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Introduction: Global health, food security, and agricultural production are all seriously threatened by soil pollution. The main objective of this work is to conduct a comprehensive assessment of soil pollution in the Al-Muzahmiya region west of Riyadh, Saudi Arabia using a multidisciplinary approach.

Methodology: This involves measuring concentrations of nine heavy metals (Co, Cr, Cu, Fe, Mn, Ni, Pb, V, Zn), applying contamination indices, and employing Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), and Geographic Information System (GIS) for source identification and spatial analysis. To determine the level of heavy metal (Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn) contamination in the soil, 31 surface soil samples were selected at random from the study area. The PLI ranged from 0.23 to 0.85, with an average of 0.49, suggesting relatively uncontaminated soil pollution load index (PLI < 1). With the exception of sample number 12 (1.09), all nine soil heavy metals in the research region had Nemerow pollution index (NPI) values less than 0.7, indicating that the study area samples were not affected by pollution.

Results and discussion: The PCA analysis revealed two primary components. For the HMs being studied, the correlation matrix of the geogenic source is supported by PC1. The loadings suggest that zinc on PC2 may have originated from the application of phosphate fertilizers and fungicides in agricultural fields to boost yields. The research region was split into two clusters according to the concentrations of HMs. Higher concentrations of particular heavy metals most likely identify the samples in the second cluster. This increase may be due to their proximity to agricultural areas, where practices such as the usage of phosphate fertilizers may help to accumulate these elements in the soil.

Conclusions: In conclusion, the integrated approach of contamination indices, PCA, and GIS successfully established a comprehensive environmental baseline. The results confirm that the area is currently unpolluted, underscoring the importance of periodic monitoring to preserve this condition. Future food security, sustainable agricultural development (which is in line with UN SDG 2: Zero Hunger), and the preservation of the region’s natural resources for future generations all depend on this recent findings.
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1 Introduction

Humans rely on soil as a habitat in addition to it being a valuable natural resource (Zhao et al., 2021). Due to rapid economic growth and human activities like mining, metal processing, smelting, chemical production, factory drainage, and sewage irrigation, the concentration of heavy metals in soil has increased, placing a significant strain on ecosystem, human health, and soil resources (Xu et al., 2014; Yang et al., 2018). A global problem for the management of the environment and human health is the emergence of new contaminants in the environment as a result of economic expansion (El-Sorogy and Al Khathlan, 2024). Heavy element soil pollution is a serious and persistent environmental problem with significant ramifications for human society (Wang et al., 2008; Ali et al., 2013; Ali et al., 2017; Alharbi et al., 2018a; Alharbi et al., 2018b). In addition to being naturally occurring, these heavy metals are also produced by a variety of human activities (Wang et al., 2018).

Even while these components are necessary for biological processes, high amounts of them can be harmful. Indeed, even at very low concentrations, certain heavy metals are harmful (Alloway, 2012). Arsenic (As), asbestos, cadmium (Cd), uranium, lead (Pb), thallium, mercury (Hg), antimony, manganese (Mn), barium, chlorine (Cl), zinc (Zn), beryllium (Be), bromine, and bismuth are among the heavy metals that are especially dangerous (Benhaddya and Hadjel, 2014). Importantly, since recent times, some heavy metals have been recognized as highly dangerous compounds. Saudi Arabia is the largest nation in the Middle East, with a total area of over 2.25 million km2 (Al-Dosary, 2022). Mountains, plateaus, plains, valleys, and sand dunes are just a few of the topographic elements that define it. Saudi Arabia is divided into four different geological terrains (Laurent, 1993). The narrow Red Sea coastal plain of Tertiary and Quaternary sedimentary rocks and coral reefs, the Proterozoic Arabian Shield of metamorphosed volcano sedimentary successions intruded by granite and gabbro, the Arabian platform gently dipping eastward, and the Tertiary “harrats” primarily covering the Shield (Sheta, 2004). Saudi Arabian soil can be classified as follows using the current US soil classification system: Mollisols, which are rich in organic matter and concentrated in the southwest region of the Saudi Kingdom; Entisols, which are sandy soils and valleys that make up modern landforms; and Aridisols, which are dry soils with lime and salt accumulations (Sheta, 2004; Al-Dosary, 2022). Due mainly to a lack of rainfall, the majority of Saudi Arabia’s soils are regarded as immature or young (Ashraf, 1991). The soil in the research area and the central region of Saudi Arabia can be divided into three types: Torriorthents, Torrifluvents, and Torripsamments (Shadfan et al., 1984; Alharbi et al., 2024). Torriorthents are shallow soils that can be loamy sand, fine sandy loam, sandy loam, loam, or clay loam. They usually form in weathering-resistant rocks and residuum or colluvium on slopes that are actively eroding. Conversely, stratified Entisols known as Torrifluvents form in alluvial sediments as a result of sporadic stream flooding. On stream terraces, well-sorted sandy deposits with a turbulent moisture regime give rise to Torripsamments. Two well-known multivariate analytic methods that are frequently used for data identification, classification, and modeling are (PCA) and Hierarchical Cluster Analysis (HCA). PCA has ability to process large amounts of data without being limited to a particular number (Abdel-Fattah et al., 2020). Additionally, PCA was utilized to identify various sources of soil pollution, including industrial or agricultural processes, as well as the proportion of heavy metals that contribute to soil contamination in arid areas (Mohamed et al., 2023; Alzahrani et al., 2024; Mohamed et al., 2024). Additionally, HCA looks at sample distances, grouping the most comparable spots into a single cluster. It is an unsupervised classification method that iteratively combines the closest two clusters. The most crucial aspect of HCA, because to its recursive structure, is figuring out how to automatically halt the procedure when the clustering error rate drops to its lowest value 22 (Irpino and Verde, 2006).

These analytical techniques greatly advance our comprehension of the data and play a crucial role in directing well-informed decision-making across a range of domains, such as environmental management and soil science (Csomós et al., 2002; Jalhoum et al., 2024). Although soil pollution has been identified in Saudi Arabia by earlier studies, there is a substantial lack of thorough spatial analysis and mapping of a larger range of heavy metals and petrochemical pollutants using sophisticated geostatistical techniques combined with GIS to pinpoint contamination hotspots and their sources. Thus, the primary aim of this study is to evaluate the level of soil pollution in the Al-Muzahmiya region, which is located west of Riyadh, Saudi Arabia, by combining contamination indicators, multivariate techniques, and GIS. The specific objectives are: (i) to use GIS to measure the concentrations of Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn contamination in the research area’s soils and map their spatial distribution; (ii) to compare the concentrations of these heavy metals in the study area with those in soils throughout the world and in various environmental contexts; (iii) to calculate the degree of contamination using contamination indices; (iv) and to identify the heavy metal source using multivariate analysis.



