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Agricultural drones represent a rapidly advancing innovation in modern farming, 
offering significant potential to enhance productivity, optimize input use, reduce 
labor dependency, and support real-time data-based decision-making. However, 
despite their proven advantages and increasing market availability, adoption among 
Indian farmers remains limited. Understanding the factors that shape farmers’ 
attitudes and willingness to adopt drone technology is essential for overcoming 
barriers and promoting large-scale adoption. This study examines the determinants 
influencing farmers’ attitudes toward agricultural drone technology and their 
willingness to adopt. A quantitative research approach was adopted, using a structured 
questionnaire administered to 320 farmers from selected districts in Haryana and 
Uttar Pradesh, India. The data were analyzed using Partial Least Squares Structural 
Equation Modeling (PLS-SEM) to assess the influence of key predictors on Attitude 
Toward Technology (ATT). The structural model results indicated that six of the eight 
hypothesized predictors, Promotional Efforts, Perceived Usefulness, Peer Pressure, 
Perceived Economic Viability, Perceived Environmental Impact, and Perceived 
Social Impact, had a statistically significant positive effect on ATT and contributed 
substantially to explaining variance in adoption willingness. These results reveal that 
farmer decisions are shaped by psychological, economic, environmental, and social 
dimensions, rather than purely technical considerations. The study emphasizes 
that effective adoption strategies must prioritize awareness enhancement, hands-
on training, field demonstrations, and financial support mechanisms to improve 
accessibility and trust. Strengthening institutional support and fostering positive 
peer experiences could further accelerate technology acceptance among less 
innovative farmers and later adopters. The findings provide valuable insights for 
policymakers, extension agencies, and agri-tech developers seeking to scale 
precision agriculture solutions, positioning agricultural drones as a critical tool 
for advancing sustainable and technologically enabled farming in India.
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Introduction

The global agricultural landscape is undergoing a profound transformation, driven by the 
integration of cutting-edge technologies that promise to enhance productivity, sustainability, 
and resilience (Guebsi et al., 2024). Among these innovations, Unmanned Aerial Vehicles 
(UAVs), commonly known as drones, are emerging as a revolutionary tool in modern 
agriculture (Hafeez et al., 2023). Although drones were first created for military logistics and 
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surveillance, their uses in the civilian sector have grown significantly 
(Restas, 2015). In the past decade, drone use has rapidly grown in 
industries like agriculture and commerce, as well as in disaster relief 
and humanitarian work (Mohd Daud et al., 2022). In agriculture, it 
offers a range of applications, including crop monitoring, pest control, 
precision spraying, and real-time data collection. The adoption of such 
technologies can significantly lead to higher crop yields, resource 
efficiency, and environmental sustainability (Rejeb et  al., 2022). 
According to the Agriculture Drone Market Size, Share, Global 
Forecast (2025), the global agricultural drone market is projected to 
grow from USD 4.98 billion in 2023 to over USD 23.78 billion by 2032.

Drones in agriculture boost productivity, cut costs, enable precise 
inputs, improve monitoring, detect pests early, and support data-
driven decisions (Ayamga et al., 2021; Meivel and Maheswari, 2021; 
Hafeez et al., 2023). Drones also make it easier to manage large or 
difficult terrains and help in yield estimation and disaster assessment, 
supporting crop insurance and farm planning (Benami et al., 2021). 
However, several challenges limit their global adoption, especially in 
developing regions (Pathak et al., 2020; Khan et al., 2024), including 
high costs, regulatory barriers, and data privacy concerns (Rodzi et al., 
2024; Puppala et al., 2023). Poor internet connectivity, GPS access in 
rural areas further hinder their use (Singh et al., 2024; Sangode, 2024; 
Barman et  al., 2025). Additionally, there is a lack of technical 
knowledge and skilled manpower to operate drones and analyze the 
data they generate (Singh et al., 2024). Moreover, maintenance and 
repair challenges, limited access to service centers, and concerns about 
privacy and data security also discourage farmers (Barnes et al., 2019).

As international agricultural drone regulations continue to 
change, removing these obstacles will require supportive legislation, 
capacity building, and cost-effective models. Numerous nations have 
put in place civil aviation laws that specify no-fly zones, operational 
restrictions, pilot qualification criteria, and standards for data usage 
(Mehrotra, 2024). Several Governments as well as organizations like 
FAO and the World Bank promote agricultural drone adoption 
through funding, training, and pilot projects, aiming to bridge the 
digital divide and support smallholder farmers (FAO, 2018).

The global adoption of agricultural drones has witnessed 
significant growth (Frąckiewicz, 2025). In the United States, drones 
have become widely integrated into agriculture for crop monitoring, 
field mapping, and precision spraying, supported by clear regulatory 
frameworks and advanced technological infrastructure (Global Ag 
Tech Initiative, 2024). Europe, particularly France, Germany, and the 
Netherlands, has increasingly adopted agricultural drones to comply 
with strict environmental regulations and meet precision agriculture 
objectives (Mordor Intelligence, 2024). In the Asia-Pacific region, 
China leads drone adoption, significantly driven by government 
subsidies covering over 150 million acres by 2021 (Ohio State 
University Extension, 2024). Japan has long integrated drones into its 
rice farming operations, establishing itself as a mature drone market 
(Mordor Intelligence, 2024). Meanwhile, Brazil dominates drone 
usage in Latin America, leveraging the technology extensively in large-
scale plantations (Grand View Research, 2024). In Africa, agricultural 
drone adoption remains at an initial stage, with pilot initiatives in 
Kenya, Uganda, and Tanzania demonstrating substantial potential for 
future expansion (WeRobotics, 2024).

