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Modeling determinants of
farmers’ attitude and adoption
willingness toward agricultural
drones: a PLS-SEM study in India

Bikram Barman*, Rashmi Singh*, Rabindra Nath Padaria,
Manjeet Singh Nain and Sk Wasaful Quader*

Division of Agricultural Extension, ICAR-Indian Agricultural Research Institute, New Delhi, India

Agricultural drones represent a rapidly advancing innovation in modern farming,
offering significant potential to enhance productivity, optimize input use, reduce
labor dependency, and support real-time data-based decision-making. However,
despite their proven advantages and increasing market availability, adoption among
Indian farmers remains limited. Understanding the factors that shape farmers’
attitudes and willingness to adopt drone technology is essential for overcoming
barriers and promoting large-scale adoption. This study examines the determinants
influencing farmers’ attitudes toward agricultural drone technology and their
willingness to adopt. A quantitative research approach was adopted, using a structured
questionnaire administered to 320 farmers from selected districts in Haryana and
Uttar Pradesh, India. The data were analyzed using Partial Least Squares Structural
Equation Modeling (PLS-SEM) to assess the influence of key predictors on Attitude
Toward Technology (ATT). The structural model results indicated that six of the eight
hypothesized predictors, Promotional Efforts, Perceived Usefulness, Peer Pressure,
Perceived Economic Viability, Perceived Environmental Impact, and Perceived
Social Impact, had a statistically significant positive effect on ATT and contributed
substantially to explaining variance in adoption willingness. These results reveal that
farmer decisions are shaped by psychological, economic, environmental, and social
dimensions, rather than purely technical considerations. The study emphasizes
that effective adoption strategies must prioritize awareness enhancement, hands-
on training, field demonstrations, and financial support mechanisms to improve
accessibility and trust. Strengthening institutional support and fostering positive
peer experiences could further accelerate technology acceptance among less
innovative farmers and later adopters. The findings provide valuable insights for
policymakers, extension agencies, and agri-tech developers seeking to scale
precision agriculture solutions, positioning agricultural drones as a critical tool
for advancing sustainable and technologically enabled farming in India.

KEYWORDS

unmanned aerial vehicles (UAVs), agricultural drones, technology adoption, attitude,
willingness to adopt, PLS-SEM

Introduction

The global agricultural landscape is undergoing a profound transformation, driven by the
integration of cutting-edge technologies that promise to enhance productivity, sustainability,
and resilience (Guebsi et al., 2024). Among these innovations, Unmanned Aerial Vehicles
(UAVs), commonly known as drones, are emerging as a revolutionary tool in modern
agriculture (Hafeez et al., 2023). Although drones were first created for military logistics and
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surveillance, their uses in the civilian sector have grown significantly
(Restas, 2015). In the past decade, drone use has rapidly grown in
industries like agriculture and commerce, as well as in disaster relief
and humanitarian work (Mohd Daud et al., 2022). In agriculture, it
offers a range of applications, including crop monitoring, pest control,
precision spraying, and real-time data collection. The adoption of such
technologies can significantly lead to higher crop yields, resource
efficiency, and environmental sustainability (Rejeb et al., 2022).
According to the Agriculture Drone Market Size, Share, Global
Forecast (2025), the global agricultural drone market is projected to
grow from USD 4.98 billion in 2023 to over USD 23.78 billion by 2032.

Drones in agriculture boost productivity, cut costs, enable precise
inputs, improve monitoring, detect pests early, and support data-
driven decisions (Ayamga et al., 2021; Meivel and Maheswari, 2021;
Hafeez et al., 2023). Drones also make it easier to manage large or
difficult terrains and help in yield estimation and disaster assessment,
supporting crop insurance and farm planning (Benami et al., 2021).
However, several challenges limit their global adoption, especially in
developing regions (Pathak et al., 2020; Khan et al., 2024), including
high costs, regulatory barriers, and data privacy concerns (Rodzi et al.,
2024; Puppala et al., 2023). Poor internet connectivity, GPS access in
rural areas further hinder their use (Singh et al., 2024; Sangode, 2024;
Barman et al, 2025). Additionally, there is a lack of technical
knowledge and skilled manpower to operate drones and analyze the
data they generate (Singh et al., 2024). Moreover, maintenance and
repair challenges, limited access to service centers, and concerns about
privacy and data security also discourage farmers (Barnes et al., 2019).

As international agricultural drone regulations continue to
change, removing these obstacles will require supportive legislation,
capacity building, and cost-effective models. Numerous nations have
put in place civil aviation laws that specify no-fly zones, operational
restrictions, pilot qualification criteria, and standards for data usage
(Mehrotra, 2024). Several Governments as well as organizations like
FAO and the World Bank promote agricultural drone adoption
through funding, training, and pilot projects, aiming to bridge the
digital divide and support smallholder farmers (FAO, 2018).

The global adoption of agricultural drones has witnessed
significant growth (Frackiewicz, 2025). In the United States, drones
have become widely integrated into agriculture for crop monitoring,
field mapping, and precision spraying, supported by clear regulatory
frameworks and advanced technological infrastructure (Global Ag
Tech Initiative, 2024). Europe, particularly France, Germany, and the
Netherlands, has increasingly adopted agricultural drones to comply
with strict environmental regulations and meet precision agriculture
objectives (Mordor Intelligence, 2024). In the Asia-Pacific region,
China leads drone adoption, significantly driven by government
subsidies covering over 150 million acres by 2021 (Ohio State
University Extension, 2024). Japan has long integrated drones into its
rice farming operations, establishing itself as a mature drone market
(Mordor Intelligence, 2024). Meanwhile, Brazil dominates drone
usage in Latin America, leveraging the technology extensively in large-
scale plantations (Grand View Research, 2024). In Africa, agricultural
drone adoption remains at an initial stage, with pilot initiatives in
Kenya, Uganda, and Tanzania demonstrating substantial potential for
future expansion (WeRobotics, 2024).

