy metals. Their
closeness to agricultural regions, where methods like applying
phosphate fertilizers might lead to in the buildup of these elements in
the soil, may be the cause of this growth (IKKhan et al., 2024). The
concentration levels of all heavy metals in this cluster stay below the
acceptable and safe ranges set by environmental regulations. This
suggests that although anthropogenic farming practices are a
noticeable contributing factor, the environmental impact is not yet a
serious concern. These findings are consistent with studies conducted
in other agricultural regions of Saudi Arabia, such as Al Qassim, and
Jazan, which also reported generally low levels of heavy metal
contamination in soils (El-Sorogy A. et al., 2025; Kahal et al., 2025).

3.5 Contamination status

Low contamination with all HMs was indicated by the average CF
values for the HMs in the soil under investigation (Table 7).
Furthermore, some individual samples showed very high
contamination for Zn (CF = 4.58) and moderate contamination for Cr
(CF = 1.29). Agricultural practices and the nonferrous metal industry
are examples of anthropogenic sources of zinc (Kabata-Pendias and
Pendias, 2011). All nine soil heavy metals in the research region had

NPI values less than 1, with the exception of sample number 12 (1.09),
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Non-linear relationships between major cations and heavy metals

(HMs) in soil samples.
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TABLE 5 Prinicpls components (PC1, and PC2) of the studied elements.

HMs PC1 PC2
Co 0.863 0.376
Cr 0.725 —0.268
Cu 0.887 —0.021
Fe 0.714 —0.304
Mn 0.824 —0.186
Ni 0.949 0.052
Pb 0.829 0.100
\Y% 0.890 —0.040
Zn 0.179 0.904
Total eigenvalue 5.658 1.172
% of variance 62.869 13.025
Cumulative % 62.869 75.894

suggesting that there were no enrichment effects on the study area
samples (Table 7 and Figure 10a).

PLI is used to show how soil conditions have deteriorated as a
result of HMs accumulation (Varol, 2011). It had an average of 0.49
and ranged from 0.23 to 0. 85 (Table 7 and Figure 10b), indicating
comparatively uncontaminated soil (PLI < 1). The results of the NDVI
analysis show that there is vegetation cover in the Al-Muzahimiyah
area, despite the low level of pollution currently observed there.
Additionally, it is anticipated that this green cover would greatly
increase in alignment with the lofty objectives of the Saudi Green
Initiative, which is a pillar of Saudi Arabia’s Vision 2030. Despite the
fact that this environmental development is very beneficial, these areas
still require vigilant and ongoing environmental monitoring. The
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main worry is that future pollution levels may rise as a result of
increased human activity brought on by urbanization and agricultural
growth. Thus, it is not only advised but also necessary to put in place
a strict program for routine monitoring in order to stop future
contamination and guarantee sustainable development in tandem
with greening initiatives.

3.6 Limitations of the current study

This study has limitations even if it offers insightful information.
Predicting the spatial distribution of heavy metals using the Inverse
Distance Weighting (IDW) interpolation approach is the main
methodological limitation. IDW is a popular and practical
deterministic approach, but it has built-in limitations. Its primary flaw
is that it has a propensity to create “bull’s-eye” patterns around sample
locations, which could over smooth the real spatial variability and
result in artifacts that do not accurately represent contamination
gradients. Additionally, the sample size and distribution limited the
interpolation’s accuracy. An optimal sampling method was hampered
by a number of field challenges, despite the fact that a larger number
of systematically distributed samples is always preferred for reliable
geostatistical analysis. Physical access was restricted due to the difficult
terrain, which was characterized by steep hills and mountainous
places. Furthermore, the existence of private farms and limited
properties made it impossible to get samples from otherwise
appropriate sites, which led to a sampling network that was less
homogeneous and dense than originally intended. The interpolated
contamination surfaces are rather imprecise due to the combined
effects of these factors. Although factors like pH, soil salinity and
organic carbon, which might impact metal mobility, were not
measured in this study, their impact is significantly less in arid
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FIGURE 9
Dendrogram of studied HMs.

TABLE 6 Comparison between two studied clusters.

Clusters
211.81 +
C1 331+ 154 | 2404+894 | 873+3.09 | 1484231 +3,014 o 1569 +537 | 454+179 @ 16.62+473 | 39.92+44
.75
C2 42+1.48 29.6 +8.01 12441240 | 27,100 + 2,402 352.6 + 59 19.6 + 6.46 56+ 181 198672 | 43.2+2098 ‘

conditions. The solubility and translocation of heavy metals are
restricted by the research area’s typical low rainfall and negligible
leaching, which increases the accuracy of the total concentration data
for source identification. This will be a crucial factor in upcoming,
in-depth assessments.

Frontiers in Sustainable Food Systems

4 Conclusion

To ensure sustainable agricultural output and avoid the buildup of
hazardous contaminants in the food chain, it is essential to preserve
uncontaminated soil, as this study has demonstrated. A particularly
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TABLE 7 Statistics of contamination indices of investigated area.