India is rapidly scaling up drone usage through government-led 
initiatives such as the Digital India mission and the Sub-Mission on 
Agricultural Mechanization, which promote drone adoption via 

training programs, financial incentives, and institutional support 
(Press Information Bureau, 2023). Agriculture, employing about 46% 
of India’s workforce and contributing 18% to GDP, remains vital for 
food security and rural development (The Times of India, 2024). 
Agricultural drones have recently emerged as key tools for boosting 
productivity and precision farming. Recognizing the transformative 
potential of drone technology in agriculture, the Government of India 
has launched several promotional initiatives, including the Kisan 
Drone Scheme under SMAM, offering subsidies up to ₹5 lakh and 
support for 1,500 Custom Hiring Centers (Press Information Bureau, 
2023); the Namo Drone Didi Scheme, aimed at empowering 15,000 
women-led SHGs with drones and training; and various state-level 
programs to expand access, training, and service delivery. Under these 
schemes, the promotion of agricultural drones is being actively 
pursued through a combination of extension methods, including 
financial incentives, on-field demonstrations, hands-on training 
programs, digital awareness campaigns, and institutional support 
from ICAR, KVKs, SAUs, and state agriculture departments. This 
multi-pronged approach aims to enhance awareness, build technical 
capacity, and reduce economic and operational barriers to encourage 
widespread adoption of drone technology among Indian farmers. 
Despite these efforts, adoption remains modest due to affordability 
issues, limited technical skills, and infrastructural gaps, stressing the 
urgent need to explore the underlying factors influencing farmers’ 
willingness to adopt drone technology.

Exploring Indian farmers’ willingness to adopt drones is thus 
timely and essential. This study provides valuable insights into the 
effectiveness of ongoing policy initiatives, sheds light on socio-
economic and practical barriers affecting technology uptake, and 
assists policymakers, technology developers, and agricultural 
stakeholders in refining strategies for better implementation. 
Ultimately, such insights can enhance the efficacy of public 
investments in drone technology, driving tangible improvements in 
agricultural productivity, sustainability, and the livelihoods of millions 
of Indian farmers.

Key applications of drones in agriculture

Drones are transforming global agriculture through a wide array 
of applications that enhance productivity, sustainability, and efficiency. 
As shown in Table  1, drones have various major applications in 
agriculture. In crop surveillance and health monitoring, drones 
equipped with multispectral and thermal sensors enable early 
detection of plant stress, pest attacks, and nutrient deficiencies, 
allowing farmers to take timely corrective measures. Precision 
spraying, guided by GPS, allows drones to apply fertilizers, pesticides, 
and herbicides with remarkable accuracy, reducing chemical usage by 
up to 30% while minimizing environmental contamination and 
protecting workers from exposure (Guebsi et al., 2024). In challenging 
terrains, drones are also used for planting and seeding, particularly in 
reforestation and conservation efforts. Additionally, drones support 
field mapping and data analytics by capturing high-resolution imagery 
and creating 3D maps that highlight soil variability, water flow, and 
elevation, enabling optimized input use and smarter farm management 
(Mogili and Deepak, 2018). For yield estimation, drones assess crop 
vigor and canopy structure to forecast production levels, while also 
serving as critical tools in crop insurance by quickly and accurately 
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documenting post-disaster damage. Beyond crops, drones contribute 
to livestock management by monitoring herd movements, checking 
for fencing breaches, and identifying threats, significantly reducing 
labor and time in large-scale livestock operations.

Importance of agricultural drones in Indian 
farming

Agriculture in India is undergoing a paradigm shift with the 
integration of emerging technologies aimed at enhancing productivity, 
reducing input costs, and ensuring environmental sustainability. 
Among these innovations, agricultural drones, also known as 
Unmanned Aerial Vehicles (UAVs), are gaining prominence for their 
ability to perform real-time crop monitoring, precision spraying, soil 
health mapping, plant disease detection, and yield estimation. These 
capabilities can significantly improve input-use efficiency, reduce 
manual labor dependency, and facilitate timely agricultural 
interventions, particularly in large and medium-scale farming 
operations. However, the adoption of drone technology in Indian 
agriculture remains in its nascent stages, especially among small and 
marginal farmers who constitute nearly 86% of the farming community 
(Agricultural Census, 2015–16). The high cost of drones, limited 
awareness, inadequate technical skills, and risk perception act as major 
barriers. In this context, promotional efforts by the government, private 
sector, and agricultural extension agencies become critical to influence 
farmers’ willingness and ability to adopt such innovations.

To bridge the gap between technology availability and on-ground 
adoption, the Government of India has introduced several 
promotional schemes and policy frameworks (PIB, 2022) aimed at 
creating an enabling ecosystem for drone usage in agriculture:

	•	 Kisan Drone Scheme: Launched under the Ministry of 
Agriculture and Farmers Welfare, this initiative promotes the use 

of drones for various agricultural purposes. Financial assistance 
is provided for the purchase of drones by farmer-producer 
organizations (FPOs), cooperative societies, and custom hiring 
centers (CHCs).

	•	 Drone Shakti Initiative: Announced to encourage drone startups 
and facilitate ‘Drone-as-a-Service’ (DaaS), the initiative aims to 
build a robust ecosystem by promoting entrepreneurship and 
local drone manufacturing.

	•	 Drone Didi Yojana: Launched under the aegis of the Lakhpati 
Didi initiative, this scheme empowers rural women by 
training them to operate agricultural drones and provide 
drone services within their communities. It aims to create 
15,000 women drone pilots, offering both skill development 
and entrepreneurial opportunities.

	•	 Sub-Mission on Agricultural Mechanization (SMAM): Offers 
40–100% subsidies for the purchase of agricultural drones 
and related equipment by eligible entities, especially in 
aspirational districts and for Scheduled Castes/Scheduled 
Tribes and women farmers.

	•	 Custom Hiring Centres (CHCs): These centers are supported 
under various schemes to offer drone services to smallholders 
who cannot afford to buy drones individually, thereby promoting 
shared access and affordability.

	•	 Digital Agriculture Mission: A broader initiative that includes the 
promotion of emerging technologies such as AI, blockchain, and 
drones for digital transformation in agriculture.

In addition to government interventions, private companies 
and agritech startups are also actively engaging in awareness 
creation, field demonstrations, pilot programs, and influencer-
based campaigns to promote drone usage. Extension agencies and 
Krishi Vigyan Kendras (KVKs) are organizing on-field training, 
exhibitions, and capacity-building sessions for farmers and 
rural youth.

TABLE 1  Major agricultural applications of drones.

Application Description

Crop Monitoring Drones equipped with multispectral sensors provide real-time data on plant health, detecting pests, diseases, and nutrient 

deficiencies before they become visible.

Precision Spraying Drones spray fertilizers, pesticides, and herbicides with high precision, reducing input waste and minimizing chemical runoff.

Field Mapping and Planning Drones capture high-resolution imagery to create detailed maps, helping farmers assess soil variability, terrain, and water 

management.

Yield Estimation Drones use sensors to estimate crop yield by analyzing plant vigor, canopy size, and biomass, assisting in harvest planning and crop 

insurance.