India is rapidly scaling up drone usage through government-led
initiatives such as the Digital India mission and the Sub-Mission on
Agricultural Mechanization, which promote drone adoption via
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training programs, financial incentives, and institutional support
(Press Information Bureau, 2023). Agriculture, employing about 46%
of India’s workforce and contributing 18% to GDP, remains vital for
food security and rural development (The Times of India, 2024).
Agricultural drones have recently emerged as key tools for boosting
productivity and precision farming. Recognizing the transformative
potential of drone technology in agriculture, the Government of India
has launched several promotional initiatives, including the Kisan
Drone Scheme under SMAM, offering subsidies up to I5 lakh and
support for 1,500 Custom Hiring Centers (Press Information Bureau,
2023); the Namo Drone Didi Scheme, aimed at empowering 15,000
women-led SHGs with drones and training; and various state-level
programs to expand access, training, and service delivery. Under these
schemes, the promotion of agricultural drones is being actively
pursued through a combination of extension methods, including
financial incentives, on-field demonstrations, hands-on training
programs, digital awareness campaigns, and institutional support
from ICAR, KVKs, SAUs, and state agriculture departments. This
multi-pronged approach aims to enhance awareness, build technical
capacity, and reduce economic and operational barriers to encourage
widespread adoption of drone technology among Indian farmers.
Despite these efforts, adoption remains modest due to affordability
issues, limited technical skills, and infrastructural gaps, stressing the
urgent need to explore the underlying factors influencing farmers’
willingness to adopt drone technology.

Exploring Indian farmers’ willingness to adopt drones is thus
timely and essential. This study provides valuable insights into the
effectiveness of ongoing policy initiatives, sheds light on socio-
economic and practical barriers affecting technology uptake, and
assists policymakers, technology developers, and agricultural
stakeholders in refining strategies for better implementation.
Ultimately, such insights can enhance the efficacy of public
investments in drone technology, driving tangible improvements in
agricultural productivity, sustainability, and the livelihoods of millions
of Indian farmers.

Key applications of drones in agriculture

Drones are transforming global agriculture through a wide array
of applications that enhance productivity, sustainability, and efficiency.
As shown in Table 1, drones have various major applications in
agriculture. In crop surveillance and health monitoring, drones
equipped with multispectral and thermal sensors enable early
detection of plant stress, pest attacks, and nutrient deficiencies,
allowing farmers to take timely corrective measures. Precision
spraying, guided by GPS, allows drones to apply fertilizers, pesticides,
and herbicides with remarkable accuracy, reducing chemical usage by
up to 30% while minimizing environmental contamination and
protecting workers from exposure (Guebsi et al., 2024). In challenging
terrains, drones are also used for planting and seeding, particularly in
reforestation and conservation efforts. Additionally, drones support
field mapping and data analytics by capturing high-resolution imagery
and creating 3D maps that highlight soil variability, water flow, and
elevation, enabling optimized input use and smarter farm management
(Mogili and Deepak, 2018). For yield estimation, drones assess crop
vigor and canopy structure to forecast production levels, while also
serving as critical tools in crop insurance by quickly and accurately
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TABLE 1 Major agricultural applications of drones.
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Application Description

Crop Monitoring

deficiencies before they become visible.

Drones equipped with multispectral sensors provide real-time data on plant health, detecting pests, diseases, and nutrient

Precision Spraying

Drones spray fertilizers, pesticides, and herbicides with high precision, reducing input waste and minimizing chemical runoff.

Field Mapping and Planning

Drones capture high-resolution imagery to create detailed maps, helping farmers assess soil variability, terrain, and water

management.

management.

Yield Estimation Drones use sensors to estimate crop yield by analyzing plant vigor, canopy size, and biomass, assisting in harvest planning and crop
insurance.

Planting and Seeding Specialized drones can plant seeds and cover crops in areas that are difficult to reach with traditional machinery, enhancing
productivity.

Livestock Monitoring Drones are used to monitor livestock movement, track animal health, and inspect pastures or fences, improving overall farm

Disaster and Damage Assessment

In case of natural disasters, drones are used to quickly assess crop damage, enabling faster insurance claims and recovery.

Irrigation Monitoring

wastage.

Drones equipped with thermal sensors monitor soil moisture levels, helping optimize irrigation practices and prevent water

Environmental Monitoring

resources.

Drones are used for biodiversity and environmental monitoring, helping track changes in ecosystems, soil health, and water

Sources: Kumar et al. (2023), Garcia-Munguia et al. (2024), and Ahirwar et al. (2019).

documenting post-disaster damage. Beyond crops, drones contribute
to livestock management by monitoring herd movements, checking
for fencing breaches, and identifying threats, significantly reducing
labor and time in large-scale livestock operations.

Importance of agricultural drones in Indian
farming

Agriculture in India is undergoing a paradigm shift with the
integration of emerging technologies aimed at enhancing productivity,
reducing input costs, and ensuring environmental sustainability.
Among these innovations, agricultural drones, also known as
Unmanned Aerial Vehicles (UAVs), are gaining prominence for their
ability to perform real-time crop monitoring, precision spraying, soil
health mapping, plant disease detection, and yield estimation. These
capabilities can significantly improve input-use efficiency, reduce
manual labor dependency, and facilitate timely agricultural
interventions, particularly in large and medium-scale farming
operations. However, the adoption of drone technology in Indian
agriculture remains in its nascent stages, especially among small and
marginal farmers who constitute nearly 86% of the farming community
(Agricultural Census, 2015-16). The high cost of drones, limited
awareness, inadequate technical skills, and risk perception act as major
barriers. In this context, promotional efforts by the government, private
sector, and agricultural extension agencies become critical to influence
farmers’ willingness and ability to adopt such innovations.

To bridge the gap between technology availability and on-ground
adoption, the Government of India has introduced several
promotional schemes and policy frameworks (P1B, 2022) aimed at
creating an enabling ecosystem for drone usage in agriculture:

o Kisan Drone Scheme: Launched under the Ministry of
Agriculture and Farmers Welfare, this initiative promotes the use
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of drones for various agricultural purposes. Financial assistance
is provided for the purchase of drones by farmer-producer
organizations (FPOs), cooperative societies, and custom hiring
centers (CHCs).

Drone Shakti Initiative: Announced to encourage drone startups

and facilitate ‘Drone-as-a-Service’ (DaaS$), the initiative aims to
build a robust ecosystem by promoting entrepreneurship and
local drone manufacturing.

« Drone Didi Yojana: Launched under the aegis of the Lakhpati
Didi initiative, this scheme empowers rural women by
training them to operate agricultural drones and provide
drone services within their communities. It aims to create
15,000 women drone pilots, offering both skill development
and entrepreneurial opportunities.