2 Materials and methods


2.1 Study area

Al-Muzahmiya region located west of Riyadh, Saudi Arabia. With a total area of 14918.28 ha, it is located between latitudes 46° 9′30′′, 46°0.20′30′′ N, and longitudes 24° 19′30′′ and 24°0.30′′ E (Figure 1). Riyadh’s weather is characterized by persistent hot winds and little precipitation. Temperatures in the summer range from 45 to 50 °C Celsius. Temperatures can change by 15 °C on a regular basis. Temperatures in the winter range from 20 to 5 °C (Alsabhan et al., 2022). The geology of the Al-Muzahmiya region is defined by sedimentary rock formations, principally limestone and sandstone, that date back to the Paleozoic and Mesozoic eras. The region’s proximity to the Tuwaiq Escarpment increases its geological richness and attracts scholars interested in sedimentary basins (Alsharhan and Rizk, 2020). The geological sequence in the studied region consists of the Middle Jurassic Dhruma and Tuwaiq Mountain Limestone formations, as well as Quaternary eolian sand, alluvial terraces, and gravel sheets. The sequence is distinguished by limestones, claystones, and sands (Youssef and El-Sorogy, 2015; EL-Sorogy et al., 2016). The geological composition has a direct influence on the region’s soil quality, which is generally calcareous and mineral-rich. This type of soil is ideal for date palm production, a primary crop in the area. However, its low organic content is a barrier for other forms of agriculture, necessitating the application of fertilizers and soil conditioners. The interaction between geology and agriculture emphasizes the significance of sustainable land management methods in Al-Muzahmiya (FAO, 2022).

[image: Geological map highlighting three formations in a region: Dhurma Formation in gray, Quaternary in beige, and Tuwaiq Mountain Formation in green. Black dots numbered 1 to 31 indicate specific locations. Geographic coordinates are marked on the edges, with a scale and compass indicating north.]

FIGURE 1
 Geologic map of the study area with sampling locations.




2.2 Soil survey and laboratory analysis

Thirty-one surface soil samples were randomly chosen from the study region in January 2025 to assess the degree of heavy metal pollution in the soil (Figure 1) and ensure that the samples collected cover a wide range of possible soil conditions within the site’s geographic area. A representative sample was created by mixing three subsamples into a composite sample, which was thereafter packed in plastic bags and kept in box. The samples were gathered at a depth of less than 30 cm using a hard plastic hand trowel to prevent contamination. The soil samples were carefully cleaned of big stones and organic materials after being allowed to dry in the atmosphere. Agate mortar and pestle were then used to grind the material into a powder. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) has been used in the ALS Geochemistry Lab, Jeddah branch in Saudi Arabia, to analyze major elements (Ca, Mg, and K) and nine heavy metals (Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn). Using aqua regia, roughly and 0.50 g of each sample is digested for 45 min at temperatures ranging from 60 to 120 °C in a graphite heating block. Their vulnerability to risks to human health and the environment is acknowledged for the chosen HMs (Jaishankar et al., 2014; El-Sorogy and Al Khathlan, 2024). By computing the concentration equal to three times the standard deviation of blank solution measurements divided by the slope of the measurement, the limit of detection (LOD) for the ICP-AES technique was determined curves of calibration for every component. This validation method follows accepted practices (Papadoyannis and Samanidou, 2004). The precision and accuracy of the analytical methods used for the multi-element evaluation of soil samples, including two certified reference materials from Western Australia (CRM11: EMOG17 and CRM2: OREAS 45f) to ensure data precision prior to release and a blank agent to measure the background, were evaluated using Certified Reference Material (CRM) (Supplementary Tables S1, S2). The precision of the employed methodology is reliably indicated by recoveries with a range of 98.07–118.18% (Nazzal et al., 2016; Chandrasiri et al., 2019).



2.3 Pollution indices


2.3.1 Contamination factor

The degree of soil contamination is frequently ascertained using the factor of contamination. It is described by the following Equation 1 (Hakanson, 1980). The classification of CF illustrated in Supplementary Table S3
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From which the element’s geochemical background is represented by Cm geochemical background, whereas the metal content in the sample is represented by Cm sample.



2.3.2 Pollution load index

PLI is mostly used to assess the total level of soil heavy metal pollution in a study region as well as each sample site (Zhou et al., 2016). PLI can show which heavy metals are the most dangerous as well as how much each one contributes to pollution in the environment. The following is the PLI Equation 2:
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where n is the number of soil heavy metals. The background values of Wedepohl (1994) were used for evaluation standard in this work. PLI less than or equal 1 indicates uncontaminated; 1 ≤ PLI < 2 indicates uncontaminated to moderately contaminated; 2 ≤ PLI < 3 indicates moderately to strongly contaminated; and PLI ≥ 3 indicates strongly contaminated.



2.3.3 Nemerow pollution index

To fully reflect the average pollution level of different pollutants in the soil and draw attention to the role of more dangerous pollutants, the comprehensive pollution index considers both the average value and the highest value of the single factor pollution index (Guan et al., 2014; Kowalska et al., 2018). The Nemerow pollution index (NPI) is typically used to assess the overall level of heavy metal pollution in soil (Ma et al., 2018). The Equation 3 for calculation is:
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Where n is the number of HMs, where 
C
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 is the average value of the single pollution index for each heavy metal, and the 
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 is the maximum value of the single pollution index for each heavy metal. According to Kowalska et al. (2018) NPI classified soil quality into five classes: clean (≤0.7), warning limit (0.7–1.0), slight pollution (1–2), moderate pollution (2–3), and serious contamination (≥3).