Planting and Seeding Specialized drones can plant seeds and cover crops in areas that are difficult to reach with traditional machinery, enhancing 

productivity.

Livestock Monitoring Drones are used to monitor livestock movement, track animal health, and inspect pastures or fences, improving overall farm 

management.

Disaster and Damage Assessment In case of natural disasters, drones are used to quickly assess crop damage, enabling faster insurance claims and recovery.

Irrigation Monitoring Drones equipped with thermal sensors monitor soil moisture levels, helping optimize irrigation practices and prevent water 

wastage.

Environmental Monitoring Drones are used for biodiversity and environmental monitoring, helping track changes in ecosystems, soil health, and water 

resources.

Sources: Kumar et al. (2023), García-Munguía et al. (2024), and Ahirwar et al. (2019).
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Conceptual framework

One of the most widely applied theoretical models for 
understanding technology adoption is the Technology Acceptance 
Model (TAM), which posits that perceived usefulness and perceived 
ease of use are crucial determinants of technology acceptance (Davis, 
1989; Davis and Granić, 2024). While TAM has been extensively 
applied in various domains, its application in the Indian agricultural 
context, particularly to agricultural drones, requires contextual 
adaptation. Indian farmers, especially small and marginal holders, 
often face additional constraints such as limited access to capital, 
fragmented landholdings, and varying levels of digital literacy. 
Therefore, understanding drone adoption necessitates expanding 
TAM to include factors like Perceived Economic Viability (PEV), 
Perceived Environmental Impact (PEI), Perceived Social Impact (PSI), 
Perceived Risks and Challenges (PRC), and Peer Pressure (PP), all of 
which are highly relevant in rural India (Figure 1). Moreover, in India, 
where government-led promotional schemes like the Kisan Drone 
Scheme and Drone Didi Yojana are actively promoting drone 
technology, promotional efforts (PE) such as financial subsidies, 
capacity-building training, demonstrations, and digital campaigns 
play a crucial role.

Relevance of key factors in the Indian 
context for agricultural drone adoption

In the Indian context, where agriculture remains the primary 
livelihood for millions of rural households, understanding the 

determinants of technology adoption is crucial, especially for 
emerging innovations like agricultural drones. The following is an 
overview of the key factors relevant to agricultural drones within the 
Indian farming context.

	 a)	 Perceived usefulness (PU): Perceived usefulness refers to the 
extent to which farmers believe that using drone technology 
will enhance their agricultural performance (Caffaro et  al., 
2020). In the Indian context, farmers frequently face 
fragmented landholdings, labor shortages, high input costs, 
and inefficiencies in input application (Manjunatha et al., 2013; 
Deininger et al., 2017). Agricultural drones offer a practical 
solution by enabling precise spraying, timely monitoring, and 
crop health assessments through remote sensing. These 
functions can lead to increased productivity, improved pest and 
disease management, and ultimately higher yields (Guebsi 
et al., 2024). When farmers perceive drones as beneficial tools 
that reduce effort and enhance outcomes, their willingness to 
adopt the technology increases significantly (McCarthy et al., 
2023). This is particularly relevant in areas where traditional 
farming practices are becoming less efficient due to climate 
variability or resource constraints.

	b)	 Perceived ease of use (PEU): Ease of use is a critical determinant 
of technology adoption in rural India, where digital literacy 
and exposure to high-tech solutions remain limited, 
particularly among small and marginal farmers (Manrai et al., 
2021; Sindakis and Showkat, 2024; Lahiri et al., 2024). If drones 
are perceived as complex, difficult to operate, or requiring 
specialized skills, farmers may hesitate to adopt them regardless 

FIGURE 1

Structural model of willingness to adopt drones in agriculture.
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of their potential benefits (Caffaro et  al., 2020). This is 
compounded by barriers such as a lack of technical support 
in local regions and limited access to repair or maintenance 
services. However, if drones are designed to be user-friendly or 
accompanied by accessible training programs such as those 
provided under the Kisan Drone Scheme and by KVKs, then 
even digitally inexperienced farmers are more likely to accept 
and adopt the technology.

	 c)	 Perceived economic viability (PEV): Economic viability plays a 
vital role in farmers’ decision-making processes, especially in 
India, where over 85% of farmers are classified as small and 
marginal (Namara et al., 2007; Mittal and Mehar, 2016). These 
farmers often operate on tight budgets and are highly sensitive 
to capital expenditure and operational costs. Drones, despite 
their long-term benefits, involve significant upfront investment. 
Suppose farmers perceive that drone adoption will lead to 
tangible cost savings through reduced input wastage, fewer 
labor requirements, or better pest control. In that case, they are 
more likely to consider the investment worthwhile. 
Additionally, the availability of financial support mechanisms 
such as subsidies (e.g., up to 50% under the Kisan Drone 
Scheme) and Custom Hiring Centers (CHCs) greatly influences 
perceptions of affordability and return on investment.

	 d)	 Perceived risks and challenges (PRC): Indian farmers often operate 
in risk-prone environments due to dependency on monsoons, 
market price volatility, and socio-economic uncertainty (Jewitt 
and Baker, 2012; Mandal et  al., 2021). Introducing a new 
technology like drones adds another layer of perceived risk. 
Farmers may worry about technical failures, accidents, regulatory 
issues, and a lack of servicing infrastructure in rural areas. 
Moreover, concerns about drone piloting skills, data privacy, or 
compliance with government regulations may also act as 
deterrents. If these challenges are not addressed through 
institutional support, awareness programs, and confidence-
building demonstrations, farmers may perceive the risks as 
outweighing the benefits, thus hindering adoption.

	 e)	 Perceived social impact (PSI): Social impact in rural Indian 
communities is a significant influencing factor in the adoption of 
new technologies (Tambotoh et  al., 2015; Ray et  al., 2019). If 
drones are viewed as beneficial not only to the individual farmer 
but also to the larger community by improving health through 
reduced chemical exposure, saving time for other livelihood 
activities, or enhancing prestige and social standing, then the 
technology is more likely to be  embraced. Furthermore, the 
collective nature of Indian villages often leads to group decision-
making, where social norms, cultural acceptance, and collective 
benefit play a pivotal role in influencing individual choices (Mosse, 
2006; Trivedi et al., 2024; Voorhaar et al., 2025).