« Sub-Mission on Agricultural Mechanization (SMAM): Offers
40-100% subsidies for the purchase of agricultural drones
and related equipment by eligible entities, especially in
aspirational districts and for Scheduled Castes/Scheduled
Tribes and women farmers.

« Custom Hiring Centres (CHCs): These centers are supported

under various schemes to offer drone services to smallholders

who cannot afford to buy drones individually, thereby promoting
shared access and affordability.

Digital Agriculture Mission: A broader initiative that includes the

promotion of emerging technologies such as Al, blockchain, and
drones for digital transformation in agriculture.

In addition to government interventions, private companies
and agritech startups are also actively engaging in awareness
creation, field demonstrations, pilot programs, and influencer-
based campaigns to promote drone usage. Extension agencies and
Krishi Vigyan Kendras (KVKs) are organizing on-field training,
exhibitions, and capacity-building sessions for farmers and
rural youth.
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Conceptual framework

One of the most widely applied theoretical models for
understanding technology adoption is the Technology Acceptance
Model (TAM), which posits that perceived usefulness and perceived
ease of use are crucial determinants of technology acceptance (Davis,
1989; Davis and Grani¢, 2024). While TAM has been extensively
applied in various domains, its application in the Indian agricultural
context, particularly to agricultural drones, requires contextual
adaptation. Indian farmers, especially small and marginal holders,
often face additional constraints such as limited access to capital,
fragmented landholdings, and varying levels of digital literacy.
Therefore, understanding drone adoption necessitates expanding
TAM to include factors like Perceived Economic Viability (PEV),
Perceived Environmental Impact (PEI), Perceived Social Impact (PSI),
Perceived Risks and Challenges (PRC), and Peer Pressure (PP), all of
which are highly relevant in rural India (Figure 1). Moreover, in India,
where government-led promotional schemes like the Kisan Drone
Scheme and Drone Didi Yojana are actively promoting drone
technology, promotional efforts (PE) such as financial subsidies,
capacity-building training, demonstrations, and digital campaigns
play a crucial role.

10.3389/fsufs.2025.1695231

determinants of technology adoption is crucial, especially for
emerging innovations like agricultural drones. The following is an
overview of the key factors relevant to agricultural drones within the
Indian farming context.

a) Perceived usefulness (PU): Perceived usefulness refers to the
extent to which farmers believe that using drone technology
will enhance their agricultural performance (Caffaro et al,
2020). In the Indian context, farmers frequently face
fragmented landholdings, labor shortages, high input costs,
and inefliciencies in input application (Manjunatha et al., 2013;
Deininger et al., 2017). Agricultural drones offer a practical
solution by enabling precise spraying, timely monitoring, and
crop health assessments through remote sensing. These
functions can lead to increased productivity, improved pest and
disease management, and ultimately higher yields (Guebsi
etal, 2024). When farmers perceive drones as beneficial tools
that reduce effort and enhance outcomes, their willingness to
adopt the technology increases significantly (McCarthy et al.,
2023). This is particularly relevant in areas where traditional
farming practices are becoming less efficient due to climate
variability or resource constraints.

b) Perceived ease of use (PEU): Ease of use is a critical determinant
of technology adoption in rural India, where digital literacy
Relevance of key factors in the Indian and exposure to high-tech solutions remain limited,
context for agricu ltural drone ado ption particularly among small and marginal farmers (Manrai et al.,
2021; Sindakis and Showkat, 2024; Lahiri et al., 2024). If drones
In the Indian context, where agriculture remains the primary are perceived as complex, difficult to operate, or requiring
livelihood for millions of rural households, understanding the specialized skills, farmers may hesitate to adopt them regardless
Promotional Efforts
(PE) Peer Pressure (PP)
Perceived Risks and
Challenges (PRC)
- - . - I -
Perceived Economic P )
Viability (PEV) .
Attitudes , . ‘
- ' towards ‘. Willingness to ‘I
- o AN technology adopt
Perceived ease of use "
(PEU) AT —
Perceived usefulness
®U)
Perceived Sgcial Enl\’rfrrggx‘l:ztal
, Impact (PSI) i Impact (PEI) i
FIGURE 1
Structural model of willingness to adopt drones in agriculture.
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d)

e)

of their potential benefits (Caffaro et al, 2020). This is
compounded by barriers such as a lack of technical support
in local regions and limited access to repair or maintenance
services. However, if drones are designed to be user-friendly or
accompanied by accessible training programs such as those
provided under the Kisan Drone Scheme and by KVKs, then
even digitally inexperienced farmers are more likely to accept
and adopt the technology.

Perceived economic viability (PEV): Economic viability plays a
vital role in farmers’ decision-making processes, especially in
India, where over 85% of farmers are classified as small and
marginal (Namara et al, 2007; Mittal and Mehar, 2016). These
farmers often operate on tight budgets and are highly sensitive
to capital expenditure and operational costs. Drones, despite
their long-term benefits, involve significant upfront investment.
Suppose farmers perceive that drone adoption will lead to
tangible cost savings through reduced input wastage, fewer
labor requirements, or better pest control. In that case, they are
more likely to consider the investment worthwhile.
Additionally, the availability of financial support mechanisms
such as subsidies (e.g., up to 50% under the Kisan Drone
Scheme) and Custom Hiring Centers (CHCs) greatly influences
perceptions of affordability and return on investment.
Perceived risks and challenges (PRC): Indian farmers often operate
in risk-prone environments due to dependency on monsoons,
market price volatility, and socio-economic uncertainty (Jewitt
and Baker, 20125 Mandal et al, 2021). Introducing a new
technology like drones adds another layer of perceived risk.
Farmers may worry about technical failures, accidents, regulatory
issues, and a lack of servicing infrastructure in rural areas.
Moreover, concerns about drone piloting skills, data privacy, or
compliance with government regulations may also act as
deterrents. If these challenges are not addressed through
institutional support, awareness programs, and confidence-
building demonstrations, farmers may perceive the risks as
outweighing the benefits, thus hindering adoption.