2.4 Statistical analysis

Three duplicates of each sample were taken, and the mean, standard deviation, skewness, kurtosis, and coefficient of variance were used to summarize the data. SPSS v.22 (IBM, United States) and Python software V3.10 were the tools utilized for this analysis. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) are two effective multivariate approaches for identifying the origins of variability in the HMS contents (Sun et al., 2010). To determine the connections between HMs and their mode of origin, HCA was utilized. Ward’s technique was followed, and Euclidean distance was used as a similarity metric. The findings, which provide an overview of clusters for HMs, are displayed as dendrogram (Marrugo-Negrete et al., 2017). The fundamental purpose of PCA is to reduce the HMs to a more manageable set of variables. Following the Kaiser–Meyer–Olkin (KMO) test, which evaluated the appropriateness of sampling for every variable, PCA was carried out (Peres-Neto et al., 2005). The KMO value of 0.745 was determined to be more than 0.5 since soil samples were judged suitable (Supplementary Table S4; Said et al., 2020). The Shapiro–Wilk test was used to determine whether the distribution of metals in soil was normal (Korzeniowska, 2022). To investigate the correlations between metals in soils, Pearson’s correlation was used (Abuzaid et al., 2023). Absolute loading values over 0.75, 0.75–0.5, and 0.49–0.30 were regarded as significantly, moderately, and weakly associated to the PC, respectively, and only PCs with eigenvalues >1.0 were taken into consideration (Fan et al., 2019).



2.5 Method of spatial distribution

The Inverse Distance Weighting (IDW) interpolation technique is used in ArcGIS software 10.8 to estimate attribute values of HMs at unsampled locations using data obtained at sample sites IDW is an accurate interpolation technique that bases weighting on the distance impact is IDW interpolation. The local maximum’s effect range and the polluted area’s prediction range both increase with the significance of the distance weighting coefficient (Isaaks and Srivastava, 1989; Hodam et al., 2017; Zhao et al., 2021). The most dependable IDW interpolation results occur when the power parameter values fall between 0.5 and 3, with 2 being the most commonly used value (Gotway et al., 1996; Gong et al., 2014). As a result, the value of p was set at 2, and the search radius varied with 12 nearby samples. The selection of soil samples for this study was based on their unequal distribution. This distribution resulted from problems encountered during sample collection on the site, including access problems in certain areas and the presence of private farms that made routine or dense sampling challenging.



2.6 Calculation of vegetation status in the study area

The most used index for examining the condition of vegetation is the Normalized difference vegetation index (NDVI) (Tarpley et al., 1984; Gitelson et al., 2003; Thenkabail and Gamage, 2004; Dutta et al., 2015). Google Earth Engine (GEE) uses Sentinel-2 data collected in January 2025 to calculate NDVI, a high-spatial resolution evaluation of vegetation density and health. The Equation 4 was used to determine the NDVI.
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Where: B8 and B4 = band 8, and band 4 of Sentinel-2 satellite image.

A red channel at around 0.66 μm and a near-IR channel at about 0.86 μm are used to derive the index based on radiances or reflectance (Gao, 1996).

While leaf chlorophyll and other pigments absorb a significant amount of the visible (VIS) radiation, the inner mesophyll of healthy green leaves, which is highly reflective of near-infrared (NIR) radiation, is what the NDVI measures. When unwholesome vegetation is present, the range reflecting the inverted composition of the inner leaf (Dutta et al., 2015; Ghafarian Malamiri et al., 2018). Healthy vegetation often falls between values of 0.2 and 0.8 on the NDVI index, which by definition spans from −1 to +1 (Chuvieco et al., 2004; Cai et al., 2014; Gandhi et al., 2015).

The detection and recognition of diverse land cover and land use types are one of the most significant applications of remote sensing. Machine learning techniques for crop classification have been evolving recently. Users can apply a range of advanced categorization approaches to examine different satellite datasets using a cloud-based platform called Google Earth Engine (Clemente et al., 2020; Xue et al., 2023). Using Landsat 5 optical data from January 2000 and Sentinel-2 (10 m) high-resolution optical data from January 2025, crops were categorized using the Random Forest (RF) algorithm (Akbari et al., 2020; Tariq and Shu, 2020). Seventy percent of the 3,000 ground truth data points that were used to evaluate the accuracy of the model were reserved for model calibration, allowing for the adjustment of features and parameters. By ensuring that the model can consistently generalize its findings outside of the calibration dataset, the calibration-validations split enhances the model’s credibility. The remaining type center was set aside for the validation of the model. For agricultural planning, management, and observation, this tool aids in more precise and dependable crop pattern identification (Hendawy et al., 2024).



2.7 Creation of land surface parameters of the study area

The elevation and slope of the research region were determined using the Digital Elevation Model (DEM), which was created by the NASA Shuttle Radar Topographic Mission (SRTM) and has a spatial resolution of 30 m.




3 Results and discussion


3.1 Land use and land cover (LILC) pattern and NDVI in the investigated area

Sentinel-2 image of the study region is ranked by NDVI values in the figure; an NDVI of less than 0.60 corresponds to orange and yellow, while an NDVI of more than 0.6 indicates green (NDVI is calculated in the range of −1 to 1) (Figure 2a). By using satellite imagery and the NDVI to monitor land quality, we can determine the extent of soil contamination and soil cover (Gantumur et al., 2021).
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FIGURE 2
 (a) NDVI, (b) LULC (2000), and (c) LULC (2025) of the study area.


Our knowledge of historical trends is improved by tracking and studying land use and land cover. Land cover change models can be used to examine the intricate driving forces that affect the spatiotemporal patterns of land use/land cover changes, as well as to analyze and better understand the causes and effects of such changes (Verburg et al., 2004). Land use and landcover variations in Riyadh City which the study area is a part of it have been the subject of numerous research (e.g., Rahman, and Planning, 2016; AlQurashi and Kumar, 2017; Aina et al., 2019; Alghamdi and Cummings, 2019).

