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Merlot, a grape variety with a rich history and significant genetic diversity, has become 
one of the most influential cultivars in the global wine industry. Its adaptability to 
diverse climates has enabled extensive cultivation in major wine-producing regions, 
including France, Italy, the United States, Australia, and Chile. This adaptability, 
combined with its ability to produce consistently high-quality wines, underlines the 
importance of reviewing and understanding its future potential. Merlot originates 
from a cross between Cabernet Franc and Magdeleine Noire des Charentes, have 
endowed it with a unique versatility and resilience. These traits have not only 
facilitated its widespread cultivation but also made it a key player in the face of 
global viticultural challenges, particularly those posed by climate change. Merlot’s 
early ripening nature and resistance to certain diseases make it an essential cultivar 
for regions facing increasingly unpredictable weather patterns. In this context, 
this review aims to highlight the importance of this grape variety by detailing the 
factors that contribute to its aromatic complexity and sensory appeal, which make 
Merlot wines are highly appreciated by both consumers and experts due to its 
balanced aromatic profile. As the wine industry grapples with the effects of climate 
change and shifting consumer preferences, understanding Merlot’s strengths and 
potential becomes even more critical. By integrating genetic, agronomic and 
oenological perspectives, this work emphasizes Merlot’s current significance and 
highlights its strategic importance for the future of global viticulture.
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Introduction

Merlot, a red wine grape cultivar with a well-documented history rooted in ancient 
varieties, has evolved over time to become one of the most prominent and widely cultivated 
grape varieties in the global wine industry. The name “Merlot” first appeared in literature at 
the end of the 18th century (Viala and Vermorel, 1902–1910). Its name is believed to originate 
from the French word “Merle,” referring to the species Turdus merula L. (the common 
blackbird), both due to the dark colour of the grapes, which resembles the bird’s plumage, and 
because these birds are known to enjoy its early-ripening berries (Rézeau, 1997). Due to its 
widespread cultivation across ethnographically and linguistically diverse regions, Merlot has 
historically been known by various names, such as “Medoc Noir.” In France, where the grape 
reaches its fullest expression, it is also recognized as “Merlau,” “Crabutet Noir” in Switzerland 
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and “Bordeaux” (Bouchereau, 1843; Hardy, 1844; Artozoul et al., 1960; 
Rézeau, 1997; Galet, 2002; Bettiga, 2003).

By the mid-19th century, Merlot was thoroughly described at the 
ampelographic level by different authors (Odart, 1845; Rendu, 1857), 
further solidifying its place in viticultural history. Initial DNA analysis 
revealed significant genetic similarities between Merlot and other 
grape varieties such as Cabernet Franc and Carmenere (Clarke and 
Rand, 2010). Subsequent genetic studies have demonstrated that 
Merlot is indeed the result of a cross between Cabernet Franc, used as 
the father, and Magdeleine Noire des Charentes, which served as the 
mother variety (Boursiquot et al., 2009). More recently, a high-quality 
phased genome assembly has confirmed this parentage by using both 
parental genomes as references thereby resolving the previous 
uncertainties about the maternal lineage (Sichel et  al., 2023) 
(Figure 1A). This diversity is particularly evident in traits such as berry 
size and the capacity for sugar accumulation during ripening 
(Lacombe et al., 2012; Sivcev et al., 2018). The international expansion 
of Merlot began in the mid-19th century and gained significant 
momentum in the late 20th century. This diffusion was initially driven 
by its low susceptibility to powdery mildew and its ability to produce 
high-quality wines. These qualities, combined with its adaptability to 
diverse climates, led to Merlot being cultivated extensively around the 
world, with significant plantings in countries such as Italy, the 
United States, Australia, and Chile (OIV, 2017). Notably, by 2006, 
Merlot became the most extensively planted black wine grape in 
France, covering 117,354 hectares (de la Vigne et du Vin, 2007). As an 

early-ripening variety of dark blue wine grapes, Merlot is highly 
valued for its softness and fleshy texture, qualities that make it an 
excellent blending partner, particularly with later-ripening varieties 
like Cabernet Sauvignon, which is rich in tannins (Robinson 
et al., 2012).

Beyond Europe, Merlot’s significance has been recognized 
globally, becoming the fourth most widely planted grape variety in the 
world by 2017, with 266,000 hectares under cultivation, representing 
approximately 3% of the total global vineyard area (OIV, 2017) 
(Figure 1B). This international spread has been further facilitated by 
clonal selection, which has improved both the quantitative and 
qualitative traits of Merlot, making it a versatile and highly regarded 
variety in a range of climatic conditions (Boursiquot et al., 2009). 
Given the importance and multifaceted nature of this grape variety, 
reviewing the existing literature on Merlot provides valuable insights 
into its broader impact on global viticulture, making it possible to 
understand how this grape, with its deep historical roots, has achieved 
its status as one of the most widely planted varieties in the world. In 
this sense, this review helps to contextualize Merlot’s significance 
within the broader landscape of viticulture, providing a foundation for 
future studies and ensuring that this versatile grape variety continues 
to play a central role in the wine industry.

