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Agriculture faces significant challenges including climate change, resource
inefficiency, environmental degradation, and necessitating sustainable solutions.
Silica nanoparticles (SiNPs), with their unique physio-chemical properties,
have emerged as a promising tool to enhance agricultural productivity while
reducing ecological impact. This review article explores the potential of
SiNPs to revolutionize modern farming by addressing critical inefficiencies
in traditional methods. The overreliance on synthetic inputs has led to soil
degradation, water contamination, and declining crop resilience. SiNPs offer
an innovative alternative by improving nutrient delivery systems, enhancing
stress tolerance, and reducing the environmental footprint of agricultural
practices. SiNPs significantly enhance nutrient use efficiency (NUE) through
controlled and sustained release mechanisms, minimizing losses and ensuring
consistent crop uptake. Their application also bolsters plant resilience against
abiotic stresses such as drought and salinity, as well as biotic threats from
pests and pathogens. Mechanistically, SINPs improve photosynthetic efficiency,
requlate stress-responsive genes, and fortify plant cell walls, creating both
biochemical and mechanical defenses. Moreover, SiNPs are biocompatible and
environmentally safe, degrading into bioavailable monosilicic acid that enriches
soil health and supports beneficial microbial communities. They mitigate
heavy metal toxicity and reduce dependency on conventional agrochemicals,
aligning with global sustainability goals. This assessment explores the functional
properties, application and mechanism of SiNPs for management of biotic and
abiotic stress controlling and paves the way for sustainable agriculture.
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SiNPs, biotic and abiotic stresses, nutrient use efficiency (NUE), environmental safety,
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1 Introduction

Agriculture plays a pivotal role in ensuring global food
security and economic stability, yet it faces mounting challenges
from climate change, soil degradation, water scarcity, and the
ever-increasing demand for higher yields (Selvan et al, 2021).
Conventional agriculture, often characterized by the use of
synthetic chemical inputs, currently produces 98.9% of the world’s
food. However, as global demands for food continue to grow
alongside the need for sustainable practices, these methods face
challenges in addressing long-term environmental and resource
concerns (Willer and Lernoud, 2017). The overuse of fertilizers,
pesticides, and other agrochemicals has led to environmental
pollution, declining soil health, and reduced long-term agricultural
productivity (Zhang et al, 2018). As the global population
continues to rise, there is an urgent need for innovative solutions
that can transform agricultural systems to become more resilient,
efficient, and environmentally sustainable.

Silicon, a beneficial element for plants has gained attention for
its critical role in improving crop resilience against both biotic
and abiotic stresses (Coskun et al., 2019; Liang et al., 2007). It
enhances plant structural integrity, optimizes nutrient uptake, and
fortifies crops against pests, diseases, and environmental extremes
such as drought and salinity (Adebisi et al., 2020; Yan et al,
2018). The silicon content in plants has been observed to range
between 0.1% and 10%, influenced by various mechanisms of
silicon uptake (Liang et al., 2007). Plants take up dissolved silicon
primarily as monosilicic acid, and in certain plant species with a
high ability to accumulate metalloids, specific silicon transporter
genes such as LSil, LSi2, and LSi6, have been identified as
playing a role in its transport (Rao and Susmitha, 2017). Although
silicon’s potential has been extensively studied, the efficiency of its
application in conventional forms is often limited by factors such
as poor bioavailability and uneven distribution in soil (Schaller
et al, 2022). This is where the integration of nanotechnology
into agriculture presents a groundbreaking opportunity (Tubana
et al,, 2016). Nanotechnology, characterized by the manipulation
of materials at the nanoscale, offers numerous advantages over
traditional agricultural practices (Kuzma, 2007). Nanoparticles
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often display unique characteristics compared to their bulk
counterparts due to their reduced size, increased surface area
relative to their weight, and varied structural geometries (Roduner,
2006). Among the emerging innovations, SINPs have demonstrated
exceptional promise in revolutionizing farming systems (Fraceto
et al., 20165 Saha et al., 2024). SiNPs, nanoscale particles of silicon
dioxide, exhibit distinctive attributes such as nanoscale dimensions,
nutritional benefits, surface characteristics, and porous structures,
making them highly versatile in nano-enabled agriculture. These
unique physicochemical properties enhance their reactivity and
enable controlled release, allowing SiNPs to function effectively
as plant growth stimulators, nanocarriers, and soil conditioners
(Ji et al., 2018; Mahawar et al., 2023; Rastogi et al., 2019). Their
applications extend to targeted nutrient delivery, stress mitigation,
and sustainable pest management, underscoring their potential to
improve agricultural efficiency and resilience (Adebisi et al., 2018;
Goswami et al., 2022; Rai-Kalal et al., 2021; Tripathi et al., 2015).
The incorporation of SiNPs in agriculture aligns seamlessly
with the principles of sustainable development, supporting
Sustainable Development Goals (SDGs) such as Goal 2 (Zero
Hunger), Goal 12 (Responsible Consumption and Production),
and Goal 13 (Climate Action). By enhancing nutrient efficiency,
reducing environmental contamination, and mitigating plant
stress, SINPs promote resource conservation, climate resilience,
and sustainable agricultural practices (Bhat et al., 2021; Yan et al,,
2024). SiNPs can significantly reduce the dependence on excessive
agrochemical inputs, thereby minimizing their environmental
footprint. Their ability to improve NUE and bolster plant resilience
contributes to conserving natural resources such as water and
soil (Alsaeedi et al,, 2019; Wang et al., 2025). Additionally, SiNPs
can enhance plant growth under stress conditions, ensuring stable
yields even in adverse environments (Kukarram et al, 2023;
Raza et al, 2023). These benefits position SiNPs as a critical
tool for addressing the pressing challenges of modern agriculture.
This review aims to explore the advancements, applications, and
potential of SiNPs in promoting sustainable agricultural practices.
By analyzing their role in enhancing crop productivity, reducing
environmental impacts, and addressing resource inefliciencies,
this article underscores the transformative potential of SiNPs in
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shaping next-generation farming systems. The discussion seeks to
bridge the gap between emerging nanotechnologies and practical
agricultural applications, providing insights into how SiNPs can
lead to a more sustainable and resilient agricultural future.

2 Properties of SiNPs relevant to
agriculture

Application of SiNPs in agriculture is gaining increasing
attention due to their unique properties that enhance efficiency and
sustainability. These nanoparticles exhibit remarkable structural,
chemical, and physical characteristics that enable innovative
applications in crop management (Rastogi et al., 2017). SiNPs have
been found to possess distinct physical and chemical properties
compared to their bulk counterparts (O’Farrell et al., 2006). Recent
research has demonstrated that SiNPs can directly interact with
plants, influencing their morphology and physiology in several
ways, such as enhancing the structural color of plants and
promoting improved growth and yield (Siddiqui and Al-Whaibi,
2014; Strout et al, 2013; Suriyaprabha et al., 2014). However,
some studies have also reported negative effects of SiNPs on
plants (Le et al., 2014; Slomberg and Schoenfisch, 2012). SiNPs
offer a wide array of applications due to their cost-effective large
scale production, hydrophobicity, high surface area, substantial
pore volume, and biocompatibility. Their exceptional adsorption
capacity and non-toxic characteristics make them particularly
useful for addressing various challenges in agriculture (Goswami
et al., 2022). The biocompatibility and environmental safety of
SiNPs make them an eco-friendly alternative to conventional
agrochemicals. Functional properties such as controlled release,
stability, and solubility further contribute to their utility in
agriculture, allowing for precision delivery of nutrients and other
agrochemicals (Yuvaraj et al., 2023). This section delves into the
key properties of SiNPs that are relevant to agriculture, providing
a detailed discussion of their structural, chemical, and physical
attributes; their compatibility with biological systems; and their
functional advantages in agricultural contexts.

2.1 Structural and physicochemical
characteristics of SiNPs

SiNPs are engineered silicon particles at the nanoscale, typically
ranging from 1 to 100 nm. Based on their structures, SiNPs are
classified into various types including spherical, hollow, shaped
(e.g., rod, cube), and porous forms (Mathur and Roy, 2020).
Their nanoscale size provides a high surface-area-to-volume ratio,
distinct charge properties, and improved plant bioavailability,
offering significant advantages over bulk silicon sources (Yan et al.,
2024). These features enhance their reactivity and enable efficient
interactions with plants, soil, and agricultural systems. This high
surface area also allows SiNPs to carry and deliver nutrients or
agrochemicals more effectively. However, the shape, size, and other
properties of SiNPs are reported to directly or indirectly affect plant
responses to their application (Rastogi et al., 2019). Additionally,
it has been observed that SiNPs applied to the soil are more
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effective than those applied to foliage (Suriyaprabha et al., 2014).
Additionally, their porosity and tailor ability are key advantages;
SiNPs can be engineered with specific pore sizes, volumes, and
surface functionalities. Mesoporous SiNPs (MSiNPs) are highly
versatile, offering tunable porosity that facilitates the encapsulation
and controlled release of active compounds like fertilizers and
pesticides, ensuring they cater to diverse agricultural needs (Adams
etal., 2020). MSNPs exhibit considerable variation in their physical
and chemical properties, but they are generally hydrophilic solid
materials with a high surface area and numerous pores or channels
(Gogos et al., 2012; Wang et al., 2016). The size, surface charge,
and other chemical and physical characteristics of MSNPs make
them ideal for immobilizing nutrients and harmful elements, as
well as for carrying and releasing plant nutrients in a controlled
manner. They also chemically stabilize nutrients to enhance their
availability for plant uptake and facilitate the efficient transfer of
nutrients into plant cells (Le et al., 2014; Luyckx et al., 2017; Naderi
and Danesh-Shahraki, 2013).

