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Vermicompost-mediated
modulation of agronomic and
physiological traits enhances
wheat performance under
variable water regimes
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Mohammed O. Alshaharni* and P. V. Vara Prasad®

!Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan, 2Department of
Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur,
Bahawalpur, Pakistan, *Agricultural Biotechnology Department, College of Agriculture and Food
Sciences, King Faisal University, Al-Ahsa, Saudi Arabia, *Biology Department, College of Science, King
Khalid University, Abha, Saudi Arabia, *Department of Agronomy, Kansas State University, Manhattan,
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Wheat is a major cereal crop whose growth and productivity are highly influenced
by soil moisture availability. Vermicompost application has been proposed as
a sustainable approach to mitigate the adverse impacts of drought stress. This
study, conducted at the University of Agriculture, Faisalabad, during 2020-2021
and 2021-2022, investigated the effects of different vermicompost sources on
agronomic, physiological, and nutrient traits of wheat under varying soil moisture
regimes. The experiment included three soil moisture levels (no drought, mild
drought, and severe drought), four vermicompost (VT) levels (control, 8 t ha™
wheat straw vermicompost, 6 t ha™* rice straw vermicompost, and 6 t ha™ cow
dung vermicompost), and two wheat cultivars: Faisalabad-08 (drought-tolerant)
and Galaxy-13 (drought-sensitive). Results revealed that drought stress significantly
reduced growth, yield, and physiological attributes. However, vermicompost
application alleviated these effects, with cow dung vermicompost showing the
greatest improvement, followed by rice straw and wheat straw vermicompost.
Furthermore, Faisalabad-08 performed better than Galaxy-13 under both mild
and severe drought conditions. Overall, the findings highlight that applying
vermicompost, particularly from cow dung, to the soil is an effective strategy to
improve wheat resilience and productivity under drought stress.
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1 Introduction

Wheat (Triticum aestivum L.) belongs to the family Poaceae, subfamily Pooideae, and tribe
Triticeae (Talaat and Abdel-Salam, 2024; Shahbazi et al., 2015; West et al., 1988). It is one of
the most widely adapted cereal crops, capable of growing under diverse environmental
conditions across the globe. Wheat is primarily a cool-season crop, requiring a minimum of
3-4 °C for growth, with an optimum around 25 °C and a maximum temperature tolerance of
approximately 32 °C. Its cultivation spans a wide range of agro-climatic zones, mainly

concentrated between latitudes 30°N-60°N and 27°S-40°S. Wheat thrives best on
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well-drained soils and can be grown from sea level up to elevations of
about 4,500 m. Although optimal production is achieved in regions
receiving 375-875 mm of annual precipitation, wheat is also growing
in areas with rainfall ranging from 250 to 1,750 (Kheir et al., 2025;
Briggle and Curtis, 1987; Kimber and Sears, 1987).

Wheat provides a wide range of essential nutrients, including
starch, gluten proteins, dietary fiber, and B-group vitamins. Owing to
its gluten content, wheat is preferred over other cereals for bread
making. The whole grain, with its rich composition of nutrients and
vitamins, helps protect against several chronic diseases such as
ischemic disorders, diverticulitis, constipation, appendicitis, diabetes,
and obesity (Rashtbari et al., 2020; Seimrizade et al., 2021; Kumar
et al, 2011). In addition to being a major source of carbohydrates,
wheat also supplies vitamin E, niacin, riboflavin, thiamine, protein,
and important minerals such as Zn, Cu, Fe, Mg, and P (Siddiqui and
Sarwar, 2002; Sarwar and Sattar, 2007; Ali et al., 2009).

Plant morphological, physiological, and biochemical traits are
adversely affected by various stress factors, including extreme climatic
conditions (elevated temperatures and drought), erratic weather,
inappropriate sowing time, salinity, heavy metals, pest infestation, and
limited irrigation water. Among these, drought is considered the most
critical constraint, strongly associated with yield reduction (Anjum
and Tanveer, 2016; Anjum et al., 2017; Hussain et al., 2018). Drought
stress disrupts physiological processes and nutrient uptake efficiency.
The incorporation of vermicompost (VT), however, can alleviate such
effects by improving soil structure, enhancing microbial activity, and
increasing nutrient availability. This, in turn, facilitates greater uptake
of essential nutrients such as nitrogen, phosphorus, and potassium,
which play vital roles in sustaining plant metabolism, enhancing
water-use efficiency, and maintaining cellular and physiological
functions under stress. Higher nutrient concentrations in leaves
consequently improve plant adaptation to drought, mitigating its
adverse effects on growth and yield (Bellitiirk et al., 2020; Aboelsoud
and Ahmed, 2020).