Merlot must are typically characterized by high sugar 
concentration and low acidity, which often results in wines with 
elevated ethanol levels and reduced freshness (Boursiquot et al., 2009; 
Hranilovic et  al., 2021). This combination of traits presents both 

FIGURE 1

(A) Genetic origin of Merlot from Cabernet Franc (♂) and Magdeleine Noire des Charentes (♀). (B) World distribution of Merlot cultivation in 2017 
(266,000 ha; OIV, 2017).
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opportunities and challenges for winemakers, who must carefully 
manage these factors to produce balanced, high-quality wines. One of 
its most famous expressions is Pétrus, the renowned estate in the 
Pomerol region, which produces wines primarily from Merlot, 
highlighting the variety’s significance in high-end wine production 
(Robinson, 1986; Clarke and Rand, 2010). The quality and character 
of Merlot wines are shaped by a complex interplay of factors, making 
it essential to understand the elements that contribute to its unique 
appeal. The aromas of Merlot, ranging from fruity and floral to earthy 
and herbaceous, are influenced by various. Additionally, the phenolic 
content of the grapes, responsible for the wine’s colour and structure, 
is affected by environmental conditions and vineyard management 
practices. Lastly, the fermentation process, particularly the role of 
yeast, significantly impacts the wine’s flavour, texture, and 
overall complexity.

This review aims to synthetize current knowledge on Merlot’s 
genetic background, viticultural adaptability, and oenological 
characteristics, with particular attention to its aromatic complexity 
and potential role in sustainable viticulture under climate change.

Main

The aromatic complexity of Merlot: 
understanding the role of volatile 
compounds

In the world of wine, Merlot stands out for its smooth texture and 
versatile flavor profile—qualities that set it apart from more tannic 
varieties like Cabernet Sauvignon. Its approachable, fruit-forward 
profile, with plush tannins and a rounded mouthfeel, contributes to its 
widespread popularity, appealing to both novice and experienced wine 
drinkers alike.

Merlot’s aromatic complexity derives from different families of 
volatile compounds. The main groups include esters, lactones, 
terpenes, methoxypyrazines, norisoprenoids and higher alcohol 
acetates which collectively shape the distinctive bouquet of Merlot 
wines (Arcari et  al., 2017; Allamy et  al., 2018; Pons et  al., 2018; 
Carrasco-Quiroz, 2020; Cincotta et al., 2021). Sensory descriptors 
frequently reported include cooked fruits such as prune, peach, and 
fig, as well as herbaceous notes like ivy and geranium (Pons 
et al., 2018).

Esters are generally one of the most abundant classes in Merlot 
wines and (García-Carpintero et al., 2011; Welke et al., 2012; Pereira 
et al., 2014; Carrasco-Quiroz, 2020; Cincotta et al., 2021). Welke 
et al. (2012) identified of isoamyl acetate, ethyl lactate, 2-hexen-
1-ol, and 3-octenol in Brazilian wines. Later, Arcari et al. (2017) 
identified 95 volatile compounds in Merlot samples, including those 
previously reported by Welke et al. (2012). Fare clic o toccare qui 
per immettere. Ethyl hexanoate, ethyl octanoate, and ethyl 
decanoate were detected in high concentrations. Their 
concentrations were also reported to increase under leaf removal in 
Meditterranean Vineyars, enhancing the varietal expression of 
Merlot (Cincotta et al., 2021). Within this group, ethyl hexanoate 
shows the highest odour activity value (OAV) among these esters, 
associated with green apple and strawberry descriptors (García-
Carpintero et  al., 2011). Ethyl decanoate, contributes to fruity 
aroma, has been reported in high concentration in wines from 

Tangará, whereas ethyl octanoate contributed to the overall aroma 
profile (Pereira et al., 2014).

Other ester are also involved in the aromatic composition of 
Merlot. Diethyl succinate and ethyl lactate are associated to creamy 
and fruity notes (Carrasco-Quiroz, 2020), while isoamyl acetate 
enhances complexity with banana-like notes (Carrasco-Quiroz, 2020). 
Additional compounds as ethyl cinnamate, ethyl 2-methylbutanoate, 
and ethyl isovalerate, impart fruity and spicy notes depending on the 
harvest year and region (Antalick et al., 2014).

In wine, esters are formed through yeast metabolism via two main 
pathways, fatty acids acyl-CoA, which leads to the formation of ethyl 
esters, and acetyl-CoA combined with higher alcohols, which results 
in acetate esters (Prusova et al., 2022). Several studies have shown that 
medium chain fatty acids mainly octanoic and decanoic acid act as 
fermentation inhibitors by reducing intracellular pH and 
compromising yeast viability (Legras et  al., 2010), under stress 
conditions such low temperatures of fermentation, S. cerevisiae could 
produce higher content of these compounds (Massera et al., 2021).

Through the acetyl-CoA route, yeast also generates higher alcohol 
acetates, including ethyl acetate, isoamyl acetate, and phenylethyl 
acetate. These compounds are particularly relevant to Merlot, as they 
enrich its fruity and floral dimensions; however, their sensory 
contribution is strongly concentration-dependent. At moderate levels 
they enhance aroma complexity, whereas excessive amounts, especially 
of ethyl acetate, may impart solvent-like notes (García-Carpintero 
et al., 2011; Peng et al., 2013; Pereira et al., 2014).

Lactone contribute additional to Merlot’s wines sensory attributes 
δ-decalactone and γ-nonalactone are tipically associated with coconut 
notes, while c-decalactone impart cooked peach aromas, respectively 
(Darriet et al., 2001; García-Carpintero et al., 2011).