Moreover, SiNPs have the ability to penetrate plant cells
efficiently (Verma et al, 2021). These nanoparticles have
demonstrated the potential to improve various plant functions,
such as growth, photosynthesis, nutrient absorption, water use
efficiency, and stress resilience in crops like rice, wheat, tomato,
and lettuce (Verma et al., 2021; David et al., 2024). This stability
ensures their efficacy in soils with varying pH levels and prevents
the premature breakdown of encapsulated materials. Their thermal
and mechanical stability further enhances their suitability for
agriculture, as SiNPs can maintain structural integrity under
extreme temperatures and mechanical stress (Ma et al., 2010;
Tripathi et al., 2017). These combined properties make SiNPs
robust and reliable tool for improving agricultural efficiency, even
in challenging environments.

2.2 Biocompatibility and environmental
safety

Integration of SiNPs into agricultural practices is underpinned
by their biocompatibility and environmental sustainability, making
them a viable alternative to conventional agrochemicals. Upon
degradation, silica from all sources converts into monosilicic acid,
a non-toxic compound that poses no significant ecological risks
(Mahawar et al., 2023). These characteristic underscores the safety
of using SiNPs in various agricultural applications to enhance
crop yield and productivity. Agricultural and plant wastes serve as
valuable precursors for synthesizing SiNPs. The use of such waste
materials offers several advantages, including accessibility, cost-
effectiveness, biodegradability, and reduced toxicity compared to
chemically synthesized nanoparticles. Notably, rice husk has been
extensively reported as a source for SiNPs production (Jansomboon
et al, 2017). Similarly, sugarcane bagasse, a byproduct of the
sugar manufacturing industry, is another commonly utilized waste
material for SiNPs synthesis (Lu and Hsieh, 2012; Mohd et al,
2017). Nonetheless, some studies have highlighted the potential
phytotoxic effects of SiNPs, which are influenced by factors such
as particle size, surface area, concentration, pH, and plant species
(Slomberg and Schoenfisch, 2012). For instance, concentrations
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between 540 and 1,820 mg/L caused phytotoxicity in Allium cepa,
affecting germination and root elongation, with size ranges of 7, 12,
and 22 nm (Slomberg and Schoenfisch, 2012). From a toxicological
standpoint, the size and surface area of SiNPs are particularly
significant. Smaller SiNPs, due to their larger surface area, exhibit
higher reactivity and can penetrate cellular compartments more
efficiently, potentially leading to greater toxicity compared to their
larger counterparts. SiNPs exhibit minimal toxicity to plants when
applied within appropriate concentration ranges, facilitating their
uptake and translocation to plant tissues (Wei et al., 2010).

Foliar application allows NPs to enter through the cuticle or
stomata, with stomatal pores (20-500 nm) serving as the primary
pathway since most NPs exceed the maximum size (~5nm) that
can pass through the cuticle (Eichert et al, 2008; Yeats and
Rose, 2013). In root applications, uptake predominantly occurs
in immature regions such as root tips, root hairs, and lateral
root junctions, where physical barriers like the Casparian strip
and suberin lamella are less developed (Wang et al., 2012). This
promotes enhanced stress tolerance against abiotic factors such
as drought and salinity, as well as biotic stress from pathogens,
ultimately improving crop productivity (De Sousa et al., 2019
Khan et al., 2022; Saw et al., 2023). Unlike some agrochemicals
that disrupt soil microbial communities, SiNPs preserve the
functionality of beneficial microorganisms essential for nutrient
cycling and soil fertility (Rastogi et al., 2019). Furthermore, SiNPs
degrade naturally into monosilicic acid, a bioavailable silicon
form, thus preventing environmental accumulation and ensuring
compatibility with plant and soil systems (Mahawar et al., 2023; Rao
and Susmitha, 2017). Their application also reduces dependency
on excessive fertilizers and pesticides by improving the efficacy
of these inputs, thereby lowering the risks of nutrient leaching
and contamination of soil and water resources. Collectively, the
physicochemical properties and environmental degradability of
SiNPs position them as a scientifically sound and sustainable
strategy for advancing modern agriculture.

2.3 Functional properties: controlled
release, stability, and solubility

The functional attributes of SiNPs, including controlled release,
stability, and enhanced solubility, are integral to their efficacy
in precision agriculture, contributing to optimized resource
utilization and reduced environmental impact. One of the most
significant advantages of SiNPs is their capacity for controlled
release of encapsulated substances. By integrating agrochemicals
such as fertilizers and pesticides within their porous architecture,
SiNPs facilitate a sustained and gradual release of these compounds.
This mechanism minimizes nutrient losses through leaching and
volatilization, providing plants with a consistent supply of inputs
over extended periods (Beig et al, 2022). The nitrogen-based
fertilizers encapsulated in SiNPs have demonstrated a marked
improvement in nitrogen use efficiency, significantly reducing the
environmental footprint of agricultural practices (Alsacedi et al.,
2019; Mohanty et al., 2020; Rastogi et al., 2019). SiNPs also offer
exceptional stability to bioactive compounds prone to degradation.
Environmental factors such as UV radiation, temperature extremes,
and microbial activity can compromise the efficacy of conventional
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FIGURE 1
Applications of SiNPs in agriculture.

agrochemicals (Quelé et al., 2024; Yang et al., 2018). Encapsulation
within the SiNPs matrix safeguards these compounds, prolonging
their functional lifespan and ensuring steady eflicacy, thereby
reducing the need for frequent reapplications. Moreover, SiNPs
address challenges associated with the poor solubility of many
agrochemicals, enhancing their bioavailability (Prado et al,
2011). The ability of SiNPs to increase the dissolution rate of
micronutrients like zinc and iron ensures their efficient absorption
by plants, effectively mitigating micronutrient deficiencies and
promoting overall plant vigor (Arshad et al., 2021).

3 Applications of SiNPs in sustainable
agriculture

SiNPs are emerging as a promising tool in sustainable
agriculture due to their unique physicochemical properties. They
enhance crop resilience by improving stress tolerance, nutrient
uptake, and disease resistance. SiNPs also play a crucial role
in soil health by influencing microbial activity and nutrient
availability. Their controlled release capabilities reduce fertilizer
losses, promoting eco-friendly farming practices. The overall role
of SiNPs in agriculture was illustrated in Figure 1 and Table 1.

3.1 Crop growth enhancement

SiNPs increased tiller growth and internode elongation by
66.7% and 27.4%, respectively, resulting in increased biomass of
wheat. Furthermore, SiNPs can boost net photosynthetic rate by
increasing total chlorophyll content. It was hypothesized that SiNPs
could influence leaf and stem growth by regulating plant hormone
and soluble sugar metabolism. SiNPs can directly or indirectly
promote wheat growth by increasing auxin (IAA) and fructose
levels (Li et al., 2023). Researchers discovered that priming seeds
of species such as Triticum aestivum and Pisum sativum with
SiNPs improved seed germination and seedling growth parameters
(Tripathi et al., 2017; Ali et al., 2019).
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TABLE 1 Applications of silica nanoparticles (SiNPs) in agriculture.

Application Benefits
Plant growth Rapid and improved seed germination, improved
enhancement seed vigor index. Enhancement in

seedling biomass Internode elongation, improve
photosynthesis and chlorophyll content.
Encourages the development of tillers and
elongation of internodes, and Regulations of
growth hormones (auxin) and sugar metabolism.

Mechanisms

Increases levels of auxin (IAA) and fructose,
enhances nutrient uptake and overall plant
growth, and improves fertilizer efficiency through
encapsulation and controlled release mechanisms.

10.3389/fsufs.2025.1677788

References

Adams et al., 2020; Sabir et al.,
2014; Wanyika et al., 2012

Nutrient carrier Membrane transport for Ca, Mg, Fe, Zn, and Mn,

enables controlled fertilizer release, and enhances

Encapsulation enhances fertilizer penetration and
minimizes environmental impact and the quantity
NUE. of fertilizer use by up to 75%.

Improved water and NUE under stressed
conditions.

Goswami et al., 2022;
AlSaeedi, 2022

Pest and disease
management

Eco-friendly pesticide controlling fungal, bacterial
and pest infestations. Enhancing natural predator
attraction and boosting plant pathogen resistance.

SiNPs restrict the pathogen growth. Spray

deposition forms a protective barrier on plant
surfaces, disrupting pathogen attachment and
infection i.e., Rhizoctonia solani and Fusarium. 2022

Ayoub et al., 2017; Albalawi
et al., 2022; Baka and
El-Zahed, 2022; Khan et al.,

Abiotic stress Alleviates drought, salinity, and metal toxicity,

Modulates the Na/K balance through gene

Hussain et al., 2019; Ijaz et al.,

contaminated with pesticides and heavy metals).

bioavailability of Cd and As in plants, supports
nutrient cycling, organic acid production, and
stress tolerance, and helps immobilize toxic
elements like Cd, Al, and As.

tolerance enhances photosynthesis and water-use efficiency, expression, boosts the activity of antioxidant 2023; Ashkavand et al., 2015
and minimizes ion toxicity and oxidative stress. enzymes (SOD, CAT, POD), lowers reactive
oxygen species (ROS), and improves chlorophyll
levels, root structure, and nutrient absorption.
Soil health and Boosts microbial activity and soil fertility, while Boosts beneficial microbes such as Paenibacillus Tian et al., 2020; Bapat et al.,
remediation detoxifying polluted soils (such as those and fungi like Chaetomium, decreases the 2016; Wang et al., 2020

Controlled release Allows for pH-sensitive and environment-specific
pesticide release while improving the efficacy and

durability of insecticides.