The main land use patterns in the study region are trees, shrubland, grassland, field crops, urban areas, and barren soils, as shown by the comparison of the Sentinel-2 image taken in January 2025 with the Landsat-5 image taken in January 2000 (Figures 2b,c). The development of the study area for these primary classes was investigated from 2000 to 2025. 9.90 ha of trees, 6.39 ha of shrubland, 0.81 ha of grassland, 129.90 ha of field crops, 1109.85 ha of urban, and 13661.43 ha of bare soils were the primary LULC classes in the research region in 2000. The field crop was 386.92 ha (257 ha increase), the urban area was 1953.48 ha (843.63 ha increase), the bare soils area was 12,513 ha (a 1148.4 ha decrease), the trees were 48.28 ha (a 38.38 ha increase), the shrubland was 15.86 ha (a 9.47 ha increase), and the grassland was 0.74 ha (0.07 ha decrease) in 2025 (Table 1) Saudi Arabia’s primary strategic objectives were agricultural productivity, rural development, food security, and sustainable resource management, all of which contributed to the growth of agricultural regions. Geographically, the expansion has been dispersed, and the Agricultural Development Fund has played a crucial role in promoting technology utilization, investment facilitation, and the wise use of resources (Shomrany, 2024). The overall classification accuracy for sentential 2 and Landsat-5 images was 99.40 and 98.2%, respectively. These findings are consistent with those of Abdelkarim (2025), who showed that over the next three decades, urbanization and the expansion of agricultural activities will continue to result in built-up areas and agricultural fields in arid regions.


TABLE 1 Areas of LULC in 2000 and 2025.


	Year 2000 (Landsat 5)
	Year 2025 (Sentinel 2)



	Classes
	Area (ha)
	Area (%)
	Area (ha)
	Area (%)

 

 	Trees 	9.90 	0.07% 	48.28 	0.32%


 	Shrubland 	6.39 	0.04% 	15.86 	0.11%


 	Grassland 	0.81 	0.01% 	0.74 	0.00%


 	Field crops 	129.90 	0.87% 	386.92 	2.59%


 	Urban 	1109.85 	7.44% 	1953.48 	13.09%


 	Bare soils 	13661.43 	91.58% 	12,513 	83.88%


 	Total 	14918.28 	 	14918.28 	




 



3.2 Land surface parameters and heavy metal concentration in the study area

The elevation of the study area ranged from 590 to 950 m.a.s.l (Figure 3). The following is a decreasing order of the average concentrations of the investigated HMs (mg kg−1) in the study area: Table 2 shows that Fe (16819) > Mn (234.52) > Zn (40.45) > Cr (24.94) > V (17.13) > Ni (16.32) > Cu (9.32) > Pb (4.71) > Co (3.45).

[image: Digital Elevation Model (DEM) map showing elevation in meters above sea level, using a color gradient from green (low, 590 meters) to red (high, 950 meters). Includes a north arrow and scale of seven kilometers. Coordinates provided along the edges.]

FIGURE 3
 Digital elevation model (DEM) of the study area.



TABLE 2 Statistics of HMs concentration within investigated area.


	Samples
	Co
	Cr
	Cu
	Fe
	Mn
	Ni
	Pb
	V
	Zn



	mg kg−1

 

 	1 	6 	34 	16 	26,000 	316 	27 	8 	29 	64


 	2 	4 	40 	6 	20,500 	249 	21 	5 	25 	24


 	3 	2 	18 	5 	11,100 	146 	10 	4 	17 	19


 	4 	9 	33 	16 	19,600 	336 	29 	11 	28 	70


 	5 	3 	19 	7 	10,700 	146 	13 	4 	14 	24


 	6 	2 	17 	10 	12,700 	184 	13 	4 	14 	41


 	7 	3 	28 	9 	16,300 	213 	16 	4 	18 	31


 	8 	3 	15 	7 	16,700 	278 	13 	4 	12 	17


 	9 	4 	28 	12 	21,300 	375 	21 	5 	21 	63


 	10 	2 	29 	7 	20,100 	247 	13 	7 	16 	23


 	11 	5 	34 	15 	31,200 	450 	25 	7 	23 	67


 	12 	4 	11 	4 	12,100 	136 	9 	3 	9 	238


 	13 	5 	27 	11 	15,800 	283 	25 	5 	24 	47


 	14 	4 	21 	10 	25,900 	361 	17 	4 	17 	35


 	15 	4 	27 	12 	13,400 	206 	17 	6 	17 	44


 	16 	3 	36 	9 	13,400 	180 	16 	6 	17 	35


 	17 	4 	38 	11 	27,200 	336 	18 	4 	19 	29


 	18 	2 	15 	8 	12,800 	166 	11 	4 	12 	21


 	19 	3 	45 	10 	15,100 	193 	15 	6 	18 	35


 	20 	2 	21 	10 	25,200 	300 	11 	5 	11 	21


 	21 	4 	25 	13 	16,100 	227 	19 	4 	17 	26


 	22 	3 	14 	6 	13,700 	181 	11 	3 	12 	15


 	23 	5 	25 	13 	16,200 	328 	23 	5 	19 	61


 	24 	3 	16 	8 	13,400 	173 	13 	3 	17 	20


 	25 	2 	18 	7 	12,600 	164 	11 	3 	14 	16


 	26 	2 	17 	7 	14,300 	178 	13 	3 	17 	21


 	27 	3 	31 	8 	12,400 	178 	16 	4 	16 	27


 	28 	2 	13 	4 	11,000 	137 	9 	3 	12 	13


 	29 	1 	17 	5 	12,800 	143 	9 	2 	7 	8


 	30 	4 	29 	12 	14,200 	219 	22 	6 	20 	69


 	31 	4 	32 	11 	17,600 	241 	20 	4 	19 	30


 	min 	1 	11 	4 	10,700 	136 	9 	2 	7 	8


 	max 	9 	45 	16 	31,200 	450 	29 	11 	29 	238


 	mean 	3.5 	24.9 	9.3 	16819.4 	234.5 	16.3 	4.7 	17.1 	40.5


 	STD 	1.5 	8.9 	3.3 	5417.2 	82.0 	5.6 	1.8 	5.1 	40.9


 	Skewness 	1.544 	0.352 	0.339 	1.15 	0.831 	0.61 	1.581 	0.438 	3.978


 	Kurtosis 	4.379 	−0.768 	−0.524 	0.468 	−0.044 	−0.557 	3.706 	0.322 	18.894





STD, stander deviation.
 