Although generally found at lower concentrations in red wines 
compared to white aromatic varieties, terpens still provide important 
notes to Merlot wines (Ribéreau-Gayon et  al., 2006; Arcari et  al., 
2017). Geraniol provides rose-like aroma, while linalool is associated 
with floral character and borneol contributing camphor-like notes 
(Rocha et al., 2007; Ou et al., 2010; Pereira et al., 2014; Arcari et al., 
2017; Arcena et al., 2020). The expression of these volatile compounds 
can also be influenced by factors such as vintage, regional climate, and 
viticultural practices, results in a multifaceted and dynamic sensory 
experience that defines Merlot wine (Arcari et al., 2017; Carrasco-
Quiroz, 2020; Cincotta et al., 2021).

Methoxypyrazine add a vegetal dimension to Merlot’s aroma. 
They are nitrogen-containing heterocyclic compounds characterized 
by extremely low sensory thresholds. Among them, isobutyl 
methoxypyrazine (IBMP) (Prusova et al., 2022). Although its lower 
concentrations in Merlot compared to other varieties including 
Cabernet Sauvignon, Cabernet Franc, and Sauvignon Blanc, IBMP 
still contributes to its distinctive aromatic profile (Augustyn et al., 
1985), in fact is considered one of the most relevant in wines due to 
its markedly low threshold perception of just 15 ng/L. This compound 
is responsible for the green or bell pepper aromas commonly found in 
wines made from various grape varieties (De Boubée et al., 2000). 
Recent work has also highlighted how viticultural practices and 
climate conditions modulate IBMP expression in Merlot, underscoring 
the need for both agronomic and enological strategies to manage these 
compounds (Pickering et al., 2021).

C13 norisoprenoids represent a further group of aroma-active 
molecules derived from the oxidative cleavage of carotenoids during 
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grape maturation. β-damascenone, formed add depth to the wine’s 
aromatic profile with its notes of baked apple, flowers and honey, and 
α-ionone which imparts notes of raspberry and violet (Kotseridis 
et al., 1999; Noguerol-Pato et al., 2009; Peng et al., 2013). In summary, 
Merlot’s aroma arises from the interplay of multiple volatile families, 
each imparting distinctive sensory trait. This chemical complexity 
defines the varietals sensory identity and underpins its relevance in 
both scientific research and winemaking practice.

The impact of climate conditions, vineyard 
management practices

Climate change linked to global warming presents new challenges 
for vineyard management, such as reduced precipitation, higher pH 
levels in grapes, and increased alcohol content (van Leeuwen 
et al., 2024).

The increase of pH is mainly associated with potassium 
accumulation in the berries under water stress and high temperatures, 
which promotes the precipitation of organic acids such as tartaric acid, 
thereby lowering overall acidity. In parallel, climate change often 
accelerates sugar accumulation due to faster ripening, leading to 
higher carbohydrate content in the must. During fermentation, these 
elevated sugar levels are converted into higher ethanol concentrations, 
which not only increase the perceived warmth of wines but can also 
influence chemical equilibria, further affecting acid–base balance and 
contributing to higher final wine pH (de Mira Orduña, 2010; Van 
Leeuwen and Destrac-Irvine, 2017).

Merlot has been described as anisohydric variety maintaining 
stomatal conductance even under limited water availability (Jiang and 
Zhang, 2012), this trait contributes to its relative adaptability under 
climate change scenarios, where increased drought frequency and 
water scarcity are expected (Gutiérrez-Gamboa et al., 2019; Vuerich 
et al., 2021). Intra-varietal diversity and phenological plasticity further 
support Merlot’s adaptive potential in different environment (Naidu 
et al., 2014).

Among adaptive practices, irrigation plays a central role. Moderate 
irrigation (50% of crop evapotranspiration from the veraison to 
harvest) was shown to increase berry weight and in wines by 
improving chromatic properties while also enhancing consumer 
preference (Ribalta-Pizarro et al., 2024). Similarly, deficit irrigation 
under semi-arid Mediterranean conditions increased tannins and 
total polyphenols, particularly in the seeds, demonstrating the 
importance of water management in optimizing Merlot quality 
(Chacón-Vozmediano et al., 2021).

In this sense, several studies indicate that these changes impact the 
phenolic composition of Merlot wines, influencing their colour, 
stability, and sensory attributes. Merlot wines are known for their rich 
phenolic profile, including high levels of anthocyanins and other 
polyphenols crucial for colour stability, and antioxidant properties. 
This has been highlighted in studies conducted by Ivanova-Petropulos 
et al. (2015), which demonstrated that Merlot wines are richer than 
Syrah and Cabernet Sauvignon in total acids and polyphenols, 
especially anthocyanins, making them deeply coloured, fresh, and 
suitable for long-term aging. Merlot seeds contain higher quantities of 
polyphenols and tannins compared to Cabernet Sauvignon (Lorrain 
et al., 2011), and the grapes contain higher amounts of epicatechin and 
catechin compared to other cultivars (Sen and Tokatli, 2014).

Furthermore, it has been reported that Merlot wines have higher 
concentrations of malvidin derivatives, peonidin, 10-hydroxyphenyl-
pyranoanthocyanins, and higher acetylated anthocyanin content 
compared to other varieties, with lower tannin concentrations and 
reduced astringency and bitterness (Blanco-Vega et  al., 2014; 
González-Neves et al., 2001; Landon et al., 2008; Tudose-Sandu-Ville 
et al., 2012).