Increased pesticide absorption and translocation,
extends efficacy by surface modification and
encapsulation, and enhances pest control by
guaranteeing target specificity and prolonged
release.

Bilal et al., 2020; Abdelrahman
et al., 2021; Gao et al.,, 2019

3.2 Carriers of plant nutrients

Rice husk, hull, and straw, as well as industrial residues like
sugarcane bagasse, have all been identified as excellent silicon
sources. Using nanocalcite, which contained 40% CaCO3, 4% nano
SiO, 1% MgO, and 1% Fe; O3, increased not only Ca, Mg, and Fe
absorption but also P intake, as well as micronutrients Zn and Mn
(Sabir et al,, 2014). Mesoporous SiNPs, approximately 150 nm in
diameter and with pores around 2.5 nm in size, were synthesized
using liquid crystal templating, followed by urea incorporation
within the mesopores via immersion in urea solutions. Urea
loading was achieved at a concentration of 15.5% (w/w) through
physisorption, with an overall adsorption capacity of up to 80%
(w/w), which was increased by high-concentration urea solutions
due to their steeper concentration gradients (Wanyika et al., 2012).

3.3 Improving water use efficiency (WUE)
and NUE

Plant growth and development are heavily reliant on the
use of fertilizers. The excessive use of fertilizers has a negative
impact on the environment, including water contamination and
soil deterioration. Silicon is an essential nutrient for cell growth and
development, and a lack of it can lead to lower crop production
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and increased susceptibility to both biotic and abiotic stressors. To
address this, researchers developed a fertilizer delivery system using
mesoporous SiNPs, in which a thin layer of SiNPs was coated onto
urea granules to enhance the controlled release of nutrients and
improve crop resilience (Wanyika et al., 2012; Zargar et al., 2019;
Surya et al., 2022).

The study found that urea treated with SiNPs had a slower
release rate and lasted five folds longer than untreated urea. SiNPs
have gained prominence as a potential delivery system for fertilizers
owing to their minute size, extensive surface area, and capacity to
penetrate plant cells (Goswami et al., 2022). Various approaches,
including coating, encapsulation, and functionalization have been
employed to develop SiNPs delivery systems for fertilizers. SINPs
delivery systems have been studied for their potential to improve
fertilizer effectiveness. In safflower, Janmohammadi et al. (2016)
found that combining the use of organic fertilizers with a foliar
spray containing SiNPs had a significant positive effect on yields,
and proposed it as a suitable agricultural practice. Generally,
SiNPs additives have been demonstrated to boost the efficiency
of fertilizer delivery to plants, leading to higher crop yields and
decreased environmental effects. Mesoporous SiNPs improved
fertilizer assimilation by boosting nutrient use effectiveness and
facilitating a controlled nutrient discharge due to their high surface
area and porosity. According to a study by Adams et al. (2020),
the use of MSNPs resulted in enhanced zoysia grass establishment
under low fertility conditions, utilizing 75% less fertilizer, while

frontiersin.org


https://doi.org/10.3389/fsufs.2025.1677788
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org

Surya et al.

exhibiting a growth reduction of only 7.6% compared to high
fertility conditions without nanoparticles. The delivery of essential
nutrients like calcium, zinc, potassium, magnesium and manganese
was more successful, resulting in improved growth rates. This
implies that MSNPs facilitate turfgrass establishment at fertilizer
levels significantly lower.

In cucumber, SiNPs application increased drought resilience
through the promotion of plant development and enhancement
of nutrient acquisition under conditions of water scarcity. In
this study, AlSacedi (2022) revealed that 100 ppm of nano silica
led to a notable increase in chlorophyll content, a decrease in
proline levels, and an improvement in nutrient status, particularly
in iron and zinc. SiNPs increased water use efficiency (WUE)
through improvements in soil water characteristics, including field
capacity (FC), wilting point (WP), available water content (AW),
and saturation moisture content (0s). The research showed that
raising SiNPs rates substantially increased soluble Si** levels in
the soil, resulting in enhanced properties and increased cucumber
production. A 178% increase in WUE was most notable with the
Si-NP400 treatment, which surpassed the control (Si-NPO0). The Si-
NP400 treatment also produced the best combined soil and yield
outcomes (AlSaeedi, 2022).

3.4 Pest and disease management and its
mechanisms

SiNPs are an environmentally benign pesticide that prevents
diseases and insect pests from growing and becoming aggressive,
shielding plants from bacterial, fungal, and pest attacks in
agricultural production (Goswami et al., 2022). Regarding insect
pests, Ayoub et al. (2017) discovered that SiNPs had exceptional
pesticidal effects in leafworms (Spodoptera littoralis) in a surface
contact and feeding experiment. These effects were also impacted
by the size and surface properties of the particles. In the
incubation tests, Albalawi et al. (2022) demonstrated that SiNPs
significantly reduced the growth of Rhizoctonia solani and
Alternaria solani. Furthermore, complex NPs of Si and Ag,
or Si/AgNPs, showed exceptional fungicidal and bactericidal
properties against many plant diseases, including Xanthomonas
campestris, Rhizoctonia solani, and Botrytis cinerea (Baka and
El-Zahed, 2022). Additionally, SiNPs and titanium nanoparticles
(TiNPs) both suppressed the development of Phomopsis vexans and
Ralstonia solanacearum, although SiNPs caused a more noticeable
reduction in pathogen growth than TiNPs (Khan et al., 2022).
Notably, SiNPs exhibit a specific advantage over conventional
pesticides in that their physical effects determine their pesticidal
effects, suggesting that diseases and insect pests are unlikely to
evolve physiological resistance to SiNPs.

In protected maize, Wang et al. (2021) discovered that
the application of SiNPs reduced damage caused by oriental
armyworms (Mythimna separata), while simultaneously enhancing
the metabolism of defense-related compounds such as total
phenolics and chlorogenic acid. In a field test, SINPs treatment
reduced the population of three common pests in faba beans
and soybeans by attracting pest predators. This could be because
they regulate the metabolism of volatile chemicals (Thabet et al.,
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2021). Maize treated with nanosilica showed increased resistance
to Fusarium and Aspergillus due to higher phenolic compound
expression (2,056 and 743 mg/ml), stronger hydrophobic potential
(86.18°), and silica accumulation (19.14%) when compared to
bulk silica. Suriyaprabha et al. (2014), suggest that nanosilica is
an effective antifungal agent against phytopathogens. In addition
to their direct pesticidal activity, SiNPs serve as nanocarriers
for pesticide delivery, offering controlled and site-specific release
to increase efficacy (Magda and Hussein, 2016). Mesoporous
SiNPs (MSiNPs) have been used to deliver commercial pesticides
with improved precision and efficiency (Chen et al, 2011).
SiO,NPs were reported to kill Callosobruchus maculatus (cowpea
weevil; Rouhani et al., 2013), while surface-modified hydrophobic
nanosilica (3-5nm) effectively eliminated a wide range of crop
insect pests, veterinary pests, and ectoparasites (Rai and Ingle,
2012). The mechanism is thought to involve adsorption onto the
protective lipid-water barrier of the target organisms, leading to
dehydration and mortality.

3.4.1 Antimicrobial and antifungal properties
Under various biotic stresses, SINPs treatment combined with
seed priming and foliar spray can improve plant growth specifically
yield as well as seed germination (Saw et al., 2023). An efficient
agronomic strategy for improving seed germination and plant
growth even in presence of pathogens is seed priming with SiNPs.
For instance, using SiNPs through seed priming greatly increased
seed germination and seedling growth in watermelon infected with
Fusariumoxysporum (Buchman et al, 2019) and wheat infected
with Rhizoctoniasolani (Abdelrhim et al., 2021). Additionally, foliar
treatment of SiNPs is more frequently utilized in agricultural
activities to shield plants from pests and diseases. SiNPs foliar
spray shown reduce disease symptoms and pathogen induced
growth inhibition in plants infected with a variety of pathogens
and insect pests, including Plasmoparaviticola (Rashad et al., 2021),
Fusariumoxysporum (Kang et al., 2021), Mythimnaseparata (Wang
et al., 2021), Aphiscraccivora, Alternariasolani (Albalawi et al,
2022), Ralstonia solanacearum (Khan et al., 2022), and Aphis
craccivora (Thabet et al., 2021). According to Suriyaprabha et al.
(2014), SiNPs improved maize resistance to fungus diseases such
as Fusarium oxysporum and Aspergillus niger by controlling the
metabolism of phenolic compounds more efficiently than bulk Si.