Water scarcity further reduces crop productivity by altering
metabolic and physiological processes, including enhanced oxidative
damage, reduced leaf gaseous exchange, and decreased carbon
assimilation rates (Ramazanoglu, 2024; Hussain et al., 2018). It also
suppresses enzymatic activities, ion uptake, and leaf development,
thereby severely limiting crop productivity (Prassad et al., 2008;
Farooq et al., 2009; Anjum et al., 2017; Todaka et al., 2017). Overall,
drought stress is a major challenge as it negatively impacts multiple
physiological processes, ultimately reducing crop growth, production,
and grain yield (GY) (Prassad et al., 2008). To address this problem,
the use of organic amendments such as vermicompost, along with
cultivation of drought-tolerant genotypes, has been strongly
recommended (Farooq et al., 2009; Ji et al., 2010). Notably, wheat
genotypes exhibit differential responses to water scarcity, indicating
the importance of varietal selection for drought-prone environments
(Akram, 2011; Khakwani et al., 2011; Joshi et al., 2013).

Previous studies have demonstrated that vermicompost
application can effectively mitigate water stress owing to high porosity,
aeration, water retention, and drainage capacity (Hosseinzadeh et al,
2016; Hussain et al, 2018; Jahan et al, 2023). Rich in beneficial
microorganisms, vermicompost enhances root moisture absorption,
improves soil water holding capacity, and increases the availability of
nutrients in the soil solution (Hosseinzadeh et al., 2016; Hrcka et al.,
2025; Hussain et al., 2016). In addition, it promotes the accumulation
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of soluble sugars, sorbitol, betaine, organic acids, and amino acids in
plants, while serving as a source of essential nutrients such as N, B, K,
Ca, Zn, B, Mg, S, and Fe (Hosseinzadeh et al., 2016; Farooqi et al.,
2024; Hafez et al., 2020). Although biofertilizers can also be produced
through thermophilic composting, vermicomposting is considered a
faster and more efficient method for producing nutrient-rich
amendments (Atiyeh et al., 2000). The steady release of organic
nutrients from vermicompost supports the beneficial soil
microorganisms that contribute to nutrient cycling, nitrogen fixation,
and disease suppression (Aslam et al., 2021). Over time, this reduces
reliance on chemical fertilizers by providing a sustainable, slow-release
source of essential nutrients. Complementary practices such as crop
rotation, incorporation of green manures, application of biofertilizers
(Ahmad et al.,, 2024; Aslam et al., 2025), and conservation tillage
further enrich soil fertility and improve soil health. Collectively, these
practices improve soil water-holding capacity, aeration, and root
development, thereby increasing plants’ resilience to abiotic stresses
such as drought, salinity, and temperature extremes. In wheat and
other crops, integrating vermicompost with such sustainable
management not only boosts productivity but also fosters a resilient
agroecosystem capable of sustaining yields under changing climatic
conditions (Farooqi et al., 2024; Hafez et al., 2020).

Several studies on cereal crops such as wheat and maize (Zea mays
L.) have reported the positive effects of vermicompost, applied alone
or in combination with organic amendments, under non-drought,
moderate drought, and severe drought conditions. These studies
demonstrated variable outcomes, including reductions in morpho-
physiological and vyield attributes under drought, as well as
improvements in biochemical characteristics that support stress
tolerance (Aboelsoud and Ahmed, 2020; Hafez et al., 2020; Anee et al.,
2022). The beneficial effects of humic substances present in
vermicompost have been widely recognized. For instance, the
application of vermicompost extracts in rice has been shown to
mitigate the harmful effects of drought-induced reactive oxygen
species (ROS) by enhancing the activity of antioxidant enzymes such
as superoxide dismutase (SOD) and catalase (CAT) (Garcia et al,,
2012; Kiran, 2019). Positive effects of vermicompost have also been
documented in a range of legume crops including chickpea (Gholipoor
etal, 2011; Hosseinzadeh et al., 2018), mung-bean (Vigna radiata L.;
Mahmoudi et al., 2016) and lentil (Lens culinaris Medik.; Ahmadpour
and Hosseinzadeh, 2017), as well as in other crops such as canola
(Brassica sp.; Rashtbari et al., 2020), wheat (Ahmad et al., 2024), and
other plant families (Akhzari and Pessarakli, 2017; Kiran, 2019).
However, the comparative effectiveness of wheat straw vermicompost
(WSv), rice straw vermicompost (RSv), and cow dung-derived
vermicompost (CDv) in alleviating drought stress under field
conditions remains largely unexplored. The V'Ts selected for this study
were based on our earlier pot experiments (Ahmad et al., 2024), which
examined the effects of plant-based (wheat straw, rice straw) and
animal-based (cow dung) vermicompost on the physiological and
biochemical traits of wheat seedlings under water deficit conditions.
These preliminary studies identified optimal vermicompost
application rates that enhanced plant performance.