The findings show that all of the metals under study have positive skewness, which is characterized by longer tails to the right, a concentration of lower values, and a few high outliers. Kurtosis findings show that whereas Cr (−0.76), Cu (−0.52), Mn (−0.04), and Ni (−0.55) have the lowest kurtosis values, indicating flatter distributions, K (5.27), Co (4.37), and Zn (18.89) have high kurtosis values, indicating peaked distributions with extreme values (Yousif et al., 2025). According to the spatial analysis, the northwestern region’s sites 11 and 12 have the highest concentrations of Fe (31,200 mg kg−1), Mn (450 mg kg−1), and Zn (238 mg kg−1). Cr (45 mg kg−1) is more prevalent in the central section, particularly at site 19, while Co (9 mg kg−1) Cu (16 mg kg−1), Ni (29 mg kg−1), and Pb (11 mg kg−1) are showing higher concentrations in the northern region at site-4 (Figures 4a–h). Possible depletion of the local geological composition and decreased anthropogenic input are indicated by the observed changes in Mn concentration levels, which are much lower than regional and global reference values. Its comparatively low levels indicate restricted industrial discharge and a natural deficiency in Mn-rich minerals in the sedimentary source materials. Mn frequently plays a crucial role in redox reactions and biogeochemical cycling (El-Sorogy A. S. et al., 2025). The HMs’ spatial patterns were comparatively consistent. The conclusion drawn from PCA and correlation analysis that these elements are primarily sourced from natural geological sources is supported by their homogenous distribution (Fehér et al., 2025).

[image: Eight maps showing the spatial distribution of heavy metal concentrations in an area. Each map represents different metals: (a) Cobalt, (b) Chromium, (c) Copper, (d) Iron, (e) Manganese, (f) Nickel, (g) Lead, and (h) Zinc. Maps use color gradients to indicate varying concentration levels, with scales in milligrams per kilogram. North direction and scale bars are included.]

FIGURE 4
 Interpolated maps of HMs concentration in mg Kg−1 within study area: (a) Co, (b) Cr, (c) Cu, (d) Fe, (e) Mn, (f) Ni, (g) Pb, and (h) Zn.




3.3 Comparison between current study and other regions concentrations

Understanding environmental contamination requires comparing the concentrations of heavy metals in soils across various regions of Saudi Arabia. A comparison between the actual concentrations of heavy metals in the soil of different sites has been applied in numerous studies across arid regions (El-Sorogy A. et al., 2025; Hendawy et al., 2025; Kahal et al., 2025). This comparison makes it possible to identify regions with higher levels, which could be caused by human activities like industrialization or agriculture or by natural factors. Implementing focused monitoring and remediation measures to safeguard the environment and public health requires such assessments. The average concentration of Co was higher than the concentrations from the Al-Ahsa Oasis, and Al Uyaynah–Al Jubailah soils (Alharbi et al., 2024; Alharbi and El-Sorogy, 2021), but lower than the other concentrations displayed in Table 3 (Al-Boghdady and Hassanein, 2019; Kahal et al., 2025; Kabata-Pendias and Pendias, 2011). The average Cr concentration was higher than the background values by Wedepohl (1994) and the soil from Al-Ammariah, Saudi Arabia and lower than the other concentrations displayed in Table 3 (Alarifi et al., 2022). Compared to the other values in Table 3, the average of Cu and Fe were lower (Alharbi et al., 2024; Alharbi and El-Sorogy, 2021; Al-Boghdady and Hassanein, 2019; Kahal et al., 2025; Kabata-Pendias and Pendias, 2011). The current study’s Mn concentration was lower than the other concentrations in Table 3, and greater than the soils of Al-Ammariah and Al-Ahsa Oasis. Our average Ni, Pb, V, and Zn concentrations were lower than those shown in Table 3. This comparative analysis consistently demonstrates that the heavy metal levels in the Al-Muzahmiya region are generally lower than or comparable to those in many other studied areas, reinforcing the conclusion that the area is currently unpolluted and providing a valuable baseline for future monitoring.


TABLE 3 Comparison between heavy metals concentrations and other concentrations in the study area.


	Areas
	Co
	Cr
	Cu
	Fe
	Mn
	Ni
	Pb
	V
	Zn
	References

 

 	Current study 	3.45 	24.94 	9.32 	16,819 	234.52 	16.32 	4.71 	17.13 	40.45 	


 	Wadi Jazan, Saudi Arabia 	77.22 	77.22 	72.85 	23,811 	583.58 	48.66 	19.41 	122.03 	75.80 	
Al-Boghdady and Hassanein (2019)



 	Al Uyaynah–Al Jubailah soil, Saudi Arabia 	2.45 	30.18 	10.56 	35,667 	ND 	19.25 	28.48 	ND 	64.33 	
Alharbi and El-Sorogy (2021)



 	Al-Ammariah, Saudi Arabia 	3.89 	19.97 	11.36 	11,581 	179.43 	26.94 	5.08 	18.94 	52.16 	
Alarifi et al. (2022)



 	Al-Ahsa Oasis 	2.87 	28.67 	10.83 	11,790 	176.43 	14.53 	5.23 	12.33 	54.43 	
Alharbi et al. (2024)



 	Southwest of Saudi Arabia 	12.31 	41.17 	24.11 	32,508 	– 	30.17 	4.97 	73 	50.40 	
Kahal et al. (2025)



 	Worldwide soils 	11.30 	59.50 	38.90 	35,000 	488 	29 	27 	129 	70 	
Kabata-Pendias and Pendias (2011)



 	Background values 	11.60 	35 	14.30 	30,890 	527 	18.60 	17 	53 	52 	
Wedepohl (1994)



 	Recommended concentration by Department of Environmental Affairs (DEA) 	300 	6.5 	16 	– 	– 	91 	20 	150 	240 	
Affairs (2013)





 



3.4 Statistical analysis


3.4.1 Normality test

For heavy metal concentrations (n = 31 samples), the Shapiro–Wilk normality test results show clear distribution patterns. This test is a statistical process used to ascertain whether a full sample of data is representative of a normal distribution, which is a fundamental premise of many statistical techniques. In order to perform the test, the symmetric estimate of variance is divided by the square of a linear combination of sample order statistics (Shapiro and Wilk, 1965). Strong deviations from normality are shown by the significantly non-normal distributions (p < 0.05) for cobalt (Co, p = 0.001), iron (Fe, p = 0.001), lead (Pb, p = 0.001), manganese (Mn, p = 0.018), and zinc (Zn, p = 0.001). Vanadium (V, p = 0.372), Nickel (Ni, p = 0.058), Copper (Cu, p = 0.357), and Chromium (Cr, p = 0.239) all showed no statistically significant deviation from normality (p > 0.05) (Table 4 and Figure 5).