10.3389/fsufs.2025.1695962

Samples

1 0.52 0.97 112 0.84 0.60 1.45 0.47 055 1.23 0.80 0.40
2 0.34 1.14 0.42 0.66 0.47 113 0.29 047 0.46 0.54 0.30
3 0.17 051 035 0.36 0.28 0.54 0.24 032 037 033 0.15
4 0.78 0.94 L12 0.63 0.64 1.56 0.65 0.53 135 0.85 042
5 0.26 0.54 0.49 035 0.28 0.70 0.24 0.26 0.46 037 0.19
6 0.17 0.49 0.70 0.41 035 0.70 0.24 0.26 0.79 0.41 021
7 0.26 0.80 0.63 0.53 0.40 0.86 0.24 0.34 0.60 047 0.24
8 0.26 0.43 0.49 0.54 0.53 0.70 0.24 0.23 033 0.39 0.19
9 0.34 0.80 0.84 0.69 0.71 113 0.29 0.40 1.21 0.64 033
10 0.17 0.83 0.49 0.65 0.47 0.70 0.41 030 0.44 0.46 0.23
11 0.43 0.97 1.05 1.01 0.85 1.34 0.41 0.43 1.29 0.79 037
12 0.34 031 0.28 039 0.26 0.48 0.18 0.17 458 0.39 1.09
13 0.43 0.77 0.77 051 0.54 1.34 0.29 045 0.90 0.61 035
14 0.34 0.60 0.70 0.84 0.69 091 0.24 032 0.67 0.54 0.26
15 0.34 0.77 0.84 0.43 0.39 091 035 0.32 0.85 0.53 0.25
16 0.26 1.03 0.63 0.43 034 0.86 035 032 0.67 0.49 027
17 0.34 1.09 0.77 0.88 0.64 097 0.24 036 0.56 0.58 030
18 0.17 0.43 0.56 0.41 031 0.59 0.24 0.23 0.40 035 0.16
19 0.26 1.29 0.70 0.49 037 0.81 035 0.34 0.67 0.52 0.33
20 0.17 0.60 0.70 0.82 057 0.59 0.29 021 0.40 0.43 022
21 0.34 0.71 091 0.52 0.43 1.02 0.24 032 0.50 0.50 027
22 0.26 0.40 0.42 0.44 034 0.59 0.18 0.23 0.29 033 0.16
23 0.43 0.71 091 052 0.62 1.24 0.29 036 117 0.63 033
24 0.26 0.46 0.56 0.43 033 0.70 0.18 032 0.38 0.38 0.19
25 0.17 051 0.49 0.41 031 0.59 0.18 0.26 031 033 0.16
26 0.17 0.49 0.49 0.46 0.34 0.70 0.18 0.32 0.40 0.36 0.19
27 0.26 0.89 0.56 0.40 034 0.86 0.24 0.30 0.52 0.44 0.24
28 0.17 037 0.28 036 0.26 0.48 0.18 0.23 0.25 0.28 0.13
29 0.09 0.49 0.35 0.41 027 0.48 0.12 0.13 0.15 023 0.13
30 0.34 0.83 0.84 0.46 0.42 118 035 0.38 133 0.60 035
31 0.34 091 0.77 057 0.46 1.08 0.24 036 0.58 0.53 0.29
Min 0.09 031 0.28 0.35 026 0.48 0.12 0.13 0.15 0.23 0.13
Max 0.78 1.29 112 1.01 0.85 1.56 0.65 0.55 4.58 0.85 1.09
Mean 0.30 0.71 0.65 0.54 0.45 0.88 0.28 032 0.78 0.49 0.28
STD 0.13 0.25 0.23 0.18 0.16 0.30 0.11 0.10 0.79 0.15 0.17

potent and comprehensive assessment of contamination in the study
area was made possible by the combined use of sophisticated multivariate
statistical techniques, particularly PCA and HCA, in conjunction with
GIS and pollution indices. The PLI indicated comparatively
uncontaminated soil (PLI<1). All nine soil heavy metals in the
investigated region had NPI values less than 0.7, with the exception of
sample number 12 (1.09), suggesting that enrichment had no effect on
the study area samples. Two principle components were identified by the
PCA analysis. The PClsupports the correlation matrix of the geogenic
source for the HMs under study. According to the loadings, phosphate
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fertilizers and fungicides used in agricultural fields to increase yields may
be the source of zinc in PC2. Based on the HM concentrations, the study
area was divided into two clusters. The samples in the second cluster are
probably identified by higher quantities of specific heavy metals. Their
closeness to agricultural areas, where methods like applying phosphate
fertilizers may aid in the buildup of these elements in the soil, could be
the cause of this increase. The absence of significant soil pollution is
confirmed by this study, providing decision-makers with a crucial
environmental baseline for the area under investigation. The preservation
of the regions natural resources for future generations, sustainable
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agricultural development (which aligns with UN SDG 2: Zero Hunger),
and future food security all depend on these new findings. Establishing
a regular monitoring program is highly advised to protect the
environmental quality of the research region, even in light of the recent
findings regarding safe heavy metal levels. To identify any possible future
accumulation, this program should concentrate on monitoring the
concentrations of important components. Moreover, to guarantee
sustainable land-use practices, the thorough baseline data produced by
this study should also be incorporated into agricultural and urban
planning initiatives. And to maintain the areas pristine state over time,
it is also imperative to launch public awareness efforts to inform nearby
people and companies about the significance of preventing soil pollution.
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