Perceived social impact (PSI): Social impact in rural Indian
communities is a significant influencing factor in the adoption of
new technologies (Tambotoh et al,, 2015; Ray et al, 2019). If
drones are viewed as beneficial not only to the individual farmer
but also to the larger community by improving health through
reduced chemical exposure, saving time for other livelihood
activities, or enhancing prestige and social standing, then the
technology is more likely to be embraced. Furthermore, the
collective nature of Indian villages often leads to group decision-
making, where social norms, cultural acceptance, and collective
benefit play a pivotal role in influencing individual choices (Mosse,
2006; Trivedi et al., 2024; Voorhaar et al., 2025).

Perceived environmental impact (PEI): There is growing
awareness among Indian farmers, particularly those involved
in organic or climate-resilient agriculture, about the
importance of sustainable farming practices (Rahman, 2005;
Guo et al,, 2022). Drones, by enabling precision application of
fertilizers and pesticides, can minimize environmental
degradation, protect biodiversity, and conserve water and soil
health. If farmers recognize these ecological advantages, drones
are more likely to be accepted not just as a productivity tool but
as part of a sustainable farming model.
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Peer pressure (PP): In India, peer influence remains a powerful
factor in technology diffusion, especially in rural settings where
community leaders, progressive farmers, or early adopters
serve as opinion leaders (Kim et al., 2007; Negi et al., 2022).
Farmers often consult neighbors or local influencers before
investing in unfamiliar technologies. If they see others in their
village successfully using drones, it creates a bandwagon effect,
increasing their own interest and trust in the technology. On
the contrary, if influential peers express skepticism or report
negative experiences, it may deter adoption. Thus, peer
endorsement, especially when supported by extension workers
or demonstration plots, can play a crucial role in shaping
attitudes and behavior.

Attitude toward technology (ATT): Attitude is a central
psychological construct in the adoption process (Davis,
1989; Davis and Grani¢, 2024). In the Indian agricultural
context, a farmer’s attitude toward new technology is
shaped by prior experiences, perceived relevance, cultural
openness to innovation, and trust in government or
institutional interventions. A positive attitude, fostered
through exposure to successful use cases, training sessions,
or incentives, enhances a farmer’s readiness to try and
eventually adopt drone technology. Negative attitudes, on
the other hand, may stem from previous failed
interventions, lack of institutional support, or perceived
exclusion from technological advancement.

Promotional Efforts (PE): Promotional efforts in India,
spearheaded by central and state governments, NGOs, and
private agri-tech firms, play a significant role in shaping
perceptions and reducing adoption barriers (Hiranya and
Joshi, 2025; Vasavi et al., 2025). These efforts include
financial incentives (such as subsidies under the Kisan
Drone Scheme), demonstrations and field days organized
by KVKs, training and capacity-building programs, digital
awareness campaigns, and institutional support through
schemes like the Drone Didi Yojana. Such interventions not
only inform farmers about drone benefits but also reduce
uncertainty and build technical confidence. Promotional
efforts act as an important factor, strengthening the
relationship between farmers’ positive perceptions and
their actual willingness to adopt (Li et al., 2021; Han et al.,
2022; Luo et al., 2022).

Willingness to adopt (WA): Willingness to adopt, often
referred to as symbolic adoption (Karahanna and Agarwal,
2006), represents the outcome variable in the adoption
framework, reflecting a farmer’s intention or readiness to
embrace drone technology in agricultural practices (Davis,
1989; Davis and Grani¢, 2024). In the Indian context, this
willingness is influenced by a combination of technical,
economic, social, and institutional factors. Beyond the
perceived usefulness and ease of use of the technology, Indian
farmers evaluate whether drone adoption aligns with their
existing farming systems, landholding size, crop types, and
socio-cultural values. Moreover, trust in the promoting
institutions, such as government agencies, Krishi Vigyan
Kendras (KVKs), or local extension services, plays a vital role
in shaping this intent. Farmers are more inclined to adopt
when they perceive drone technology as low-risk, socially
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acceptable, economically viable, and supported by credible
institutions. A high degree of willingness, therefore, signals a
readiness to move from mere awareness to actual behavioral
adoption. Understanding the determinants of this symbolic
adoption is crucial for policymakers, technology developers,
and extension agents, as it offers practical insights into how
to convert farmer interest into real-world usage, ultimately
enhancing the reach, impact, and sustainability of drone
interventions in Indian agriculture.

Based on the conceptual framework, the study proposes the
following hypotheses:

HI: Perceived Usefulness (PU) positively affects farmers’ Attitude
Toward Technology (ATT).

H?2: Perceived Ease of Use (PEU) positively affects farmers’
Attitude Toward Technology (ATT).

H3: Perceived Economic Viability (PEV) positively affects farmers’
Attitude Toward Technology (ATT).

H4: Perceived Risks and Challenges (PRC) negatively affect
farmers’ Attitude Toward Technology (ATT).

Hb5: Perceived Social Impact (PSI) positively affects farmers’
Attitude Toward Technology (ATT).

Hé6: Perceived Environmental Impact (PEI) positively affects
farmers’ Attitude Toward Technology (ATT).

H7: Peer Pressure (PP) positively affects farmers’” Attitude Toward
Technology (ATT).

H8: Promotional Efforts (PE) positively affect farmers’ Attitude
Toward Technology (ATT).

H9: Attitude Toward Technology (ATT) positively affects farmers’

Willingness to Adopt (WA) agricultural drones.

Methodology

The study was conducted in Haryana and Uttar Pradesh,
where drone-based agricultural practices are actively promoted.
A multi-stage purposive-cum-random sampling technique was
adopted. First, two districts were selected from each state based
on drone usage intensity. Then, two blocks from each district
were chosen purposively. From each block, 80 respondents were
randomly selected, resulting in a total sample size of
320 respondents.

Data collection and data analysis
A structured questionnaire was developed based on existing

literature and validated through expert consultation. The
questionnaire included the following constructs, each measured
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using multiple items on a 7-point Likert scale (1 = Strongly
Disagree to 7 = Strongly Agree). Data were collected through face-
to-face interviews using a pre-tested structured schedule. Data
were analyzed using R in the PLS-PM Package (Sanchez, 2013;
Sanchezetal., 2014). To test the measurement model, Confirmatory
Factor Analysis (CFA) was conducted to assess construct reliability,
convergent validity, and discriminant validity. The hypothesized
relationships among variables were examined using Partial Least
Squares Structural Equation Modeling (PLS-SEM). The mediating
role of Attitude Toward Technology (ATT) was tested using the
bootstrapping technique.