Building on these findings, the present field experiment was
designed to test the hypothesis that wheat straw, rice straw, and cow
dung vermicompost can improve wheat yield, physiology, growth, and
nutrient uptake by mitigating the adverse impacts of drought stress.
Accordingly, a 2-year field trial was conducted to evaluate the effects

frontiersin.org


https://doi.org/10.3389/fsufs.2025.1695055
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org

Ahmad et al.

of different vermicompost types on agronomic, biochemical,
physiological, and growth traits of two wheat cultivars—Faisalabad-08
(drought-tolerant) and Galaxy-13 (drought-sensitive)—under varying
soil moisture regimes.

2 Materials and methods

The field experiments were carried out at the Student Research
Area, University of Agriculture Faisalabad, during the winter season
2020-2021 and repeated in 2021-2022. The experimental site is
situated 184.4 m above mean sea level, at 73° 06'E longitude and 31°
04'N latitude. A randomized complete block design (RCBD) with a
split-split plot arrangement and three replications was employed.
Vermicompost was prepared from wheat straw, rice straw, and cow
dung using the earthworm Eisenia fetida. Optimized doses of these
substrates were applied at sowing time and uniformly incorporated
into the soil at a depth of 10-15 cm using a cultivator to ensure proper
nutrient distribution and accessibility for wheat plants. The seedbed
was prepared according to standard crop requirements, and wheat was
sown at a rate of 120 kg ha™' seed rate. Fertilizers were applied at a
recommended rate of 110:100 kgha™ N: P, while all other
management practices were kept uniform across treatments. Each
experimental plot measured 4.5 m x 2.25 m. The treatments consisted
of (a) three soil moisture regimes: DO = 70% field capacity (FC) (no
drought), D1 = 45% field capacity (mild drought), and D2 = 30% field
capacity (severe drought); (b) four vermicompost levels:
VTO = control, VT1 =8 tha™' wheat straw vermicompost (WSv),
VT2 =6t ha™' rice straw vermicompost (RSv), and VI3 = 6 t ha™' cow
dung vermicompost (CDv); and (c) two wheat cultivars: Faisalabad-08
(drought-tolerant) and Galaxy-13 (drought-sensitive).

2.1 Irrigation water analysis

Canal water was used for irrigation in this experiment, and its
quality was analyzed prior to wheat sowing. Water samples were
collected in rubber bottles, properly labeled, and immediately
transported to the “Soil and water testing laboratory, Ayub
Agricultural Research Institute, Faisalabad” for examination. The
analyses were performed following the guidelines of the International
Center for Agricultural Research in the Dry Areas (ICARDA) manual
for soil, plant, and water analyses. The detailed physicochemical
properties  of  the water  are

irrigation provided in

Supplementary Table S1.

2.2 Soil analysis

Soil samples were collected in polythene bags, properly tagged,
and immediately transported to the “soil and water testing laboratory
in Ayub Agricultural Research Institute, Faisalabad” for analysis.
Physical properties (sand, silt, and clay) were determined following
the ICARDA manual for soil, plant, and water analysis. Chemical
parameters, including pH, EC, organic matter, total nitrogen, available
phosphorus, available potassium, calcium, magnesium, iron, zinc,
copper, and nickel, were analyzed according to the methods described
by Bellitiirk et al. (2020) and Anee et al. (2022). Microbial biomass,
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including microbial activity and bacterial and fungal populations, was
assessed using the method of Aslam et al. (2021). A summary of
physicochemical analysis from this study is presented in
Supplementary Table S2.

2.3 Data to be recorded

Standardized methods were used to record data on agronomic,
biochemical, and physiological traits of wheat plants grown in the
field, as described below.

2.3.1 Agronomic parameters

Plant height (cm) was measured from the soil surface to the top
of the plant using a meter rod, with ten plants randomly selected from
each sub-plot. The number of tillers per square meter was counted
using a 1 m* quadrat (Aslam et al., 2023). Spike length (cm) was
determined from ten plants per plot using a 1-foot scale, while the
number of spikelets per spike and the number of grains per spike were
counted from ten randomly selected plants in each plot. At threshing,
a 1,000-grain weight (g) was obtained by counting and weighing one
thousand grains on an electronic balance. Biological yield (BY) (t ha™)
was measured by harvesting above-ground biomass from 1 m?
weighing it, and converting the value to t ha™'. Grain yield (t ha™") was
determined by hand-threshing the grains from 1 m? weighing them,
and converting to t ha™'. Straw yield (t ha™') was calculated as the
difference between total biomass and grain yield and expressed in t
ha™". Finally, the harvest index (HI, %) was calculated as the ratio of
grain yield to biological yield using the formula (Aslam et al., 2023).