	 f)	 Perceived environmental impact (PEI): There is growing 
awareness among Indian farmers, particularly those involved 
in organic or climate-resilient agriculture, about the 
importance of sustainable farming practices (Rahman, 2005; 
Guo et al., 2022). Drones, by enabling precision application of 
fertilizers and pesticides, can minimize environmental 
degradation, protect biodiversity, and conserve water and soil 
health. If farmers recognize these ecological advantages, drones 
are more likely to be accepted not just as a productivity tool but 
as part of a sustainable farming model.

	 g)	 Peer pressure (PP): In India, peer influence remains a powerful 
factor in technology diffusion, especially in rural settings where 
community leaders, progressive farmers, or early adopters 
serve as opinion leaders (Kim et al., 2007; Negi et al., 2022). 
Farmers often consult neighbors or local influencers before 
investing in unfamiliar technologies. If they see others in their 
village successfully using drones, it creates a bandwagon effect, 
increasing their own interest and trust in the technology. On 
the contrary, if influential peers express skepticism or report 
negative experiences, it may deter adoption. Thus, peer 
endorsement, especially when supported by extension workers 
or demonstration plots, can play a crucial role in shaping 
attitudes and behavior.

	h)	 Attitude toward technology (ATT): Attitude is a central 
psychological construct in the adoption process (Davis, 
1989; Davis and Granić, 2024). In the Indian agricultural 
context, a farmer’s attitude toward new technology is 
shaped by prior experiences, perceived relevance, cultural 
openness to innovation, and trust in government or 
institutional interventions. A positive attitude, fostered 
through exposure to successful use cases, training sessions, 
or incentives, enhances a farmer’s readiness to try and 
eventually adopt drone technology. Negative attitudes, on 
the other hand, may stem from previous failed 
interventions, lack of institutional support, or perceived 
exclusion from technological advancement.

	 i)	 Promotional Efforts (PE): Promotional efforts in India, 
spearheaded by central and state governments, NGOs, and 
private agri-tech firms, play a significant role in shaping 
perceptions and reducing adoption barriers (Hiranya and 
Joshi, 2025; Vasavi et  al., 2025). These efforts include 
financial incentives (such as subsidies under the Kisan 
Drone Scheme), demonstrations and field days organized 
by KVKs, training and capacity-building programs, digital 
awareness campaigns, and institutional support through 
schemes like the Drone Didi Yojana. Such interventions not 
only inform farmers about drone benefits but also reduce 
uncertainty and build technical confidence. Promotional 
efforts act as an important factor, strengthening the 
relationship between farmers’ positive perceptions and 
their actual willingness to adopt (Li et al., 2021; Han et al., 
2022; Luo et al., 2022).

	 j)	 Willingness to adopt (WA): Willingness to adopt, often 
referred to as symbolic adoption (Karahanna and Agarwal, 
2006), represents the outcome variable in the adoption 
framework, reflecting a farmer’s intention or readiness to 
embrace drone technology in agricultural practices (Davis, 
1989; Davis and Granić, 2024). In the Indian context, this 
willingness is influenced by a combination of technical, 
economic, social, and institutional factors. Beyond the 
perceived usefulness and ease of use of the technology, Indian 
farmers evaluate whether drone adoption aligns with their 
existing farming systems, landholding size, crop types, and 
socio-cultural values. Moreover, trust in the promoting 
institutions, such as government agencies, Krishi Vigyan 
Kendras (KVKs), or local extension services, plays a vital role 
in shaping this intent. Farmers are more inclined to adopt 
when they perceive drone technology as low-risk, socially 
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acceptable, economically viable, and supported by credible 
institutions. A high degree of willingness, therefore, signals a 
readiness to move from mere awareness to actual behavioral 
adoption. Understanding the determinants of this symbolic 
adoption is crucial for policymakers, technology developers, 
and extension agents, as it offers practical insights into how 
to convert farmer interest into real-world usage, ultimately 
enhancing the reach, impact, and sustainability of drone 
interventions in Indian agriculture.

Based on the conceptual framework, the study proposes the 
following hypotheses:

H1: Perceived Usefulness (PU) positively affects farmers’ Attitude 
Toward Technology (ATT).

H2: Perceived Ease of Use (PEU) positively affects farmers’ 
Attitude Toward Technology (ATT).

H3: Perceived Economic Viability (PEV) positively affects farmers’ 
Attitude Toward Technology (ATT).

H4: Perceived Risks and Challenges (PRC) negatively affect 
farmers’ Attitude Toward Technology (ATT).

H5: Perceived Social Impact (PSI) positively affects farmers’ 
Attitude Toward Technology (ATT).

H6: Perceived Environmental Impact (PEI) positively affects 
farmers’ Attitude Toward Technology (ATT).

H7: Peer Pressure (PP) positively affects farmers’ Attitude Toward 
Technology (ATT).

H8: Promotional Efforts (PE) positively affect farmers’ Attitude 
Toward Technology (ATT).

H9: Attitude Toward Technology (ATT) positively affects farmers’ 
Willingness to Adopt (WA) agricultural drones.

Methodology

The study was conducted in Haryana and Uttar Pradesh, 
where drone-based agricultural practices are actively promoted. 
A multi-stage purposive-cum-random sampling technique was 
adopted. First, two districts were selected from each state based 
on drone usage intensity. Then, two blocks from each district 
were chosen purposively. From each block, 80 respondents were 
randomly selected, resulting in a total sample size of 
320 respondents.

Data collection and data analysis

A structured questionnaire was developed based on existing 
literature and validated through expert consultation. The 
questionnaire included the following constructs, each measured 

using multiple items on a 7-point Likert scale (1 = Strongly 
Disagree to 7 = Strongly Agree). Data were collected through face-
to-face interviews using a pre-tested structured schedule. Data 
were analyzed using R in the PLS-PM Package (Sanchez, 2013; 
Sanchez et al., 2014). To test the measurement model, Confirmatory 
Factor Analysis (CFA) was conducted to assess construct reliability, 
convergent validity, and discriminant validity. The hypothesized 
relationships among variables were examined using Partial Least 
Squares Structural Equation Modeling (PLS-SEM). The mediating 
role of Attitude Toward Technology (ATT) was tested using the 
bootstrapping technique.