3.4.2 Controlled release and target specified
character

Because of porous nature of SiNPs, they can be employed as
a vehicle for the delivery of pesticides, and SiNPs loaded with
pesticides have several benefits over direct pesticide application.
SiNPs can be used to apply pesticides directly or after being
modified for agricultural purposes. When loaded into SiNPs,
pesticides longevity and absorption efficiency in plants will be
improved, enhancing their pesticidal effects. For instance, Bilal
et al. (2020) and Abdelrahman et al. (2021) found that when
the chemicals are applied at the same dose, indoxacarb-loaded
SiNPs shown superior insecticidal action compared to commercial
indoxacarb in suppressing Plutella xylostella. Prochloras uptake,
translocation, duration, and antifungal activity in rice were all

frontiersin.org


https://doi.org/10.3389/fsufs.2025.1677788
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org

Surya et al.

enhanced using pectin-coated SiNPs as a carrier. Furthermore, it
has been proposed that a cyclodextrin-anchored SiNPs improved
avermectin’s capacity to protect against light and heat after loading,
extending its duration of action against Plutella xylostellla (Kaziem
et al, 2018). Additionally, SiNPs translocation in plants was
improved and the duration of azoxystrobin’s release was prolonged
by surface modification with copper (Cu) or carboxymethyl
chitosan (Xu et al.,, 2020). To enable prolonged pesticide release,
Chen et al. (2016) created a pH-sensitive SiNPs-based chlorpyrifos
release system with salicylaldehyde or Cu alteration. Using
3-(trimethoxysilyl) propyl methacrylate. Similarly, Gao et al.
(2019) developed a pH-sensitive SiNPs-based abamectin system
that demonstrated more toxicity to Cnaphalocrocis medinalis
larvae, longer persistence, and improved rice leaf affinity. Liang
(2020) enhanced the pesticidal effects of SiNPs by
functionalizing them with biodegradable starch to regulate the

et al

release of avermectin in response to glutathione and a-amylase.
Bapat et al. (2020) successfully inhibited Helicoverpa armigera
development by delivering a trypsin inhibitor via triethoxysilane-
functionalized SiNPs.

3.5 Stress tolerance in plants and
mechanisms

Plants have developed various mechanisms to tolerate abiotic
stresses such as drought, salinity, and heat. These mechanisms
include osmotic adjustment through proline and soluble sugars,
antioxidant defense systems to neutralize reactive oxygen species
(ROS), and improved root architecture for enhanced water uptake.
Additionally, plants activate stress-responsive genes and signaling
pathways involving abscisic acid (ABA) to regulate their stress
responses. SiNPs have emerged as a promising tool for enhancing
plant stress tolerance. SiNPs improve WUE, strengthen cell walls,
and regulate ROS scavenging to minimize oxidative damage. They
also enhance photosynthetic efficiency and nutrient uptake, making
plants more resilient under stress conditions. Furthermore, SiNPs
can activate stress-responsive genes, promoting better adaptation
to environmental challenges. The major interactive mechanisms of
SiNP’s with plant and soil is illustrated in Figure 2.

3.5.1 Metal stress

SiNPs aid in lowering the buildup of harmful metals in
contaminated plants, particularly in the edible portions. SiNPs
given through soil treatments, foliar spray or seed priming, for
example, dramatically reduced Cd levels in wheat grains and
enhanced plant growth (Hussain et al., 2019; Ali et al, 2019).
SiNPs in rice suggested selective absorption and translocation
by increasing as accumulation in the husks and shoots while
decreasing its amount in the grain. According to Tripathi et al.
(2017) SiNPs also decreased the buildup of Cr in the roots and
shoots of pea seedlings subjected to Cr stress. SiNPs promote cell
wall retention and boost polysaccharide metabolism, which lowers
the absorption and translocation of metals like Cd and As in plants
(Riaz et al,, 2022). By increasing the activity of antioxidant enzymes
like peroxidase (POD), superoxide dismutase (SOD) and catalase
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(CAT). SiNPs also lessen oxidative stress by lowering reactive
oxygen species (ROS) and enhanced plant growth and yield in the
presence of metal contamination (Yan et al., 2023; Ahmed et al,
2023).

3.5.2 Salt stress

Salt stress causes ion toxicity and osmotic limitation in plants
cultivated in saline conditions, which impacts plant growth,
production, and quality (Munns and Tester, 2008). With the
application of SiNPs regulated the Na/K balance in rice and sweet
orange by controlling the expression of Na/K transporter genes
such as HKT (High-affinity Potassium Transporter), SOS (Salt
Overly Sensitive), and NHX (Na™/H™ Exchanger), the homeostasis
of Na/K is the primary factor in plant resistance to salt stress
(Tjaz et al, 2023). Additionally, SiNPs were discovered to help
squash (Cucurbita pepo L.) and peas (Ismail et al, 2022) by
enhancing antioxidant enzymes like glutathione reductase (GR),
APX, CAT, POD, and SOD. This helped to reduce the accumulation
of MDA (malondialdehyde) and H;O, produced by salt stress.
SiNPs can enhance photosynthetic rate, mesophyll conductance,
and photosynthetic water usage efficiency in hydroponically grown
tomatoes, consequently fostering plant development and resilience
to salt stress. Furthermore, SiNPs improved tomato growth,
mineral nutrient accumulation (e.g., Mg, K, Fe, Mn, Zn), and
photosynthetic performance. According to Alam et al. (2022) foliar
treatment found to be more efficient than root dipping in reducing
salt stress in tomatoes. In maize and faba bean plants, foliar
treatment with 300 mg/L nano-silica effectively reduced salt stress.
Under salinity conditions, 2.45 dS/m significantly reduced straw
yield (38.84% maize and 78.06% faba bean) and grain yield (39.28%
maize and 80.13% faba bean). In contrast, 1.36 dSm~! and nano-
silica produced the highest yields (4.22 Mg/fed for maize grain
and 5.32 Mg fed™! for maize straw; Amer and El-Emary, 2018).
Additionally, nano silica improved root architecture and nitrogen
utilization efficiency (22.75% for maize and 15.54% for faba beans;
Amer and El-Emary, 2018).

3.5.3 Drought stress

There are numerous pathways involved in SiNPs demonstrated
drought stress alleviation effects. SINPs were used to improve
cucumber plant development and fruit yield by increasing leaf
area, chlorophyll content, and nitrogen assimilation (Alsaeedi
et al., 2019). Similarly, Aqaei et al. (2020) discovered that foliar
application of SiNPs to maize increased crop weight and reduced
mineral nutrient imbalances caused by drought stress. According
to Namjoyan et al. (2020) 1 mM SiNP treatment improved shoot
water status, increased photosynthetic rate and glycine betaine
metabolism, and controlled antioxidant enzyme activities such as
SOD, CAT, and GPX in sugar beet. Silica nanoparticles (SiO,NPs)
help wheat withstands drought stress by increasing relative water
content (RWC) and leaf greenness (SPAD). Applying SiO,NPs
to the soil improved RWC by 84.04% and leaf greenness by
12.54% when compared to control during drought. Applications
of SiNPs to soil and leaves increased wheat production by 17.81%
and 25.35%, respectively. Plant biomass and height were greatly
increased by applying 30 and 60 ppm SiO,NPs, which also
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FIGURE 2
Mechanisms of SiNPs in enhancing plant growth and stress tolerance. SiNPs increase chlorophyll content and photosynthesis, scavenge reactive
oxygen species (ROS), regulate plant hormones, and boost nutrient absorption through roots. They also act as a physical barrier to reduce water loss
and influence gene expression to improve plant resilience.

helped the plants withstand drought (Behboudi et al., 2018). By
increasing photosynthetic rate and stomatal conductance under
water deficit, SINPs improved drought tolerance in hawthorn
seedlings. Particularly in cases of extreme drought, SiNPs pre-
treatment decreased the amount of proline and carbohydrates while
increasing plant biomass and xylem water potential. The most
notable effects were observed with SiNP treatment at 50 mg/L.
SiNPs mostly supported physiological processes without changing
pigment levels, as evidenced by the fact that total chlorophyll and
carotenoid content stayed constant (Ashkavand et al., 2015).

3.6 Soil health and its fertility maintenance

SiNPs could enhance soil microbial activity by increasing
populations of beneficial bacteria such as Paenibacillus and
Rhodobacteraceae, as well as fungi like Chaetomium in rhizosphere
(Tian et al., 2020). Specifically, the genus Paenibacillus, part of
the Firmicutes phylum, was found to be 16% more abundant in
soil treated with SiO,NPs compared to the control. Paenibacillus
includes plant growth promoting bacteria that improve plant
growth through mechanisms such as nitrogen fixation, nutrient
solubilization, and the production of plant growth regulators
and organic acids (Liu et al, 2019). The study also showed
foliar application of SiO,NPs significantly altered the rhizosphere’s
metabolite profile (Tian et al, 2020). Furthermore, SiO,NPs
enhance microbial biomass (1,508:178 ug/g) and enhance the
availability of silica in soil, with registered a silica content of
14.75 mg/ml, compared to traditional silica sources. This promotes
nutrient cycling, soil fertility, and root nutrient uptake, thus
supporting maize growth and overall soil health (Rangaraj et al,
2014).
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Beyond microbial stimulation, SiNPs significantly improve the
physicochemical properties of soil. Their application enhances
soil structure by promoting aggregation, which improves porosity,
water infiltration, and aeration, while reducing erosion and surface
crusting (Suriyaprabha et al, 2014). This improved physical
environment facilitates stronger root development and enhances
the soil’s water-holding capacity, making water more available
to plants during critical growth stages (Adrees et al, 2020).
Furthermore, SiNPs contribute to soil chemistry by increasing
the cation exchange capacity (CEC), thereby improving the soil’s
ability to retain and slowly release essential cationic nutrients
like ammonium (NHJ), potassium (K*), and calcium (Ca?*),
which reduces leaching losses and increases nutrient use efficiency
(Rastogi et al., 2019). SiNPs also play a crucial role in mitigating
soil abiotic stresses. They have been shown to reduce the
bioavailability and phytotoxicity of heavy metals in contaminated
soils through adsorption and complexation mechanisms, effectively
immobilizing them and reducing their uptake by plants (Cui
et al, 2017). Additionally, in saline soils, SiNPs help alleviate
salinity stress by reducing sodium (Na®) uptake in plants and
improving the K*/Na' ratio, thereby enhancing plant tolerance
and protecting soil microbial life from osmotic stress (Haghighi
and Pessaralkli, 2013). SiNPs improve soil by supporting microbes,
strengthening soil structure, holding more nutrients, and cleaning
harmful substances. In this way, they act as a soil conditioner that
makes farming systems healthier, more fertile, and productive.