The study’s conceptual framework involves multiple latent
constructs such as Perceived Usefulness (PU), Perceived Ease of
Use (PEU), Perceived Economic Viability (PEV), Perceived Risks
and Challenges (PRC), Perceived Social Impact (PSI), Perceived
Environmental Impact (PEI), Peer Pressure (PP), Promotional
Efforts (PE), Attitude Toward Technology (ATT), and Willingness
to Adopt (WA) that are measured through survey items. SEM is
suitable because it allows simultaneous estimation of relationships
between these latent variables, capturing direct, indirect, and total
effects, which is essential for testing all nine proposed hypotheses
(Fan et al., 2016). CB-SEM is appropriate if the goal is to confirm
the theoretical relationships specified in the framework and if the
data meet assumptions of normality and large sample size, while
PLS-SEM is suitable for predictive and exploratory analysis,
especially if the sample is smaller, data are non-normal, or the
focus is on explaining the variance in farmers’ adoption intention
(Dash and Paul, 2021). Therefore, SEM provides a rigorous
statistical approach to validate the framework and understand the
key drivers of farmers attitudes and adoption of
agricultural drones.

The study employed PLS-SEM to examine the relationships
among latent constructs such as Perceived Usefulness (PU), Perceived
Ease of Use (PEU), Perceived Economic Viability (PEV), Perceived
Risks and Challenges (PRC), Perceived Social and Environmental
Impact (PSI, PEI), Peer Pressure (PP), Promotional Efforts (PE),
Attitude Toward Technology (ATT), and Willingness to Adopt (WA).
PLS-SEM was chosen because it is particularly suitable for predictive
and exploratory research, and allows for handling complex models
with multiple constructs and mediators. It enables the estimation of
direct, indirect, and total effects, making it ideal for testing the nine
proposed hypotheses and identifying the key factors influencing
farmers’ attitudes and adoption of agricultural drones (Hair
etal., 2017).

Results

Construct reliability and convergent
validity

To assess the internal consistency, construct reliability, and
convergent validity of the latent constructs, several psychometric
properties were examined, including Cronbach’s alpha (a), DG
rho, Average Variance Extracted (AVE), and eigenvalues from
exploratory factor analysis (Table 2). All constructs demonstrated
excellent internal consistency, with Cronbach’s alpha values
ranging from 0.975 (Peer Pressure) to 0.989 (Perceived Ease of
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TABLE 2 Construct reliability and convergent validity.

10.3389/fsufs.2025.1695231

Construct Items Cronbach's a DG rho AVE First eigenvalue Second
eigenvalue
PEU 8 0.989 0.990 0.928 7.42 0.106
PE 5 0.980 0.985 0.928 4.64 0.099
PU 5 0.980 0.984 0.926 463 0.107
PEI 5 0.977 0.982 0916 458 0.124
PP 4 0.975 0.981 0.930 3.72 0.114
PEV 5 0.979 0.983 0.922 461 0.109
PSI 4 0.977 0.983 0.934 3.74 0.103
PRC 5 0.983 0.986 0.936 4.68 0.099
ATT 5 0.977 0.982 0916 458 0.126
WA 5 0.985 0.988 0.942 471 0.088

Use), all exceeding the recommended threshold of 0.70 (Sobaih
and Elshaer, 2022). Similarly, DG rho values were consistently
high, ranging from 0.981 to 0.990, confirming strong construct
reliability. Convergent validity was verified through AVE values,
which ranged from 0.916 to 0.942, well above the 0.50 threshold,
indicating that the indicators strongly converge on their
respective constructs. Further, the unidimensionality of each
construct was supported by the results of principal component
analysis, where the first eigenvalue in each case was substantially
larger than the second eigenvalue, which remained below 0.13.
For instance, Perceived Ease of Use had a first eigenvalue of 7.42
and a second eigenvalue of only 0.106, indicating clear
unidimensionality and minimal risk of multidimensionality.

These findings collectively affirm that all constructs used in the
model demonstrate strong reliability and validity, supporting their
suitability for subsequent structural model analysis.

Outer model results

To further validate the measurement model, the outer weights,
loadings, communalities, and redundancies of each indicator were
assessed (Table 3). All indicators across constructs exhibited very
high loadings, ranging from 0.953 to 0.973, indicating strong
relationships between indicators and their respective latent
constructs (Hair et al., 2017). The corresponding communalities
(squared loadings) were all above 0.90, affirming that a substantial
proportion of variance in each item was explained by the construct
it measured.

For example, within the Perceived Ease of Use (PEU) construct,
item loadings ranged from 0.958 to 0.968, with corresponding
communalities between 0.919 and 0.937. Similarly, items under
Perceived Usefulness (PU) showed loadings between 0.959 and
0.967, and communalities from 0.920 to 0.936. All constructs
maintained balanced outer weights, reflecting the relative
contribution of each indicator to the formative score. For instance,
the Peer Pressure (PP) indicators had weights ranging from 0.204
to 0.214, and similar patterns were observed across other blocks.
Redundancy values for all constructs except the endogenous
variables (ATT and WA) were zero, consistent with expectations in
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reflective measurement models without endogenous outcomes. For
the constructs Attitude Toward Technology (AT T) and Willingness
to Adopt (WA), redundancy values ranged from 0.680 to 0.689 and
0.596 to 0.605, respectively, indicating a moderate level of
predictive relevance from the structural model. These results
confirm strong indicator reliability, internal consistency, and
measurement validity, justifying the use of these constructs in the
structural path model.

Discriminant validity

The inter-construct correlations were examined to assess the
strength and direction of linear relationships among latent variables
(Table 4). All constructs demonstrated strong and positive
correlations, indicating conceptual coherence and potential theoretical
relevance in the structural model (Leguina, 2015).