TABLE 4 Shapiro–Wilk normality test of studied HMs.


	HMs
	P-values
	Normal distribution conclusion

 

 	Co 	0.001 	Not normal (p ≤ 0.05)


 	Cr 	0.239 	Possibly normal (p > 0.05)


 	Cu 	0.357 	Possibly normal (p > 0.05)


 	Fe 	0.001 	Not normal (p ≤ 0.05)


 	Mn 	0.018 	Not normal (p ≤ 0.05)


 	Ni 	0.058 	Possibly normal (p > 0.05)


 	Pb 	0.001 	Not normal (p ≤ 0.05)


 	V 	0.372 	Possibly normal (p > 0.05)


 	Zn 	0.000 	Not normal (p ≤ 0.05)




 

[image: The image contains a grid of histograms and Q-Q plots for various elements with a sample size of 31. The plots analyze the elements cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn). Each element is represented by a histogram showing density distribution and a corresponding Q-Q plot assessing normality.]

FIGURE 5
 Normality test distribution test of studied HMs.




3.4.2 Correlation matrix for studied elements

Relationships between elements reveal information on the sources and routes of heavy metals. Except for Zn, all metals showed high significant (p < 0.01) based on the Pearson correlation coefficient values (Figure 6). The strong positive correlations observed between most heavy metals in this study (Figure 6) align with findings from other arid regions, such as those reported by El-Sorogy et al. (2021), who also documented significant inter-element relationships. The significant correlations between elements like Cd, Co, and Pb with Fe and Mn, as reported by Nieder et al. (2018), indicate a likely mechanism of adsorption onto or co-precipitation with Fe-Mn oxides, which could explain the cohesive behavior of the main metal group in our soils. Only with Co did Zn exhibit a substantial positive correlation (p < 0.05). This could suggest that the Zn in the studied soils has a different origin or governing factors (Dragović et al., 2008).

[image: Heatmap of a correlation matrix for selected elements, showing Pearson correlation coefficients. Shades range from blue (low correlation) to red (high correlation), with values labeled in each cell. Notable correlations include strong positive relationships like cobalt and nickel at 0.87, manganese and iron at 0.89, and vanadium and nickel at 0.91.]

FIGURE 6
 Heat map correlation matrix of studied elements. * Correlation is significant at the 0.05 level; ** Correlation is significant at the 0.01 level.




3.4.3 Non-linear relationships between major cations and heavy metals in soil samples

According to the graphical analysis, there is a positive but non-linear correlation between cobalt (Co) and magnesium (Mg), however the relationships between Co and calcium (Ca) seem to be non-linear. On the other hand, there is a weak or no correlation between Co and potassium (K). Similar to this, there are non-linear trends rather than strict linearity in the interactions of chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn) with Ca, Mg, and K. This implies that the impact of Ca, Mg, and K on the mobility and distribution of these trace elements vary with changes in cation levels rather than remaining constant throughout all concentration ranges. These results demonstrate the complexity of soil geochemistry, where cation–trace element interactions are probably controlled by a number of factors such as ionic strength fluctuations, competition, and adsorption (Figure 7).

[image: Scatter plots comparing various elemental concentrations: Calcium (Ca), Magnesium (Mg), and Potassium (K) against Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni), Lead (Pb), Vanadium (V), and Zinc (Zn). Each plot shows data points, trend lines, and confidence intervals in green shading. The x-axis represents the concentration of one element, while the y-axis shows the total concentration of another, illustrating relationships and potential correlations between these elements.]

FIGURE 7
 Non-linear relationships between major cations and heavy metals (HMs) in soil samples.




3.4.4 PCA and cluster analysis

A strong technique for locating possible sources of Heavy metals in agricultural soils, Principal Component Analysis (PCA) successfully outlined the sources of heavy metals in the study area (Hammam et al., 2022; Abuzaid and Bassouny, 2020; Emam and Soliman, 2022). For Co, Cr, Cu, Fe, Mn, Ni, Pb, and V, Principal Component 1 (PC1), which explains most of the variance (62.87%), displayed substantial positive loadings. A shared origin or governing factor, most likely the natural geogenic background generated from parent rock materials, is indicated by the high clustering of the majority of metals inside a single component. In contrast, a very high loading for Zn (0.904) dominates Principal Component 2 (PC2), which accounts for 13.03% of the variation (Figure 8 and Table 5). As previously indicated by the correlation study, Zn′s distinct and separate origin is clearly confirmed by its obvious segregation from the major elemental group. This particular source of zinc is probably caused by a particular anthropogenic activity, such farming (e.g., usage of phosphate fertilizers).

[image: Scree plot displaying eigenvalues and explained variance across principal components. The blue line denotes eigenvalues, which decrease sharply from 6 to below 1 at component 2, then gradually taper off. Red and green lines represent individual and cumulative explained variance, respectively. A horizontal dashed line marks Kaiser’s criterion at eigenvalue 1.]

FIGURE 8
 Eigenvalues and explained variance of PCs.



TABLE 5 Prinicpls components (PC1, and PC2) of the studied elements.


	HMs
	PC1
	PC2

 

 	Co 	0.863 	0.376


 	Cr 	0.725 	−0.268


 	Cu 	0.887 	−0.021


 	Fe 	0.714 	−0.304


 	Mn 	0.824 	−0.186


 	Ni 	0.949 	0.052


 	Pb 	0.829 	0.100


 	V 	0.890 	−0.040


 	Zn 	0.179 	0.904


 	Total eigenvalue 	5.658 	1.172


 	% of variance 	62.869 	13.025


 	Cumulative % 	62.869 	75.894




 