The study’s conceptual framework involves multiple latent 
constructs such as Perceived Usefulness (PU), Perceived Ease of 
Use (PEU), Perceived Economic Viability (PEV), Perceived Risks 
and Challenges (PRC), Perceived Social Impact (PSI), Perceived 
Environmental Impact (PEI), Peer Pressure (PP), Promotional 
Efforts (PE), Attitude Toward Technology (ATT), and Willingness 
to Adopt (WA) that are measured through survey items. SEM is 
suitable because it allows simultaneous estimation of relationships 
between these latent variables, capturing direct, indirect, and total 
effects, which is essential for testing all nine proposed hypotheses 
(Fan et al., 2016). CB-SEM is appropriate if the goal is to confirm 
the theoretical relationships specified in the framework and if the 
data meet assumptions of normality and large sample size, while 
PLS-SEM is suitable for predictive and exploratory analysis, 
especially if the sample is smaller, data are non-normal, or the 
focus is on explaining the variance in farmers’ adoption intention 
(Dash and Paul, 2021). Therefore, SEM provides a rigorous 
statistical approach to validate the framework and understand the 
key drivers of farmers’ attitudes and adoption of 
agricultural drones.

The study employed PLS-SEM to examine the relationships 
among latent constructs such as Perceived Usefulness (PU), Perceived 
Ease of Use (PEU), Perceived Economic Viability (PEV), Perceived 
Risks and Challenges (PRC), Perceived Social and Environmental 
Impact (PSI, PEI), Peer Pressure (PP), Promotional Efforts (PE), 
Attitude Toward Technology (ATT), and Willingness to Adopt (WA). 
PLS-SEM was chosen because it is particularly suitable for predictive 
and exploratory research, and allows for handling complex models 
with multiple constructs and mediators. It enables the estimation of 
direct, indirect, and total effects, making it ideal for testing the nine 
proposed hypotheses and identifying the key factors influencing 
farmers’ attitudes and adoption of agricultural drones (Hair 
et al., 2017).

Results

Construct reliability and convergent 
validity

To assess the internal consistency, construct reliability, and 
convergent validity of the latent constructs, several psychometric 
properties were examined, including Cronbach’s alpha (α), DG 
rho, Average Variance Extracted (AVE), and eigenvalues from 
exploratory factor analysis (Table 2). All constructs demonstrated 
excellent internal consistency, with Cronbach’s alpha values 
ranging from 0.975 (Peer Pressure) to 0.989 (Perceived Ease of 
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Use), all exceeding the recommended threshold of 0.70 (Sobaih 
and Elshaer, 2022). Similarly, DG rho values were consistently 
high, ranging from 0.981 to 0.990, confirming strong construct 
reliability. Convergent validity was verified through AVE values, 
which ranged from 0.916 to 0.942, well above the 0.50 threshold, 
indicating that the indicators strongly converge on their 
respective constructs. Further, the unidimensionality of each 
construct was supported by the results of principal component 
analysis, where the first eigenvalue in each case was substantially 
larger than the second eigenvalue, which remained below 0.13. 
For instance, Perceived Ease of Use had a first eigenvalue of 7.42 
and a second eigenvalue of only 0.106, indicating clear 
unidimensionality and minimal risk of multidimensionality.

These findings collectively affirm that all constructs used in the 
model demonstrate strong reliability and validity, supporting their 
suitability for subsequent structural model analysis.

Outer model results

To further validate the measurement model, the outer weights, 
loadings, communalities, and redundancies of each indicator were 
assessed (Table 3). All indicators across constructs exhibited very 
high loadings, ranging from 0.953 to 0.973, indicating strong 
relationships between indicators and their respective latent 
constructs (Hair et  al., 2017). The corresponding communalities 
(squared loadings) were all above 0.90, affirming that a substantial 
proportion of variance in each item was explained by the construct 
it measured.

For example, within the Perceived Ease of Use (PEU) construct, 
item loadings ranged from 0.958 to 0.968, with corresponding 
communalities between 0.919 and 0.937. Similarly, items under 
Perceived Usefulness (PU) showed loadings between 0.959 and 
0.967, and communalities from 0.920 to 0.936. All constructs 
maintained balanced outer weights, reflecting the relative 
contribution of each indicator to the formative score. For instance, 
the Peer Pressure (PP) indicators had weights ranging from 0.204 
to 0.214, and similar patterns were observed across other blocks. 
Redundancy values for all constructs except the endogenous 
variables (ATT and WA) were zero, consistent with expectations in 

reflective measurement models without endogenous outcomes. For 
the constructs Attitude Toward Technology (ATT) and Willingness 
to Adopt (WA), redundancy values ranged from 0.680 to 0.689 and 
0.596 to 0.605, respectively, indicating a moderate level of 
predictive relevance from the structural model. These results 
confirm strong indicator reliability, internal consistency, and 
measurement validity, justifying the use of these constructs in the 
structural path model.

Discriminant validity

The inter-construct correlations were examined to assess the 
strength and direction of linear relationships among latent variables 
(Table  4). All constructs demonstrated strong and positive 
correlations, indicating conceptual coherence and potential theoretical 
relevance in the structural model (Leguina, 2015).

The strongest correlation was observed between Perceived Ease 
of Use (PEU) and Perceived Risks and Challenges (PRC) (r = 0.984), 
suggesting a high degree of shared variance. Similarly, strong 
correlations existed between PEU and WA (r = 0.803), PEU and PP 
(r = 0.799), and PEV and WA (r = 0.807), implying that ease of use, 
peer influence, and economic viability are influential drivers of 
willingness to adopt. Attitude Toward Technology (ATT) also 
showed consistently strong correlations with its hypothesized 
predictors, including PU (r = 0.775), PE (r = 0.784), PP (r = 0.783), 
and PEV (r = 0.776), supporting the model’s theoretical assumptions. 
The correlation between ATT and WA (r = 0.799) further confirmed 
that a favorable attitude substantially influences adoption intentions. 
All inter-construct correlations remained below 0.985, indicating an 
acceptable level of discriminant validity (Schamberger, 2023). While 
PEU and PRC were highly correlated, their AVE values and loadings 
were sufficiently distinct, minimizing the risk of multicollinearity.

Structural model evaluation

The hypothesized relationships among the latent constructs 
were tested using Partial Least Squares Structural Equation 
Modeling (PLS-SEM). Table 5 and Figure 2 present the standardized 

TABLE 2  Construct reliability and convergent validity.