The strongest correlation was observed between Perceived Ease
of Use (PEU) and Perceived Risks and Challenges (PRC) (r = 0.984),
suggesting a high degree of shared variance. Similarly, strong
correlations existed between PEU and WA (r = 0.803), PEU and PP
(r=10.799), and PEV and WA (r = 0.807), implying that ease of use,
peer influence, and economic viability are influential drivers of
willingness to adopt. Attitude Toward Technology (ATT) also
showed consistently strong correlations with its hypothesized
predictors, including PU (r = 0.775), PE (r = 0.784), PP (r = 0.783),
and PEV (r = 0.776), supporting the model’s theoretical assumptions.
The correlation between ATT and WA (r = 0.799) further confirmed
that a favorable attitude substantially influences adoption intentions.
All inter-construct correlations remained below 0.985, indicating an
acceptable level of discriminant validity (Schamberger, 2023). While
PEU and PRC were highly correlated, their AVE values and loadings
were sufficiently distinct, minimizing the risk of multicollinearity.

Structural model evaluation

The hypothesized relationships among the latent constructs
were tested using Partial Least Squares Structural Equation
Modeling (PLS-SEM). Table 5 and Figure 2 present the standardized
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TABLE 3 Outer model results.

Indicator Loading Communality Redundancy
PEU PEL 0.128 0.958 0.919 0.000
PE2 0.129 0.963 0.928 0.000
PE3 0.131 0.963 0.928 0.000
PE4 0.131 0.963 0.928 0.000
PE5 0.130 0.961 0.923 0.000
PE6 0.129 0.963 0.928 0.000
PE7 0.129 0.965 0.932 0.000
PES8 0.131 0.968 0.937 0.000
PE PEU1 0.208 0.962 0.925 0.000
PEU2 0.211 0.962 0.926 0.000
PEU3 0.206 0.965 0.930 0.000
PEU4 0.207 0.966 0.933 0.000
PEU5 0.206 0.961 0.923 0.000
PU PU1 0.209 0.967 0.936 0.000
PU2 0.211 0.963 0.928 0.000
PU3 0.202 0.961 0.923 0.000
PU4 0.206 0.959 0.920 0.000
PU5 0.212 0.960 0.922 0.000
PEI PP1 0.204 0.955 0911 0.000
PP2 0.211 0.961 0.924 0.000
PP3 0.206 0.953 0.907 0.000
PP4 0.214 0.955 0912 0.000
PP5 0.210 0.962 0.926 0.000
PP PRC1 0.262 0.968 0.936 0.000
PRC2 0.256 0.963 0.927 0.000
PRC3 0.262 0.967 0.934 0.000
PRC4 0.257 0.960 0.922 0.000
PEV PSI1 0.206 0.961 0.924 0.000
PSI2 0.211 0.963 0.927 0.000
PSI3 0.209 0.960 0.922 0.000
PSI4 0.207 0.958 0.917 0.000
PSI5 0.208 0.959 0.920 0.000
PSI PEIL 0.262 0.970 0.942 0.000
PEI2 0.257 0.964 0.929 0.000
PEI3 0.259 0.969 0.939 0.000
PEI4 0.257 0.963 0.928 0.000
PRC PEV1 0.207 0.968 0.938 0.000
PEV2 0.203 0.968 0.937 0.000
PEV3 0.208 0.971 0.944 0.000
PEV4 0.207 0.967 0.936 0.000
PEV5 0.209 0.962 0.925 0.000
(Continued)
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TABLE 3 (Continued)

10.3389/fsufs.2025.1695231

Block Indicator Weight Loading Communality Redundancy
ATT ATT1 0.208 0.958 0.918 0.687
ATT2 0.211 0.954 0.910 0.680
ATT3 0.209 0.960 0.921 0.689
ATT4 0.210 0.959 0.920 0.688
ATT5 0.207 0.953 0.909 0.680
WA WAL 0.205 0.973 0.947 0.605
WA2 0.206 0.972 0.945 0.604
WA3 0.207 0.966 0.933 0.596
WA4 0.206 0.972 0.945 0.603
WA5 0.206 0.969 0.940 0.600
TABLE 4 Correlations among latent variables.
Construct PEU PE PU PEI PP PEV PSI PRC ATT WA
PEU 1.000
PE 0.784 1.000
PU 0.777 0.769 1.000
PEI 0.747 0.757 0.740 1.000
PP 0.799 0.755 0.770 0.749 1.000
PEV 0.792 0.789 0.760 0.729 0.782 1.000
PSI 0.791 0.778 0.767 0.741 0.789 0.764 1.000
PRC 0.984 0.780 0.773 0.752 0.789 0.784 0.786 1.000
ATT 0.773 0.784 0.775 0.750 0.783 0.776 0.770 0.770 1.000
WA 0.803 0.788 0.774 0.764 0.763 0.807 0.773 0.802 0.799 1.000

TABLE 5 Path coefficients and significance.

Original g Boot mean Std. error 95% ClI (2.5, p-value
97.5%)
PEU — ATT 0.0068 0.00454 0.1551 [~0.2981, 0.308] 0.967 NS
PE — ATT 0.1741 0.17650 0.0644 [0.0512,0.304] 0.002 ik
PU — ATT 0.1591 0.15925 0.0561 [0.0493, 0.269] 0.004 o
PEI — ATT 0.1217 0.12022 0.0484 [0.0222,0.215] 0.017 #
PP — ATT 0.1688 0.16861 0.0542 [0.0602,0.273] 0.003 o
PEV — ATT 0.1439 0.14488 0.0531 [0.0408, 0.247] 0.010 o
PSI — ATT 0.1118 0.11053 0.0630 [~0.0141, 0.230] 0.047 *
PRC — ATT 0.0797 0.08154 0.1531 [~0.2204, 0.386] 0.618 NS
ATT - WA 0.7992 0.79936 0.0213 [0.7541,0.838] <0.001 s

##kp < 0.001, #*p < 0.01. *p < 0.05, NS, Not significant.

path coeflicients (), bootstrapped standard errors, 95% confidence
intervals, and p-values obtained through 5,000 bootstrap resamples
(Streukens and Leroi-Werelds, 2016; Magno et al., 2024).

Among the exogenous constructs predicting Attitude Toward
Technology (ATT), six demonstrated statistically significant
positive effects. Specifically, Promotional Efforts (PE) exerted a
significant influence on ATT (f = 0.1741, p = 0.002), followed by
Perceived Usefulness (PU) (f =0.1591, p = 0.004), Perceived
Environmental Impact (PEI) (f=0.1217, p=0.017), Peer
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Pressure (PP) (f = 0.1688, p = 0.003), and Perceived Economic
Viability (PEV) (f = 0.1439, p = 0.010). Additionally, Perceived
Social Impact (PSI) was marginally significant (= 0.1118,
p=0.047), indicating a positive yet
effect on ATT.