Grain yield

HI (%) = x100

Biological yield

2.3.2 Biochemical parameters

Leaf nitrogen contents (mg g~' dw) were determined by digesting
0.1 g of dried, ground leaves in digestion tubes containing 5 mL of
concentrated H,SO,. After incubation at room temperature, 1 mL of
35% H,0, was added along the tube walls. The tubes were placed in a
digestion block and heated to 350 °C until fumes appeared, then
removed, cooled, and treated again with H,O,. This process was
repeated until the digest became colorless. The final extract was diluted
to 50 mL in a volumetric flask, and nitrogen concentration was
measured using Kjeldahl’s apparatus (Model: KJELTEC™ 8,400, Foss
Analytical A/S, Hillered, Denmark). Leaf phosphorus content (mg g™
dw) was determined by reacting 5 mL of sample solution with 10 mL of
Barton’s reagent in a volumetric flask, then diluting to volume with
distilled water. KH,PO, was used as a standard, and color development
was measured at 420 nm using a spectrophotometer (Model: UV-1800,
Shimadzu Corporation, Kyoto, Japan). Leaf potassium content (mg g™
dw) was determined by digesting 0.1 g of dried, ground leaves with
5 mL concentrated H,SO, in digestion tubes, followed by the gradual
addition of H,0, until the digest became clear and colorless. The final
volume was adjusted to 50 mL in volumetric flasks, and potassium
concentration was measured using a flame photometer (Model: Jenway
PFP7, Bibby Scientific Ltd., Staffordshire, UK). Potassium contents were
determined from the extract (Aslam et al, 2023). Leaf iron
concentration was analyzed using atomic absorption spectrophotometry.
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FIGURE 1

probability level.

(a—c) Effects of soil applied with wheat straw, rice straw, and cow dung vermicompost on plant height, number of total tillers, and spike length of both
wheat varieties under three water scarcity levels. Tukey's HSD test shows that bars with changed alphabetical letters differ significantly at a 5%

A stock Fe solution (100 mg L™") was prepared by dissolving 0.1 g of
clean, untarnished iron in 10 mL of 10% slightly heated H,SO,, and
diluting to 1,000 mL. Working standards (0-20 mg/L) were prepared
from the stock, and Fe concentration in the samples was obtained by
comparing absorbance values with the standard calibration curve. Leaf
zinc content (ppm) was determined using the wet digestion method
described by Bellitiirk et al. (2020). Briefly, 0.5 g of dried, ground leaf
samples (0.5 g) were digested with a mixture of nitric acid (HNO;) and
perchloric acid (HCIO,) in a 2:1 ratio on a block digester until a clear
solution was obtained. After cooling, the digested samples were diluted
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with distilled water, filtered, and analyzed for Zn concentration using
an atomic absorption spectrophotometer (AAS).

2.3.3 Physiological parameters

Total chlorophyll (Chl) contents (a+b) [mgg™ fwt] were
determined using Arnon’s (1949) method. Briefly, 0.2 g of freshly cut
leaves was extracted in 80% acetone and kept overnight at 0-4 °C. The
samples were then centrifuged at 10,000 g for 5min, and the
absorbance of the supernatant was recorded at 645 and 663 nm using
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(a—c) Effects of soil applied with cow dung, wheat, and rice straw vermicompost on the spikelets per spike, grains per spike, and thousand-grain
weight of both wheat varieties under various drought levels. Tukey's HSD test shows that bars with varying alphabetical letters differ significantly at a 5%

probability level.

a spectrophotometer. Chl a and b concentrations were calculated
using the following equations:

Chla= [12.7(0D 663)—2.69 (OD 645)]xV/1,000xW

Chlb =[22.9 (OD645)-4.68(OD 663)]xV/1,000xw

where OD represents to optical density, V represents the extract
volume (in mL), and W represents the fresh weight of leaf tissue (in
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g). Leaf chlorophyll index was further assessed using a portable Soil
Plant Analysis Development (SPAD) meter (Model SPAD-502;
Minolta Corporation, Ramsey, NJ, USA).

2.4 Statistical analysis

Data on agronomic, biochemical, and physiological attributes
were subjected to analysis of variance (ANOVA) using Fisher’s
method. Treatments were compared using Tukey’s Honestly Significant
Difference (HSD) test at p < 0.05, following the procedure of Steel
et al. (1997). All statistical analyses were performed using Statistix
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version 10.0 (Analytical Software, Tallahassee, FL, USA). Graphical
illustrations were prepared with SigmaPlot 10.0 and Origin 2024b.