Construct Items Cronbach’s α DG rho AVE First eigenvalue Second 
eigenvalue

PEU 8 0.989 0.990 0.928 7.42 0.106

PE 5 0.980 0.985 0.928 4.64 0.099

PU 5 0.980 0.984 0.926 4.63 0.107

PEI 5 0.977 0.982 0.916 4.58 0.124

PP 4 0.975 0.981 0.930 3.72 0.114

PEV 5 0.979 0.983 0.922 4.61 0.109

PSI 4 0.977 0.983 0.934 3.74 0.103

PRC 5 0.983 0.986 0.936 4.68 0.099

ATT 5 0.977 0.982 0.916 4.58 0.126

WA 5 0.985 0.988 0.942 4.71 0.088
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TABLE 3  Outer model results.

Block Indicator Weight Loading Communality Redundancy

PEU PE1 0.128 0.958 0.919 0.000

PE2 0.129 0.963 0.928 0.000

PE3 0.131 0.963 0.928 0.000

PE4 0.131 0.963 0.928 0.000

PE5 0.130 0.961 0.923 0.000

PE6 0.129 0.963 0.928 0.000

PE7 0.129 0.965 0.932 0.000

PE8 0.131 0.968 0.937 0.000

PE PEU1 0.208 0.962 0.925 0.000

PEU2 0.211 0.962 0.926 0.000

PEU3 0.206 0.965 0.930 0.000

PEU4 0.207 0.966 0.933 0.000

PEU5 0.206 0.961 0.923 0.000

PU PU1 0.209 0.967 0.936 0.000

PU2 0.211 0.963 0.928 0.000

PU3 0.202 0.961 0.923 0.000

PU4 0.206 0.959 0.920 0.000

PU5 0.212 0.960 0.922 0.000

PEI PP1 0.204 0.955 0.911 0.000

PP2 0.211 0.961 0.924 0.000

PP3 0.206 0.953 0.907 0.000

PP4 0.214 0.955 0.912 0.000

PP5 0.210 0.962 0.926 0.000

PP PRC1 0.262 0.968 0.936 0.000

PRC2 0.256 0.963 0.927 0.000

PRC3 0.262 0.967 0.934 0.000

PRC4 0.257 0.960 0.922 0.000

PEV PSI1 0.206 0.961 0.924 0.000

PSI2 0.211 0.963 0.927 0.000

PSI3 0.209 0.960 0.922 0.000

PSI4 0.207 0.958 0.917 0.000

PSI5 0.208 0.959 0.920 0.000

PSI PEI1 0.262 0.970 0.942 0.000

PEI2 0.257 0.964 0.929 0.000

PEI3 0.259 0.969 0.939 0.000

PEI4 0.257 0.963 0.928 0.000

PRC PEV1 0.207 0.968 0.938 0.000

PEV2 0.203 0.968 0.937 0.000

PEV3 0.208 0.971 0.944 0.000

PEV4 0.207 0.967 0.936 0.000

PEV5 0.209 0.962 0.925 0.000

(Continued)

https://doi.org/10.3389/fsufs.2025.1695231
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Barman et al.� 10.3389/fsufs.2025.1695231

Frontiers in Sustainable Food Systems 09 frontiersin.org

path coefficients (β), bootstrapped standard errors, 95% confidence 
intervals, and p-values obtained through 5,000 bootstrap resamples 
(Streukens and Leroi-Werelds, 2016; Magno et al., 2024).

Among the exogenous constructs predicting Attitude Toward 
Technology (ATT), six demonstrated statistically significant 
positive effects. Specifically, Promotional Efforts (PE) exerted a 
significant influence on ATT (β = 0.1741, p = 0.002), followed by 
Perceived Usefulness (PU) (β = 0.1591, p = 0.004), Perceived 
Environmental Impact (PEI) (β = 0.1217, p = 0.017), Peer 

Pressure (PP) (β = 0.1688, p = 0.003), and Perceived Economic 
Viability (PEV) (β = 0.1439, p = 0.010). Additionally, Perceived 
Social Impact (PSI) was marginally significant (β = 0.1118, 
p = 0.047), indicating a positive yet relatively weaker 
effect on ATT.

In contrast, the paths from Perceived Ease of Use (PEU) 
(β = 0.007, p = 0.967) and Perceived Risks and Challenges (PRC) 
(β = 0.0797, p = 0.618) to ATT were found to be  statistically 
non-significant. This suggests that these factors did not substantially 

TABLE 3  (Continued)

Block Indicator Weight Loading Communality Redundancy

ATT ATT1 0.208 0.958 0.918 0.687

ATT2 0.211 0.954 0.910 0.680

ATT3 0.209 0.960 0.921 0.689

ATT4 0.210 0.959 0.920 0.688

ATT5 0.207 0.953 0.909 0.680

WA WA1 0.205 0.973 0.947 0.605

WA2 0.206 0.972 0.945 0.604

WA3 0.207 0.966 0.933 0.596

WA4 0.206 0.972 0.945 0.603

WA5 0.206 0.969 0.940 0.600

TABLE 4  Correlations among latent variables.

Construct PEU PE PU PEI PP PEV PSI PRC ATT WA

PEU 1.000

PE 0.784 1.000

PU 0.777 0.769 1.000

PEI 0.747 0.757 0.740 1.000

PP 0.799 0.755 0.770 0.749 1.000

PEV 0.792 0.789 0.760 0.729 0.782 1.000

PSI 0.791 0.778 0.767 0.741 0.789 0.764 1.000

PRC 0.984 0.780 0.773 0.752 0.789 0.784 0.786 1.000

ATT 0.773 0.784 0.775 0.750 0.783 0.776 0.770 0.770 1.000

WA 0.803 0.788 0.774 0.764 0.763 0.807 0.773 0.802 0.799 1.000

TABLE 5  Path coefficients and significance.

Path Original β Boot mean Std. error 95% CI (2.5, 
97.5%)

p-value Sig

PEU → ATT 0.0068 0.00454 0.1551 [−0.2981, 0.308] 0.967 NS

PE → ATT 0.1741 0.17650 0.0644 [0.0512, 0.304] 0.002 **

PU → ATT 0.1591 0.15925 0.0561 [0.0493, 0.269] 0.004 **

PEI → ATT 0.1217 0.12022 0.0484 [0.0222, 0.215] 0.017 *

PP → ATT 0.1688 0.16861 0.0542 [0.0602, 0.273] 0.003 **

PEV → ATT 0.1439 0.14488 0.0531 [0.0408, 0.247] 0.010 **

PSI → ATT 0.1118 0.11053 0.0630 [−0.0141, 0.230] 0.047 *

PRC → ATT 0.0797 0.08154 0.1531 [−0.2204, 0.386] 0.618 NS

ATT → WA 0.7992 0.79936 0.0213 [0.7541, 0.838] <0.001 ***

***p < 0.001, **p < 0.01. *p < 0.05, NS, Not significant.
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contribute to shaping attitudes toward the adoption of agricultural 
drone technology within the present context.