In this context, temperatures play a crucial responsibility in 
determining the levels of the main phenolic compounds, as the 
synthesis of anthocyanins is sensitive to temperature. Moderate 
temperatures favour non-acylated forms, while higher temperatures 
increase acetylated anthocyanins, known for their superior colour 
stability (Tarara et  al., 2008). In particular, elevated temperatures 
generally enhance the accumulation of malvidin-3-glucoside, leading 
to deeper and more stable Merlot colour profiles (Vişan et al., 2020).

Berry temperature, influenced by sunlight and water availability, 
also significantly impacts phenolic development. Increased sunlight 
raises berry temperature, while adequate water availability helps 
regulate berry cooling through transpiration. High temperatures and 
sunlight can accelerate ripening, potentially leading to higher sugar 
content but lower phenolic concentrations, which can affect the 
overall balance and complexity of the Merlot wine (Pavić et al., 2019). 
Conversely, excessive rainfall can dilute phenolic content, negatively 
impacting wine quality (Ferrer et al., 2016). Extreme temperatures can 
stress vines, redirecting resources away from phenolic synthesis and 
potentially diminishing wine quality. In these conditions, vineyard 
management practices, such as leaf removal, are crucial in shaping 
phenolic composition (Figure 2). In Merlot vineyards, this practice has 
resulted in improved cluster microclimate and enhanced pesticide 
penetration, thereby reducing Botrytis cinerea severity (Sivilotti et al., 
2016). Merlot cultivation in cooler climates like Hawke’s Bay, with 
excessive crop load and delayed ripening, can be problematic. In these 
cases, defoliation at veraison has been demonstrated to improve 
phenolic concentration and increase color intensity, increasing total 
monomeric anthocyanins, including malvidin-3-glucoside and 
quercetin-3-glucoside (Mazza et al., 1999; Spayd et al., 2002). This 
practice has also been reported to significantly impact anthocyanin 
concentrations and colour intensity in Merlot grapes, with combined 
treatments like cluster thinning at veraison and basal defoliation 
showing the most pronounced effects (Di Profio et al., 2011). The 
timing and method of leaf removal can vary, influencing the 
effectiveness of the treatment and its impact on wine quality. 
Defoliation also affects ripeness, impacting total soluble solids and 
pH, while decreasing titratable acidity, particularly when Merlot crop 
load is reduced (Karoglan et al., 2014). This type of field treatment has 
also been reported to have significant effects on the concentration and 
ratio of other varietal anthocyanins like delphinidin, petunidin, and 
peonidin (King et al., 2012; Osrečak et al., 2016).

Regional studies reveal variability in phenolic composition, with 
variations depending on the pedoclimatic conditions of the region. 
Merlot wines from higher altitudes show increased total phenolic 
compounds, flavonoids, and anthocyanins (Jin et al., 2017), as in the 
case of dehydrated Merlot grapes, which shown increased phenolic 
and mineral contents (Panceri et al., 2015). Moreover, Merlot shows 
higher variations in trans-resveratrol and trans-piceid concentrations 
compared to other grape varieties depending on the cultivation area 
(Kostadinović et al., 2012; Stervbo et al., 2007). Similarly, Merlot wines 
from southern regions have been reported to contain more catechin, 
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epicatechin, and myricetin compared to those from northern regions 
(Goldberg et al., 1996).

Although Merlot exhibits several adaptive traits, comparative 
studies suggest that it may still be  less resilient than Cabernet 
Sauvignon under future climate scenarios. This underlines the need 
for adaptive measures such as drought-tolerant clones, alternative 
rootstocks, or relocation to cooler regions (Baltazar et al., 2025).

Effects of pathogens and impact of 
agronomic treatments on Merlot wine 
characteristics

The phytosanitary condition of grapes is of fundamental 
importance to the quality of the obtained grapes. In fact, several 

authors have identified how different plant pathogens can modify and 
contribute to the complex aromatic harmony of Merlot (Table 1). 
Among these, the oomycete Plasmopara viticola has been shown to 
have a significant impact on the quality of this variety, causing an 
increase in IBMP (isobutylmethoxypyrazine) in Merlot grapes during 
infections (Pons et al., 2018).

Grapevine leafroll disease (GLD) is caused by a complex of 
Grapevine leafroll-associated viruses (GLRaVs) including GLRaV-1, 
−2, −3, and −7 (Naidu et  al., 2014). Among these, GLRaV is 
considered the most prelevant and impactful. In Merlot infection 
reduce anthocyanin and proanthocyanidin concentrations (Girardello 
et al., 2020) and impair sugars accumulation while increasing acidity 
and altering phenolic composition (Roberts et al., 2025).

Grapevine red blotch disease (GRBD) also affects Merlot, with 
reduced sugar accumulation in infected grapes (Girardello et  al., 

FIGURE 2

Key environmental, climatic, and agronomic factors and their impact on the organoleptic and sensory characteristics of Merlot wine.

TABLE 1  Main grapevine pathogens affecting Merlot and their impact on grape and wine quality, with potential control strategies.