3.7 Remediation of contaminated soils

SiNPs can help reduce pesticide residues in edible crops and
also used for extracting and degrading pesticides in environmental
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remediation (Bapat et al, 2016). For example, SiNPs used as
carriers for prochloraz and spirotetramat reduced pesticide residues
and metabolites in cucumbers (Zhao et al., 2018). SiNPs also
effectively extract organic phosphorus pesticides like dicrotophos,
chlorpyrifos, and diazinon from water due to mesoporous structure
and high surface area (Korrani et al., 2016). Additionally, SiNPs
modified with propyl methacrylate improve pesticide removal
efficiency (Amani et al., 2018), and can enhance the degradation
of 2,4-dichlorophenol by immobilizing laccase (Yang et al,
2016). In acidic soils, SiNPs mitigate aluminum (Al) toxicity
by boosting antioxidant systems, reducing ROS, and promoting
organic acid accumulation, which improves plant growth and stress
tolerance (De Sousa et al., 2019). Mercapto-functionalized SiNPs
reduce cadmium (Cd) toxicity by lowering Cd leachability and
bioavailability, resulting in a 54% reduction in Cd content in wheat
grains and a 33.5% increase in grain yield (Wang et al., 2020). SiNPs
also reduce arsenic (As) toxicity by immobilizing As, inducing root
exudates for as sequestration, and enhancing antioxidant defenses,
leading to a 40-50% growth increase and tripled yield weights in
maize (David et al.,, 2024).

4 SiNPs interaction responses

4.1 Plant physiological and biochemical
pathways

SiNPs interact with plant physiological and biochemical
pathways by enhancing nutrient uptake, photosynthesis, and stress
tolerance. They act as carriers for nutrients, improve bioavailability,
and promote silica deposition in cell walls, strengthening structural
integrity. SiNPs modulate stress response pathways by generating
ROS, activating defense signaling, and regulating stress-related
genes. These interactions enhance plant resilience to abiotic stresses
like drought and salinity while improving growth and metabolism,
offering a promising tool for sustainable agriculture when applied
judiciously (Surya et al., 2025).

4.2 Enrichment of photosynthesis

Chlorophyll is vital for light

photosynthesis, and SiNPs enhance chlorophyll a and b content,

capturing energy in
thereby increasing light absorption and photosynthetic efficiency.
Silicon indirectly improves photosynthesis by strengthening stems
and leaves, optimizing their structure for light capture, regulating
transpiration, and balancing shoot growth (Liang et al., 2003;
Samuels et al., 1993). SiNPs significantly enhance photosynthesis
by boosting chlorophyll levels, improving water status, and
regulating antioxidant activity. In wheat, chlorophyll a and b
increased 1.17- and 1.52-fold at the jointing stage (Li et al., 2023),
while in sugar beet, 1 mM SiNPs improved photosynthesis through
better shoot water status and antioxidant regulation (Namjoyan
et al, 2020). SiNPs enhanced the photosynthetic capacity,
photochemical efficiency of photosystem II and photosynthetic
pigments in Triticum aestivum under heat stress (Younis et al,
2020). In tomato seedlings, the application of SiNPs through both
root and leaf treatments resulted in a 42% and 48% increase in
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the chlorophyll index, as well as a 35% and 39% improvement in
chlorophyll fluorescence at 45 days after sowing (Alam et al., 2022).

4.3 Regulation of hormonal pathways

SiNPs
influencing growth and stress responses. At 200 mg/L, SiNPs

regulate plant hormones and enzyme activity,
increased auxin and ABA in leaves while reducing cytokinin
and GA3, whereas in stems, cytokinin and auxin rose but GA3
and ABA declined, reflecting tissue-specific effects on growth
regulation (Li et al, 2023). SiNPs enhance plant resistance to
biotic and abiotic stresses by modulating hormone signaling
(Salicyclic acid-SA, jasmonic acid-JA, ethylene), balancing ROS
for pathogen defense, and alleviating oxidative damage (Yan
et al, 2024). They regulate hormone metabolism during seed
germination under salt stress, improving the K/Na ratio and ROS
homeostasis in crops like cucumber, lentil, and maize (Alsaeedi
etal, 2018; Naguib and Abdalla, 2019). In strawberry, Si and SiNPs
improve drought tolerance by influencing photosynthesis, carbon
metabolism, and hormone regulation (Zahedi et al., 2023). SiNPs
also synergize with plant growth regulators like PGPR, other NPs,
and growth-promoting chemicals, further boosting plant resistance
to abiotic stress through hormonal modulation. Nano-fertilizers
containing antioxidant enzymes can help reduce oxidative damage
and improve crop tolerance to environmental stress (Tripathy
and Oelmiiller, 2012; Zhu et al.,, 2016; Etesami and Jeong, 2018).
Zhao et al. (2020) indicate that TiO, nano-fertilizers regulate
enzyme production, provide protection against both enzyme and
non-enzyme stress, enhance nutrient uptake, and improve crop
nutritional quality. Similarly, silica nano fertilizers boost seedling
growth and enhance their resilience to abiotic stress by promoting
antioxidant enzyme activity (Ahmad et al., 2018; Li et al., 20205
Reynolds et al., 2009).

4.4 Upgrading of nutrient uptake

Silicon nanoparticles (SiNPs) enhance nutrient availability,
supporting plant growth and stress tolerance (Liu et al., 2015; Zhu
et al., 2016). In rice, Si application improves nutrient uptake in
seeds and shoots, while SiO, nanoparticles and hydroxyapatite
(HAP) nanorods alleviate salinity stress, enhance nutrient uptake,
and promote growth. SiO, nano-fertilizers increase N and P
while reducing Na levels, thereby improving yields under saline
conditions, though their effectiveness depends on soil texture and
pH (Yassen et al., 2017). Foliar sprays of SiNPs also enhance
rice growth and micronutrient (Zn, Fe, Mn) absorption (Wang
et al., 2015), and combining nano-silicon dioxide with organic
fertilizers further boosts productivity (Janmohammadi et al., 2016).
MSiNPs, with a pore size ranging from 2 to 10 nm, have proven
to be effective in delivering fertilizers such as urea, boron, and
nitrogen-based compounds (Torney et al., 2007; Wanyika et al,
2012). SiNPs along with chitosan and zeolite, serve as carriers
for nutrients like nitrogen, phosphorus, and potassium, enabling
their controlled and sustained release. SiNPs have also been
shown to improve nutrient absorption and reduce salt stress
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in crops. SiNPs enhance nutrient uptake by influencing soil
nutrient content and promoting beneficial microbial populations.
Similarly, SiNPs were found to boost nutrient availability and soil
health, significantly enhancing Zea mays growth (Suriyaprabha
et al., 2014). Applying SiO, nanoparticles at 250 and 1,000
mg/L significantly improved K uptake, increasing root K by
46.1%—68.2% and leaf K by 23.5%—33.3%, respectively (Gonzdlez-
Moscoso et al., 2021). Ahmadian et al. (2021) reported that nano-
chelated silicon fertilizer improved wheat growth under deficit
irrigation, highlighting the potential of SiNPs as both nutrient
sources and carriers for fertilizers and herbicides.

4.5 Induction of biochemical pathways

Silicon nanoparticles (SiNPs) regulate genes linked to sugar
metabolism, increasing soluble sugar levels that provide energy
for plant growth and development (Li et al., 2023). They also
trigger key biochemical pathways that enhance growth, nutrient
uptake, and stress resilience (Hajizadeh et al, 2021). A major
mechanism involves activating the antioxidant defense system,
where enzymes such as SOD, CAT, and POD are upregulated
to balance ROS and reduce oxidative damage under stress.
SiNPs at 400-600 mg/L enhanced phenol degradation (86.29 to
100%) and enzymatic activity while reducing protein (PN) and
polysaccharide (PS) in extracellular polymeric substances (EPS).
However, at concentrations above 600 mg/L, oxidative stress
occurred, marked by increased ROS and lactic dehydrogenase
(LDH) levels, reversing the positive effects (Hou et al., 2022). In
wheat, Aljeddani et al. (2024) reported that application of 600 ppm
SiO;NPs and Trichoderma harzianum improved drought-stressed
wheat physiological traits, including chlorophyll a, carotenoids,
total pigments, osmolytes, and antioxidants.