The 31 sampled sites were divided into two groups via the Q-mode hierarchical cluster analysis (HCA) based on the HMs concentrations (Figure 9). Samples 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 23, 24, 25, 26,27,28, 29, 30, and 31 made up the first group. Their mean concentrations of Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn were 3.31 ± 1.54, 24.04 ± 8.94, 8.73 ± 3.09, 14842.31 ± 3,014, 15.69 ± 64.75, 454 ± 1.3, 4.54 ± 1.79 16.62 ± 4.73, and 39.92 ± 44 mg kg−1, respectively. Higher concentrations of Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn were shown by the second group, which was represented by samples 1, 11, 14, 17, and 20 (4.2 ± 1.48, 29.6 ± 8.01, 12.4 ± 12.40, 27,100 ± 2,402, 352.6 ± 59, 19.6 ± 6.46, 5.6 ± 1.81, 19.8 ± 6.72, and 43.2 ± 20.98 mg kg−1, respectively) (Table 6). The second cluster’s samples are probably distinguished by higher levels of specific heavy metals. Their closeness to agricultural regions, where methods like applying phosphate fertilizers might lead to in the buildup of these elements in the soil, may be the cause of this growth (Khan et al., 2024). The concentration levels of all heavy metals in this cluster stay below the acceptable and safe ranges set by environmental regulations. This suggests that although anthropogenic farming practices are a noticeable contributing factor, the environmental impact is not yet a serious concern. These findings are consistent with studies conducted in other agricultural regions of Saudi Arabia, such as Al Qassim, and Jazan, which also reported generally low levels of heavy metal contamination in soils (El-Sorogy A. et al., 2025; Kahal et al., 2025).

[image: Dendrogram using average linkage (between groups) showing hierarchical clustering of thirty-one items based on rescaled distance cluster combine. The diagram illustrates clustering levels on the y-axis with distance represented on the x-axis, revealing three main clusters.]

FIGURE 9
 Dendrogram of studied HMs.



TABLE 6 Comparison between two studied clusters.


	Clusters
	Co
	Cr
	Cu
	Fe
	Mn
	Ni
	Pb
	V
	Zn

 

 	C1 	3.31 ± 1.54 	24.04 ± 8.94 	8.73 ± 3.09 	14842.31 ± 3,014 	211.81 ± 64.75 	15.69 ± 5.37 	4.54 ± 1.79 	16.62 ± 4.73 	39.92 ± 44


 	C2 	4.2 ± 1.48 	29.6 ± 8.01 	12.4 ± 12.40 	27,100 ± 2,402 	352.6 ± 59 	19.6 ± 6.46 	5.6 ± 1.81 	19.8 ± 6.72 	43.2 ± 20.98




 




3.5 Contamination status

Low contamination with all HMs was indicated by the average CF values for the HMs in the soil under investigation (Table 7). Furthermore, some individual samples showed very high contamination for Zn (CF = 4.58) and moderate contamination for Cr (CF = 1.29). Agricultural practices and the nonferrous metal industry are examples of anthropogenic sources of zinc (Kabata-Pendias and Pendias, 2011). All nine soil heavy metals in the research region had NPI values less than 1, with the exception of sample number 12 (1.09), suggesting that there were no enrichment effects on the study area samples (Table 7 and Figure 10a).


TABLE 7 Statistics of contamination indices of investigated area.


	CF



	Samples
	Co
	Cr
	Cu
	Fe
	Mn
	Ni
	Pb
	V
	Zn
	PLI
	NPI

 