Pathogen/disease Impact on Merlot Control strategy

Plasmopara viticola
Increase in IBMP (isobutylmethoxypyrazine), leading to stronger green notes 

in wines (Pons et al., 2018)

Application of fungicides; canopy 

microclimate management

Grapevine leafroll disease (GLD; caused by 

GLRaVs, mainly GLRaV-3)

Reduction of anthocyanins and proanthocyanidins (Girardello et al., 2020); 

reduced sugar accumulation, increased acidity, altered phenolic composition; 

crop thinning ineffective (Roberts et al., 2025)

Sanitation and certified virus-free plant 

material; vector control (mealybugs/scale); 

vineyard replacement

Grapevine Red Blotch Disease (GRBD) Reduced sugar accumulation in berries (Girardello et al., 2020)
Certified virus-free plant material; vector 

management

Botrytis cinerea
50% infection: laccase activity exceeds tannins, causing oxidative haze; 20% 

infection: tannins preserve colour and quality (Gancel et al., 2021)

Vineyard hygiene; fungicide applications; 

selective harvest

Premature Berry Dehydration (PBD)
Early dehydration, impaired sugar and nutrient transport, reduced colour, 

increased acidity (Matus et al., 2008)

Balanced irrigation; canopy management; 

pathogen monitoring

Tomato Black Ring Virus (TBRV)
Yield loss up to 66%, smaller bunches and berries, reduced grape quality, 

increased vegetative growth (Dewasme et al., 2019)

Certified propagation material; rogueing of 

infected vines

https://doi.org/10.3389/fsufs.2025.1675782
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


Gridello et al.� 10.3389/fsufs.2025.1675782

Frontiers in Sustainable Food Systems 06 frontiersin.org

2020). Furthermore, Botrytis cinerea infection affects Merlot wine 
quality. As reported, at 50% infection by B. cinerea, laccase can 
overpower tannins, risking oxidative haze, but at 20%, tannins 
effectively preserve wine colour and quality (Gancel et al., 2021). It has 
also been reported that Merlot vines exhibit high sensitivity to 
pre-mature berry dehydration (PBD), a disorder linked to phloem 
disruption, supposed to arise from pathogenic microorganisms and 
viruses, which affects fruit development by causing dehydration, 
disrupting sugar and nutrient transport, and leading to reduced colour 
and increased acidity in the berries (Matus et al., 2008). Regarding 
viruses, a study conducted on Merlot vines infected with Tomato 
Black Ring Virus (TBRV) showed significant yield reductions of up to 
66%, with fewer and smaller bunches and berries. Despite slight 
increases in polyphenols and anthocyanins, which improved wine 
colour, TBRV resulted in lower grape quality, reduced vegetative 
growth, and more lateral shoots, leading to complicate vineyard 
management (Dewasme et al., 2019).

To counteract these pathogens, agronomic treatments are 
essential. However, several studies have shown that specific chemical 
compounds used for these practices can significantly affect the 
chemical composition and sensory attributes of wines (Table 2). For 
example, chiral tebuconazole residues were reported to significantly 
impact Merlot wine flavour and colour attributes by altering the levels 
of volatile compounds. The presence of these residues was also 
correlated with an increase in acetic acid and changes in 
concentrations of compounds like 2-heptanol and ethyl butyrate, 
which negatively impacted the wine’s fruity and floral flavours (Zhao 
et  al., 2022). Additionally, the presence of pyranoanthocyanin 
derivatives residues resulted in Merlot wines with a more brick-red 

hue. R-tebuconazole, in particular, had the most detrimental effect on 
Merlot’s flavour and colour, underscoring the importance of stringent 
quality control in wine production. Similarly, copper sprayings on 
vines resulted in a reduction in the varietal aroma of young Merlot 
wines, particularly affecting volatile thiols (Darriet et  al., 2001). 
Conversely, to improve aromatic components and promote plant 
development, the use of biostimulants has been gaining ground in 
recent years (Colautti et al., 2023b). For instance, field application of 
boron to Merlot grapes was reported to significantly increase the 
content of anthocyanins, hydroxycinnamic acids, and flavonols, 
enhancing phenolic metabolism in grape skins and besides modify 
the phytochemical composition (Arbigaus Bredun et  al., 2023) 
(Figure 3).

The impact of winemaking techniques on 
Merlot quality

Winery technologies are crucial in Merlot vinification as they 
significantly impact its organoleptic characteristics. From 
fermentation management to the selection of aging materials, each 
technical aspect helps shaping the wine’s aromatic profile and taste.

For example, it has been observed that bentonite, a widely used 
fining agent in wineries for clarification, can influence the 
concentration of rare earth elements in Merlot wine based on its 
origin, thereby impacting the wine’s chemical profile (Tatár et  al., 
2007). Additionally, combining bentonite with 
polyvinylpolypyrrolidone (PVPP) and plant proteins (PPI) as fining 
agents significantly affected monomeric flavanols, turbidity, and 
anthocyanin content in Merlot wines. Optimal results were achieved 
with a combination of 25% PPI, 43% PVPP, and 32% bentonite 
(Ficagna et  al., 2020). Activated charcoal has also been shown to 
be  particularly effective in reducing smoke taint in Merlot wines, 
enhancing fruit characteristics without significantly altering colour or 
acidity (Fudge et al., 2012).