3 Results
3.1 Agronomic parameters

The interaction between moisture regime and V'Ts was significant
for plant height, number of total tillers, and spike length in both 2020-
2021 and 2021-2022 (Supplementary Table S3; Figure 1). Irrigation
levels, vermicompost (VT), and their interaction exerted significant
effects on these agronomic traits across both years. Plant height, tiller
number, and spike length were highest under well-watered conditions,

10.3389/fsufs.2025.1695055

whereas drought stress significantly reduced these attributes, with the
greatest decline observed under severe drought stress (30% FC).
Application of VT mitigated the adverse effects of drought with CDv
(6 tha™), producing the greatest improvement, followed by RSv
(6 tha™') and WSv VT (8 t ha™). This positive effect of vermicompost
was consistent across both years and under all moisture regimes. Even
under non-stressed conditions, VT application at sowing enhanced
agronomic traits. The maximum values for plant height, tiller number,
and spike length were obtained with CDv (6 t ha™) across 70% FC
(well-watered), 45% FC (moderate drought), and 30% FC (severe
drought). Between cultivars, Faisalabad-08 (drought-tolerant)
outperformed Galaxy-13 (drought-sensitive), showing higher plant
height, spike length, and tiller number under both moderate and severe
drought conditions.
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(a—d) Effects of soil applied with wheat straw, rice straw, and cow dung vermicompost on biological yield, grain yield, straw weight, and harvest index
of two wheat cultivars under different drought levels. Tukey's HSD test shows that bars with different alphabetical letters differ significantly at a 5%

Spikelets per spike, grains per spike, and thousand-grain weight
(TGW) were significantly affected by both drought stress and
vermicompost application (Supplementary Table 54 and Figure 2).
Drought stress markedly (p < 0.05) reduced these traits under 45%
FC (moderate drought) and 30% FC (severe drought) compared
with the well-watered condition (70% FC) in both years.
Vermicompost application enhanced spikelets per spike, grains per
spike, and TGW under both drought and well-watered conditions,
with the highest values recorded for CDv (6 t ha™') and the lowest
in the control. Under moderate and severe drought stress,
Faisalabad-08 produced more spikelets per spike, grains per spike,
and also higher TGW than Galaxy-13. However, under well-watered
conditions, both cultivars exhibited comparable values for these
traits across both years.

The interaction between moisture regime and vermicompost
application had a significant effect on grain yield, straw weight, BY,
and also HI of wheat in both 2020-2021 and 2021-2022, with HI
showing a relatively greater increase in 2021-2022 than in 2020-2021.
Both drought stress and VT significantly influenced these traits across
both years (Supplementary Table S5 and Figure 3). Compared with
well-watered conditions (70% FC), drought stress markedly reduced
GY, straw weight, BY, and HI, with reductions being more pronounced
under severe drought stress (30% FC) than under moderate drought
stress (45% FC). Application of vermicompost mitigated the adverse
effects of water stress, significantly improving BY, GY, straw weight,
and HI in both cultivars across both years (Supplementary Table S5
and Figure 3). Among treatments, CDv (6 t ha™') produced the highest
values, followed by RSv (6 t ha™') and WSv (8 t ha™), all of which were
significantly superior to the control under both drought and well-
watered conditions. When comparing cultivars, Faisalabad-08 and
Galaxy-13 formed statistically similar under well-watered conditions.
Faisalabad-08
outperformed Galaxy-13 across all measured parameters.

However, under drought stress, consistently
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3.2 Nutrient traits

Leaf nitrogen (N), phosphorus (P), and potassium (K) (NPK)
contents (Supplementary Table S6 and Figure 4) were significantly
(p £0.05) reduced under moderate drought (45% FC) and severe
drought (30% FC) conditions compared with well-watered (70% FC)
conditions in both wheat varieties. The main effects of drought stress,
vermicompost application, and their interaction were significant for
leaf NPK contents in both 2020-2021 and 2021-2022. Water scarcity
markedly reduced the leaf NPK contents, with the greatest declines
observed under severe stress. However, the adverse impact of drought
in both years was effectively alleviated by vermicompost application
(Supplementary Table 56 and Figure 4). Among treatments, CDv
(6 t ha™") resulted in the highest leaf NPK contents, followed by RSv
(6 tha™') and WSv (8 t ha™"), while the lowest values were recorded in
the control. Between the two cultivars, Faisalabad-08 consistently
exhibited higher leaf NPK contents than Galaxy-13.

Similarly, leaf Fe and Zn contents (Supplementary Table 57 and
Figure 5) were strongly affected by moderate and severe drought stress
conditions in both years. Vermicompost application significantly
enhanced leaf Fe and Zn contents under drought stress, with the
greatest response observed to CDv (6tha™), followed by RSv
(6 tha™'), and WSv (8 t ha™'). The lowest values were recorded in the
control across both cultivars. Consistent with NPK results,
Faisalabad-08 maintained higher leaf Fe and Zn contents than
Galaxy-13 under moderate and severe drought conditions.