 	1 	0.52 	0.97 	1.12 	0.84 	0.60 	1.45 	0.47 	0.55 	1.23 	0.80 	0.40


 	2 	0.34 	1.14 	0.42 	0.66 	0.47 	1.13 	0.29 	0.47 	0.46 	0.54 	0.30


 	3 	0.17 	0.51 	0.35 	0.36 	0.28 	0.54 	0.24 	0.32 	0.37 	0.33 	0.15


 	4 	0.78 	0.94 	1.12 	0.63 	0.64 	1.56 	0.65 	0.53 	1.35 	0.85 	0.42


 	5 	0.26 	0.54 	0.49 	0.35 	0.28 	0.70 	0.24 	0.26 	0.46 	0.37 	0.19


 	6 	0.17 	0.49 	0.70 	0.41 	0.35 	0.70 	0.24 	0.26 	0.79 	0.41 	0.21


 	7 	0.26 	0.80 	0.63 	0.53 	0.40 	0.86 	0.24 	0.34 	0.60 	0.47 	0.24


 	8 	0.26 	0.43 	0.49 	0.54 	0.53 	0.70 	0.24 	0.23 	0.33 	0.39 	0.19


 	9 	0.34 	0.80 	0.84 	0.69 	0.71 	1.13 	0.29 	0.40 	1.21 	0.64 	0.33


 	10 	0.17 	0.83 	0.49 	0.65 	0.47 	0.70 	0.41 	0.30 	0.44 	0.46 	0.23


 	11 	0.43 	0.97 	1.05 	1.01 	0.85 	1.34 	0.41 	0.43 	1.29 	0.79 	0.37


 	12 	0.34 	0.31 	0.28 	0.39 	0.26 	0.48 	0.18 	0.17 	4.58 	0.39 	1.09


 	13 	0.43 	0.77 	0.77 	0.51 	0.54 	1.34 	0.29 	0.45 	0.90 	0.61 	0.35


 	14 	0.34 	0.60 	0.70 	0.84 	0.69 	0.91 	0.24 	0.32 	0.67 	0.54 	0.26


 	15 	0.34 	0.77 	0.84 	0.43 	0.39 	0.91 	0.35 	0.32 	0.85 	0.53 	0.25


 	16 	0.26 	1.03 	0.63 	0.43 	0.34 	0.86 	0.35 	0.32 	0.67 	0.49 	0.27


 	17 	0.34 	1.09 	0.77 	0.88 	0.64 	0.97 	0.24 	0.36 	0.56 	0.58 	0.30


 	18 	0.17 	0.43 	0.56 	0.41 	0.31 	0.59 	0.24 	0.23 	0.40 	0.35 	0.16


 	19 	0.26 	1.29 	0.70 	0.49 	0.37 	0.81 	0.35 	0.34 	0.67 	0.52 	0.33


 	20 	0.17 	0.60 	0.70 	0.82 	0.57 	0.59 	0.29 	0.21 	0.40 	0.43 	0.22


 	21 	0.34 	0.71 	0.91 	0.52 	0.43 	1.02 	0.24 	0.32 	0.50 	0.50 	0.27


 	22 	0.26 	0.40 	0.42 	0.44 	0.34 	0.59 	0.18 	0.23 	0.29 	0.33 	0.16


 	23 	0.43 	0.71 	0.91 	0.52 	0.62 	1.24 	0.29 	0.36 	1.17 	0.63 	0.33


 	24 	0.26 	0.46 	0.56 	0.43 	0.33 	0.70 	0.18 	0.32 	0.38 	0.38 	0.19


 	25 	0.17 	0.51 	0.49 	0.41 	0.31 	0.59 	0.18 	0.26 	0.31 	0.33 	0.16


 	26 	0.17 	0.49 	0.49 	0.46 	0.34 	0.70 	0.18 	0.32 	0.40 	0.36 	0.19


 	27 	0.26 	0.89 	0.56 	0.40 	0.34 	0.86 	0.24 	0.30 	0.52 	0.44 	0.24


 	28 	0.17 	0.37 	0.28 	0.36 	0.26 	0.48 	0.18 	0.23 	0.25 	0.28 	0.13


 	29 	0.09 	0.49 	0.35 	0.41 	0.27 	0.48 	0.12 	0.13 	0.15 	0.23 	0.13


 	30 	0.34 	0.83 	0.84 	0.46 	0.42 	1.18 	0.35 	0.38 	1.33 	0.60 	0.35


 	31 	0.34 	0.91 	0.77 	0.57 	0.46 	1.08 	0.24 	0.36 	0.58 	0.53 	0.29


 	Min 	0.09 	0.31 	0.28 	0.35 	0.26 	0.48 	0.12 	0.13 	0.15 	0.23 	0.13


 	Max 	0.78 	1.29 	1.12 	1.01 	0.85 	1.56 	0.65 	0.55 	4.58 	0.85 	1.09


 	Mean 	0.30 	0.71 	0.65 	0.54 	0.45 	0.88 	0.28 	0.32 	0.78 	0.49 	0.28


 	STD 	0.13 	0.25 	0.23 	0.18 	0.16 	0.30 	0.11 	0.10 	0.79 	0.15 	0.17




 

[image: Two maps compare spatial data in a geographic area with coordinates labeled in degrees east and north. Map (a) displays NPI values using colors from dark green to red, representing ranges from 0.13 to 1.1. Map (b) shows PLI values with colors from dark green to red, indicating ranges from 0.23 to 0.85. Both maps include scale bars for distance in kilometers and a north arrow for orientation.]

FIGURE 10
 Interpolation maps of (a) NPI, and (b) PLI contamination indices of the study area.


PLI is used to show how soil conditions have deteriorated as a result of HMs accumulation (Varol, 2011). It had an average of 0.49 and ranged from 0.23 to 0. 85 (Table 7 and Figure 10b), indicating comparatively uncontaminated soil (PLI < 1). The results of the NDVI analysis show that there is vegetation cover in the Al-Muzahimiyah area, despite the low level of pollution currently observed there. Additionally, it is anticipated that this green cover would greatly increase in alignment with the lofty objectives of the Saudi Green Initiative, which is a pillar of Saudi Arabia’s Vision 2030. Despite the fact that this environmental development is very beneficial, these areas still require vigilant and ongoing environmental monitoring. The main worry is that future pollution levels may rise as a result of increased human activity brought on by urbanization and agricultural growth. Thus, it is not only advised but also necessary to put in place a strict program for routine monitoring in order to stop future contamination and guarantee sustainable development in tandem with greening initiatives.



3.6 Limitations of the current study

This study has limitations even if it offers insightful information. Predicting the spatial distribution of heavy metals using the Inverse Distance Weighting (IDW) interpolation approach is the main methodological limitation. IDW is a popular and practical deterministic approach, but it has built-in limitations. Its primary flaw is that it has a propensity to create “bull’s-eye” patterns around sample locations, which could over smooth the real spatial variability and result in artifacts that do not accurately represent contamination gradients. Additionally, the sample size and distribution limited the interpolation’s accuracy. An optimal sampling method was hampered by a number of field challenges, despite the fact that a larger number of systematically distributed samples is always preferred for reliable geostatistical analysis. Physical access was restricted due to the difficult terrain, which was characterized by steep hills and mountainous places. Furthermore, the existence of private farms and limited properties made it impossible to get samples from otherwise appropriate sites, which led to a sampling network that was less homogeneous and dense than originally intended. The interpolated contamination surfaces are rather imprecise due to the combined effects of these factors. Although factors like pH, soil salinity and organic carbon, which might impact metal mobility, were not measured in this study, their impact is significantly less in arid conditions. The solubility and translocation of heavy metals are restricted by the research area’s typical low rainfall and negligible leaching, which increases the accuracy of the total concentration data for source identification. This will be a crucial factor in upcoming, in-depth assessments.




4 Conclusion

To ensure sustainable agricultural output and avoid the buildup of hazardous contaminants in the food chain, it is essential to preserve uncontaminated soil, as this study has demonstrated. A particularly potent and comprehensive assessment of contamination in the study area was made possible by the combined use of sophisticated multivariate statistical techniques, particularly PCA and HCA, in conjunction with GIS and pollution indices. The PLI indicated comparatively uncontaminated soil (PLI < 1). All nine soil heavy metals in the investigated region had NPI values less than 0.7, with the exception of sample number 12 (1.09), suggesting that enrichment had no effect on the study area samples. Two principle components were identified by the PCA analysis. The PC1supports the correlation matrix of the geogenic source for the HMs under study. According to the loadings, phosphate fertilizers and fungicides used in agricultural fields to increase yields may be the source of zinc in PC2. Based on the HM concentrations, the study area was divided into two clusters. The samples in the second cluster are probably identified by higher quantities of specific heavy metals. Their closeness to agricultural areas, where methods like applying phosphate fertilizers may aid in the buildup of these elements in the soil, could be the cause of this increase. The absence of significant soil pollution is confirmed by this study, providing decision-makers with a crucial environmental baseline for the area under investigation. The preservation of the region’s natural resources for future generations, sustainable agricultural development (which aligns with UN SDG 2: Zero Hunger), and future food security all depend on these new findings. Establishing a regular monitoring program is highly advised to protect the environmental quality of the research region, even in light of the recent findings regarding safe heavy metal levels. To identify any possible future accumulation, this program should concentrate on monitoring the concentrations of important components. Moreover, to guarantee sustainable land-use practices, the thorough baseline data produced by this study should also be incorporated into agricultural and urban planning initiatives. And to maintain the area’s pristine state over time, it is also imperative to launch public awareness efforts to inform nearby people and companies about the significance of preventing soil pollution.
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