Importantly, Attitude Toward Technology (ATT) was a strong and 
significant predictor of Willingness to Adopt (WA) (β = 0.7992, 
p < 0.001), supporting its mediating role within the theoretical framework.

R2 and variance explained

The explanatory power of the structural model was assessed using 
the coefficient of determination (R2) values for the endogenous 
constructs. As presented in Table 6, the model explained a substantial 
proportion of variance in both Attitude Toward Technology (ATT) 
and Willingness to Adopt (WA).

The R2 value for ATT was 0.748, indicating that approximately 
74.8% of the variance in attitude toward technology was explained by 
its antecedent constructs (Chin, 1998). The bootstrapped 95% 
confidence interval [0.705, 0.799] confirmed the robustness and 
reliability of this estimate (Schamberger, 2023).

Similarly, the R2 value for WA was 0.639, suggesting that 63.9% of 
the variance in willingness to adopt agricultural drone technology was 
accounted for by ATT. The bootstrapped confidence interval [0.568, 
0.700] further validated the predictive accuracy of the model.

According to established benchmarks (Hair et al., 2017), these R2 
values can be  considered substantial (for ATT) and moderate to 
substantial (for WA), indicating a strong model fit and a high level of 
explanatory relevance for technology adoption behavior in the 
agricultural context.

PLS path model results

The total effects analysis in Table 7 revealed that Attitude Toward 
Technology (ATT) had the most substantial impact on Willingness to 
Adopt (WA) (β = 0.799, 95% CI [0.753, 0.836], p < 0.001), 
underscoring its central mediating role in the model (Guenther et al., 
2023). Several exogenous constructs exerted significant indirect effects 
on WA through ATT, including Promotional Efforts (PE) (β = 0.139, 
p < 0.01), Perceived Usefulness (PU) (β = 0.127, p < 0.01), Peer 
Pressure (PP) (β = 0.135, p < 0.01), Perceived Economic Viability 
(PEV) (β = 0.115, p < 0.05), and Perceived Environmental Impact 
(PEI) (β = 0.097, p < 0.05). However, the total effects of Perceived Ease 
of Use (PEU), Perceived Social Impact (PSI), and Perceived Risks and 
Challenges (PRC) were not statistically significant, suggesting limited 
influence on WA within this model. These findings highlight that 
farmers’ willingness to adopt agricultural drone technology is largely 

FIGURE 2

Structural equation model (SEM) depicting factors influencing attitudes toward technology and willingness to adopt agricultural innovations.

TABLE 6  Coefficient of determination (R2).

Endogenous variable R2 (Original) Boot mean Std. error 95% CI (2.5, 97.5%)

ATT 0.748 0.754 0.0242 [0.705, 0.799]

WA 0.639 0.639 0.0339 [0.569, 0.703]
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shaped by their attitudes, which are, in turn, influenced by perceived 
promotional, functional, economic, and social factors.

The overall model fit was assessed using the Goodness-of-Fit (GoF) 
index which combines the performance of both the measurement and 
structural models (Table 8). The obtained GoF value of 0.802 exceeds the 
recommended threshold of 0.36, indicating a very good model fit 
(Sanchez, 2013). This suggests that the model provides a robust 
representation of the data and adequately captures the underlying 
relationships among the constructs, thereby supporting the validity and 
explanatory power of the proposed theoretical framework.

Discussion

This study sought to understand the psychological, social, 
and economic factors influencing farmers’ adoption of drone 
technology as part of India’s broader transition to Agriculture 4.0, 
with empirical data collected from Haryana and Uttar Pradesh, 
two agriculturally vital states in the Indo-Gangetic Plain. This 
region is not only characterized by intensive cropping systems 
but also represents India’s high-potential zone for early 
technological adoption due to its relatively better infrastructure, 
access to extension services, and exposure to mechanized farming.

The measurement model showed strong reliability and 
validity, with Cronbach’s alpha values above 0.97 and AVE values 
exceeding 0.91 for all constructs. These values indicate that the 
constructs such as Perceived Usefulness (PU), Perceived Ease of 
Use (PEU), Promotional Efforts (PE), and others were well-
defined and consistently measured among the respondents. 
Factor loadings were consistently high (≥0.953), ensuring each 
item effectively represented its underlying latent construct. From 
the structural model, six out of eight proposed predictors had a 
significant influence on Attitude Toward Technology (ATT), 
namely Promotional Efforts, Perceived Usefulness, Peer Pressure, 
Perceived Economic Viability, Perceived Environmental Impact, 
and Perceived Social Impact. This confirms that both individual 
cognition and socio-environmental factors significantly influence 

farmers’ attitudes. In contrast, Perceived Ease of Use (PEU) and 
Perceived Risks and Challenges (PRC) were found to 
be  statistically non-significant, suggesting a shift in mindset 
wherein modern farmers are becoming increasingly confident 
with new technologies, perhaps due to improved training, 
government-led demonstrations, or peer influence. As farmers 
become familiar with digital tools and mechanized systems, and 
with drones increasingly operated by service providers, the role 
of Perceived Ease of Use (PEU) diminishes in service-assisted 
adoption contexts. This may indicate a contextual shift in the 
TAM framework, where the relative importance of PEU 
diminishes in highly service-assisted or professionalized 
agricultural environments (Naspetti et al., 2017). Likewise, the 
influence of perceived risks may be diminishing due to improved 
awareness, institutional support, and positive peer experiences. 
This finding aligns with recent extensions of TAM and UTAUT, 
suggesting that risk perception may not directly influence 
attitude when the perceived value and performance benefits are 
strong (Almaiah et al., 2022).

The successful adoption of smart farming technologies, including 
drones, hinges on a complex interplay of awareness, infrastructure, peer 
learning, and perceived benefits. Drone technology, in particular, plays a 
crucial role in precision agriculture by enabling site-specific crop 
management, real-time monitoring of field conditions, pest and disease 
surveillance, and targeted application of inputs. In our study, the strong 
effects of PU, PEV, and PE suggest that functional utility and economic 
feasibility remain top priorities for farmers. This reinforces the idea that 
Agriculture 4.0 innovations must be positioned not only as “smart” or 
“sustainable” but also as pragmatic, profitable, and proven in real 
farm settings.