4.6 Impact on metabolic functions and
gene expression

SiNPs regulate gene expression and metabolic activities,
enhancing plant growth, stress tolerance, and productivity. Their
nanoscale size allows efficient cell penetration, activating molecular
and biochemical responses. SiNP200 treatment upregulated genes
for sucrose metabolism (sucrose-phosphate synthase, sucrose
synthase, a-glucosidase) and chlorophyll synthesis (magnesium-
chelatase, protochlorophyllide oxido-reductase, chlorophyllide a
oxygenase), promoting sucrose production and photosynthesis
(Li et al, 2023; Zhu et al, 2016). However, the expression of
Isopentenyl transferases, a gene involved in cytokinin biosynthesis
was down-regulated, indicating potential modulation of plant
hormonal regulation (Song et al, 2012). SiNP200 treatment
up-regulated the expression of the TIR1 (Transport Inhibitor
Response) gene in leaves, enhancing the auxin signaling pathway
(Li et al, 2023; Yin et al, 2020). SiNPs treatment led to up-
regulation of several drought-responsive genes in plants under
drought stress conditions. ABC1 (ATP Binding Cassette) gene
expression was up-regulated by 3.08-fold under drought stress
and 1.50-fold under well-watered conditions, indicating its role
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in enhancing drought tolerance through the transport of ABA,
which helps neutralize stress effects. Wdhn13 (Wheat Dehydration-
Responsive Element Binding Protein 13) gene expression increased
2.85-fold in well-watered and 1.78-fold in drought-stressed
conditions, contributing to drought tolerance via ABA-dependent
pathways. CHP (Chitinase-like Protein) and EXP2 (Expansin A2 a
gene involved in cell wall loosening and stress response) genes
showed a 2.17-1.78-fold increase, respectively, under drought
conditions, indicating their involvement in drought and salinity
tolerance (Boora et al., 2023). The adaptive strategies in drought-
stressed wheat improved physiological traits including chlorophyll
a, carotenoids, total pigments, osmolytes, and antioxidants, while
enhancing the expression of key genes (TaP5CS1, TaZFP34,
TaWRKY1, TaMPK3, TaLEA, and TaActin), significantly boosting
drought tolerance (Aljeddani et al., 2024).

5 Environmental impacts and safety
considerations

5.1 Bioaccumulation and biodegradability
of SiNPs in ecosystems

In 2020, Jeelani et al. (2020) reported the positive impacts of
SiNPs on plant growth, especially in the presence of biotic or abiotic
stressors. For example, studies have shown that supplementing
horticultural and field crops with SiNPs enhances their resistance
to abiotic stress (Al et al., 2019; Bapat et al., 2020; Banerjee et al,
2021). However, a comprehensive evaluation of the diverse roles
of SiNPs in sustainable agriculture, such as their applications as
nanopesticides and nanofertilizers have remained necessary (Kah
et al, 2019). The mechanisms of SiNP absorption and transport
in plants have been comprehensively reviewed only once, by
Mathur and Roy (2020). This scarcity of studies highlights the
existing knowledge gap, as even after decades of research on
cell-nanoparticle interactions, there is still no consensus on how
the unique physicochemical properties of SiNPs such as size,
surface charge, and morphology which influence their uptake and
bioaccumulation (Avellan et al., 2021).

5.1.1 Plant gathering of SiNPs

Research by Rastogi et al. (2019), investigates the way SiNPs
affect plant growth, especially in plants exposed to biotic or
abiotic stressors. However, despite being a significant factor in
determining their biological effects, the bioaccumulation of SiNPs
has received less attention. An overview of the research on SiNPs
bioaccumulation in plants is shown in Table 2.

5.1.2 Seed accumulation of SiNPs

A pre-sowing method called seed priming can improve the
metabolic activity of seeds and speed up germination (Paparella
etal,, 2015). By increasing the thickness of the silicon-cellulose layer
in the epidermis and encouraging seed germination, recent field
tests have demonstrated that adding SiNPs to soil can improve the
mechanical stability of plants, enabling them to withstand lodging
(Suriyaprabha et al., 2014). An essential factor in determining
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TABLE 2 Distribution of nano silica in plant species.

Methods

Plant species

Size/Zeta potential

Duration

Cultivation

Si uptake

NPs Localization

References

Seed treatment Cucumis sativus 100, 200, 300 mg/L 10 nm/NA 10 days Hydroponic Seedlings Not available Alsaeedi et al., 2018
Oryza sativa 50 mg/L 15 nm/NA 20 days Hydroponic Silica dumbbell cells Not available Elamawi et al., 2020
Melissa officinalis 100, 500 mg/L 20-30 nm/NA 24h Hydroponic Not available Radicle, root, and leaf Pan et al., 2023
Citrullus lanatus 500 mg/L 35-39 nm/—39 mV; 35-39 20 min Hydroponic Root Not available Buchman et al., 2019
nm/24 mV
Triticum aestivum 300, 600, 900, 1,200 100 nm/NA 24h Soil Shoot and roots Not available Hussain et al., 2019
mg/L
Foliar application Nasturtium 150 mg/L 12 nm/2.1mV 2h Hydroponic Not available Leaf mesophyll; stomata guard Kwak et al., 2017
officinale, Eruca cells
sativa, Spinacia
oleracea
Gossypium sp., Zea 0.5 mg/mL 18 nm/—45.8 mV 3h Soil Not available Extracellular air spaces (cotton); Hu et al,, 2020
mays no distribution (maize)
Oryza sativa 50 mg/L 20-30 nm/NA 3 months Soil Grain and straw Not available Kheyri et al., 2019
Root absorption Triticum aestivum, 200 mg/L 20 nm/—22.5mV 1 week Hydroponic Stems and leaves Not available Sun et al., 2016
Lupinus albus
Triticum aestivum, 200 mg/L 20 nm/—15.2mV 5 days Hydroponic Not available Casparian band, intercellular Sun et al., 2014
Lupinus albus region, Xylem
Avena sativa 5,10 mM 20-30 nm/—27 mV 12 days Hydroponic Cell wall of leaves and roots | Root cell walls Torney et al., 2007
Triticum aestivum 300, 600, 900, 1,200 <50 nm/NA 124 days Soil fertilization | Shoot and root Not available Alietal, 2019
mg/L
Combined Oryza sativa 2,000 mg/L 20-50 nm/NA 24h Hydroponic Not available Transfer to all parts (leaves); Abdelrahman et al., 2021
approach (root penetration through roots
and foliar)
Tagetes erecta 100, 200, 400, 600 10 nm/NA 5 weeks Soil Fifth expanded leaf Not available Attia and Elhawat, 2021
mg/L
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the amount of Si buildup in plant tissues is the concentration
of SiNPs in the surrounding environment. When plants were
exposed to increasing concentrations of SiNPs during seed soaking,
higher accumulations of Si were detected in their roots and shoots
(Adhikarietal., 2013). Itis still to be determined, nevertheless, if the
Si found in plant roots and shoots came from the SiNPs themselves
or from the silicic acid release from the SiNPs.

According to recent research by Hatami et al. (2021), SiO,NPs
may physically scarify the seed coat of several plant species,
including Melissa officinalis, creating an opening for NP entrance
into the seeds. SiNPs may enter seeds as a suspension in the imbibed
water during the process of water absorption (imbibition), which
also starts seed germination through tiny pores in the seed coat
(Pan et al.,, 2023). It is possible for SiNPs that have penetrated seeds
to go from the roots to the buds as the plant grows. SiNPs have
been shown to penetrate and relocate within the radicle, root, and
leaf tissues of SiO,NP-primed seedlings through the use of SEM
(Hatami et al., 2021). To find out if SiNPs could build up in fruits
and enable their transfer to the seeds of the following generation,
more research is required.

5.1.3 SiNPs build-up in the roots

Through adsorption on the root surface or on root hairs,
stress-induced lesions, and the thinner cuticle and wall, SiNPs can
enter plants (Schwab et al, 2016). The ensuing processes have
not been fully clarified, although TEM has revealed adsorption
on the root surface (Slomberg and Schoenfisch, 2012). Root hairs
are more receptive to NP uptake because their cell walls and
cuticles are thinner, more porous, and devoid of Si reinforcement
when compared to other plant cell types. Lateral roots grow and
trichomes are lost as the root grows and the root hairs eventually
fall off and the trichoblasts die (Schwab et al., 2016). Usually
emerging from the pericycle, lateral roots pierce the parent root’s
cortex and, after the outer epidermal layer breaks through, form
a wound around the base of the root (Huang et al., 2010). Even
while the mucilage of the ruptured cells quickly seals the incision, its
creation allows NP accumulation and provides an extra pathway for
SiO,NPs entrance. Following their arrival at the xylem and phloem,
SiO,NPs may proceed via apoplastic and symplastic pathways to
the upper portions of the plant (Bhat et al., 2021).

5.1.4 SiNPs shift in plants

Although it has been suggested that apoplastic and symplastic
pathways are responsible for the translocation of NPs in plants, the
fundamental processes of each channel remain unclear (Mathur
and Roy, 2020). Synchrotron radiation revealed that the amount
of Si in the soybean root epidermis and pericycle increased
following exposure to SiO,NPs. It absorbed by roots can travel
through either route to enter the cortex and epidermis before
reaching the upper portions of the plant system via the xylem
vessels (Li et al, 2020). When exposed to 50nm fluorescent
SiO;NPs, Cheng et al. (2021) observed the enhanced fluorescence
in rice roots. Sprayed on leaf surfaces, SIO,NPs (in suspension)
either directly absorbs through the stomata and eventually reach
vascular tissues, or they pass through the cuticle and enter
the leaf epidermal cells (Bapat et al., 2020; Kwak et al, 2017).
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The movement of SiO,NPs from leaf to leaf or from leaf to
stem has only been documented in one study, by Gao et al.
(2021).