3.3 Physiological parameters
Chlorophyll content and index were significantly influenced by

drought stress levels, vermicompost application, and their interaction
(Supplementary Table S8 and Figure 6). Under well-watered
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FIGURE 4

(a—c) Effects of soil applied with wheat straw, rice straw, and cow dung vermicompost on leaf NPK concentration of both varieties under different
drought levels. Tukey's HSD test shows that bars with changed alphabetical letters differ significantly at a 5% probability level.

conditions, total chlorophyll contents and chlorophyll index were
significantly higher compared with moderate and severe drought
stress. Application of CDv (6 t ha™) resulted in the greatest increase
in total chlorophyll contents and SPAD values, followed by RSv
(6 tha™') and WSv (8 t ha™') across both years. Under well-watered
conditions, the drought-sensitive and drought-tolerant cultivars
exhibited statistically similar chlorophyll content and SPAD values.
However, under drought stress, Faisalabad-08 maintained significantly
higher chlorophyll content and chlorophyll index than Galaxy-13.
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3.4 Chord diagrams

The chord diagram illustrates the interrelationships among
agronomic, physiological, and nutrient traits of wheat cultivars under
different soil moisture regimes during the 2020-2021 and 2021-2022
growing seasons (Figure 7). Strong associations were observed
between GY and key traits such as BY, HI, and TGW, emphasizing
their pivotal role in yield determination. Similarly, nutrient traits such
asleaf N, P, and K showed significant interconnections, reflecting their
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(a,b) Effects of soil applied with cow dung, wheat, and rice straw vermicompost on leaf iron and zinc contents on both wheat varieties under different
drought levels. Tukey's HSD test shows that bars with different alphabetical letters differ significantly at a 5% probability level.

combined influence on plant growth and productivity. Architectural
characteristics, such as plant height (PH), spike length (SL), and
number of total tillers (TT), also displayed notable associations,
indicating their importance in cultivar adaptability under contrasting
soil moisture conditions. Similarly, physiological parameters,
particularly chlorophyll contents (CP) and total chlorophyll contents
(TC), were closely linked with nutrient traits, indicating their role in
maintaining photosynthetic efficiency and nutrient uptake under
varying water availability. Additionally, traits such as grains per spike
(GS), spikelets per spike (SS), and straw weight (SW) demonstrated
moderate associations with yield-related parameters, revealing their
indirect contributions to productivity.

3.5 Correlation matrix

The correlation matrix provided a detailed overview of the
interrelationships among agronomic, physiological, and nutrient
traits in wheat cultivars under contrasting soil moisture regimes
during 2020-2021 and 2021-2022 growing seasons (Figure 8). Each
cell in the matrix represents the strength and direction of the
association between two traits, quantified using Pearson’s correlation
coeflicient. Positive correlations indicated traits that tended to
increase together, such as GY and BY, or HI and TGW, highlighting
their synergistic roles in yield formation. Nutrient traits, including
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leaf N, P, K, Zn, and Fe, were also positively correlated with one
another, reflecting their collective contribution to plant health,
metabolism, and resilience under stress. Similarly, plant architectural
traits, such as plant height (PH), spike length (SL), and the number
of total tillers (TT), showed strong positive associations with yield
components, underscoring their importance in maintaining
productivity under water-deficit conditions. Physiological traits,
particularly chlorophyll index and total chlorophyll contents (TC)
exhibited significant correlations with both nutrient and yield-
related traits, suggesting their role in sustaining photosynthetic
efficiency and allocation under soil

resource varying

moisture regimes.

3.6 Heatmap analysis

The heatmap analysis provided a visual representation of the
magnitude and direction of associations among agronomic,
physiological, and nutrient traits in wheat cultivars across the 2020-
2021 and 2021-2022 growing seasons (Figure 9). The color gradient
in the heatmap, ranging from warm tones (e.g., red and orange)
indicating strong positive correlations to neutral tones (e.g., white or
light gray), indicating weak or negligible relationships, allowed for
intuitive pattern recognition. Key patterns observed in the heatmap
highlight that GY shares strong positive associations with BY, HI, and
TW, signifying their collective importance in determining wheat
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productivity. Similarly, nutrient traits such as leaf N, P, K, Zn, and Fe
are clustered together, exhibiting positive interrelationships that
underscore their integrated role in supporting plant growth and
resilience. The heatmap also emphasizes the interplay between
physiological traits like CP and TC with yield-related parameters,
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indicating the contribution of photosynthetic efficiency to
productivity. Agronomic traits, including PH, SL, and T'T, showed
notable correlations with both nutrient and yield traits, further
highlighting  their
stress conditions.