In contrast, the paths from Perceived Ease of Use (PEU)
(f=0.007, p=0.967) and Perceived Risks and Challenges (PRC)
(#=0.0797, p=0.618) to ATT were found to be statistically
non-significant. This suggests that these factors did not substantially

relatively weaker
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Structural equation model (SEM) depicting factors influencing attitudes toward technology and willingness to adopt agricultural innovations.

TABLE 6 Coefficient of determination (R?).

Endogenous variable R? (Original) Boot mean Std. error 95% ClI (2.5, 97.5%)
ATT 0.748 0.754 0.0242 [0.705,0.799] ‘
WA 0.639 0.639 0.0339 [0.569, 0.703] ‘

contribute to shaping attitudes toward the adoption of agricultural
drone technology within the present context.

Importantly, Attitude Toward Technology (ATT) was a strong and
significant predictor of Willingness to Adopt (WA) (8=0.7992,
P <0.001), supporting its mediating role within the theoretical framework.

R? and variance explained

The explanatory power of the structural model was assessed using
the coefficient of determination (R*) values for the endogenous
constructs. As presented in Table 6, the model explained a substantial
proportion of variance in both Attitude Toward Technology (ATT)
and Willingness to Adopt (WA).

The R* value for ATT was 0.748, indicating that approximately
74.8% of the variance in attitude toward technology was explained by
its antecedent constructs (Chin, 1998). The bootstrapped 95%
confidence interval [0.705, 0.799] confirmed the robustness and
reliability of this estimate (Schamberger, 2023).

Similarly, the R* value for WA was 0.639, suggesting that 63.9% of
the variance in willingness to adopt agricultural drone technology was
accounted for by ATT. The bootstrapped confidence interval [0.568,
0.700] further validated the predictive accuracy of the model.
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According to established benchmarks (Hair et al., 2017), these R
values can be considered substantial (for ATT) and moderate to
substantial (for WA), indicating a strong model fit and a high level of
explanatory relevance for technology adoption behavior in the
agricultural context.

PLS path model results

The total effects analysis in Table 7 revealed that Attitude Toward
Technology (ATT) had the most substantial impact on Willingness to
Adopt (WA) (8=0.799, 95% CI [0.753, 0.836], p<0.001),
underscoring its central mediating role in the model (Guenther et al.,
2023). Several exogenous constructs exerted significant indirect effects
on WA through ATT, including Promotional Efforts (PE) (f = 0.139,
p <0.01), Perceived Usefulness (PU) (f=0.127, p<0.01), Peer
Pressure (PP) (#=0.135, p <0.01), Perceived Economic Viability
(PEV) (#=0.115, p < 0.05), and Perceived Environmental Impact
(PEI) (# = 0.097, p < 0.05). However, the total effects of Perceived Ease
of Use (PEU), Perceived Social Impact (PSI), and Perceived Risks and
Challenges (PRC) were not statistically significant, suggesting limited
influence on WA within this model. These findings highlight that
farmers’ willingness to adopt agricultural drone technology is largely
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TABLE 7 Total effects on willingness to adopt (WA).

Predictor - WA Total effect 95% ClI (2.5, 97.5%) Significance
ATT 0.799 [0.754, 0.838] ok

PE 0.139 [0.041, 0.243] o

PU 0.127 [0.039, 0.215] o

PP 0.135 [0.048, 0.218] o

PEV 0.115 [0.032, 0.199] *

PEI 0.097 [0.018, 0.170] *

PSI 0.089 [-0.011,0.184] NS

PRC 0.064 [~0.176,0.310] NS

PEU 0.005 [~0.237,0.247] NS

##kp < 0.001, #*p < 0.01, *p < 0.05, NS, Not significant.

TABLE 8 Model fit.