Another technique, ultrasound application, has yielded 
contrasting results for Merlot. Xie et al. (2023) highlighted the benefits 
of combining ultrasound with low-temperature pre-treatment, noting 
improvements in anthocyanin and phenolic acid levels, aroma, and 
reduction of undesirable odours, suggesting strong application 
potential. Similarly, Maier et  al. (2024) reported that high-power 
ultrasound treatment improved the extraction of polyphenolic 
compounds during Merlot grape maceration. Conversely, Ignat et al. 
(2016) found that traditional fermentation and rotating tank 
maceration techniques produced the most balanced anthocyanin 
levels in Merlot, while ultrasound maceration was less effective. The 
study also observed varying percentages of free anthocyanins, with 
malvidin being the most prevalent.

In addition to these cellar technologies, extraction dynamics 
during maceration are also important in shaping Merlot’s aromatic 
profile. A recent study investigated the impact of varying seed-to-skin 
ratio in Merlot and found that a higher proportion of seeds led to 
Merlot wines with significantly increased tannin content and 
anthocyanin concentration, resulting in stronger colour density and a 
higher phenolic index (Makalisa et al., 2025).

The evolution of phenolic compounds and colour in Merlot 
and Marselan dry red wines throughout winemaking and aging 
was also studied (Zhang et al., 2024). These authors found minimal 

TABLE 2  Agronomic practices influencing Merlot grape and wine quality, 
their impact on composition and potential management strategies.

Agronomic 
practice

Impact on Merlot Control 
strategy

Tebuconazole residues (R/S 

enantiomers)

Altered volatile profile, 

increased acetic acid, 

negative effects on fruity/

floral aroma and colour 

(R-enantiomer most 

detrimental) (Zhao et al., 

2022)

Careful fungicide 

application, residue 

monitoring, quality 

control

Pyranoanthocyanin 

residues

Brick-red hue in wines 

(Zhao et al., 2022)

Minimize fungicide 

residues through 

vineyard 

management

Copper sprays

Reduction of varietal 

aroma in young wines, 

especially volatile thiols 

(Darriet et al., 2001)

Optimize dosage, 

integrate alternative 

products

Biostimulants (e.g., Boron)

Increase in anthocyanins, 

hydroxycinnamic acids 

and flavonols; stimulation 

of phenolic metabolism 

(Mian et al., 2023; 

Arbigaus Bredun et al., 

2023)

Foliar nutrient 

management, 

targeted application
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phenolic leaching during cold maceration, with rapid release 
during alcoholic fermentation, leading to increased pyran 
anthocyanins and polymeric pigments, which remain high 
through malolactic fermentation and storage. The wines’ colour 
during aging is primarily influenced by anthocyanins and F-A 
polymeric pigments, with the red color of Merlot being closely 
linked to the presence of pinotins. Increased concentrations of 
flavan-3-ols have been correlated with enhanced color stability, 
indicating their potential role in mitigating color loss 
and instability.

Fermentation dynamics and yeast influence 
in Merlot wines

Grape-associated microbiota differs considerably across 
viticultural regions under the influence of environmental factors 
such as soil and climate. In Merlot these microbial signatures were 
distinctive enough to classify grapes by geographical origin 
providing strong evidence for their role in microbial terroir 
(Bokulich et  al., 2014). Further studies confirmed this regional 
specificity. In Southern Brazil Hanseniaspora uvarum, Issatchenkia 
terricola, Saturnispora diversa and Starmerella bacillaris were 
identified as the dominant species on Merlot berries, showing 
biodiversity comparable to Cabernet Sauvignon (Mattos Rocha 
et  al., 2022). The relevance of microbial communities extends 
beyond regional diversity to the fermentation process itself. In 
Merlot musts, distinct dynamics have been reported during 
spontaneous fermentations, notably the high presence of Pichia 
anomala during fermentations, leading to wines with lower alcohol 
percentages and increased glycerol concentrations (Clavijo et al., 
2010; Li et al., 2010; Varela et al., 2017).

During spontaneous fermentation, the microbial succession has 
been extensively investigated. Culture-independent analyses reveled 
that in the early stages of alcoholic fermentation non-Saccharomyces 

yeast are predominant before being progressively replaced by 
S. cerevisiae (Zott et al., 2008).

Another distinctive feature of Merlot fermentations is the high 
prevalence of killer strains during spontaneous fermentation possibly 
due to greater initial yeast populations on the berries compared to 
varieties like Cabernet Sauvignon (Renouf et al., 2008). The dynamics 
of these killer yeasts play a crucial role, with Merlot fermentations 
showing a predominance of killer strains from early stages, unlike 
Malbec, where a mixed population of sensitive and killer strains was 
observed (Sangorrín et al., 2001).