The transport and translocation of ZnO@SiO,NPs from the
dosed leaf to the higher leaves and to the stem, potentially via the
xylem or phloem, was demonstrated by the authors using single-
particle ICP-MS. Whereas, the phloem carries photosynthates like
sugar, amino acids, and peptides to their destinations, such as
downward to the roots or upward to the shoot apical meristem,
fruits, and newly formed leaves, the xylem mainly carries water and
nutrients from roots to shoots (Avellan et al., 2021). Uncertainty
surrounds the mechanism of SiO,NP transfer in plant xylem and
phloem. The long-distance transport of SiO;NPs to younger shoots,
older leaves, or mature roots in plants is yet unknown, despite
the numerous studies showing the promise of SiO;NPs as a slow-
release fertilizer under foliar spray conditions.

5.2 SiNPs degradability, dispersal and its
environmental effects

SiNPs could potentially be discharged into the environment
throughout their entire life cycle due to their widespread use
in many different areas. The release mechanism of SiNPs is still
mostly unknown, though. SiNPs can be utilized as a generic
nanomaterial in a variety of disciplines in addition to the specific
application. SiNPs were among the nanomaterials whose release
was assessed. They stated that SiNPs may be released through
the weathering process if they were included as nanocomposites
to paints and varnishes (Mackevica and Foss Hansen, 2016).
The pigment volume concentration should be a key element
influencing the release of SiNPs, as around 1.7 weight percent of
SiNPs might be released from the paint particles into the water.
About 0.2% of the raw material (180 g per day) was released into
the environment every day throughout the production process,
according to a risk assessment of SiNPs in glass cleaners. This
could have happened as a result of routine equipment cleaning
(Michel et al., 2013). Additionally, Wang et al. (2022) assessed
the predicted-no effect concentrations (PNEC) and expected
environmental concentrations (PEC) of four typical nanomaterials,
including SiNPs.

According to their report, SiNPs had a greater PNEC than the
other four nanomaterials, suggesting that they should pose less of
a risk to the environment. But according to a risk evaluation of
these nanoparticles, SINPs posed the second highest danger, after
nano-AlL O3 (Wang and Nowack, 2018). The destiny of SiNPs in
the water environment has caused a lot of concern because they
may be released into the water in significant amounts. However,
based on what is now known about SiO;, the environmental fate
of SiNPs is frequently predicted. Under natural circumstances,
SiO, particles are incredibly stable and don’t breakdown into any
known compounds, because silica and silicates have inorganic
structures and stable Si-O chemical connections, scientists believe
they are immune to chemical and photodegradation. When SiNPs
are kept in aquatic environments, their morphology won’t change,
even though their particle size may vary because of aggregation
(Fruijtier-Polloth, 2012).
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Conferring to Otero-Gonzdlez et al. (2015) activated sludge
was unable to successfully remove fluorescent core-shell SiNPs
during stimulated secondary wastewater treatment. This was most
likely because of the particles high colloid stability and restricted
propensity for bioabsorption. Furthermore, Zhang et al. (2018)
observed that SiNPs did not assemble quickly in tap water, in
contrast to other nanoparticles. This is likely due to their low
Hamaker constant. The fate of SiNPs in the environment during
wastewater treatment has been examined in recent studies. The
flocculation and sedimentation behavior of SiNPs in wastewater
may be influenced by surface functioning. Jarvie et al. (2009)
discovered that tween-coated SiNPs could be swiftly flocculated
and eliminated during wastewater treatment, but that there was no
discernible aggregation of unfunctionalized SiNPs throughout the
primary treatment procedure.

5.2.1 SiNPs response on soil properties

Among the naturally occurring nanoscale materials in soil
are silicates, phosphates, oxides, carbonates, sulfates, hydroxides,
silicon, potassium, strontium, iron, rubidium, sodium, aluminum,
calcium, barium (Buzea and Pacheco, 2017). According to Jilling
et al. (2018) the characteristics of the soil such as its texture,
pH, EC, organic matter, CEC and so on determine the destiny
and actions of every element in the soil rhizosphere. According
to Farooq and Dietz (2015) clay particles created by pedogenic
processes involving phyllosilicates and Al-Fe oxides/hydroxides
include secondary silicates, whereas sand and silt particles contain
the primary mineral-bearing silicates that are naturally present in
soils. There are microcrystalline and weakly crystalline forms of Si,
including secondary quartz, chalcedony, and short-range ordered
silicates (Farooq and Dietz, 2015). It has been reported that the
solubility of crystalline and amorphous silica is almost constant
between pH 2.0 and 8.5. Yet, because H4SiO4 dissociates into
H3Si0O; and H* at pH 9.0, their solubility rapidly rises when
the concentration of HySiO,4 falls in the soil solution (Zellner
et al., 2021). This enables the dissolution of both crystalline and
amorphous silica to restore or buffer the soil solution’s declining
H4SiO4 concentration (Coskun et al., 2019). The range of plant
available forms of Si found in soil is 10-100 mg/kg. Less than
20 mg/kg Si is regarded as a Si deficit in soil, and adding Si is
advised (Zargar et al., 2019). Additionally, Figure 3 illustrates the
complex interactions of SiNPs with soil components, highlighting
their effects on soil structure, microbial dynamics, and nutrient
availability. In the soil, the ecosystem and specific characteristics
like pH, texture, and organic matter influence the mobility
and behavior of Si-NPs. Additionally, soil metabolites, including
enzymes, biotransformation agents, organic acids, hormones, and
chelators, play a crucial role in modifying the nanoparticles’ activity

5.2.2 Microorganisms and nano particles
interaction

Crop productivity, soil health, and the soil ecology are all
dependent on soil microorganisms. Both beneficial and detrimental
effects of NPs on the root system and rhizosphere microbes
have been confirmed. Engineered nanoparticles are known to be
discharged into the environment, particularly soil. Therefore, it is
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crucial to consider how these NPs affect different soil phenomena
and microorganisms. NPs affect soil microorganisms in three ways:
(i) direct toxicity effects, (ii) changes in the bio-accessibility of
toxins or essential elements, (iii) antagonistic or synergistic impact
at the interface between toxic organic molecules, (iv) indirect
influence on associations with organic compounds (Khanna et al.,
2021).

5.2.3 SiNPs consequences for rhizhosphere
microbiomes

For plants, soil serves as a storehouse of nutrients and
water, making it essential to their regular functioning. The term
“rhizosphere” refers to the region round a plant’s roots. There are
biotic and abiotic relationships within the rhizosphere complex. As
a result, the rhizospheric microbiome is made up of a variety of
microbial organisms that are closely associated with the roots of
plants in a small area of soil such as bacteria, fungi, viruses, and
archaea. Additionally, this rhizospheric unit is known to contain
more than 1,000 microbial cells/g of the root, which corresponds to
around 30,000 prokaryotes (Berendsen et al., 2012).

Various researchers have observed the release of a wide
range of soil metabolites, including siderophores, sugars, vitamins,
organic acids, inorganic acids, amino acids, purines, nucleosides,
polysaccharide mucilage. According to Brolsma et al. (2017),
this subset of soil microbial diversity is highly susceptible to
various factors, including nanoparticle applications and other
rhizosphere physicochemical changes, which can promote the
selective enrichment of certain microbial communities over others.
Nitrogen-fixing microbes and phosphate-solubilizing bacteria
(PSB) are two beneficial microorganisms found in the rhizosphere
(Kour et al, 2021). Since these microorganisms stimulate
plant growth, they could modulate the biological and chemical
characteristics of soils. Silicate-solubilizing bacteria (SSB) are also
found in soil and have the ability to reduce the amount of Si in the
soil by converting insoluble silicates into soluble Si. Therefore, the
preservation of soil characteristics and plant health depends heavily
on the rhizosphere (Barea et al., 2005).

Moreover, SiNPs are known to stimulate crop growth
because of their significant impact on soil nutrient content
and microbial biota (Theng and Yuan, 2008). The phosphate
solubilizing bacteria population (3.8 x 10* CFU/g) increased in
this study following SiNPs therapy, whereas the Silicate-solubilizing
bacteria population was unaffected. Similarly, a study found that
applying SiNPs significantly altered the microbial biota and soil
nutrient content, which in turn enhanced Zea mays growth
(Suriyaprabha et al., 2014). The soil with the Si addition has a large
population of nitrogen-fixing bacteria. In addition to improving the
rhizosphere’s Chaetomium fungal species, the foliar application of
SiO,NPs enhanced the bacterial communities of Paenibacillus and
Rhodobacteraceae (Tian et al., 2020).