The high explanatory power of the model, R2 = 0.748 for ATT 
and 0.639 for WA (Willingness to Adopt), demonstrates that the 
constructs collectively explain a substantial portion of farmers’ 
technology adoption behavior. The critical path from ATT to WA 
(β = 0.799, p < 0.001) confirms that a positive attitude is the 
strongest single predictor of adoption intention, consistent with the 
Technology Acceptance Model (TAM) and related models applied 

TABLE 8  Model fit.

Fit index Value Benchmark Interpretation

GoF (Tenenhaus) 0.802 > 0.36 Very good model fit

TABLE 7  Total effects on willingness to adopt (WA).

Predictor → WA Total effect 95% CI (2.5, 97.5%) Significance

ATT 0.799 [0.754, 0.838] ***

PE 0.139 [0.041, 0.243] **

PU 0.127 [0.039, 0.215] **

PP 0.135 [0.048, 0.218] **

PEV 0.115 [0.032, 0.199] *

PEI 0.097 [0.018, 0.170] *

PSI 0.089 [−0.011, 0.184] NS

PRC 0.064 [−0.176, 0.310] NS

PEU 0.005 [−0.237, 0.247] NS

***p < 0.001, **p < 0.01, *p < 0.05, NS, Not significant.
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in agricultural innovation diffusion research (Dissanayake et al., 
2022; Vasan and Yoganandan, 2024). Total effect analysis further 
supported the indirect influence of constructs like PU, PE, PP, PEV, 
and PEI on WA via ATT, revealing how external perceptions are 
channeled through attitudinal shifts. Notably, PEU, PSI, and PRC 
did not significantly influence WA, which may reflect a gap between 
farmers’ awareness of social/environmental benefits or risks and 
their actual behavioral intentions. This highlights the need for more 
robust and localized extension education strategies that translate 
abstract sustainability concepts into tangible farm-level outcomes. 
The non-significant role of perceived risk (PRC) in this study 
diverges from several prior studies in risk-averse farming 
communities. However, in the relatively progressive farming belts 
of Haryana and western Uttar Pradesh, where drone demonstrations, 
digital literacy initiatives, and support services are more readily 
available, farmers appear less intimidated by the perceived risk. 
Government schemes such as the Sub-Mission on Agricultural 
Mechanization (SMAM) and the Digital Agriculture Mission 
(2021–2025) are likely playing a facilitative role, especially through 
subsidies, CHCs, and training (Press Information Bureau, 2022). 
Findings also reflect the changing role of peer influence (PP) in 
agricultural technology diffusion. They rely on peer experiences 
before making adoption decisions. This creates opportunities for 
social marketing and farmer-led promotion models, where visible 
early adopters can drive demand within their communities.

From a policy perspective, the strong impact of promotional 
efforts (PE) suggests that continued investment in awareness-
building via Krishi Vigyan Kendras (KVKs), Farmer Producer 
Organizations (FPOs), and agri-tech startups is essential to scale 
adoption. The Indian government’s recent push toward “Drone 
Didi” initiatives and the provisioning of drones to female SHGs also 
holds promise in making drone adoption more inclusive, 
particularly among marginalized and women farmers. Overall, the 
results strongly support the notion that technological adoption in 
agriculture is no longer hindered solely by access or affordability; 
rather, it is a function of perception, communication, and behavioral 
readiness. The implications for India’s Agriculture 4.0 
transformation are significant: by systematically addressing attitude 
formation through a mix of promotional, social, and economic 
interventions, India can accelerate adoption and ensure that smart 
technologies like drones reach scale, especially among the 86% of 
farmers who are small and marginal (World Economic 
Forum, 2021).

Implications of the study

The findings of this study have significant implications for 
policymakers, extension agencies, and agri-tech stakeholders aiming 
to promote drone adoption in Indian agriculture. The strong influence 
of farmers’ attitudes on their willingness to adopt drone technology 
highlights the importance of targeted behavioral interventions. 
Promotional efforts, peer influence, and perceived economic viability 
emerged as critical drivers, suggesting that awareness campaigns, 
farmer-led demonstrations, and clear communication of economic 
benefits can substantially enhance adoption rates. The non-significance 
of perceived ease of use and risk suggests that once farmers are 
convinced of the utility and profitability of drones, technical concerns 
diminish. Therefore, strategies should prioritize early exposure, 

trust-building, and value-based messaging over technical complexity, 
aligning closely with India’s broader digital agriculture mission.

Limitations of the study

This study, while offering valuable insights into the adoption of 
agricultural drone technology, has several limitations. First, the 
research was geographically confined to Haryana and Uttar 
Pradesh, which may limit the generalizability of the findings to 
other regions with different agro-ecological, cultural, or 
infrastructural contexts. Second, the cross-sectional design 
restricts the ability to observe how attitudes and adoption 
intentions evolve over time, especially as exposure to drone 
technology increases. Third, the data relied on self-reported 
perceptions, which may be subject to social desirability bias and 
may not always reflect actual adoption behavior. Finally, the model 
primarily focused on psychological and social constructs, without 
incorporating policy, institutional, or infrastructural variables such 
as access to subsidies, availability of service providers, or regulatory 
frameworks that may also play a crucial role in adoption decisions. 
Future research should address these limitations through 
longitudinal, multi-regional, and multi-dimensional approaches.

Conclusion

This study provides robust empirical evidence on the 
determinants of agricultural drone adoption among farmers in 
Haryana and Uttar Pradesh, reinforcing the critical role of attitude 
shaped by promotional, functional, economic, and peer-related 
factors. The findings align with India’s vision of Agriculture 4.0, where 
digital tools like drones are positioned as transformative solutions to 
enhance productivity and sustainability. The non-significant impact 
of ease of use and perceived risk indicates a growing maturity in 
farmer outlooks, where perceived benefits outweigh apprehensions. 
Policymakers, agri-tech firms, and extension agencies must focus on 
awareness-building, peer engagement, and value demonstration to 
accelerate adoption. As India moves toward a digitally empowered 
agricultural ecosystem, such behavioral insights will be essential to 
ensure inclusive and widespread technology diffusion.
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