These naturally occurring antagonistic interactions within 
Merlot fermentation have inspired modern bioprotection strategies, 
where selected non-Saccharomyces yeast are employed to limit 
spoilage microorganism while reducing sulphur dioxide (SO2). In 
this sense, bioprotection was successfully tested on Merlot wines, 
which limited the oxidation of must during fermentation and 
provided protection against undesirable microorganisms, such as 
acetic acid bacteria, helping to preserve the wine’s sensory qualities 
(Windholtz et al., 2021a). A specific study examined the sensory 
profiles of sulphite-free wines made with and without bioprotection 
over two years. The results showed that wines treated with 
bioprotection, as well as those without sulphites, displayed intense 
notes of “Fresh blackcurrant,” “Cooked black cherries,” “Mint,” and 
“Coolness” differing from wines made with the addition of SO2. The 
findings showed that these yeasts effectively dominated the 
pre-fermentation environment, significantly influencing the final 
wine aroma. Specifically, bioprotection encouraged the formation 
of linear esters, while sequential inoculation promoted the 
production of acetate esters from higher alcohols, contributing to a 
more pronounced fruity aroma. Sensory analyses confirmed that 
the use of non-Saccharomyces yeasts enhanced the fruity qualities 
of the wines, further highlighting their aromatic benefits (Windholtz 
et al., 2021a). Another study investigated the use of Metschnikowia 
pulcherrima and Meyerozyma guilliermondii in combination with 
S. cerevisiae for fermenting Merlot must. The research revealed a 
reduction in ethanol levels in wines in which M. pulcherrima was 

FIGURE 3

Key non-Saccharomyces yeast strains whose fermentative effects have been specifically studied in the vinification of Merlot grapes.
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involved, compared to those fermented solely with S. cerevisiae. 
However, fermentations inoculated with M. guilliermondii resulted 
in higher ethyl acetate levels, though sensory analysis showed no 
detrimental effect on wine quality (Aplin et  al., 2021). The 
bioprotective effect of non-Saccharomyces yeasts also relates to their 
ability to consume dissolved oxygen, with M. pulcherrima and 
Torulaspora delbreuckii proving particularly effective in limiting the 
growth of spoilage bacteria such as Glucanobacter oxydans. Notably, 
M. pulcherrima consumed oxygen more rapidly than S. cerevisiae, 
underscoring its potential for use in bioprotection during 
winemaking (Windholtz et al., 2023a). The addition of bioprotective 
yeasts such as M. pulcherrima and T. delbrueckii early in the 
winemaking process helps prevent must deterioration by reducing 
the presence of filamentous fungi. Temperature control during 
pre-fermentation being essential to maximize their protective 
effects (Windholtz et al., 2021b). Altogether, these result confirm 
that bioprotection enhances aroma, stabilizes must, and allows a 
reduction in Merlot winemaking (Alexandre et al., 2023; Windholtz 
et al., 2023b).

Furthermore, it is essential to characterize microbial 
populations for their impact on the organoleptic and safety aspects 
of the product. One major concern in Merlot production is the 
potential presence of biogenic amines (BAs). Different levels of 
biogenic amines, including spermidine, serotonin, putrescine, and 
cadaverine, have been reported in Merlot wines depending on the 
inoculation strategy of alcoholic and malolactic fermentation 
starters (Manfroi et al., 2009). Other studies have highlighted that 
the co-inoculation of yeast and lactic acid bacteria during 
malolactic fermentation in Merlot wines can reduce the content of 
cadaverine and tyramine (Cañas et al., 2012). The composition of 
microbial populations in Merlot can also be influenced by vineyard 
and cellar practices, highlighting the importance of management 
choices in modulating yeast communities and their functional 
impact (Colautti et al., 2023a). In this context the use of indigenous 
yeast strains for wine fermentation is crucial as it enhances the 
unique character of the terroir, promotes a more natural and 
sustainable fermentation process, and preserves vineyard 
biodiversity (Nisiotou et al., 2018). Concrete examples in Merlot 
support this approach. The isolation and characterization of 
autochthonous S. cerevisiae strains confirmed that indigenous 
populations can provide distinctive contributions, with one strain 
(7F) producing wines with superior colour, aroma intensity, and 
fruity character.(Ut et  al., 2022). Similarly, in Northwestern 
Argentina, ten non-Saccharomyces species were isolated from 
Merlot grapes, with H. uvarum as the most abundant. Selected 
strain, including H. uvarum, H. vinae and Metschnikowia 
pulcherrima exhibited favorable oenological traits such as moderate 
SO2 tolerance, low volatile acidity production and enzymatic 
activity related to aroma release (Mendoza et al., 2019). Beyond 
these examples interest in non-Saccharomyces yeasts has 
significantly increased due to their technological potential (Borren 
and Tian, 2020; Maicas and Mateo, 2023). Yeasts like Hanseniaspora 
spp. and Starmerella spp., dominant in spontaneous fermentations, 
are known to significantly contribute to the production of aromatic 
compounds such as higher alcohols, esters, and terpenes, thus 
enhancing the aromatic complexity of Merlot wines (Renault et al., 
2015). In addition, several non-Saccharomyces yeasts secrete 
enzymes such as β-glucosidases and proteases, which can 

significantly affect the final aroma of Merlot wines by interacting 
with grape-derived precursors, a notable example is H. vineae 
which has been associated with the production of phenyl ethyl 
acetate, contributing fruity, floral, and honey-like notes, although 
its impact depends on the competitive dynamics within Merlot 
must (Lleixà et al., 2016). Taken together, these findings emphasise 
that yeast selection in Merlot winemaking is not only critical for 
fermentation performance but also decisive in defining the aromatic 
identity and overall sensory quality of the wine (Figure 3). Despite 
these promising perspectives, the application of non-Saccharomyces 
yeasts in Merlot winemaking at industrial scale still faces important 
limitations. Most studies have been conducted under laboratory or 
pilot-scale conditions, and large-volume fermentations often show 
lower reproducibility and stability (Jolly et al., 2014; Padilla et al., 
2016). In Merlot specifically, M. pulcherrima has been associated 
with reduced ethanol levels, but fermentations involving 
M. guilliermondii resulted in increased ethyl acetate, which could 
negatively impact wine quality (Aplin et  al., 2021). Moreover, 
non-Saccharomyces strains are frequently outcompeted by 
S. cerevisiae, requiring high inoculation rates and strict management 
to ensure persistence. While recent studies on bioprotection have 
confirmed their potential for reducing SO₂ and controlling spoilage 
bacteria (Windholtz et  al., 2023b; Alexandre et  al., 2023), these 
approaches still demand further validation under commercial 
winemaking conditions.