Furthermore, the genus Paenibacillus in the phylum Firmicutes
was found to be almost 16% more abundant in the soil containing
NPs than in the control group in this investigation. According
to Liu et al. (2019) the genus Paenibacillus contains bacteria that
promote plant growth through a variety of processes including
nutrient solubility, biological nitrogen-fixing, induction of systemic
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resistance, plant growth regulators, and organic acid synthesis. A
combination of copper, silver and silicon was found to decrease C
and N biomass and alter the structure of the microbial community
in soil (Kumar et al., 2012). The effects of some NPs such as SiNPs,
showed that oversaturation of these NPs decreased dehydrogenase
and urease activity as well as bacterial and archaeal amoA gene
abundance in soil (McGee et al., 2017).

5.3 Response of SiNPs in agriculture

Numerous industries can benefit from the special
physiochemical characteristics of nanoscale silicon particles,
with the agricultural industry showing particular promise. SiNPs
special qualities enable them to handle abiotic stress and climate
change-related agricultural damage (Tripathi et al, 2017). By
assisting in the creation of enhanced, highly productive cultivars,
the use of SiNPs in agriculture may also contribute to global food
security (Parisi et al, 2015). Numerous novel uses for plants are
being researched, and silicon nanoparticles show promise and have
consequences for agriculture. SiNPs have been used as a weapon in
the agricultural sector to combat dehydration (Jullok et al., 2016),
UVB stress (Tripathi et al., 2017), salt stress (Abdel-Haliem et al.,

2017), and heavy metal toxicity (Cui et al., 2017).

5.3.1 Fertilizers and herbicides are transported via
SiNPs

SiNPs may serve as an agent for target-specific delivery of
fertilizers and herbicides in the current situation, where the goal is
to remove weeds or boost agricultural productivity (Wanyika et al.,
2012). Herbicides (chloroacetanilide, anilide, and benzimidazole)
embedded in a diatom fistule have been shown to be transported by
silicon nanocarriers, which then release the herbicide into the field
in its active form. Research on fertilizer distribution indicated that
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using nano-silicon dioxide in conjunction with organic fertilizer
increased plant yields (Janmohammadi et al., 2016). Fertilizers
based on urea, boron, and nitrogen were effectively delivered using
MSiNPs with a particular pore size (2-10 nm; Wanyika et al., 2012;
Table 3).

6 Environmental safety and
biocompatibility of silica nanoparticles

While the application of nanotechnology in agriculture
offers immense promise, concerns regarding nanotoxicity and
bioaccumulation must be thoroughly addressed to ensure
sustainable deployment. A critical advantage of SiNPs over
other nanomaterials lies in their superior environmental safety
profile. A key mitigating factor is their inherent biodegradability;
SiNPs are not persistent and undergo hydrolysis in soil and
aqueous environments, dissolving into soluble silicic acid
[Si(OH)4], which is the natural, plant-available form of silicon
and poses negligible toxicity (Slomberg and Schoenfisch, 2012).
Furthermore, the biocompatibility of SiNPs is well-established,
largely due to silicon’s abundance in the earth’s crust and its
role as a beneficial element for plants. Numerous studies have
demonstrated significantly lower toxicity of amorphous SiNPs
to soil microorganisms, earthworms, and plant cells compared
to metal-based nanoparticles like ZnO or AgNPs (Dimkpa et al.,
2013). This is primarily because their mechanism of action does
not involve the release of toxic ions. Regarding bioaccumulation,
evidence suggests that SiNPs have a low potential for uptake
and translocation in plants compared to other nanoparticles,
and they tend to aggregate and bind to soil particles, limiting
their mobility and preventing leaching into groundwater (Wang
et al, 2016). However, it is crucial to note that toxicity is
dose-dependent and can be influenced by particle size, surface
charge, and functionalization (Yang et al, 2017). Therefore,
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TABLE 3 Characteristics and agricultural significance of silica nanoparticles in nutrient and herbicide delivery.

Nano particles Size Surface area  Herbicide/fertilizer Importance References
SiNPs 2.5nm 1,013 m?/ g Urease (encapsulated) Burst release of urea within one day; slower Wanyika et al., 2012
release observed afterward; slower release in
soil than water
SiNPs 25nm 1,000 m?/ g Urease (encapsulated) Increased urease adsorption; enhanced Hossain et al., 2008
urease stability; potential model for nitrogen
release in soil
SiO,NP 20-30nm 180-600 m*/g Farmyard manure Significantly improved growth traits in the Janmohammadi et al.,
(FYM), and NPK presence of nanoparticles 2016
fertilizers (applied with
20 mM SiO,NP)
(MSiNPs) 100-200 nm ~1,000 m?/g Atrazine (herbicide) Effective nanocarrier with high loading Wanyika et al., 2012
capacity. Showed pH-responsive release,
enhanced herbicidal activity on target weeds,
and reduced leaching into the environment
Porous hollow silica ~200 nm ~500 m*/g Salicylic acid (plant Provided high loading and sustained release. Sun et al,, 2014
nanoparticles stimulant) Significantly promoted seedling growth, root
(P-HSiNPs) development, and overall biomass in rice
under laboratory conditions
SiNPs 10-20 nm N/A NPK Fertilizers Foliar application with SiNPs enhanced Suriyaprabha et al., 2014
nutrient use efficiency. Improved growth,
yield, and nutritional quality of maize (Zea
mays L.) compared to conventional fertilizer
alone
SiNPs 12nm N/A Diuron (herbicide) Adsorption onto SiNPs reduced the leaching Zhao et al., 2018
potential of Diuron in soil columns. This can
help minimize groundwater contamination
and extend herbicidal activity in the root
zone

while the inherent properties of SiNPs make them a promising
and potentially safer candidate, comprehensive long-term field
studies remain essential to fully validate their environmental fate
and effects.

7 Challenges and future perspective

One of the main problems to consider in the use of SiNPs
in agriculture is their implementation, longevity and effects on
the ecosystem a massive concern. Laboratory studies have been
quite encouraging, but understanding the behavior of SiNPs
under varied field conditions over long durations is so far
not well-understood. This absence of well-rounded data further
creates obstacles in the formulation of constructive risk evaluation
models, and effective recommendations for practical use of
agriculture on a larger scale. Another challenge is the economic
feasibility and scalability of agricultural solutions based on SiNPs.
Adapting present production methods, it seems impossible to
make them efficient for farmers who specialize in farming, which
might considerably reduce accessibility. Further improvement
and consultation with scientists to create more effective and
affordable technologies have to be carried out to allow farmers
from different social classes access to SiNPs technologies. This
appears to the author’s most challenging issue since there are no
sufficiently competent theoretical developments and practices that
include nanoparticle agricultural policies for a specific stakeholder
audience such as industry and policymakers. It is critically
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important to formulate recommendations that are grounded and
thick with emerging evidence which will minimize environmental
and human safety vulnerabilities while widening the scope of
SiNPs technologies in the farming practices. In the future,
the positively inclined wise impact of SiNPs on the precision
agriculture technology seems encouraging. In the future, further
development can be carried out in the direction of combining
the applications of SiNPs with smart farming, drones, and IoT
sensors in order to increase the effectiveness of resource use in
crop production. Such integration could help in the efficient and
effective use of SiNPs with less negative effect on the environment.
However, in order to overcome these challenges and harness
the complete benefits of SiNPs for sustainable agriculture, it will
require a complementary approach that incorporates agronomists,
nanotechnology experts, ecologists, agricultural economists as
well as policy makers. In this context, future works could be
directed toward:

a. Implementing a broad monitoring of agriculture with SiNPs
across a diversified farming system, designed to evaluate its
effect and environmental safety throughout its life cycle.

b. Creating simple and replicable procedures for the manufacture
of SiNPs intended for agricultural purposes.

c. Forming international partnerships aimed at development
of coordinated policies on nano materials utilization
in agriculture.

d. Assessing the effect of integrating SiNPs with other precise
agricultural technologies in the overall aim of providing
comprehensive sustainable farming practices.
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Addressing these issues would enable the agricultural sector
to be able to make maximum use of the advantages of SiNPs
in making agriculture more sustainable, and less harmful to
future generations.

8 Conclusion

A use of SiNPs in crop production is an emerging phenomenon
that could solve the world’s food shortage problem without
polluting the environment. SiNPs are useful in agriculture
in many ways due to their particular characteristics such as
having a large surface area, being of a predetermined size,
and being biocompatible. Because of the properties such as
targeted pest control and enhancing the ability of plants to
withstand both biotic and abiotic stresses, crop production
could improve even further with the utilization of SiNPs. The
mechanisms of action of SiNPs in plants are complicated and
numerous; there are cellular and molecular interactions. SiNPs
can influence the gene, induce photosynthesis, and enhance
the plant’s defense system which means potential improvement
in plants productivity. But in saying so, like with any new
technology, the environment and safety aspects of the SiNPs need
to be taken into confederation to understand the bare minimum
impact they have, when used in agriculture. The focus of recent
research verticals in SiNPs research has been to look into its
synthesis and specifically look for newer avenues of application.
These breakthroughs are opening new avenues to conduct more
effective and focused agricultural operations. However, there
are still problems including the lack of harmonized guidelines,
comprehensive evaluation of the environmental impacts, and legal
measures governing them. Looking forward, trends of using SiNPs
in promoting sustainable agricultural practices are bright but more
research and development work is required. Future research may
include customizing nanoparticles for specific crops and growing
conditions, fashioning smart delivery devices, and using SiNPs
together with other green technologies in agriculture. In the future,
it is going to be very important to take a much broader perspective
that looks at both the risks and benefits of integrating this
technology in agriculture to fully utilize SINPs for more sustainable
agriculture systems.
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