significance in adapting to moisture
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The heatmap analysis for this 2-year study (2020-2021 and 2021-2022) offers a clear visualization of the strength and direction of relationships
among physiological, agronomic, and nutrient traits in wheat cultivars under different moisture regimes. CP, chlorophyll contents; TC, total chlorophyll
contents; Zn, leaf zinc contents; Fe, leaf iron contents; K, leaf potassium contents; P, leaf phosphorus contents; N, leaf nitrogen contents; HI, harvest
index; SW, straw weight; GY, grain yield; BY, biological yield; TW, thousand-grain weight; GS, grains per spike; SS, spikelets per spike; SL, spike length;
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3.7 Principal component analysis

The principal component analysis (PCA) plots revealed the
relationships among different traits across the 2-year study (2020-
2021 and 2021-2022). In both years, principal component 1 (PC1)
accounted for the majority of variation (98.3% in 2020-2021 and
97.2% in 2021-2022), while principal component (PC2) explained
a much smaller proportion (0.8 and 1.6%, respectively) (Figure 10).
Key traits such as leaf Zn, Fe, K, P, HI, and TGW contributed

Frontiers in Sustainable Food Systems

strongly to PC1 and played a critical role in separating the two
groups: Galaxy-13 and Faisalabad-08. The 95% confidence ellipses
indicated some overlap between the two groups, though they were
partially distinct. In 2020-2021, traits like HI, Fe, and Zn were
highly associated with positive PCI values, differentiating the
groups. PC2 contributed minimally, suggesting that variables along
this axis have a smaller influence. In 2021-2022, the importance of
SW (straw weight) increased slightly, and PC2 explained slightly
more variation compared to the previous year. This year also
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FIGURE 10
The principal component analysis (PCA) for this 2-year study (2020-2021 and 2021-2022) was conducted to reduce the dimensionality of the dataset
and identify key traits that explain most of the variation in wheat cultivars under different moisture regimes. Zn, leaf zinc contents; Fe, leaf iron
contents; K, leaf potassium contents; P; leaf phosphorus contents; N, leaf nitrogen contents; HI, harvest index; SW, straw weight; GY, grain yield; BY,
biological yield; TW, thousand-grain weight.

showed slightly more overlap between Galaxy-13 and Faisalabad-08, 4 Discussion

indicating reduced differentiation. Traits like grain yield (GY),

biological yield (BY), and leaf N remained less influential compared Plant’s response to extreme water stress is multifaceted, leading to
to those associated with PC1. Overall, HI, Zn, Fe, and P consistently ~ reduced growth and yield (Hussain et al, 2018) by impairing
emerged as the most discriminating traits across both years, while  physiological and metabolic processes (Jan et al., 2019). Water scarcity
minor shifts in PC2 indicated year-to-year variability in trait  significantly limits productivity (Fathi et al., 2025). In the present
associations. These findings provide useful insights for identifying  study, key agronomic traits such as plant height, number of total
key traits in the evaluation of wheat performance under tillers, and spike length were markedly reduced under moderate (45%

varying conditions.
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FC), and severe drought stress (30% FC) in both cultivars
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(Faisalabad-08 and Galaxy-13) with or without vermicompost
application, compared to well-watered (70% FC) conditions across
both years. Similarly, drought stress significantly decreased grains per
spike, spikelets per spike, and TGW, ultimately leading to declines in
GY, straw weight, BY, and HI. Comparable reductions in wheat
performance under field drought conditions have also been reported
by Igbal et al. (2018). Vermicompost, being a rich source of macro-
and micronutrients, plays a protective role against drought stress
(Ahmad et al., 2021; Aslam and Ahmad, 2020). Enhanced nutrient
uptake and increased chlorophyll concentration under vermicompost
application can be attributed to improved soil health, microbial
activity, and nutrient mineralization, as observed in earlier studies
(Aslam et al., 2023). Vermicompost enhances microbial enzymatic
activities, thereby improving the bioavailability of essential nutrients
(Anee et al, 2022). The earthworm species E. fetida, used in
vermicompost production, plays a critical role in organic matter
decomposition and nutrient cycling, which contributes to improved
plant resilience under water deficit. Our results are in line with these
findings, showing that CDv (6 t ha™") produced by E. fetida was the
most effective under both drought stress and non-stress conditions.
Wheat plants grown with vermicompost showed significantly higher
leaf N, P, K, Fe, and Zn contents under water-limited conditions,
consistent with the findings of Akhzari and Pessarakli (2017) and
Aslam et al. (2025). In our experiment, CDv at 6 t ha™" significantly
improved biochemical traits, followed by RSv (6 tha™) and WSv
(8 tha™), whereas control plots without vermicompost showed the
lowest values. Vermicompost not only enriches mineral nutrition but
also improves the biological and structural properties of soil (Bellitiirk
etal., 2020; Aboelsoud and Ahmed, 2020). Its high porosity ensures
optimal aeration and drainage, while its excellent moisture retention
capacity provides resilience under drought stress (Hosseinzadeh et al.,
2016). Vermicompost also contains higher concentrations of N, P, K,
Ca, Mg, Fe, Zn, Cu, and Mn compared to other organic amendments
(Huerta et al., 2010). Positive effects of vermicompost on yield under
drought conditions have been reported in cereals and legumes
(Lazcano et al., 2010), where it also improved growth attributes (Lu
etal., 2002). Continuous application of vermicompost enhances soil
organic matter, stimulates microbial activity, and increases nutrient
availability, leading to better soil structure, water-holding capacity,
and, ultimately, improved nutrient uptake and physiological
performance in wheat. Over time, these improvements sustain
agronomic productivity and reduce reliance on synthetic fertilizers,
thereby promoting long-term soil fertility and agricultural
sustainability (Ahmad et al., 2024; Hafez et al., 2020). Taken together,
our findings demonstrate that vermicompost application significantly
enhances biochemical and physiological traits under drought stress,
making it a promising strategy for improving wheat resilience and
productivity in water-limited environments.