Potential of Merlot wine and grape pomace 
extracts in oxidative stress and 
neuroprotection

Several studies have highlighted the benefits of drinking 
moderate quantities of wine responsibly (Buljeta et  al., 2023). 
Beneficial effects have been particularly observed in red wines, 
including Merlot, due to their high levels of antioxidant compounds 
(Landrault et al., 2001). Majkić et al. (2019) explored using a cell 
culture in vitro model the anti-inflammatory properties of Merlot 
wines, observing a reduction in Prostaglandin E2 (PGE2, involved in 
inflammation, fever, and pain) production by up to 65.5% and 
Thromboxane A2 (TXA2, crucial for blood clotting and vascular 
tone) by up to 47.9%. These reductions suggest potential 
cardiovascular benefits similar to a low dose of aspirin. However, no 
direct correlation was found between the wines’ phenolic content and 
their anti-inflammatory effects, indicating that other compounds or 
synergistic effects might be  at play. Martín et  al. (2011) further 
demonstrated that Merlot red wine can protect human astrocytoma 
cells from oxidative damage caused by the Fenton reaction, which 
generates harmful radicals. This finding is significant as it implies that 
Merlot’s antioxidants might help protect against cell damage related 
to various diseases, including cancer, potentially leading to new 
dietary strategies for improving health and preventing disease.

Additionally, the potential to extract valuable active compounds 
from this cultivar’s grapes has been demonstrated, offering an 
opportunity to add value to the industry’s by-products due to their 
high phenol and antioxidant content (Díaz et  al., 2022). For 
example, it was reported that pressed Merlot red wine extract has 
higher neuroprotective activity than free run wine due to the 
greater extraction of polyphenols, including quercetin, catechin, 
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and procyanidins from the grape pomace. In particular, quercetin 
was found to be  effective in preventing PC12 cell death and 
reducing the overproduction of reactive oxygen species (ROS) 
(Martín et  al., 2012). Moreover, Merlot grape pomace 
hydroalcoholic extract, rich in anthocyanins, could improve 
oxidative and inflammatory states in arthritis patients (Gonçalves 
et al., 2017). These extracts also exhibited antimicrobial activity 
against various pathogens, including E. coli and methicillin-
resistant S. aureus (Corrêa et al., 2017). Similarly, other extracts 
such as flavonoids, flavones, hydroxybenzoic acid derivatives, 
hydroxycinnamic acid derivatives, and ferulic acid methyl ester 
from Merlot grape pomace, showed effective antimicrobial activity 
mainly against Gram-positive bacteria (Ghendov-Mosanu 
et al., 2022).

Conclusion

Thanks to its distinctive organoleptic qualities, which include a 
fruity aromatic profile and a smooth, approachable taste, Merlot 
captivates a wide spectrum of consumers. This broad appeal has 
fuelled its expansion beyond traditional regions like Italy, Spain, 
and France to major international markets, including the 
United States, Australia, and Chile. In recent years, its popularity 
has also surged in Asia, particularly in China. The Asian market is 
becoming increasingly important for the wine industry, with 
growing demand for both imported and locally produced wines. 
Merlot aligns perfectly with the preferences of these emerging 
consumers, who often favour rounder, fruitier wines with lower 
alcohol content and softer tannins compared to more robust red 
varieties. This makes Merlot particularly suited to the expanding 
middle class in Asia, where an evolving wine culture is fostering 
new opportunities.

Merlot’s adaptability to various geographical regions further 
strengthens its global reach. Its ability to thrive in diverse terroirs, 
combined with early ripening and disease resistance, makes it a 
strategic choice for vineyards grappling with the unpredictable 
weather patterns exacerbated by climate change.

As Merlot’s presence continues to grow, ongoing research into this 
variety will be  essential. With consumers increasingly focused on 
sustainability and ecological practices, future studies must prioritize 
environmentally friendly viticulture. Exploring the use of biostimulants 
and examining the role of environmental microbiomes, both areas 
where Merlot has seen limited research, will be crucial to developing 
sustainable farming practices that minimize chemical inputs.

Equally important are the advancements in winemaking 
technology. Emphasizing the role of native microbial flora can help 
winemakers create wines that authentically reflect the unique 
characteristics of their region, offering a point of distinction in a 
highly competitive global market. Further research into these 
indigenous microorganisms could lead to the development of new 
starter cultures that improve fermentation control and efficiency. In 
particular, isolating yeast strains that can withstand higher 
fermentation temperatures without sacrificing quality would 
support the industry’s push towards more energy-efficient 
production methods. Additionally, reducing the use of traditional 

additives like SO2 by identifying effective bioprotective strains could 
lead to wines with a smaller environmental footprint, responding 
to the demand for more natural and low-intervention products.
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