Fit index Value Benchmark Interpretation

‘ GoF (Tenenhaus) ‘ 0.802 ‘ >0.36 ‘ Very good model fit ‘

shaped by their attitudes, which are, in turn, influenced by perceived ~ farmers’ attitudes. In contrast, Perceived Ease of Use (PEU) and
promotional, functional, economic, and social factors. Perceived Risks and Challenges (PRC) were found to
The overall model fit was assessed using the Goodness-of-Fit (GoF) ~ be statistically non-significant, suggesting a shift in mindset
index which combines the performance of both the measurement and ~ wherein modern farmers are becoming increasingly confident
structural models (Table 8). The obtained GoF value of 0.802 exceedsthe ~ with new technologies, perhaps due to improved training,
recommended threshold of 0.36, indicating a very good model fit  government-led demonstrations, or peer influence. As farmers
(Sanchez, 2013). This suggests that the model provides a robust become familiar with digital tools and mechanized systems, and
representation of the data and adequately captures the underlying  with drones increasingly operated by service providers, the role
relationships among the constructs, thereby supporting the validity and ~ of Perceived Ease of Use (PEU) diminishes in service-assisted
explanatory power of the proposed theoretical framework. adoption contexts. This may indicate a contextual shift in the
TAM framework, where the relative importance of PEU
) ) diminishes in highly service-assisted or professionalized
Discussion agricultural environments (Naspetti et al., 2017). Likewise, the
influence of perceived risks may be diminishing due to improved
This study sought to understand the psychological, social,  awareness, institutional support, and positive peer experiences.
and economic factors influencing farmers’ adoption of drone  This finding aligns with recent extensions of TAM and UTAUT,
technology as part of India’s broader transition to Agriculture 4.0,  suggesting that risk perception may not directly influence
with empirical data collected from Haryana and Uttar Pradesh,  attitude when the perceived value and performance benefits are
two agriculturally vital states in the Indo-Gangetic Plain. This  strong (Almaiah et al., 2022).
region is not only characterized by intensive cropping systems The successful adoption of smart farming technologies, including
but also represents India’s high-potential zone for early  drones, hinges on a complex interplay of awareness, infrastructure, peer
technological adoption due to its relatively better infrastructure,  learning, and perceived benefits. Drone technology, in particular, plays a
access to extension services, and exposure to mechanized farming.  crucial role in precision agriculture by enabling site-specific crop
The measurement model showed strong reliability and  management, real-time monitoring of field conditions, pest and disease
validity, with Cronbach’s alpha values above 0.97 and AVE values  surveillance, and targeted application of inputs. In our study, the strong
exceeding 0.91 for all constructs. These values indicate that the  effects of PU, PEV, and PE suggest that functional utility and economic
constructs such as Perceived Usefulness (PU), Perceived Ease of  feasibility remain top priorities for farmers. This reinforces the idea that
Use (PEU), Promotional Efforts (PE), and others were well-  Agriculture 4.0 innovations must be positioned not only as “smart” or
defined and consistently measured among the respondents.  “sustainable” but also as pragmatic, profitable, and proven in real
Factor loadings were consistently high (>0.953), ensuring each  farm settings.
item effectively represented its underlying latent construct. From The high explanatory power of the model, R* = 0.748 for ATT
the structural model, six out of eight proposed predictors hada  and 0.639 for WA (Willingness to Adopt), demonstrates that the
significant influence on Attitude Toward Technology (ATT), constructs collectively explain a substantial portion of farmers’
namely Promotional Efforts, Perceived Usefulness, Peer Pressure,  technology adoption behavior. The critical path from ATT to WA
Perceived Economic Viability, Perceived Environmental Impact,  (#=0.799, p <0.001) confirms that a positive attitude is the
and Perceived Social Impact. This confirms that both individual  strongest single predictor of adoption intention, consistent with the
cognition and socio-environmental factors significantly influence ~ Technology Acceptance Model (TAM) and related models applied
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in agricultural innovation diffusion research (Dissanayake et al.,
2022; Vasan and Yoganandan, 2024). Total effect analysis further
supported the indirect influence of constructs like PU, PE, PP, PEV,
and PEI on WA via ATT, revealing how external perceptions are
channeled through attitudinal shifts. Notably, PEU, PSI, and PRC
did not significantly influence WA, which may reflect a gap between
farmers’ awareness of social/environmental benefits or risks and
their actual behavioral intentions. This highlights the need for more
robust and localized extension education strategies that translate
abstract sustainability concepts into tangible farm-level outcomes.
The non-significant role of perceived risk (PRC) in this study
diverges from several prior studies in risk-averse farming
communities. However, in the relatively progressive farming belts
of Haryana and western Uttar Pradesh, where drone demonstrations,
digital literacy initiatives, and support services are more readily
available, farmers appear less intimidated by the perceived risk.
Government schemes such as the Sub-Mission on Agricultural
Mechanization (SMAM) and the Digital Agriculture Mission
(2021-2025) are likely playing a facilitative role, especially through
subsidies, CHCs, and training (Press Information Bureau, 2022).
Findings also reflect the changing role of peer influence (PP) in
agricultural technology diffusion. They rely on peer experiences
before making adoption decisions. This creates opportunities for
social marketing and farmer-led promotion models, where visible
early adopters can drive demand within their communities.

From a policy perspective, the strong impact of promotional
efforts (PE) suggests that continued investment in awareness-
building via Krishi Vigyan Kendras (KVKs), Farmer Producer
Organizations (FPOs), and agri-tech startups is essential to scale
adoption. The Indian government’s recent push toward “Drone
Didi” initiatives and the provisioning of drones to female SHGs also
holds promise in making drone adoption more inclusive,
particularly among marginalized and women farmers. Overall, the
results strongly support the notion that technological adoption in
agriculture is no longer hindered solely by access or affordability;
rather, it is a function of perception, communication, and behavioral
The 4.0
transformation are significant: by systematically addressing attitude

readiness. implications for India’s Agriculture
formation through a mix of promotional, social, and economic
interventions, India can accelerate adoption and ensure that smart
technologies like drones reach scale, especially among the 86% of
farmers who are small and marginal (World Economic

Forum, 2021).

Implications of the study

The findings of this study have significant implications for
policymakers, extension agencies, and agri-tech stakeholders aiming
to promote drone adoption in Indian agriculture. The strong influence
of farmers’ attitudes on their willingness to adopt drone technology
highlights the importance of targeted behavioral interventions.
Promotional efforts, peer influence, and perceived economic viability
emerged as critical drivers, suggesting that awareness campaigns,
farmer-led demonstrations, and clear communication of economic
benefits can substantially enhance adoption rates. The non-significance
of perceived ease of use and risk suggests that once farmers are
convinced of the utility and profitability of drones, technical concerns
diminish. Therefore, strategies should prioritize early exposure,
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trust-building, and value-based messaging over technical complexity,
aligning closely with India’s broader digital agriculture mission.

Limitations of the study

This study, while offering valuable insights into the adoption of
agricultural drone technology, has several limitations. First, the
research was geographically confined to Haryana and Uttar
Pradesh, which may limit the generalizability of the findings to
other regions with different agro-ecological, cultural, or
infrastructural contexts. Second, the cross-sectional design
restricts the ability to observe how attitudes and adoption
intentions evolve over time, especially as exposure to drone
technology increases. Third, the data relied on self-reported
perceptions, which may be subject to social desirability bias and
may not always reflect actual adoption behavior. Finally, the model
primarily focused on psychological and social constructs, without
incorporating policy, institutional, or infrastructural variables such
as access to subsidies, availability of service providers, or regulatory
frameworks that may also play a crucial role in adoption decisions.
Future research should address these limitations through
longitudinal, multi-regional, and multi-dimensional approaches.

Conclusion

This study provides robust empirical evidence on the
determinants of agricultural drone adoption among farmers in
Haryana and Uttar Pradesh, reinforcing the critical role of attitude
shaped by promotional, functional, economic, and peer-related
factors. The findings align with India’s vision of Agriculture 4.0, where
digital tools like drones are positioned as transformative solutions to
enhance productivity and sustainability. The non-significant impact
of ease of use and perceived risk indicates a growing maturity in
farmer outlooks, where perceived benefits outweigh apprehensions.
Policymakers, agri-tech firms, and extension agencies must focus on
awareness-building, peer engagement, and value demonstration to
accelerate adoption. As India moves toward a digitally empowered
agricultural ecosystem, such behavioral insights will be essential to
ensure inclusive and widespread technology diffusion.
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