Chlorophyll plays a vital role in photosynthesis, crop growth, and
yield (Lawlor, 2002). In the present study, water scarcity significantly
reduced chlorophyll content in both wheat cultivars. However, the
drought-tolerant cultivar Faisalabad-08 maintained relatively higher
chlorophyll under moderate and severe water stress compared to
drought-sensitive wheat cultivar Galaxy-13 (Ibrahim et al., 2021).
Plants with higher chlorophyll typically accumulate more
photosynthates, leading to stronger roots, shoots, and leaves.
Vermicompost has been widely recognized for improving plant
physiological functions and mitigating stress conditions (Jat and
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Ahlawat, 2006; Hosseinzadeh et al., 2016). Recent studies indicate
that optimized VT applications reduce the adverse effects of water
stress in wheat by enhancing and sustaining chlorophyll a, total
chlorophyll, and SPAD values. Flexibility in growth parameters such
as leaf area index (LAI), leaf area duration (LAD), and crop growth
rate (CGR) of wheat under different VTs was linked to variable soil
moisture levels. These growth parameters were highest under CDv
(6 tha™), followed by RSv (6 t ha™') and WSv (8 t ha™') across both
cultivars under moderate drought (45% FC), severe drought (30%
FC), and well-watered (70% FC) conditions. The lowest growth
responses were observed under severe drought without VT
application. Similar results were also reported by Ahmad et al. (2021),
who found significant changes in LAI, LAD, and CGR. Beyond
improving growth indices, vermicompost also enriched the soil with
nutrients, organic matter, humic acid, beneficial microbes,
actinomycetes, and various growth-promoting regulators (Aslam
et al,, 2021).

However, WSv at 8tha™ showed comparatively lower
improvements, likely due to its slower decomposition rate and limited
availability in the region. Previous research has indicated that cereal
straw-based vermicomposs generally have lower nutrient
concentrations and slower mineralization compared to those derived
from animal dung or leguminous residues (Aslam and Ahmad, 20205
Aslam et al., 2023; Ahmad et al., 2024).

Overall, the findings suggest that CDv at 6tha™' should
be prioritized for wheat production in water-scarce regions due to its
superior nutrient profile, better availability, and positive impact on

~! can serve as a viable

yield and physiological traits. RSv at 6 t ha
alternative where cow dung is less accessible, while WSv at 8 t ha™
appears less efficient and economically less feasible, particularly in

Punjab, due to limited availability.

5 Conclusion

This study demonstrates that applying cow dung vermicompost at
6tha™' is the most effective strategy for enhancing wheat growth,
physiology, and yield under drought stress. The drought-tolerant
cultivar Faisalabad-08 consistently outperformed the sensitive cultivar
Galaxy-13 under both moderate and severe drought, primarily due to
superior adaptive mechanisms. Its improved performance was
associated with enhanced nutrient uptake (K, N, B, Fe, Zn), higher
chlorophyll content, and better water relations, which together
sustained photosynthetic efficiency and cellular turgor. Among
vermicompost sources, cow dung was the most effective, followed by
rice straw, whereas wheat straw vermicompost proved to be the least
effective. These findings underscore the importance of selecting suitable
vermicompost materials to maximize wheat productivity under water-
limited conditions. For a practical perspective, the use of cow dung
vermicompost at 6 t ha™, prepared using E. fetida is recommended for
farmers in drought-prone areas to improve wheat resilience and yield.
However, this study was limited to two field seasons and may not fully
capture long-term soil-plant-microbe interactions, climatic variability,
or broader ecosystem effects. Future research should focus on multi-
year, multi-location trials to validate these results and investigate
vermicompost’s role in soil microbial dynamics, carbon sequestration,
and ecosystem services. Such studies will be crucial for developing
sustainable and climate-resilient wheat production systems.
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